xref: /openbmc/linux/drivers/rtc/class.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, base class
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * class skeleton from drivers/hwmon/hwmon.c
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "rtc-core.h"
22 
23 static DEFINE_IDA(rtc_ida);
24 struct class *rtc_class;
25 
26 static void rtc_device_release(struct device *dev)
27 {
28 	struct rtc_device *rtc = to_rtc_device(dev);
29 
30 	ida_simple_remove(&rtc_ida, rtc->id);
31 	kfree(rtc);
32 }
33 
34 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
35 /* Result of the last RTC to system clock attempt. */
36 int rtc_hctosys_ret = -ENODEV;
37 
38 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
39  * whether it stores the most close value or the value with partial
40  * seconds truncated. However, it is important that we use it to store
41  * the truncated value. This is because otherwise it is necessary,
42  * in an rtc sync function, to read both xtime.tv_sec and
43  * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
44  * of >32bits is not possible. So storing the most close value would
45  * slow down the sync API. So here we have the truncated value and
46  * the best guess is to add 0.5s.
47  */
48 
49 static void rtc_hctosys(struct rtc_device *rtc)
50 {
51 	int err;
52 	struct rtc_time tm;
53 	struct timespec64 tv64 = {
54 		.tv_nsec = NSEC_PER_SEC >> 1,
55 	};
56 
57 	err = rtc_read_time(rtc, &tm);
58 	if (err) {
59 		dev_err(rtc->dev.parent,
60 			"hctosys: unable to read the hardware clock\n");
61 		goto err_read;
62 	}
63 
64 	tv64.tv_sec = rtc_tm_to_time64(&tm);
65 
66 #if BITS_PER_LONG == 32
67 	if (tv64.tv_sec > INT_MAX) {
68 		err = -ERANGE;
69 		goto err_read;
70 	}
71 #endif
72 
73 	err = do_settimeofday64(&tv64);
74 
75 	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
76 		 &tm, (long long)tv64.tv_sec);
77 
78 err_read:
79 	rtc_hctosys_ret = err;
80 }
81 #endif
82 
83 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
84 /*
85  * On suspend(), measure the delta between one RTC and the
86  * system's wall clock; restore it on resume().
87  */
88 
89 static struct timespec64 old_rtc, old_system, old_delta;
90 
91 static int rtc_suspend(struct device *dev)
92 {
93 	struct rtc_device	*rtc = to_rtc_device(dev);
94 	struct rtc_time		tm;
95 	struct timespec64	delta, delta_delta;
96 	int err;
97 
98 	if (timekeeping_rtc_skipsuspend())
99 		return 0;
100 
101 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
102 		return 0;
103 
104 	/* snapshot the current RTC and system time at suspend*/
105 	err = rtc_read_time(rtc, &tm);
106 	if (err < 0) {
107 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
108 		return 0;
109 	}
110 
111 	ktime_get_real_ts64(&old_system);
112 	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
113 
114 	/*
115 	 * To avoid drift caused by repeated suspend/resumes,
116 	 * which each can add ~1 second drift error,
117 	 * try to compensate so the difference in system time
118 	 * and rtc time stays close to constant.
119 	 */
120 	delta = timespec64_sub(old_system, old_rtc);
121 	delta_delta = timespec64_sub(delta, old_delta);
122 	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
123 		/*
124 		 * if delta_delta is too large, assume time correction
125 		 * has occurred and set old_delta to the current delta.
126 		 */
127 		old_delta = delta;
128 	} else {
129 		/* Otherwise try to adjust old_system to compensate */
130 		old_system = timespec64_sub(old_system, delta_delta);
131 	}
132 
133 	return 0;
134 }
135 
136 static int rtc_resume(struct device *dev)
137 {
138 	struct rtc_device	*rtc = to_rtc_device(dev);
139 	struct rtc_time		tm;
140 	struct timespec64	new_system, new_rtc;
141 	struct timespec64	sleep_time;
142 	int err;
143 
144 	if (timekeeping_rtc_skipresume())
145 		return 0;
146 
147 	rtc_hctosys_ret = -ENODEV;
148 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
149 		return 0;
150 
151 	/* snapshot the current rtc and system time at resume */
152 	ktime_get_real_ts64(&new_system);
153 	err = rtc_read_time(rtc, &tm);
154 	if (err < 0) {
155 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
156 		return 0;
157 	}
158 
159 	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
160 	new_rtc.tv_nsec = 0;
161 
162 	if (new_rtc.tv_sec < old_rtc.tv_sec) {
163 		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
164 		return 0;
165 	}
166 
167 	/* calculate the RTC time delta (sleep time)*/
168 	sleep_time = timespec64_sub(new_rtc, old_rtc);
169 
170 	/*
171 	 * Since these RTC suspend/resume handlers are not called
172 	 * at the very end of suspend or the start of resume,
173 	 * some run-time may pass on either sides of the sleep time
174 	 * so subtract kernel run-time between rtc_suspend to rtc_resume
175 	 * to keep things accurate.
176 	 */
177 	sleep_time = timespec64_sub(sleep_time,
178 				    timespec64_sub(new_system, old_system));
179 
180 	if (sleep_time.tv_sec >= 0)
181 		timekeeping_inject_sleeptime64(&sleep_time);
182 	rtc_hctosys_ret = 0;
183 	return 0;
184 }
185 
186 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
187 #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
188 #else
189 #define RTC_CLASS_DEV_PM_OPS	NULL
190 #endif
191 
192 /* Ensure the caller will set the id before releasing the device */
193 static struct rtc_device *rtc_allocate_device(void)
194 {
195 	struct rtc_device *rtc;
196 
197 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
198 	if (!rtc)
199 		return NULL;
200 
201 	device_initialize(&rtc->dev);
202 
203 	/* Drivers can revise this default after allocating the device. */
204 	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
205 
206 	rtc->irq_freq = 1;
207 	rtc->max_user_freq = 64;
208 	rtc->dev.class = rtc_class;
209 	rtc->dev.groups = rtc_get_dev_attribute_groups();
210 	rtc->dev.release = rtc_device_release;
211 
212 	mutex_init(&rtc->ops_lock);
213 	spin_lock_init(&rtc->irq_lock);
214 	init_waitqueue_head(&rtc->irq_queue);
215 
216 	/* Init timerqueue */
217 	timerqueue_init_head(&rtc->timerqueue);
218 	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
219 	/* Init aie timer */
220 	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
221 	/* Init uie timer */
222 	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
223 	/* Init pie timer */
224 	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
225 	rtc->pie_timer.function = rtc_pie_update_irq;
226 	rtc->pie_enabled = 0;
227 
228 	return rtc;
229 }
230 
231 static int rtc_device_get_id(struct device *dev)
232 {
233 	int of_id = -1, id = -1;
234 
235 	if (dev->of_node)
236 		of_id = of_alias_get_id(dev->of_node, "rtc");
237 	else if (dev->parent && dev->parent->of_node)
238 		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
239 
240 	if (of_id >= 0) {
241 		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
242 		if (id < 0)
243 			dev_warn(dev, "/aliases ID %d not available\n", of_id);
244 	}
245 
246 	if (id < 0)
247 		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
248 
249 	return id;
250 }
251 
252 static void rtc_device_get_offset(struct rtc_device *rtc)
253 {
254 	time64_t range_secs;
255 	u32 start_year;
256 	int ret;
257 
258 	/*
259 	 * If RTC driver did not implement the range of RTC hardware device,
260 	 * then we can not expand the RTC range by adding or subtracting one
261 	 * offset.
262 	 */
263 	if (rtc->range_min == rtc->range_max)
264 		return;
265 
266 	ret = device_property_read_u32(rtc->dev.parent, "start-year",
267 				       &start_year);
268 	if (!ret) {
269 		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
270 		rtc->set_start_time = true;
271 	}
272 
273 	/*
274 	 * If user did not implement the start time for RTC driver, then no
275 	 * need to expand the RTC range.
276 	 */
277 	if (!rtc->set_start_time)
278 		return;
279 
280 	range_secs = rtc->range_max - rtc->range_min + 1;
281 
282 	/*
283 	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
284 	 * supported by RTC hardware or the maximum seconds of new expanded
285 	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
286 	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
287 	 * RTC hardware will be mapped to start_secs by adding one offset, so
288 	 * the offset seconds calculation formula should be:
289 	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
290 	 *
291 	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
292 	 * supported by RTC hardware, then there is one region is overlapped
293 	 * between the original RTC hardware range and the new expanded range,
294 	 * and this overlapped region do not need to be mapped into the new
295 	 * expanded range due to it is valid for RTC device. So the minimum
296 	 * seconds of RTC hardware (rtc->range_min) should be mapped to
297 	 * rtc->range_max + 1, then the offset seconds formula should be:
298 	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
299 	 *
300 	 * If the start_secs is less than the minimum seconds (rtc->range_min),
301 	 * which is similar to case 2. So the start_secs should be mapped to
302 	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
303 	 * offset seconds formula should be:
304 	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
305 	 *
306 	 * Otherwise the offset seconds should be 0.
307 	 */
308 	if (rtc->start_secs > rtc->range_max ||
309 	    rtc->start_secs + range_secs - 1 < rtc->range_min)
310 		rtc->offset_secs = rtc->start_secs - rtc->range_min;
311 	else if (rtc->start_secs > rtc->range_min)
312 		rtc->offset_secs = range_secs;
313 	else if (rtc->start_secs < rtc->range_min)
314 		rtc->offset_secs = -range_secs;
315 	else
316 		rtc->offset_secs = 0;
317 }
318 
319 /**
320  * rtc_device_unregister - removes the previously registered RTC class device
321  *
322  * @rtc: the RTC class device to destroy
323  */
324 static void rtc_device_unregister(struct rtc_device *rtc)
325 {
326 	mutex_lock(&rtc->ops_lock);
327 	/*
328 	 * Remove innards of this RTC, then disable it, before
329 	 * letting any rtc_class_open() users access it again
330 	 */
331 	rtc_proc_del_device(rtc);
332 	cdev_device_del(&rtc->char_dev, &rtc->dev);
333 	rtc->ops = NULL;
334 	mutex_unlock(&rtc->ops_lock);
335 	put_device(&rtc->dev);
336 }
337 
338 static void devm_rtc_release_device(struct device *dev, void *res)
339 {
340 	struct rtc_device *rtc = *(struct rtc_device **)res;
341 
342 	rtc_nvmem_unregister(rtc);
343 
344 	if (rtc->registered)
345 		rtc_device_unregister(rtc);
346 	else
347 		put_device(&rtc->dev);
348 }
349 
350 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
351 {
352 	struct rtc_device **ptr, *rtc;
353 	int id, err;
354 
355 	id = rtc_device_get_id(dev);
356 	if (id < 0)
357 		return ERR_PTR(id);
358 
359 	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
360 	if (!ptr) {
361 		err = -ENOMEM;
362 		goto exit_ida;
363 	}
364 
365 	rtc = rtc_allocate_device();
366 	if (!rtc) {
367 		err = -ENOMEM;
368 		goto exit_devres;
369 	}
370 
371 	*ptr = rtc;
372 	devres_add(dev, ptr);
373 
374 	rtc->id = id;
375 	rtc->dev.parent = dev;
376 	dev_set_name(&rtc->dev, "rtc%d", id);
377 
378 	return rtc;
379 
380 exit_devres:
381 	devres_free(ptr);
382 exit_ida:
383 	ida_simple_remove(&rtc_ida, id);
384 	return ERR_PTR(err);
385 }
386 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
387 
388 int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
389 {
390 	struct rtc_wkalrm alrm;
391 	int err;
392 
393 	if (!rtc->ops) {
394 		dev_dbg(&rtc->dev, "no ops set\n");
395 		return -EINVAL;
396 	}
397 
398 	rtc->owner = owner;
399 	rtc_device_get_offset(rtc);
400 
401 	/* Check to see if there is an ALARM already set in hw */
402 	err = __rtc_read_alarm(rtc, &alrm);
403 	if (!err && !rtc_valid_tm(&alrm.time))
404 		rtc_initialize_alarm(rtc, &alrm);
405 
406 	rtc_dev_prepare(rtc);
407 
408 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
409 	if (err)
410 		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
411 			 MAJOR(rtc->dev.devt), rtc->id);
412 	else
413 		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
414 			MAJOR(rtc->dev.devt), rtc->id);
415 
416 	rtc_proc_add_device(rtc);
417 
418 	rtc->registered = true;
419 	dev_info(rtc->dev.parent, "registered as %s\n",
420 		 dev_name(&rtc->dev));
421 
422 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
423 	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
424 		rtc_hctosys(rtc);
425 #endif
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(__rtc_register_device);
430 
431 /**
432  * devm_rtc_device_register - resource managed rtc_device_register()
433  * @dev: the device to register
434  * @name: the name of the device (unused)
435  * @ops: the rtc operations structure
436  * @owner: the module owner
437  *
438  * @return a struct rtc on success, or an ERR_PTR on error
439  *
440  * Managed rtc_device_register(). The rtc_device returned from this function
441  * are automatically freed on driver detach.
442  * This function is deprecated, use devm_rtc_allocate_device and
443  * rtc_register_device instead
444  */
445 struct rtc_device *devm_rtc_device_register(struct device *dev,
446 					    const char *name,
447 					    const struct rtc_class_ops *ops,
448 					    struct module *owner)
449 {
450 	struct rtc_device *rtc;
451 	int err;
452 
453 	rtc = devm_rtc_allocate_device(dev);
454 	if (IS_ERR(rtc))
455 		return rtc;
456 
457 	rtc->ops = ops;
458 
459 	err = __rtc_register_device(owner, rtc);
460 	if (err)
461 		return ERR_PTR(err);
462 
463 	return rtc;
464 }
465 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
466 
467 static int __init rtc_init(void)
468 {
469 	rtc_class = class_create(THIS_MODULE, "rtc");
470 	if (IS_ERR(rtc_class)) {
471 		pr_err("couldn't create class\n");
472 		return PTR_ERR(rtc_class);
473 	}
474 	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
475 	rtc_dev_init();
476 	return 0;
477 }
478 subsys_initcall(rtc_init);
479