xref: /openbmc/linux/drivers/rtc/class.c (revision 36acd5e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, base class
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * class skeleton from drivers/hwmon/hwmon.c
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "rtc-core.h"
22 
23 static DEFINE_IDA(rtc_ida);
24 struct class *rtc_class;
25 
26 static void rtc_device_release(struct device *dev)
27 {
28 	struct rtc_device *rtc = to_rtc_device(dev);
29 
30 	ida_simple_remove(&rtc_ida, rtc->id);
31 	mutex_destroy(&rtc->ops_lock);
32 	kfree(rtc);
33 }
34 
35 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
36 /* Result of the last RTC to system clock attempt. */
37 int rtc_hctosys_ret = -ENODEV;
38 
39 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
40  * whether it stores the most close value or the value with partial
41  * seconds truncated. However, it is important that we use it to store
42  * the truncated value. This is because otherwise it is necessary,
43  * in an rtc sync function, to read both xtime.tv_sec and
44  * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
45  * of >32bits is not possible. So storing the most close value would
46  * slow down the sync API. So here we have the truncated value and
47  * the best guess is to add 0.5s.
48  */
49 
50 static void rtc_hctosys(struct rtc_device *rtc)
51 {
52 	int err;
53 	struct rtc_time tm;
54 	struct timespec64 tv64 = {
55 		.tv_nsec = NSEC_PER_SEC >> 1,
56 	};
57 
58 	err = rtc_read_time(rtc, &tm);
59 	if (err) {
60 		dev_err(rtc->dev.parent,
61 			"hctosys: unable to read the hardware clock\n");
62 		goto err_read;
63 	}
64 
65 	tv64.tv_sec = rtc_tm_to_time64(&tm);
66 
67 #if BITS_PER_LONG == 32
68 	if (tv64.tv_sec > INT_MAX) {
69 		err = -ERANGE;
70 		goto err_read;
71 	}
72 #endif
73 
74 	err = do_settimeofday64(&tv64);
75 
76 	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
77 		 &tm, (long long)tv64.tv_sec);
78 
79 err_read:
80 	rtc_hctosys_ret = err;
81 }
82 #endif
83 
84 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
85 /*
86  * On suspend(), measure the delta between one RTC and the
87  * system's wall clock; restore it on resume().
88  */
89 
90 static struct timespec64 old_rtc, old_system, old_delta;
91 
92 static int rtc_suspend(struct device *dev)
93 {
94 	struct rtc_device	*rtc = to_rtc_device(dev);
95 	struct rtc_time		tm;
96 	struct timespec64	delta, delta_delta;
97 	int err;
98 
99 	if (timekeeping_rtc_skipsuspend())
100 		return 0;
101 
102 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
103 		return 0;
104 
105 	/* snapshot the current RTC and system time at suspend*/
106 	err = rtc_read_time(rtc, &tm);
107 	if (err < 0) {
108 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
109 		return 0;
110 	}
111 
112 	ktime_get_real_ts64(&old_system);
113 	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
114 
115 	/*
116 	 * To avoid drift caused by repeated suspend/resumes,
117 	 * which each can add ~1 second drift error,
118 	 * try to compensate so the difference in system time
119 	 * and rtc time stays close to constant.
120 	 */
121 	delta = timespec64_sub(old_system, old_rtc);
122 	delta_delta = timespec64_sub(delta, old_delta);
123 	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
124 		/*
125 		 * if delta_delta is too large, assume time correction
126 		 * has occurred and set old_delta to the current delta.
127 		 */
128 		old_delta = delta;
129 	} else {
130 		/* Otherwise try to adjust old_system to compensate */
131 		old_system = timespec64_sub(old_system, delta_delta);
132 	}
133 
134 	return 0;
135 }
136 
137 static int rtc_resume(struct device *dev)
138 {
139 	struct rtc_device	*rtc = to_rtc_device(dev);
140 	struct rtc_time		tm;
141 	struct timespec64	new_system, new_rtc;
142 	struct timespec64	sleep_time;
143 	int err;
144 
145 	if (timekeeping_rtc_skipresume())
146 		return 0;
147 
148 	rtc_hctosys_ret = -ENODEV;
149 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
150 		return 0;
151 
152 	/* snapshot the current rtc and system time at resume */
153 	ktime_get_real_ts64(&new_system);
154 	err = rtc_read_time(rtc, &tm);
155 	if (err < 0) {
156 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
157 		return 0;
158 	}
159 
160 	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
161 	new_rtc.tv_nsec = 0;
162 
163 	if (new_rtc.tv_sec < old_rtc.tv_sec) {
164 		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
165 		return 0;
166 	}
167 
168 	/* calculate the RTC time delta (sleep time)*/
169 	sleep_time = timespec64_sub(new_rtc, old_rtc);
170 
171 	/*
172 	 * Since these RTC suspend/resume handlers are not called
173 	 * at the very end of suspend or the start of resume,
174 	 * some run-time may pass on either sides of the sleep time
175 	 * so subtract kernel run-time between rtc_suspend to rtc_resume
176 	 * to keep things accurate.
177 	 */
178 	sleep_time = timespec64_sub(sleep_time,
179 				    timespec64_sub(new_system, old_system));
180 
181 	if (sleep_time.tv_sec >= 0)
182 		timekeeping_inject_sleeptime64(&sleep_time);
183 	rtc_hctosys_ret = 0;
184 	return 0;
185 }
186 
187 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
188 #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
189 #else
190 #define RTC_CLASS_DEV_PM_OPS	NULL
191 #endif
192 
193 /* Ensure the caller will set the id before releasing the device */
194 static struct rtc_device *rtc_allocate_device(void)
195 {
196 	struct rtc_device *rtc;
197 
198 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
199 	if (!rtc)
200 		return NULL;
201 
202 	device_initialize(&rtc->dev);
203 
204 	/*
205 	 * Drivers can revise this default after allocating the device.
206 	 * The default is what most RTCs do: Increment seconds exactly one
207 	 * second after the write happened. This adds a default transport
208 	 * time of 5ms which is at least halfways close to reality.
209 	 */
210 	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
211 
212 	rtc->irq_freq = 1;
213 	rtc->max_user_freq = 64;
214 	rtc->dev.class = rtc_class;
215 	rtc->dev.groups = rtc_get_dev_attribute_groups();
216 	rtc->dev.release = rtc_device_release;
217 
218 	mutex_init(&rtc->ops_lock);
219 	spin_lock_init(&rtc->irq_lock);
220 	init_waitqueue_head(&rtc->irq_queue);
221 
222 	/* Init timerqueue */
223 	timerqueue_init_head(&rtc->timerqueue);
224 	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
225 	/* Init aie timer */
226 	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
227 	/* Init uie timer */
228 	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
229 	/* Init pie timer */
230 	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
231 	rtc->pie_timer.function = rtc_pie_update_irq;
232 	rtc->pie_enabled = 0;
233 
234 	return rtc;
235 }
236 
237 static int rtc_device_get_id(struct device *dev)
238 {
239 	int of_id = -1, id = -1;
240 
241 	if (dev->of_node)
242 		of_id = of_alias_get_id(dev->of_node, "rtc");
243 	else if (dev->parent && dev->parent->of_node)
244 		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
245 
246 	if (of_id >= 0) {
247 		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
248 		if (id < 0)
249 			dev_warn(dev, "/aliases ID %d not available\n", of_id);
250 	}
251 
252 	if (id < 0)
253 		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
254 
255 	return id;
256 }
257 
258 static void rtc_device_get_offset(struct rtc_device *rtc)
259 {
260 	time64_t range_secs;
261 	u32 start_year;
262 	int ret;
263 
264 	/*
265 	 * If RTC driver did not implement the range of RTC hardware device,
266 	 * then we can not expand the RTC range by adding or subtracting one
267 	 * offset.
268 	 */
269 	if (rtc->range_min == rtc->range_max)
270 		return;
271 
272 	ret = device_property_read_u32(rtc->dev.parent, "start-year",
273 				       &start_year);
274 	if (!ret) {
275 		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
276 		rtc->set_start_time = true;
277 	}
278 
279 	/*
280 	 * If user did not implement the start time for RTC driver, then no
281 	 * need to expand the RTC range.
282 	 */
283 	if (!rtc->set_start_time)
284 		return;
285 
286 	range_secs = rtc->range_max - rtc->range_min + 1;
287 
288 	/*
289 	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
290 	 * supported by RTC hardware or the maximum seconds of new expanded
291 	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
292 	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
293 	 * RTC hardware will be mapped to start_secs by adding one offset, so
294 	 * the offset seconds calculation formula should be:
295 	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
296 	 *
297 	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
298 	 * supported by RTC hardware, then there is one region is overlapped
299 	 * between the original RTC hardware range and the new expanded range,
300 	 * and this overlapped region do not need to be mapped into the new
301 	 * expanded range due to it is valid for RTC device. So the minimum
302 	 * seconds of RTC hardware (rtc->range_min) should be mapped to
303 	 * rtc->range_max + 1, then the offset seconds formula should be:
304 	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
305 	 *
306 	 * If the start_secs is less than the minimum seconds (rtc->range_min),
307 	 * which is similar to case 2. So the start_secs should be mapped to
308 	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
309 	 * offset seconds formula should be:
310 	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
311 	 *
312 	 * Otherwise the offset seconds should be 0.
313 	 */
314 	if (rtc->start_secs > rtc->range_max ||
315 	    rtc->start_secs + range_secs - 1 < rtc->range_min)
316 		rtc->offset_secs = rtc->start_secs - rtc->range_min;
317 	else if (rtc->start_secs > rtc->range_min)
318 		rtc->offset_secs = range_secs;
319 	else if (rtc->start_secs < rtc->range_min)
320 		rtc->offset_secs = -range_secs;
321 	else
322 		rtc->offset_secs = 0;
323 }
324 
325 /**
326  * rtc_device_unregister - removes the previously registered RTC class device
327  *
328  * @rtc: the RTC class device to destroy
329  */
330 static void devm_rtc_unregister_device(void *data)
331 {
332 	struct rtc_device *rtc = data;
333 
334 	mutex_lock(&rtc->ops_lock);
335 	/*
336 	 * Remove innards of this RTC, then disable it, before
337 	 * letting any rtc_class_open() users access it again
338 	 */
339 	rtc_proc_del_device(rtc);
340 	cdev_device_del(&rtc->char_dev, &rtc->dev);
341 	rtc->ops = NULL;
342 	mutex_unlock(&rtc->ops_lock);
343 }
344 
345 static void devm_rtc_release_device(void *res)
346 {
347 	struct rtc_device *rtc = res;
348 
349 	put_device(&rtc->dev);
350 }
351 
352 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
353 {
354 	struct rtc_device *rtc;
355 	int id, err;
356 
357 	id = rtc_device_get_id(dev);
358 	if (id < 0)
359 		return ERR_PTR(id);
360 
361 	rtc = rtc_allocate_device();
362 	if (!rtc) {
363 		ida_simple_remove(&rtc_ida, id);
364 		return ERR_PTR(-ENOMEM);
365 	}
366 
367 	rtc->id = id;
368 	rtc->dev.parent = dev;
369 	dev_set_name(&rtc->dev, "rtc%d", id);
370 
371 	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
372 	if (err)
373 		return ERR_PTR(err);
374 
375 	return rtc;
376 }
377 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
378 
379 int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
380 {
381 	struct rtc_wkalrm alrm;
382 	int err;
383 
384 	if (!rtc->ops) {
385 		dev_dbg(&rtc->dev, "no ops set\n");
386 		return -EINVAL;
387 	}
388 
389 	rtc->owner = owner;
390 	rtc_device_get_offset(rtc);
391 
392 	/* Check to see if there is an ALARM already set in hw */
393 	err = __rtc_read_alarm(rtc, &alrm);
394 	if (!err && !rtc_valid_tm(&alrm.time))
395 		rtc_initialize_alarm(rtc, &alrm);
396 
397 	rtc_dev_prepare(rtc);
398 
399 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
400 	if (err)
401 		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
402 			 MAJOR(rtc->dev.devt), rtc->id);
403 	else
404 		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
405 			MAJOR(rtc->dev.devt), rtc->id);
406 
407 	rtc_proc_add_device(rtc);
408 
409 	dev_info(rtc->dev.parent, "registered as %s\n",
410 		 dev_name(&rtc->dev));
411 
412 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
413 	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
414 		rtc_hctosys(rtc);
415 #endif
416 
417 	return devm_add_action_or_reset(rtc->dev.parent,
418 					devm_rtc_unregister_device, rtc);
419 }
420 EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
421 
422 /**
423  * devm_rtc_device_register - resource managed rtc_device_register()
424  * @dev: the device to register
425  * @name: the name of the device (unused)
426  * @ops: the rtc operations structure
427  * @owner: the module owner
428  *
429  * @return a struct rtc on success, or an ERR_PTR on error
430  *
431  * Managed rtc_device_register(). The rtc_device returned from this function
432  * are automatically freed on driver detach.
433  * This function is deprecated, use devm_rtc_allocate_device and
434  * rtc_register_device instead
435  */
436 struct rtc_device *devm_rtc_device_register(struct device *dev,
437 					    const char *name,
438 					    const struct rtc_class_ops *ops,
439 					    struct module *owner)
440 {
441 	struct rtc_device *rtc;
442 	int err;
443 
444 	rtc = devm_rtc_allocate_device(dev);
445 	if (IS_ERR(rtc))
446 		return rtc;
447 
448 	rtc->ops = ops;
449 
450 	err = __devm_rtc_register_device(owner, rtc);
451 	if (err)
452 		return ERR_PTR(err);
453 
454 	return rtc;
455 }
456 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
457 
458 static int __init rtc_init(void)
459 {
460 	rtc_class = class_create(THIS_MODULE, "rtc");
461 	if (IS_ERR(rtc_class)) {
462 		pr_err("couldn't create class\n");
463 		return PTR_ERR(rtc_class);
464 	}
465 	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
466 	rtc_dev_init();
467 	return 0;
468 }
469 subsys_initcall(rtc_init);
470