1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, base class 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * class skeleton from drivers/hwmon/hwmon.c 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/rtc.h> 16 #include <linux/kdev_t.h> 17 #include <linux/idr.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "rtc-core.h" 22 23 static DEFINE_IDA(rtc_ida); 24 struct class *rtc_class; 25 26 static void rtc_device_release(struct device *dev) 27 { 28 struct rtc_device *rtc = to_rtc_device(dev); 29 30 ida_simple_remove(&rtc_ida, rtc->id); 31 kfree(rtc); 32 } 33 34 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 35 /* Result of the last RTC to system clock attempt. */ 36 int rtc_hctosys_ret = -ENODEV; 37 38 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary 39 * whether it stores the most close value or the value with partial 40 * seconds truncated. However, it is important that we use it to store 41 * the truncated value. This is because otherwise it is necessary, 42 * in an rtc sync function, to read both xtime.tv_sec and 43 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read 44 * of >32bits is not possible. So storing the most close value would 45 * slow down the sync API. So here we have the truncated value and 46 * the best guess is to add 0.5s. 47 */ 48 49 static void rtc_hctosys(struct rtc_device *rtc) 50 { 51 int err; 52 struct rtc_time tm; 53 struct timespec64 tv64 = { 54 .tv_nsec = NSEC_PER_SEC >> 1, 55 }; 56 57 err = rtc_read_time(rtc, &tm); 58 if (err) { 59 dev_err(rtc->dev.parent, 60 "hctosys: unable to read the hardware clock\n"); 61 goto err_read; 62 } 63 64 tv64.tv_sec = rtc_tm_to_time64(&tm); 65 66 #if BITS_PER_LONG == 32 67 if (tv64.tv_sec > INT_MAX) { 68 err = -ERANGE; 69 goto err_read; 70 } 71 #endif 72 73 err = do_settimeofday64(&tv64); 74 75 dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n", 76 &tm, (long long)tv64.tv_sec); 77 78 err_read: 79 rtc_hctosys_ret = err; 80 } 81 #endif 82 83 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 84 /* 85 * On suspend(), measure the delta between one RTC and the 86 * system's wall clock; restore it on resume(). 87 */ 88 89 static struct timespec64 old_rtc, old_system, old_delta; 90 91 static int rtc_suspend(struct device *dev) 92 { 93 struct rtc_device *rtc = to_rtc_device(dev); 94 struct rtc_time tm; 95 struct timespec64 delta, delta_delta; 96 int err; 97 98 if (timekeeping_rtc_skipsuspend()) 99 return 0; 100 101 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 102 return 0; 103 104 /* snapshot the current RTC and system time at suspend*/ 105 err = rtc_read_time(rtc, &tm); 106 if (err < 0) { 107 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 108 return 0; 109 } 110 111 ktime_get_real_ts64(&old_system); 112 old_rtc.tv_sec = rtc_tm_to_time64(&tm); 113 114 /* 115 * To avoid drift caused by repeated suspend/resumes, 116 * which each can add ~1 second drift error, 117 * try to compensate so the difference in system time 118 * and rtc time stays close to constant. 119 */ 120 delta = timespec64_sub(old_system, old_rtc); 121 delta_delta = timespec64_sub(delta, old_delta); 122 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { 123 /* 124 * if delta_delta is too large, assume time correction 125 * has occurred and set old_delta to the current delta. 126 */ 127 old_delta = delta; 128 } else { 129 /* Otherwise try to adjust old_system to compensate */ 130 old_system = timespec64_sub(old_system, delta_delta); 131 } 132 133 return 0; 134 } 135 136 static int rtc_resume(struct device *dev) 137 { 138 struct rtc_device *rtc = to_rtc_device(dev); 139 struct rtc_time tm; 140 struct timespec64 new_system, new_rtc; 141 struct timespec64 sleep_time; 142 int err; 143 144 if (timekeeping_rtc_skipresume()) 145 return 0; 146 147 rtc_hctosys_ret = -ENODEV; 148 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 149 return 0; 150 151 /* snapshot the current rtc and system time at resume */ 152 ktime_get_real_ts64(&new_system); 153 err = rtc_read_time(rtc, &tm); 154 if (err < 0) { 155 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 156 return 0; 157 } 158 159 new_rtc.tv_sec = rtc_tm_to_time64(&tm); 160 new_rtc.tv_nsec = 0; 161 162 if (new_rtc.tv_sec < old_rtc.tv_sec) { 163 pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); 164 return 0; 165 } 166 167 /* calculate the RTC time delta (sleep time)*/ 168 sleep_time = timespec64_sub(new_rtc, old_rtc); 169 170 /* 171 * Since these RTC suspend/resume handlers are not called 172 * at the very end of suspend or the start of resume, 173 * some run-time may pass on either sides of the sleep time 174 * so subtract kernel run-time between rtc_suspend to rtc_resume 175 * to keep things accurate. 176 */ 177 sleep_time = timespec64_sub(sleep_time, 178 timespec64_sub(new_system, old_system)); 179 180 if (sleep_time.tv_sec >= 0) 181 timekeeping_inject_sleeptime64(&sleep_time); 182 rtc_hctosys_ret = 0; 183 return 0; 184 } 185 186 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); 187 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) 188 #else 189 #define RTC_CLASS_DEV_PM_OPS NULL 190 #endif 191 192 /* Ensure the caller will set the id before releasing the device */ 193 static struct rtc_device *rtc_allocate_device(void) 194 { 195 struct rtc_device *rtc; 196 197 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 198 if (!rtc) 199 return NULL; 200 201 device_initialize(&rtc->dev); 202 203 /* Drivers can revise this default after allocating the device. */ 204 rtc->set_offset_nsec = NSEC_PER_SEC / 2; 205 206 rtc->irq_freq = 1; 207 rtc->max_user_freq = 64; 208 rtc->dev.class = rtc_class; 209 rtc->dev.groups = rtc_get_dev_attribute_groups(); 210 rtc->dev.release = rtc_device_release; 211 212 mutex_init(&rtc->ops_lock); 213 spin_lock_init(&rtc->irq_lock); 214 init_waitqueue_head(&rtc->irq_queue); 215 216 /* Init timerqueue */ 217 timerqueue_init_head(&rtc->timerqueue); 218 INIT_WORK(&rtc->irqwork, rtc_timer_do_work); 219 /* Init aie timer */ 220 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); 221 /* Init uie timer */ 222 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); 223 /* Init pie timer */ 224 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 225 rtc->pie_timer.function = rtc_pie_update_irq; 226 rtc->pie_enabled = 0; 227 228 return rtc; 229 } 230 231 static int rtc_device_get_id(struct device *dev) 232 { 233 int of_id = -1, id = -1; 234 235 if (dev->of_node) 236 of_id = of_alias_get_id(dev->of_node, "rtc"); 237 else if (dev->parent && dev->parent->of_node) 238 of_id = of_alias_get_id(dev->parent->of_node, "rtc"); 239 240 if (of_id >= 0) { 241 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); 242 if (id < 0) 243 dev_warn(dev, "/aliases ID %d not available\n", of_id); 244 } 245 246 if (id < 0) 247 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); 248 249 return id; 250 } 251 252 static void rtc_device_get_offset(struct rtc_device *rtc) 253 { 254 time64_t range_secs; 255 u32 start_year; 256 int ret; 257 258 /* 259 * If RTC driver did not implement the range of RTC hardware device, 260 * then we can not expand the RTC range by adding or subtracting one 261 * offset. 262 */ 263 if (rtc->range_min == rtc->range_max) 264 return; 265 266 ret = device_property_read_u32(rtc->dev.parent, "start-year", 267 &start_year); 268 if (!ret) { 269 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); 270 rtc->set_start_time = true; 271 } 272 273 /* 274 * If user did not implement the start time for RTC driver, then no 275 * need to expand the RTC range. 276 */ 277 if (!rtc->set_start_time) 278 return; 279 280 range_secs = rtc->range_max - rtc->range_min + 1; 281 282 /* 283 * If the start_secs is larger than the maximum seconds (rtc->range_max) 284 * supported by RTC hardware or the maximum seconds of new expanded 285 * range (start_secs + rtc->range_max - rtc->range_min) is less than 286 * rtc->range_min, which means the minimum seconds (rtc->range_min) of 287 * RTC hardware will be mapped to start_secs by adding one offset, so 288 * the offset seconds calculation formula should be: 289 * rtc->offset_secs = rtc->start_secs - rtc->range_min; 290 * 291 * If the start_secs is larger than the minimum seconds (rtc->range_min) 292 * supported by RTC hardware, then there is one region is overlapped 293 * between the original RTC hardware range and the new expanded range, 294 * and this overlapped region do not need to be mapped into the new 295 * expanded range due to it is valid for RTC device. So the minimum 296 * seconds of RTC hardware (rtc->range_min) should be mapped to 297 * rtc->range_max + 1, then the offset seconds formula should be: 298 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; 299 * 300 * If the start_secs is less than the minimum seconds (rtc->range_min), 301 * which is similar to case 2. So the start_secs should be mapped to 302 * start_secs + rtc->range_max - rtc->range_min + 1, then the 303 * offset seconds formula should be: 304 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); 305 * 306 * Otherwise the offset seconds should be 0. 307 */ 308 if (rtc->start_secs > rtc->range_max || 309 rtc->start_secs + range_secs - 1 < rtc->range_min) 310 rtc->offset_secs = rtc->start_secs - rtc->range_min; 311 else if (rtc->start_secs > rtc->range_min) 312 rtc->offset_secs = range_secs; 313 else if (rtc->start_secs < rtc->range_min) 314 rtc->offset_secs = -range_secs; 315 else 316 rtc->offset_secs = 0; 317 } 318 319 /** 320 * rtc_device_unregister - removes the previously registered RTC class device 321 * 322 * @rtc: the RTC class device to destroy 323 */ 324 static void rtc_device_unregister(struct rtc_device *rtc) 325 { 326 mutex_lock(&rtc->ops_lock); 327 /* 328 * Remove innards of this RTC, then disable it, before 329 * letting any rtc_class_open() users access it again 330 */ 331 rtc_proc_del_device(rtc); 332 cdev_device_del(&rtc->char_dev, &rtc->dev); 333 rtc->ops = NULL; 334 mutex_unlock(&rtc->ops_lock); 335 put_device(&rtc->dev); 336 } 337 338 static void devm_rtc_release_device(struct device *dev, void *res) 339 { 340 struct rtc_device *rtc = *(struct rtc_device **)res; 341 342 rtc_nvmem_unregister(rtc); 343 344 if (rtc->registered) 345 rtc_device_unregister(rtc); 346 else 347 put_device(&rtc->dev); 348 } 349 350 struct rtc_device *devm_rtc_allocate_device(struct device *dev) 351 { 352 struct rtc_device **ptr, *rtc; 353 int id, err; 354 355 id = rtc_device_get_id(dev); 356 if (id < 0) 357 return ERR_PTR(id); 358 359 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); 360 if (!ptr) { 361 err = -ENOMEM; 362 goto exit_ida; 363 } 364 365 rtc = rtc_allocate_device(); 366 if (!rtc) { 367 err = -ENOMEM; 368 goto exit_devres; 369 } 370 371 *ptr = rtc; 372 devres_add(dev, ptr); 373 374 rtc->id = id; 375 rtc->dev.parent = dev; 376 dev_set_name(&rtc->dev, "rtc%d", id); 377 378 return rtc; 379 380 exit_devres: 381 devres_free(ptr); 382 exit_ida: 383 ida_simple_remove(&rtc_ida, id); 384 return ERR_PTR(err); 385 } 386 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); 387 388 int __rtc_register_device(struct module *owner, struct rtc_device *rtc) 389 { 390 struct rtc_wkalrm alrm; 391 int err; 392 393 if (!rtc->ops) { 394 dev_dbg(&rtc->dev, "no ops set\n"); 395 return -EINVAL; 396 } 397 398 rtc->owner = owner; 399 rtc_device_get_offset(rtc); 400 401 /* Check to see if there is an ALARM already set in hw */ 402 err = __rtc_read_alarm(rtc, &alrm); 403 if (!err && !rtc_valid_tm(&alrm.time)) 404 rtc_initialize_alarm(rtc, &alrm); 405 406 rtc_dev_prepare(rtc); 407 408 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 409 if (err) 410 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", 411 MAJOR(rtc->dev.devt), rtc->id); 412 else 413 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", 414 MAJOR(rtc->dev.devt), rtc->id); 415 416 rtc_proc_add_device(rtc); 417 418 rtc->registered = true; 419 dev_info(rtc->dev.parent, "registered as %s\n", 420 dev_name(&rtc->dev)); 421 422 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 423 if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE)) 424 rtc_hctosys(rtc); 425 #endif 426 427 return 0; 428 } 429 EXPORT_SYMBOL_GPL(__rtc_register_device); 430 431 /** 432 * devm_rtc_device_register - resource managed rtc_device_register() 433 * @dev: the device to register 434 * @name: the name of the device (unused) 435 * @ops: the rtc operations structure 436 * @owner: the module owner 437 * 438 * @return a struct rtc on success, or an ERR_PTR on error 439 * 440 * Managed rtc_device_register(). The rtc_device returned from this function 441 * are automatically freed on driver detach. 442 * This function is deprecated, use devm_rtc_allocate_device and 443 * rtc_register_device instead 444 */ 445 struct rtc_device *devm_rtc_device_register(struct device *dev, 446 const char *name, 447 const struct rtc_class_ops *ops, 448 struct module *owner) 449 { 450 struct rtc_device *rtc; 451 int err; 452 453 rtc = devm_rtc_allocate_device(dev); 454 if (IS_ERR(rtc)) 455 return rtc; 456 457 rtc->ops = ops; 458 459 err = __rtc_register_device(owner, rtc); 460 if (err) 461 return ERR_PTR(err); 462 463 return rtc; 464 } 465 EXPORT_SYMBOL_GPL(devm_rtc_device_register); 466 467 static int __init rtc_init(void) 468 { 469 rtc_class = class_create(THIS_MODULE, "rtc"); 470 if (IS_ERR(rtc_class)) { 471 pr_err("couldn't create class\n"); 472 return PTR_ERR(rtc_class); 473 } 474 rtc_class->pm = RTC_CLASS_DEV_PM_OPS; 475 rtc_dev_init(); 476 return 0; 477 } 478 subsys_initcall(rtc_init); 479