1 /*
2  * Virtio-based remote processor messaging bus
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  *
10  * This software is licensed under the terms of the GNU General Public
11  * License version 2, as published by the Free Software Foundation, and
12  * may be copied, distributed, and modified under those terms.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #define pr_fmt(fmt) "%s: " fmt, __func__
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/virtio.h>
25 #include <linux/virtio_ids.h>
26 #include <linux/virtio_config.h>
27 #include <linux/scatterlist.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/slab.h>
30 #include <linux/idr.h>
31 #include <linux/jiffies.h>
32 #include <linux/sched.h>
33 #include <linux/wait.h>
34 #include <linux/rpmsg.h>
35 #include <linux/mutex.h>
36 
37 /**
38  * struct virtproc_info - virtual remote processor state
39  * @vdev:	the virtio device
40  * @rvq:	rx virtqueue
41  * @svq:	tx virtqueue
42  * @rbufs:	kernel address of rx buffers
43  * @sbufs:	kernel address of tx buffers
44  * @num_bufs:	total number of buffers for rx and tx
45  * @last_sbuf:	index of last tx buffer used
46  * @bufs_dma:	dma base addr of the buffers
47  * @tx_lock:	protects svq, sbufs and sleepers, to allow concurrent senders.
48  *		sending a message might require waking up a dozing remote
49  *		processor, which involves sleeping, hence the mutex.
50  * @endpoints:	idr of local endpoints, allows fast retrieval
51  * @endpoints_lock: lock of the endpoints set
52  * @sendq:	wait queue of sending contexts waiting for a tx buffers
53  * @sleepers:	number of senders that are waiting for a tx buffer
54  * @ns_ept:	the bus's name service endpoint
55  *
56  * This structure stores the rpmsg state of a given virtio remote processor
57  * device (there might be several virtio proc devices for each physical
58  * remote processor).
59  */
60 struct virtproc_info {
61 	struct virtio_device *vdev;
62 	struct virtqueue *rvq, *svq;
63 	void *rbufs, *sbufs;
64 	unsigned int num_bufs;
65 	int last_sbuf;
66 	dma_addr_t bufs_dma;
67 	struct mutex tx_lock;
68 	struct idr endpoints;
69 	struct mutex endpoints_lock;
70 	wait_queue_head_t sendq;
71 	atomic_t sleepers;
72 	struct rpmsg_endpoint *ns_ept;
73 };
74 
75 /**
76  * struct rpmsg_channel_info - internal channel info representation
77  * @name: name of service
78  * @src: local address
79  * @dst: destination address
80  */
81 struct rpmsg_channel_info {
82 	char name[RPMSG_NAME_SIZE];
83 	u32 src;
84 	u32 dst;
85 };
86 
87 #define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev)
88 #define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv)
89 
90 /*
91  * We're allocating buffers of 512 bytes each for communications. The
92  * number of buffers will be computed from the number of buffers supported
93  * by the vring, upto a maximum of 512 buffers (256 in each direction).
94  *
95  * Each buffer will have 16 bytes for the msg header and 496 bytes for
96  * the payload.
97  *
98  * This will utilize a maximum total space of 256KB for the buffers.
99  *
100  * We might also want to add support for user-provided buffers in time.
101  * This will allow bigger buffer size flexibility, and can also be used
102  * to achieve zero-copy messaging.
103  *
104  * Note that these numbers are purely a decision of this driver - we
105  * can change this without changing anything in the firmware of the remote
106  * processor.
107  */
108 #define MAX_RPMSG_NUM_BUFS	(512)
109 #define RPMSG_BUF_SIZE		(512)
110 
111 /*
112  * Local addresses are dynamically allocated on-demand.
113  * We do not dynamically assign addresses from the low 1024 range,
114  * in order to reserve that address range for predefined services.
115  */
116 #define RPMSG_RESERVED_ADDRESSES	(1024)
117 
118 /* Address 53 is reserved for advertising remote services */
119 #define RPMSG_NS_ADDR			(53)
120 
121 /* sysfs show configuration fields */
122 #define rpmsg_show_attr(field, path, format_string)			\
123 static ssize_t								\
124 field##_show(struct device *dev,					\
125 			struct device_attribute *attr, char *buf)	\
126 {									\
127 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);		\
128 									\
129 	return sprintf(buf, format_string, rpdev->path);		\
130 }
131 
132 /* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */
133 rpmsg_show_attr(name, id.name, "%s\n");
134 rpmsg_show_attr(src, src, "0x%x\n");
135 rpmsg_show_attr(dst, dst, "0x%x\n");
136 rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n");
137 
138 /*
139  * Unique (and free running) index for rpmsg devices.
140  *
141  * Yeah, we're not recycling those numbers (yet?). will be easy
142  * to change if/when we want to.
143  */
144 static unsigned int rpmsg_dev_index;
145 
146 static ssize_t modalias_show(struct device *dev,
147 			     struct device_attribute *attr, char *buf)
148 {
149 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
150 
151 	return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name);
152 }
153 
154 static struct device_attribute rpmsg_dev_attrs[] = {
155 	__ATTR_RO(name),
156 	__ATTR_RO(modalias),
157 	__ATTR_RO(dst),
158 	__ATTR_RO(src),
159 	__ATTR_RO(announce),
160 	__ATTR_NULL
161 };
162 
163 /* rpmsg devices and drivers are matched using the service name */
164 static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev,
165 				  const struct rpmsg_device_id *id)
166 {
167 	return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0;
168 }
169 
170 /* match rpmsg channel and rpmsg driver */
171 static int rpmsg_dev_match(struct device *dev, struct device_driver *drv)
172 {
173 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
174 	struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv);
175 	const struct rpmsg_device_id *ids = rpdrv->id_table;
176 	unsigned int i;
177 
178 	for (i = 0; ids[i].name[0]; i++)
179 		if (rpmsg_id_match(rpdev, &ids[i]))
180 			return 1;
181 
182 	return 0;
183 }
184 
185 static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env)
186 {
187 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
188 
189 	return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT,
190 					rpdev->id.name);
191 }
192 
193 /**
194  * __ept_release() - deallocate an rpmsg endpoint
195  * @kref: the ept's reference count
196  *
197  * This function deallocates an ept, and is invoked when its @kref refcount
198  * drops to zero.
199  *
200  * Never invoke this function directly!
201  */
202 static void __ept_release(struct kref *kref)
203 {
204 	struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
205 						  refcount);
206 	/*
207 	 * At this point no one holds a reference to ept anymore,
208 	 * so we can directly free it
209 	 */
210 	kfree(ept);
211 }
212 
213 /* for more info, see below documentation of rpmsg_create_ept() */
214 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
215 		struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb,
216 		void *priv, u32 addr)
217 {
218 	int id_min, id_max, id;
219 	struct rpmsg_endpoint *ept;
220 	struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
221 
222 	ept = kzalloc(sizeof(*ept), GFP_KERNEL);
223 	if (!ept) {
224 		dev_err(dev, "failed to kzalloc a new ept\n");
225 		return NULL;
226 	}
227 
228 	kref_init(&ept->refcount);
229 	mutex_init(&ept->cb_lock);
230 
231 	ept->rpdev = rpdev;
232 	ept->cb = cb;
233 	ept->priv = priv;
234 
235 	/* do we need to allocate a local address ? */
236 	if (addr == RPMSG_ADDR_ANY) {
237 		id_min = RPMSG_RESERVED_ADDRESSES;
238 		id_max = 0;
239 	} else {
240 		id_min = addr;
241 		id_max = addr + 1;
242 	}
243 
244 	mutex_lock(&vrp->endpoints_lock);
245 
246 	/* bind the endpoint to an rpmsg address (and allocate one if needed) */
247 	id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
248 	if (id < 0) {
249 		dev_err(dev, "idr_alloc failed: %d\n", id);
250 		goto free_ept;
251 	}
252 	ept->addr = id;
253 
254 	mutex_unlock(&vrp->endpoints_lock);
255 
256 	return ept;
257 
258 free_ept:
259 	mutex_unlock(&vrp->endpoints_lock);
260 	kref_put(&ept->refcount, __ept_release);
261 	return NULL;
262 }
263 
264 /**
265  * rpmsg_create_ept() - create a new rpmsg_endpoint
266  * @rpdev: rpmsg channel device
267  * @cb: rx callback handler
268  * @priv: private data for the driver's use
269  * @addr: local rpmsg address to bind with @cb
270  *
271  * Every rpmsg address in the system is bound to an rx callback (so when
272  * inbound messages arrive, they are dispatched by the rpmsg bus using the
273  * appropriate callback handler) by means of an rpmsg_endpoint struct.
274  *
275  * This function allows drivers to create such an endpoint, and by that,
276  * bind a callback, and possibly some private data too, to an rpmsg address
277  * (either one that is known in advance, or one that will be dynamically
278  * assigned for them).
279  *
280  * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint
281  * is already created for them when they are probed by the rpmsg bus
282  * (using the rx callback provided when they registered to the rpmsg bus).
283  *
284  * So things should just work for simple drivers: they already have an
285  * endpoint, their rx callback is bound to their rpmsg address, and when
286  * relevant inbound messages arrive (i.e. messages which their dst address
287  * equals to the src address of their rpmsg channel), the driver's handler
288  * is invoked to process it.
289  *
290  * That said, more complicated drivers might do need to allocate
291  * additional rpmsg addresses, and bind them to different rx callbacks.
292  * To accomplish that, those drivers need to call this function.
293  *
294  * Drivers should provide their @rpdev channel (so the new endpoint would belong
295  * to the same remote processor their channel belongs to), an rx callback
296  * function, an optional private data (which is provided back when the
297  * rx callback is invoked), and an address they want to bind with the
298  * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will
299  * dynamically assign them an available rpmsg address (drivers should have
300  * a very good reason why not to always use RPMSG_ADDR_ANY here).
301  *
302  * Returns a pointer to the endpoint on success, or NULL on error.
303  */
304 struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev,
305 				rpmsg_rx_cb_t cb, void *priv, u32 addr)
306 {
307 	return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr);
308 }
309 EXPORT_SYMBOL(rpmsg_create_ept);
310 
311 /**
312  * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
313  * @vrp: virtproc which owns this ept
314  * @ept: endpoing to destroy
315  *
316  * An internal function which destroy an ept without assuming it is
317  * bound to an rpmsg channel. This is needed for handling the internal
318  * name service endpoint, which isn't bound to an rpmsg channel.
319  * See also __rpmsg_create_ept().
320  */
321 static void
322 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
323 {
324 	/* make sure new inbound messages can't find this ept anymore */
325 	mutex_lock(&vrp->endpoints_lock);
326 	idr_remove(&vrp->endpoints, ept->addr);
327 	mutex_unlock(&vrp->endpoints_lock);
328 
329 	/* make sure in-flight inbound messages won't invoke cb anymore */
330 	mutex_lock(&ept->cb_lock);
331 	ept->cb = NULL;
332 	mutex_unlock(&ept->cb_lock);
333 
334 	kref_put(&ept->refcount, __ept_release);
335 }
336 
337 /**
338  * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
339  * @ept: endpoing to destroy
340  *
341  * Should be used by drivers to destroy an rpmsg endpoint previously
342  * created with rpmsg_create_ept().
343  */
344 void rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
345 {
346 	__rpmsg_destroy_ept(ept->rpdev->vrp, ept);
347 }
348 EXPORT_SYMBOL(rpmsg_destroy_ept);
349 
350 /*
351  * when an rpmsg driver is probed with a channel, we seamlessly create
352  * it an endpoint, binding its rx callback to a unique local rpmsg
353  * address.
354  *
355  * if we need to, we also announce about this channel to the remote
356  * processor (needed in case the driver is exposing an rpmsg service).
357  */
358 static int rpmsg_dev_probe(struct device *dev)
359 {
360 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
361 	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
362 	struct virtproc_info *vrp = rpdev->vrp;
363 	struct rpmsg_endpoint *ept;
364 	int err;
365 
366 	ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src);
367 	if (!ept) {
368 		dev_err(dev, "failed to create endpoint\n");
369 		err = -ENOMEM;
370 		goto out;
371 	}
372 
373 	rpdev->ept = ept;
374 	rpdev->src = ept->addr;
375 
376 	err = rpdrv->probe(rpdev);
377 	if (err) {
378 		dev_err(dev, "%s: failed: %d\n", __func__, err);
379 		rpmsg_destroy_ept(ept);
380 		goto out;
381 	}
382 
383 	/* need to tell remote processor's name service about this channel ? */
384 	if (rpdev->announce &&
385 			virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
386 		struct rpmsg_ns_msg nsm;
387 
388 		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
389 		nsm.addr = rpdev->src;
390 		nsm.flags = RPMSG_NS_CREATE;
391 
392 		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
393 		if (err)
394 			dev_err(dev, "failed to announce service %d\n", err);
395 	}
396 
397 out:
398 	return err;
399 }
400 
401 static int rpmsg_dev_remove(struct device *dev)
402 {
403 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
404 	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
405 	struct virtproc_info *vrp = rpdev->vrp;
406 	int err = 0;
407 
408 	/* tell remote processor's name service we're removing this channel */
409 	if (rpdev->announce &&
410 			virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
411 		struct rpmsg_ns_msg nsm;
412 
413 		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
414 		nsm.addr = rpdev->src;
415 		nsm.flags = RPMSG_NS_DESTROY;
416 
417 		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
418 		if (err)
419 			dev_err(dev, "failed to announce service %d\n", err);
420 	}
421 
422 	rpdrv->remove(rpdev);
423 
424 	rpmsg_destroy_ept(rpdev->ept);
425 
426 	return err;
427 }
428 
429 static struct bus_type rpmsg_bus = {
430 	.name		= "rpmsg",
431 	.match		= rpmsg_dev_match,
432 	.dev_attrs	= rpmsg_dev_attrs,
433 	.uevent		= rpmsg_uevent,
434 	.probe		= rpmsg_dev_probe,
435 	.remove		= rpmsg_dev_remove,
436 };
437 
438 /**
439  * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus
440  * @rpdrv: pointer to a struct rpmsg_driver
441  *
442  * Returns 0 on success, and an appropriate error value on failure.
443  */
444 int register_rpmsg_driver(struct rpmsg_driver *rpdrv)
445 {
446 	rpdrv->drv.bus = &rpmsg_bus;
447 	return driver_register(&rpdrv->drv);
448 }
449 EXPORT_SYMBOL(register_rpmsg_driver);
450 
451 /**
452  * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus
453  * @rpdrv: pointer to a struct rpmsg_driver
454  *
455  * Returns 0 on success, and an appropriate error value on failure.
456  */
457 void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv)
458 {
459 	driver_unregister(&rpdrv->drv);
460 }
461 EXPORT_SYMBOL(unregister_rpmsg_driver);
462 
463 static void rpmsg_release_device(struct device *dev)
464 {
465 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
466 
467 	kfree(rpdev);
468 }
469 
470 /*
471  * match an rpmsg channel with a channel info struct.
472  * this is used to make sure we're not creating rpmsg devices for channels
473  * that already exist.
474  */
475 static int rpmsg_channel_match(struct device *dev, void *data)
476 {
477 	struct rpmsg_channel_info *chinfo = data;
478 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
479 
480 	if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src)
481 		return 0;
482 
483 	if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst)
484 		return 0;
485 
486 	if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE))
487 		return 0;
488 
489 	/* found a match ! */
490 	return 1;
491 }
492 
493 /*
494  * create an rpmsg channel using its name and address info.
495  * this function will be used to create both static and dynamic
496  * channels.
497  */
498 static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp,
499 				struct rpmsg_channel_info *chinfo)
500 {
501 	struct rpmsg_channel *rpdev;
502 	struct device *tmp, *dev = &vrp->vdev->dev;
503 	int ret;
504 
505 	/* make sure a similar channel doesn't already exist */
506 	tmp = device_find_child(dev, chinfo, rpmsg_channel_match);
507 	if (tmp) {
508 		/* decrement the matched device's refcount back */
509 		put_device(tmp);
510 		dev_err(dev, "channel %s:%x:%x already exist\n",
511 				chinfo->name, chinfo->src, chinfo->dst);
512 		return NULL;
513 	}
514 
515 	rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL);
516 	if (!rpdev) {
517 		pr_err("kzalloc failed\n");
518 		return NULL;
519 	}
520 
521 	rpdev->vrp = vrp;
522 	rpdev->src = chinfo->src;
523 	rpdev->dst = chinfo->dst;
524 
525 	/*
526 	 * rpmsg server channels has predefined local address (for now),
527 	 * and their existence needs to be announced remotely
528 	 */
529 	rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false;
530 
531 	strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
532 
533 	/* very simple device indexing plumbing which is enough for now */
534 	dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++);
535 
536 	rpdev->dev.parent = &vrp->vdev->dev;
537 	rpdev->dev.bus = &rpmsg_bus;
538 	rpdev->dev.release = rpmsg_release_device;
539 
540 	ret = device_register(&rpdev->dev);
541 	if (ret) {
542 		dev_err(dev, "device_register failed: %d\n", ret);
543 		put_device(&rpdev->dev);
544 		return NULL;
545 	}
546 
547 	return rpdev;
548 }
549 
550 /*
551  * find an existing channel using its name + address properties,
552  * and destroy it
553  */
554 static int rpmsg_destroy_channel(struct virtproc_info *vrp,
555 					struct rpmsg_channel_info *chinfo)
556 {
557 	struct virtio_device *vdev = vrp->vdev;
558 	struct device *dev;
559 
560 	dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match);
561 	if (!dev)
562 		return -EINVAL;
563 
564 	device_unregister(dev);
565 
566 	put_device(dev);
567 
568 	return 0;
569 }
570 
571 /* super simple buffer "allocator" that is just enough for now */
572 static void *get_a_tx_buf(struct virtproc_info *vrp)
573 {
574 	unsigned int len;
575 	void *ret;
576 
577 	/* support multiple concurrent senders */
578 	mutex_lock(&vrp->tx_lock);
579 
580 	/*
581 	 * either pick the next unused tx buffer
582 	 * (half of our buffers are used for sending messages)
583 	 */
584 	if (vrp->last_sbuf < vrp->num_bufs / 2)
585 		ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++;
586 	/* or recycle a used one */
587 	else
588 		ret = virtqueue_get_buf(vrp->svq, &len);
589 
590 	mutex_unlock(&vrp->tx_lock);
591 
592 	return ret;
593 }
594 
595 /**
596  * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
597  * @vrp: virtual remote processor state
598  *
599  * This function is called before a sender is blocked, waiting for
600  * a tx buffer to become available.
601  *
602  * If we already have blocking senders, this function merely increases
603  * the "sleepers" reference count, and exits.
604  *
605  * Otherwise, if this is the first sender to block, we also enable
606  * virtio's tx callbacks, so we'd be immediately notified when a tx
607  * buffer is consumed (we rely on virtio's tx callback in order
608  * to wake up sleeping senders as soon as a tx buffer is used by the
609  * remote processor).
610  */
611 static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
612 {
613 	/* support multiple concurrent senders */
614 	mutex_lock(&vrp->tx_lock);
615 
616 	/* are we the first sleeping context waiting for tx buffers ? */
617 	if (atomic_inc_return(&vrp->sleepers) == 1)
618 		/* enable "tx-complete" interrupts before dozing off */
619 		virtqueue_enable_cb(vrp->svq);
620 
621 	mutex_unlock(&vrp->tx_lock);
622 }
623 
624 /**
625  * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
626  * @vrp: virtual remote processor state
627  *
628  * This function is called after a sender, that waited for a tx buffer
629  * to become available, is unblocked.
630  *
631  * If we still have blocking senders, this function merely decreases
632  * the "sleepers" reference count, and exits.
633  *
634  * Otherwise, if there are no more blocking senders, we also disable
635  * virtio's tx callbacks, to avoid the overhead incurred with handling
636  * those (now redundant) interrupts.
637  */
638 static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
639 {
640 	/* support multiple concurrent senders */
641 	mutex_lock(&vrp->tx_lock);
642 
643 	/* are we the last sleeping context waiting for tx buffers ? */
644 	if (atomic_dec_and_test(&vrp->sleepers))
645 		/* disable "tx-complete" interrupts */
646 		virtqueue_disable_cb(vrp->svq);
647 
648 	mutex_unlock(&vrp->tx_lock);
649 }
650 
651 /**
652  * rpmsg_send_offchannel_raw() - send a message across to the remote processor
653  * @rpdev: the rpmsg channel
654  * @src: source address
655  * @dst: destination address
656  * @data: payload of message
657  * @len: length of payload
658  * @wait: indicates whether caller should block in case no TX buffers available
659  *
660  * This function is the base implementation for all of the rpmsg sending API.
661  *
662  * It will send @data of length @len to @dst, and say it's from @src. The
663  * message will be sent to the remote processor which the @rpdev channel
664  * belongs to.
665  *
666  * The message is sent using one of the TX buffers that are available for
667  * communication with this remote processor.
668  *
669  * If @wait is true, the caller will be blocked until either a TX buffer is
670  * available, or 15 seconds elapses (we don't want callers to
671  * sleep indefinitely due to misbehaving remote processors), and in that
672  * case -ERESTARTSYS is returned. The number '15' itself was picked
673  * arbitrarily; there's little point in asking drivers to provide a timeout
674  * value themselves.
675  *
676  * Otherwise, if @wait is false, and there are no TX buffers available,
677  * the function will immediately fail, and -ENOMEM will be returned.
678  *
679  * Normally drivers shouldn't use this function directly; instead, drivers
680  * should use the appropriate rpmsg_{try}send{to, _offchannel} API
681  * (see include/linux/rpmsg.h).
682  *
683  * Returns 0 on success and an appropriate error value on failure.
684  */
685 int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst,
686 					void *data, int len, bool wait)
687 {
688 	struct virtproc_info *vrp = rpdev->vrp;
689 	struct device *dev = &rpdev->dev;
690 	struct scatterlist sg;
691 	struct rpmsg_hdr *msg;
692 	int err;
693 
694 	/* bcasting isn't allowed */
695 	if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
696 		dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
697 		return -EINVAL;
698 	}
699 
700 	/*
701 	 * We currently use fixed-sized buffers, and therefore the payload
702 	 * length is limited.
703 	 *
704 	 * One of the possible improvements here is either to support
705 	 * user-provided buffers (and then we can also support zero-copy
706 	 * messaging), or to improve the buffer allocator, to support
707 	 * variable-length buffer sizes.
708 	 */
709 	if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) {
710 		dev_err(dev, "message is too big (%d)\n", len);
711 		return -EMSGSIZE;
712 	}
713 
714 	/* grab a buffer */
715 	msg = get_a_tx_buf(vrp);
716 	if (!msg && !wait)
717 		return -ENOMEM;
718 
719 	/* no free buffer ? wait for one (but bail after 15 seconds) */
720 	while (!msg) {
721 		/* enable "tx-complete" interrupts, if not already enabled */
722 		rpmsg_upref_sleepers(vrp);
723 
724 		/*
725 		 * sleep until a free buffer is available or 15 secs elapse.
726 		 * the timeout period is not configurable because there's
727 		 * little point in asking drivers to specify that.
728 		 * if later this happens to be required, it'd be easy to add.
729 		 */
730 		err = wait_event_interruptible_timeout(vrp->sendq,
731 					(msg = get_a_tx_buf(vrp)),
732 					msecs_to_jiffies(15000));
733 
734 		/* disable "tx-complete" interrupts if we're the last sleeper */
735 		rpmsg_downref_sleepers(vrp);
736 
737 		/* timeout ? */
738 		if (!err) {
739 			dev_err(dev, "timeout waiting for a tx buffer\n");
740 			return -ERESTARTSYS;
741 		}
742 	}
743 
744 	msg->len = len;
745 	msg->flags = 0;
746 	msg->src = src;
747 	msg->dst = dst;
748 	msg->reserved = 0;
749 	memcpy(msg->data, data, len);
750 
751 	dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
752 					msg->src, msg->dst, msg->len,
753 					msg->flags, msg->reserved);
754 	print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
755 					msg, sizeof(*msg) + msg->len, true);
756 
757 	sg_init_one(&sg, msg, sizeof(*msg) + len);
758 
759 	mutex_lock(&vrp->tx_lock);
760 
761 	/* add message to the remote processor's virtqueue */
762 	err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL);
763 	if (err) {
764 		/*
765 		 * need to reclaim the buffer here, otherwise it's lost
766 		 * (memory won't leak, but rpmsg won't use it again for TX).
767 		 * this will wait for a buffer management overhaul.
768 		 */
769 		dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err);
770 		goto out;
771 	}
772 
773 	/* tell the remote processor it has a pending message to read */
774 	virtqueue_kick(vrp->svq);
775 out:
776 	mutex_unlock(&vrp->tx_lock);
777 	return err;
778 }
779 EXPORT_SYMBOL(rpmsg_send_offchannel_raw);
780 
781 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev,
782 			     struct rpmsg_hdr *msg, unsigned int len)
783 {
784 	struct rpmsg_endpoint *ept;
785 	struct scatterlist sg;
786 	int err;
787 
788 	dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
789 					msg->src, msg->dst, msg->len,
790 					msg->flags, msg->reserved);
791 	print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
792 					msg, sizeof(*msg) + msg->len, true);
793 
794 	/*
795 	 * We currently use fixed-sized buffers, so trivially sanitize
796 	 * the reported payload length.
797 	 */
798 	if (len > RPMSG_BUF_SIZE ||
799 		msg->len > (len - sizeof(struct rpmsg_hdr))) {
800 		dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len);
801 		return -EINVAL;
802 	}
803 
804 	/* use the dst addr to fetch the callback of the appropriate user */
805 	mutex_lock(&vrp->endpoints_lock);
806 
807 	ept = idr_find(&vrp->endpoints, msg->dst);
808 
809 	/* let's make sure no one deallocates ept while we use it */
810 	if (ept)
811 		kref_get(&ept->refcount);
812 
813 	mutex_unlock(&vrp->endpoints_lock);
814 
815 	if (ept) {
816 		/* make sure ept->cb doesn't go away while we use it */
817 		mutex_lock(&ept->cb_lock);
818 
819 		if (ept->cb)
820 			ept->cb(ept->rpdev, msg->data, msg->len, ept->priv,
821 				msg->src);
822 
823 		mutex_unlock(&ept->cb_lock);
824 
825 		/* farewell, ept, we don't need you anymore */
826 		kref_put(&ept->refcount, __ept_release);
827 	} else
828 		dev_warn(dev, "msg received with no recipient\n");
829 
830 	/* publish the real size of the buffer */
831 	sg_init_one(&sg, msg, RPMSG_BUF_SIZE);
832 
833 	/* add the buffer back to the remote processor's virtqueue */
834 	err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL);
835 	if (err < 0) {
836 		dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
837 		return err;
838 	}
839 
840 	return 0;
841 }
842 
843 /* called when an rx buffer is used, and it's time to digest a message */
844 static void rpmsg_recv_done(struct virtqueue *rvq)
845 {
846 	struct virtproc_info *vrp = rvq->vdev->priv;
847 	struct device *dev = &rvq->vdev->dev;
848 	struct rpmsg_hdr *msg;
849 	unsigned int len, msgs_received = 0;
850 	int err;
851 
852 	msg = virtqueue_get_buf(rvq, &len);
853 	if (!msg) {
854 		dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
855 		return;
856 	}
857 
858 	while (msg) {
859 		err = rpmsg_recv_single(vrp, dev, msg, len);
860 		if (err)
861 			break;
862 
863 		msgs_received++;
864 
865 		msg = virtqueue_get_buf(rvq, &len);
866 	};
867 
868 	dev_dbg(dev, "Received %u messages\n", msgs_received);
869 
870 	/* tell the remote processor we added another available rx buffer */
871 	if (msgs_received)
872 		virtqueue_kick(vrp->rvq);
873 }
874 
875 /*
876  * This is invoked whenever the remote processor completed processing
877  * a TX msg we just sent it, and the buffer is put back to the used ring.
878  *
879  * Normally, though, we suppress this "tx complete" interrupt in order to
880  * avoid the incurred overhead.
881  */
882 static void rpmsg_xmit_done(struct virtqueue *svq)
883 {
884 	struct virtproc_info *vrp = svq->vdev->priv;
885 
886 	dev_dbg(&svq->vdev->dev, "%s\n", __func__);
887 
888 	/* wake up potential senders that are waiting for a tx buffer */
889 	wake_up_interruptible(&vrp->sendq);
890 }
891 
892 /* invoked when a name service announcement arrives */
893 static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len,
894 							void *priv, u32 src)
895 {
896 	struct rpmsg_ns_msg *msg = data;
897 	struct rpmsg_channel *newch;
898 	struct rpmsg_channel_info chinfo;
899 	struct virtproc_info *vrp = priv;
900 	struct device *dev = &vrp->vdev->dev;
901 	int ret;
902 
903 	print_hex_dump(KERN_DEBUG, "NS announcement: ",
904 			DUMP_PREFIX_NONE, 16, 1,
905 			data, len, true);
906 
907 	if (len != sizeof(*msg)) {
908 		dev_err(dev, "malformed ns msg (%d)\n", len);
909 		return;
910 	}
911 
912 	/*
913 	 * the name service ept does _not_ belong to a real rpmsg channel,
914 	 * and is handled by the rpmsg bus itself.
915 	 * for sanity reasons, make sure a valid rpdev has _not_ sneaked
916 	 * in somehow.
917 	 */
918 	if (rpdev) {
919 		dev_err(dev, "anomaly: ns ept has an rpdev handle\n");
920 		return;
921 	}
922 
923 	/* don't trust the remote processor for null terminating the name */
924 	msg->name[RPMSG_NAME_SIZE - 1] = '\0';
925 
926 	dev_info(dev, "%sing channel %s addr 0x%x\n",
927 			msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat",
928 			msg->name, msg->addr);
929 
930 	strncpy(chinfo.name, msg->name, sizeof(chinfo.name));
931 	chinfo.src = RPMSG_ADDR_ANY;
932 	chinfo.dst = msg->addr;
933 
934 	if (msg->flags & RPMSG_NS_DESTROY) {
935 		ret = rpmsg_destroy_channel(vrp, &chinfo);
936 		if (ret)
937 			dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret);
938 	} else {
939 		newch = rpmsg_create_channel(vrp, &chinfo);
940 		if (!newch)
941 			dev_err(dev, "rpmsg_create_channel failed\n");
942 	}
943 }
944 
945 static int rpmsg_probe(struct virtio_device *vdev)
946 {
947 	vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
948 	const char *names[] = { "input", "output" };
949 	struct virtqueue *vqs[2];
950 	struct virtproc_info *vrp;
951 	void *bufs_va;
952 	int err = 0, i;
953 	size_t total_buf_space;
954 
955 	vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
956 	if (!vrp)
957 		return -ENOMEM;
958 
959 	vrp->vdev = vdev;
960 
961 	idr_init(&vrp->endpoints);
962 	mutex_init(&vrp->endpoints_lock);
963 	mutex_init(&vrp->tx_lock);
964 	init_waitqueue_head(&vrp->sendq);
965 
966 	/* We expect two virtqueues, rx and tx (and in this order) */
967 	err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names);
968 	if (err)
969 		goto free_vrp;
970 
971 	vrp->rvq = vqs[0];
972 	vrp->svq = vqs[1];
973 
974 	/* we expect symmetric tx/rx vrings */
975 	WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
976 		virtqueue_get_vring_size(vrp->svq));
977 
978 	/* we need less buffers if vrings are small */
979 	if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
980 		vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
981 	else
982 		vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
983 
984 	total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
985 
986 	/* allocate coherent memory for the buffers */
987 	bufs_va = dma_alloc_coherent(vdev->dev.parent->parent,
988 				     total_buf_space, &vrp->bufs_dma,
989 				     GFP_KERNEL);
990 	if (!bufs_va) {
991 		err = -ENOMEM;
992 		goto vqs_del;
993 	}
994 
995 	dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va,
996 					(unsigned long long)vrp->bufs_dma);
997 
998 	/* half of the buffers is dedicated for RX */
999 	vrp->rbufs = bufs_va;
1000 
1001 	/* and half is dedicated for TX */
1002 	vrp->sbufs = bufs_va + total_buf_space / 2;
1003 
1004 	/* set up the receive buffers */
1005 	for (i = 0; i < vrp->num_bufs / 2; i++) {
1006 		struct scatterlist sg;
1007 		void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE;
1008 
1009 		sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE);
1010 
1011 		err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr,
1012 								GFP_KERNEL);
1013 		WARN_ON(err); /* sanity check; this can't really happen */
1014 	}
1015 
1016 	/* suppress "tx-complete" interrupts */
1017 	virtqueue_disable_cb(vrp->svq);
1018 
1019 	vdev->priv = vrp;
1020 
1021 	/* if supported by the remote processor, enable the name service */
1022 	if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
1023 		/* a dedicated endpoint handles the name service msgs */
1024 		vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb,
1025 						vrp, RPMSG_NS_ADDR);
1026 		if (!vrp->ns_ept) {
1027 			dev_err(&vdev->dev, "failed to create the ns ept\n");
1028 			err = -ENOMEM;
1029 			goto free_coherent;
1030 		}
1031 	}
1032 
1033 	/* tell the remote processor it can start sending messages */
1034 	virtqueue_kick(vrp->rvq);
1035 
1036 	dev_info(&vdev->dev, "rpmsg host is online\n");
1037 
1038 	return 0;
1039 
1040 free_coherent:
1041 	dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1042 			  bufs_va, vrp->bufs_dma);
1043 vqs_del:
1044 	vdev->config->del_vqs(vrp->vdev);
1045 free_vrp:
1046 	kfree(vrp);
1047 	return err;
1048 }
1049 
1050 static int rpmsg_remove_device(struct device *dev, void *data)
1051 {
1052 	device_unregister(dev);
1053 
1054 	return 0;
1055 }
1056 
1057 static void rpmsg_remove(struct virtio_device *vdev)
1058 {
1059 	struct virtproc_info *vrp = vdev->priv;
1060 	size_t total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
1061 	int ret;
1062 
1063 	vdev->config->reset(vdev);
1064 
1065 	ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1066 	if (ret)
1067 		dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1068 
1069 	if (vrp->ns_ept)
1070 		__rpmsg_destroy_ept(vrp, vrp->ns_ept);
1071 
1072 	idr_destroy(&vrp->endpoints);
1073 
1074 	vdev->config->del_vqs(vrp->vdev);
1075 
1076 	dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1077 			  vrp->rbufs, vrp->bufs_dma);
1078 
1079 	kfree(vrp);
1080 }
1081 
1082 static struct virtio_device_id id_table[] = {
1083 	{ VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1084 	{ 0 },
1085 };
1086 
1087 static unsigned int features[] = {
1088 	VIRTIO_RPMSG_F_NS,
1089 };
1090 
1091 static struct virtio_driver virtio_ipc_driver = {
1092 	.feature_table	= features,
1093 	.feature_table_size = ARRAY_SIZE(features),
1094 	.driver.name	= KBUILD_MODNAME,
1095 	.driver.owner	= THIS_MODULE,
1096 	.id_table	= id_table,
1097 	.probe		= rpmsg_probe,
1098 	.remove		= rpmsg_remove,
1099 };
1100 
1101 static int __init rpmsg_init(void)
1102 {
1103 	int ret;
1104 
1105 	ret = bus_register(&rpmsg_bus);
1106 	if (ret) {
1107 		pr_err("failed to register rpmsg bus: %d\n", ret);
1108 		return ret;
1109 	}
1110 
1111 	ret = register_virtio_driver(&virtio_ipc_driver);
1112 	if (ret) {
1113 		pr_err("failed to register virtio driver: %d\n", ret);
1114 		bus_unregister(&rpmsg_bus);
1115 	}
1116 
1117 	return ret;
1118 }
1119 subsys_initcall(rpmsg_init);
1120 
1121 static void __exit rpmsg_fini(void)
1122 {
1123 	unregister_virtio_driver(&virtio_ipc_driver);
1124 	bus_unregister(&rpmsg_bus);
1125 }
1126 module_exit(rpmsg_fini);
1127 
1128 MODULE_DEVICE_TABLE(virtio, id_table);
1129 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1130 MODULE_LICENSE("GPL v2");
1131