1 /* 2 * Virtio-based remote processor messaging bus 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * 10 * This software is licensed under the terms of the GNU General Public 11 * License version 2, as published by the Free Software Foundation, and 12 * may be copied, distributed, and modified under those terms. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #define pr_fmt(fmt) "%s: " fmt, __func__ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/virtio.h> 25 #include <linux/virtio_ids.h> 26 #include <linux/virtio_config.h> 27 #include <linux/scatterlist.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/slab.h> 30 #include <linux/idr.h> 31 #include <linux/jiffies.h> 32 #include <linux/sched.h> 33 #include <linux/wait.h> 34 #include <linux/rpmsg.h> 35 #include <linux/mutex.h> 36 37 /** 38 * struct virtproc_info - virtual remote processor state 39 * @vdev: the virtio device 40 * @rvq: rx virtqueue 41 * @svq: tx virtqueue 42 * @rbufs: kernel address of rx buffers 43 * @sbufs: kernel address of tx buffers 44 * @num_bufs: total number of buffers for rx and tx 45 * @last_sbuf: index of last tx buffer used 46 * @bufs_dma: dma base addr of the buffers 47 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. 48 * sending a message might require waking up a dozing remote 49 * processor, which involves sleeping, hence the mutex. 50 * @endpoints: idr of local endpoints, allows fast retrieval 51 * @endpoints_lock: lock of the endpoints set 52 * @sendq: wait queue of sending contexts waiting for a tx buffers 53 * @sleepers: number of senders that are waiting for a tx buffer 54 * @ns_ept: the bus's name service endpoint 55 * 56 * This structure stores the rpmsg state of a given virtio remote processor 57 * device (there might be several virtio proc devices for each physical 58 * remote processor). 59 */ 60 struct virtproc_info { 61 struct virtio_device *vdev; 62 struct virtqueue *rvq, *svq; 63 void *rbufs, *sbufs; 64 unsigned int num_bufs; 65 int last_sbuf; 66 dma_addr_t bufs_dma; 67 struct mutex tx_lock; 68 struct idr endpoints; 69 struct mutex endpoints_lock; 70 wait_queue_head_t sendq; 71 atomic_t sleepers; 72 struct rpmsg_endpoint *ns_ept; 73 }; 74 75 /** 76 * struct rpmsg_channel_info - internal channel info representation 77 * @name: name of service 78 * @src: local address 79 * @dst: destination address 80 */ 81 struct rpmsg_channel_info { 82 char name[RPMSG_NAME_SIZE]; 83 u32 src; 84 u32 dst; 85 }; 86 87 #define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev) 88 #define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv) 89 90 /* 91 * We're allocating buffers of 512 bytes each for communications. The 92 * number of buffers will be computed from the number of buffers supported 93 * by the vring, upto a maximum of 512 buffers (256 in each direction). 94 * 95 * Each buffer will have 16 bytes for the msg header and 496 bytes for 96 * the payload. 97 * 98 * This will utilize a maximum total space of 256KB for the buffers. 99 * 100 * We might also want to add support for user-provided buffers in time. 101 * This will allow bigger buffer size flexibility, and can also be used 102 * to achieve zero-copy messaging. 103 * 104 * Note that these numbers are purely a decision of this driver - we 105 * can change this without changing anything in the firmware of the remote 106 * processor. 107 */ 108 #define MAX_RPMSG_NUM_BUFS (512) 109 #define RPMSG_BUF_SIZE (512) 110 111 /* 112 * Local addresses are dynamically allocated on-demand. 113 * We do not dynamically assign addresses from the low 1024 range, 114 * in order to reserve that address range for predefined services. 115 */ 116 #define RPMSG_RESERVED_ADDRESSES (1024) 117 118 /* Address 53 is reserved for advertising remote services */ 119 #define RPMSG_NS_ADDR (53) 120 121 /* sysfs show configuration fields */ 122 #define rpmsg_show_attr(field, path, format_string) \ 123 static ssize_t \ 124 field##_show(struct device *dev, \ 125 struct device_attribute *attr, char *buf) \ 126 { \ 127 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); \ 128 \ 129 return sprintf(buf, format_string, rpdev->path); \ 130 } 131 132 /* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */ 133 rpmsg_show_attr(name, id.name, "%s\n"); 134 rpmsg_show_attr(src, src, "0x%x\n"); 135 rpmsg_show_attr(dst, dst, "0x%x\n"); 136 rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n"); 137 138 /* 139 * Unique (and free running) index for rpmsg devices. 140 * 141 * Yeah, we're not recycling those numbers (yet?). will be easy 142 * to change if/when we want to. 143 */ 144 static unsigned int rpmsg_dev_index; 145 146 static ssize_t modalias_show(struct device *dev, 147 struct device_attribute *attr, char *buf) 148 { 149 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 150 151 return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name); 152 } 153 154 static struct device_attribute rpmsg_dev_attrs[] = { 155 __ATTR_RO(name), 156 __ATTR_RO(modalias), 157 __ATTR_RO(dst), 158 __ATTR_RO(src), 159 __ATTR_RO(announce), 160 __ATTR_NULL 161 }; 162 163 /* rpmsg devices and drivers are matched using the service name */ 164 static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev, 165 const struct rpmsg_device_id *id) 166 { 167 return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0; 168 } 169 170 /* match rpmsg channel and rpmsg driver */ 171 static int rpmsg_dev_match(struct device *dev, struct device_driver *drv) 172 { 173 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 174 struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv); 175 const struct rpmsg_device_id *ids = rpdrv->id_table; 176 unsigned int i; 177 178 for (i = 0; ids[i].name[0]; i++) 179 if (rpmsg_id_match(rpdev, &ids[i])) 180 return 1; 181 182 return 0; 183 } 184 185 static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env) 186 { 187 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 188 189 return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT, 190 rpdev->id.name); 191 } 192 193 /** 194 * __ept_release() - deallocate an rpmsg endpoint 195 * @kref: the ept's reference count 196 * 197 * This function deallocates an ept, and is invoked when its @kref refcount 198 * drops to zero. 199 * 200 * Never invoke this function directly! 201 */ 202 static void __ept_release(struct kref *kref) 203 { 204 struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint, 205 refcount); 206 /* 207 * At this point no one holds a reference to ept anymore, 208 * so we can directly free it 209 */ 210 kfree(ept); 211 } 212 213 /* for more info, see below documentation of rpmsg_create_ept() */ 214 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, 215 struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb, 216 void *priv, u32 addr) 217 { 218 int id_min, id_max, id; 219 struct rpmsg_endpoint *ept; 220 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; 221 222 ept = kzalloc(sizeof(*ept), GFP_KERNEL); 223 if (!ept) { 224 dev_err(dev, "failed to kzalloc a new ept\n"); 225 return NULL; 226 } 227 228 kref_init(&ept->refcount); 229 mutex_init(&ept->cb_lock); 230 231 ept->rpdev = rpdev; 232 ept->cb = cb; 233 ept->priv = priv; 234 235 /* do we need to allocate a local address ? */ 236 if (addr == RPMSG_ADDR_ANY) { 237 id_min = RPMSG_RESERVED_ADDRESSES; 238 id_max = 0; 239 } else { 240 id_min = addr; 241 id_max = addr + 1; 242 } 243 244 mutex_lock(&vrp->endpoints_lock); 245 246 /* bind the endpoint to an rpmsg address (and allocate one if needed) */ 247 id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL); 248 if (id < 0) { 249 dev_err(dev, "idr_alloc failed: %d\n", id); 250 goto free_ept; 251 } 252 ept->addr = id; 253 254 mutex_unlock(&vrp->endpoints_lock); 255 256 return ept; 257 258 free_ept: 259 mutex_unlock(&vrp->endpoints_lock); 260 kref_put(&ept->refcount, __ept_release); 261 return NULL; 262 } 263 264 /** 265 * rpmsg_create_ept() - create a new rpmsg_endpoint 266 * @rpdev: rpmsg channel device 267 * @cb: rx callback handler 268 * @priv: private data for the driver's use 269 * @addr: local rpmsg address to bind with @cb 270 * 271 * Every rpmsg address in the system is bound to an rx callback (so when 272 * inbound messages arrive, they are dispatched by the rpmsg bus using the 273 * appropriate callback handler) by means of an rpmsg_endpoint struct. 274 * 275 * This function allows drivers to create such an endpoint, and by that, 276 * bind a callback, and possibly some private data too, to an rpmsg address 277 * (either one that is known in advance, or one that will be dynamically 278 * assigned for them). 279 * 280 * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint 281 * is already created for them when they are probed by the rpmsg bus 282 * (using the rx callback provided when they registered to the rpmsg bus). 283 * 284 * So things should just work for simple drivers: they already have an 285 * endpoint, their rx callback is bound to their rpmsg address, and when 286 * relevant inbound messages arrive (i.e. messages which their dst address 287 * equals to the src address of their rpmsg channel), the driver's handler 288 * is invoked to process it. 289 * 290 * That said, more complicated drivers might do need to allocate 291 * additional rpmsg addresses, and bind them to different rx callbacks. 292 * To accomplish that, those drivers need to call this function. 293 * 294 * Drivers should provide their @rpdev channel (so the new endpoint would belong 295 * to the same remote processor their channel belongs to), an rx callback 296 * function, an optional private data (which is provided back when the 297 * rx callback is invoked), and an address they want to bind with the 298 * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will 299 * dynamically assign them an available rpmsg address (drivers should have 300 * a very good reason why not to always use RPMSG_ADDR_ANY here). 301 * 302 * Returns a pointer to the endpoint on success, or NULL on error. 303 */ 304 struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev, 305 rpmsg_rx_cb_t cb, void *priv, u32 addr) 306 { 307 return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr); 308 } 309 EXPORT_SYMBOL(rpmsg_create_ept); 310 311 /** 312 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 313 * @vrp: virtproc which owns this ept 314 * @ept: endpoing to destroy 315 * 316 * An internal function which destroy an ept without assuming it is 317 * bound to an rpmsg channel. This is needed for handling the internal 318 * name service endpoint, which isn't bound to an rpmsg channel. 319 * See also __rpmsg_create_ept(). 320 */ 321 static void 322 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) 323 { 324 /* make sure new inbound messages can't find this ept anymore */ 325 mutex_lock(&vrp->endpoints_lock); 326 idr_remove(&vrp->endpoints, ept->addr); 327 mutex_unlock(&vrp->endpoints_lock); 328 329 /* make sure in-flight inbound messages won't invoke cb anymore */ 330 mutex_lock(&ept->cb_lock); 331 ept->cb = NULL; 332 mutex_unlock(&ept->cb_lock); 333 334 kref_put(&ept->refcount, __ept_release); 335 } 336 337 /** 338 * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 339 * @ept: endpoing to destroy 340 * 341 * Should be used by drivers to destroy an rpmsg endpoint previously 342 * created with rpmsg_create_ept(). 343 */ 344 void rpmsg_destroy_ept(struct rpmsg_endpoint *ept) 345 { 346 __rpmsg_destroy_ept(ept->rpdev->vrp, ept); 347 } 348 EXPORT_SYMBOL(rpmsg_destroy_ept); 349 350 /* 351 * when an rpmsg driver is probed with a channel, we seamlessly create 352 * it an endpoint, binding its rx callback to a unique local rpmsg 353 * address. 354 * 355 * if we need to, we also announce about this channel to the remote 356 * processor (needed in case the driver is exposing an rpmsg service). 357 */ 358 static int rpmsg_dev_probe(struct device *dev) 359 { 360 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 361 struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); 362 struct virtproc_info *vrp = rpdev->vrp; 363 struct rpmsg_endpoint *ept; 364 int err; 365 366 ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src); 367 if (!ept) { 368 dev_err(dev, "failed to create endpoint\n"); 369 err = -ENOMEM; 370 goto out; 371 } 372 373 rpdev->ept = ept; 374 rpdev->src = ept->addr; 375 376 err = rpdrv->probe(rpdev); 377 if (err) { 378 dev_err(dev, "%s: failed: %d\n", __func__, err); 379 rpmsg_destroy_ept(ept); 380 goto out; 381 } 382 383 /* need to tell remote processor's name service about this channel ? */ 384 if (rpdev->announce && 385 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 386 struct rpmsg_ns_msg nsm; 387 388 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 389 nsm.addr = rpdev->src; 390 nsm.flags = RPMSG_NS_CREATE; 391 392 err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 393 if (err) 394 dev_err(dev, "failed to announce service %d\n", err); 395 } 396 397 out: 398 return err; 399 } 400 401 static int rpmsg_dev_remove(struct device *dev) 402 { 403 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 404 struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); 405 struct virtproc_info *vrp = rpdev->vrp; 406 int err = 0; 407 408 /* tell remote processor's name service we're removing this channel */ 409 if (rpdev->announce && 410 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 411 struct rpmsg_ns_msg nsm; 412 413 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 414 nsm.addr = rpdev->src; 415 nsm.flags = RPMSG_NS_DESTROY; 416 417 err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 418 if (err) 419 dev_err(dev, "failed to announce service %d\n", err); 420 } 421 422 rpdrv->remove(rpdev); 423 424 rpmsg_destroy_ept(rpdev->ept); 425 426 return err; 427 } 428 429 static struct bus_type rpmsg_bus = { 430 .name = "rpmsg", 431 .match = rpmsg_dev_match, 432 .dev_attrs = rpmsg_dev_attrs, 433 .uevent = rpmsg_uevent, 434 .probe = rpmsg_dev_probe, 435 .remove = rpmsg_dev_remove, 436 }; 437 438 /** 439 * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus 440 * @rpdrv: pointer to a struct rpmsg_driver 441 * 442 * Returns 0 on success, and an appropriate error value on failure. 443 */ 444 int register_rpmsg_driver(struct rpmsg_driver *rpdrv) 445 { 446 rpdrv->drv.bus = &rpmsg_bus; 447 return driver_register(&rpdrv->drv); 448 } 449 EXPORT_SYMBOL(register_rpmsg_driver); 450 451 /** 452 * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus 453 * @rpdrv: pointer to a struct rpmsg_driver 454 * 455 * Returns 0 on success, and an appropriate error value on failure. 456 */ 457 void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv) 458 { 459 driver_unregister(&rpdrv->drv); 460 } 461 EXPORT_SYMBOL(unregister_rpmsg_driver); 462 463 static void rpmsg_release_device(struct device *dev) 464 { 465 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 466 467 kfree(rpdev); 468 } 469 470 /* 471 * match an rpmsg channel with a channel info struct. 472 * this is used to make sure we're not creating rpmsg devices for channels 473 * that already exist. 474 */ 475 static int rpmsg_channel_match(struct device *dev, void *data) 476 { 477 struct rpmsg_channel_info *chinfo = data; 478 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 479 480 if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src) 481 return 0; 482 483 if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst) 484 return 0; 485 486 if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE)) 487 return 0; 488 489 /* found a match ! */ 490 return 1; 491 } 492 493 /* 494 * create an rpmsg channel using its name and address info. 495 * this function will be used to create both static and dynamic 496 * channels. 497 */ 498 static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp, 499 struct rpmsg_channel_info *chinfo) 500 { 501 struct rpmsg_channel *rpdev; 502 struct device *tmp, *dev = &vrp->vdev->dev; 503 int ret; 504 505 /* make sure a similar channel doesn't already exist */ 506 tmp = device_find_child(dev, chinfo, rpmsg_channel_match); 507 if (tmp) { 508 /* decrement the matched device's refcount back */ 509 put_device(tmp); 510 dev_err(dev, "channel %s:%x:%x already exist\n", 511 chinfo->name, chinfo->src, chinfo->dst); 512 return NULL; 513 } 514 515 rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL); 516 if (!rpdev) { 517 pr_err("kzalloc failed\n"); 518 return NULL; 519 } 520 521 rpdev->vrp = vrp; 522 rpdev->src = chinfo->src; 523 rpdev->dst = chinfo->dst; 524 525 /* 526 * rpmsg server channels has predefined local address (for now), 527 * and their existence needs to be announced remotely 528 */ 529 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false; 530 531 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); 532 533 /* very simple device indexing plumbing which is enough for now */ 534 dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++); 535 536 rpdev->dev.parent = &vrp->vdev->dev; 537 rpdev->dev.bus = &rpmsg_bus; 538 rpdev->dev.release = rpmsg_release_device; 539 540 ret = device_register(&rpdev->dev); 541 if (ret) { 542 dev_err(dev, "device_register failed: %d\n", ret); 543 put_device(&rpdev->dev); 544 return NULL; 545 } 546 547 return rpdev; 548 } 549 550 /* 551 * find an existing channel using its name + address properties, 552 * and destroy it 553 */ 554 static int rpmsg_destroy_channel(struct virtproc_info *vrp, 555 struct rpmsg_channel_info *chinfo) 556 { 557 struct virtio_device *vdev = vrp->vdev; 558 struct device *dev; 559 560 dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match); 561 if (!dev) 562 return -EINVAL; 563 564 device_unregister(dev); 565 566 put_device(dev); 567 568 return 0; 569 } 570 571 /* super simple buffer "allocator" that is just enough for now */ 572 static void *get_a_tx_buf(struct virtproc_info *vrp) 573 { 574 unsigned int len; 575 void *ret; 576 577 /* support multiple concurrent senders */ 578 mutex_lock(&vrp->tx_lock); 579 580 /* 581 * either pick the next unused tx buffer 582 * (half of our buffers are used for sending messages) 583 */ 584 if (vrp->last_sbuf < vrp->num_bufs / 2) 585 ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++; 586 /* or recycle a used one */ 587 else 588 ret = virtqueue_get_buf(vrp->svq, &len); 589 590 mutex_unlock(&vrp->tx_lock); 591 592 return ret; 593 } 594 595 /** 596 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed 597 * @vrp: virtual remote processor state 598 * 599 * This function is called before a sender is blocked, waiting for 600 * a tx buffer to become available. 601 * 602 * If we already have blocking senders, this function merely increases 603 * the "sleepers" reference count, and exits. 604 * 605 * Otherwise, if this is the first sender to block, we also enable 606 * virtio's tx callbacks, so we'd be immediately notified when a tx 607 * buffer is consumed (we rely on virtio's tx callback in order 608 * to wake up sleeping senders as soon as a tx buffer is used by the 609 * remote processor). 610 */ 611 static void rpmsg_upref_sleepers(struct virtproc_info *vrp) 612 { 613 /* support multiple concurrent senders */ 614 mutex_lock(&vrp->tx_lock); 615 616 /* are we the first sleeping context waiting for tx buffers ? */ 617 if (atomic_inc_return(&vrp->sleepers) == 1) 618 /* enable "tx-complete" interrupts before dozing off */ 619 virtqueue_enable_cb(vrp->svq); 620 621 mutex_unlock(&vrp->tx_lock); 622 } 623 624 /** 625 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed 626 * @vrp: virtual remote processor state 627 * 628 * This function is called after a sender, that waited for a tx buffer 629 * to become available, is unblocked. 630 * 631 * If we still have blocking senders, this function merely decreases 632 * the "sleepers" reference count, and exits. 633 * 634 * Otherwise, if there are no more blocking senders, we also disable 635 * virtio's tx callbacks, to avoid the overhead incurred with handling 636 * those (now redundant) interrupts. 637 */ 638 static void rpmsg_downref_sleepers(struct virtproc_info *vrp) 639 { 640 /* support multiple concurrent senders */ 641 mutex_lock(&vrp->tx_lock); 642 643 /* are we the last sleeping context waiting for tx buffers ? */ 644 if (atomic_dec_and_test(&vrp->sleepers)) 645 /* disable "tx-complete" interrupts */ 646 virtqueue_disable_cb(vrp->svq); 647 648 mutex_unlock(&vrp->tx_lock); 649 } 650 651 /** 652 * rpmsg_send_offchannel_raw() - send a message across to the remote processor 653 * @rpdev: the rpmsg channel 654 * @src: source address 655 * @dst: destination address 656 * @data: payload of message 657 * @len: length of payload 658 * @wait: indicates whether caller should block in case no TX buffers available 659 * 660 * This function is the base implementation for all of the rpmsg sending API. 661 * 662 * It will send @data of length @len to @dst, and say it's from @src. The 663 * message will be sent to the remote processor which the @rpdev channel 664 * belongs to. 665 * 666 * The message is sent using one of the TX buffers that are available for 667 * communication with this remote processor. 668 * 669 * If @wait is true, the caller will be blocked until either a TX buffer is 670 * available, or 15 seconds elapses (we don't want callers to 671 * sleep indefinitely due to misbehaving remote processors), and in that 672 * case -ERESTARTSYS is returned. The number '15' itself was picked 673 * arbitrarily; there's little point in asking drivers to provide a timeout 674 * value themselves. 675 * 676 * Otherwise, if @wait is false, and there are no TX buffers available, 677 * the function will immediately fail, and -ENOMEM will be returned. 678 * 679 * Normally drivers shouldn't use this function directly; instead, drivers 680 * should use the appropriate rpmsg_{try}send{to, _offchannel} API 681 * (see include/linux/rpmsg.h). 682 * 683 * Returns 0 on success and an appropriate error value on failure. 684 */ 685 int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst, 686 void *data, int len, bool wait) 687 { 688 struct virtproc_info *vrp = rpdev->vrp; 689 struct device *dev = &rpdev->dev; 690 struct scatterlist sg; 691 struct rpmsg_hdr *msg; 692 int err; 693 694 /* bcasting isn't allowed */ 695 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { 696 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); 697 return -EINVAL; 698 } 699 700 /* 701 * We currently use fixed-sized buffers, and therefore the payload 702 * length is limited. 703 * 704 * One of the possible improvements here is either to support 705 * user-provided buffers (and then we can also support zero-copy 706 * messaging), or to improve the buffer allocator, to support 707 * variable-length buffer sizes. 708 */ 709 if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) { 710 dev_err(dev, "message is too big (%d)\n", len); 711 return -EMSGSIZE; 712 } 713 714 /* grab a buffer */ 715 msg = get_a_tx_buf(vrp); 716 if (!msg && !wait) 717 return -ENOMEM; 718 719 /* no free buffer ? wait for one (but bail after 15 seconds) */ 720 while (!msg) { 721 /* enable "tx-complete" interrupts, if not already enabled */ 722 rpmsg_upref_sleepers(vrp); 723 724 /* 725 * sleep until a free buffer is available or 15 secs elapse. 726 * the timeout period is not configurable because there's 727 * little point in asking drivers to specify that. 728 * if later this happens to be required, it'd be easy to add. 729 */ 730 err = wait_event_interruptible_timeout(vrp->sendq, 731 (msg = get_a_tx_buf(vrp)), 732 msecs_to_jiffies(15000)); 733 734 /* disable "tx-complete" interrupts if we're the last sleeper */ 735 rpmsg_downref_sleepers(vrp); 736 737 /* timeout ? */ 738 if (!err) { 739 dev_err(dev, "timeout waiting for a tx buffer\n"); 740 return -ERESTARTSYS; 741 } 742 } 743 744 msg->len = len; 745 msg->flags = 0; 746 msg->src = src; 747 msg->dst = dst; 748 msg->reserved = 0; 749 memcpy(msg->data, data, len); 750 751 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", 752 msg->src, msg->dst, msg->len, 753 msg->flags, msg->reserved); 754 print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, 755 msg, sizeof(*msg) + msg->len, true); 756 757 sg_init_one(&sg, msg, sizeof(*msg) + len); 758 759 mutex_lock(&vrp->tx_lock); 760 761 /* add message to the remote processor's virtqueue */ 762 err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL); 763 if (err) { 764 /* 765 * need to reclaim the buffer here, otherwise it's lost 766 * (memory won't leak, but rpmsg won't use it again for TX). 767 * this will wait for a buffer management overhaul. 768 */ 769 dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err); 770 goto out; 771 } 772 773 /* tell the remote processor it has a pending message to read */ 774 virtqueue_kick(vrp->svq); 775 out: 776 mutex_unlock(&vrp->tx_lock); 777 return err; 778 } 779 EXPORT_SYMBOL(rpmsg_send_offchannel_raw); 780 781 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev, 782 struct rpmsg_hdr *msg, unsigned int len) 783 { 784 struct rpmsg_endpoint *ept; 785 struct scatterlist sg; 786 int err; 787 788 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", 789 msg->src, msg->dst, msg->len, 790 msg->flags, msg->reserved); 791 print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, 792 msg, sizeof(*msg) + msg->len, true); 793 794 /* 795 * We currently use fixed-sized buffers, so trivially sanitize 796 * the reported payload length. 797 */ 798 if (len > RPMSG_BUF_SIZE || 799 msg->len > (len - sizeof(struct rpmsg_hdr))) { 800 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len); 801 return -EINVAL; 802 } 803 804 /* use the dst addr to fetch the callback of the appropriate user */ 805 mutex_lock(&vrp->endpoints_lock); 806 807 ept = idr_find(&vrp->endpoints, msg->dst); 808 809 /* let's make sure no one deallocates ept while we use it */ 810 if (ept) 811 kref_get(&ept->refcount); 812 813 mutex_unlock(&vrp->endpoints_lock); 814 815 if (ept) { 816 /* make sure ept->cb doesn't go away while we use it */ 817 mutex_lock(&ept->cb_lock); 818 819 if (ept->cb) 820 ept->cb(ept->rpdev, msg->data, msg->len, ept->priv, 821 msg->src); 822 823 mutex_unlock(&ept->cb_lock); 824 825 /* farewell, ept, we don't need you anymore */ 826 kref_put(&ept->refcount, __ept_release); 827 } else 828 dev_warn(dev, "msg received with no recipient\n"); 829 830 /* publish the real size of the buffer */ 831 sg_init_one(&sg, msg, RPMSG_BUF_SIZE); 832 833 /* add the buffer back to the remote processor's virtqueue */ 834 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL); 835 if (err < 0) { 836 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); 837 return err; 838 } 839 840 return 0; 841 } 842 843 /* called when an rx buffer is used, and it's time to digest a message */ 844 static void rpmsg_recv_done(struct virtqueue *rvq) 845 { 846 struct virtproc_info *vrp = rvq->vdev->priv; 847 struct device *dev = &rvq->vdev->dev; 848 struct rpmsg_hdr *msg; 849 unsigned int len, msgs_received = 0; 850 int err; 851 852 msg = virtqueue_get_buf(rvq, &len); 853 if (!msg) { 854 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); 855 return; 856 } 857 858 while (msg) { 859 err = rpmsg_recv_single(vrp, dev, msg, len); 860 if (err) 861 break; 862 863 msgs_received++; 864 865 msg = virtqueue_get_buf(rvq, &len); 866 }; 867 868 dev_dbg(dev, "Received %u messages\n", msgs_received); 869 870 /* tell the remote processor we added another available rx buffer */ 871 if (msgs_received) 872 virtqueue_kick(vrp->rvq); 873 } 874 875 /* 876 * This is invoked whenever the remote processor completed processing 877 * a TX msg we just sent it, and the buffer is put back to the used ring. 878 * 879 * Normally, though, we suppress this "tx complete" interrupt in order to 880 * avoid the incurred overhead. 881 */ 882 static void rpmsg_xmit_done(struct virtqueue *svq) 883 { 884 struct virtproc_info *vrp = svq->vdev->priv; 885 886 dev_dbg(&svq->vdev->dev, "%s\n", __func__); 887 888 /* wake up potential senders that are waiting for a tx buffer */ 889 wake_up_interruptible(&vrp->sendq); 890 } 891 892 /* invoked when a name service announcement arrives */ 893 static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len, 894 void *priv, u32 src) 895 { 896 struct rpmsg_ns_msg *msg = data; 897 struct rpmsg_channel *newch; 898 struct rpmsg_channel_info chinfo; 899 struct virtproc_info *vrp = priv; 900 struct device *dev = &vrp->vdev->dev; 901 int ret; 902 903 print_hex_dump(KERN_DEBUG, "NS announcement: ", 904 DUMP_PREFIX_NONE, 16, 1, 905 data, len, true); 906 907 if (len != sizeof(*msg)) { 908 dev_err(dev, "malformed ns msg (%d)\n", len); 909 return; 910 } 911 912 /* 913 * the name service ept does _not_ belong to a real rpmsg channel, 914 * and is handled by the rpmsg bus itself. 915 * for sanity reasons, make sure a valid rpdev has _not_ sneaked 916 * in somehow. 917 */ 918 if (rpdev) { 919 dev_err(dev, "anomaly: ns ept has an rpdev handle\n"); 920 return; 921 } 922 923 /* don't trust the remote processor for null terminating the name */ 924 msg->name[RPMSG_NAME_SIZE - 1] = '\0'; 925 926 dev_info(dev, "%sing channel %s addr 0x%x\n", 927 msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat", 928 msg->name, msg->addr); 929 930 strncpy(chinfo.name, msg->name, sizeof(chinfo.name)); 931 chinfo.src = RPMSG_ADDR_ANY; 932 chinfo.dst = msg->addr; 933 934 if (msg->flags & RPMSG_NS_DESTROY) { 935 ret = rpmsg_destroy_channel(vrp, &chinfo); 936 if (ret) 937 dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret); 938 } else { 939 newch = rpmsg_create_channel(vrp, &chinfo); 940 if (!newch) 941 dev_err(dev, "rpmsg_create_channel failed\n"); 942 } 943 } 944 945 static int rpmsg_probe(struct virtio_device *vdev) 946 { 947 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; 948 const char *names[] = { "input", "output" }; 949 struct virtqueue *vqs[2]; 950 struct virtproc_info *vrp; 951 void *bufs_va; 952 int err = 0, i; 953 size_t total_buf_space; 954 955 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); 956 if (!vrp) 957 return -ENOMEM; 958 959 vrp->vdev = vdev; 960 961 idr_init(&vrp->endpoints); 962 mutex_init(&vrp->endpoints_lock); 963 mutex_init(&vrp->tx_lock); 964 init_waitqueue_head(&vrp->sendq); 965 966 /* We expect two virtqueues, rx and tx (and in this order) */ 967 err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names); 968 if (err) 969 goto free_vrp; 970 971 vrp->rvq = vqs[0]; 972 vrp->svq = vqs[1]; 973 974 /* we expect symmetric tx/rx vrings */ 975 WARN_ON(virtqueue_get_vring_size(vrp->rvq) != 976 virtqueue_get_vring_size(vrp->svq)); 977 978 /* we need less buffers if vrings are small */ 979 if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2) 980 vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2; 981 else 982 vrp->num_bufs = MAX_RPMSG_NUM_BUFS; 983 984 total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE; 985 986 /* allocate coherent memory for the buffers */ 987 bufs_va = dma_alloc_coherent(vdev->dev.parent->parent, 988 total_buf_space, &vrp->bufs_dma, 989 GFP_KERNEL); 990 if (!bufs_va) { 991 err = -ENOMEM; 992 goto vqs_del; 993 } 994 995 dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va, 996 (unsigned long long)vrp->bufs_dma); 997 998 /* half of the buffers is dedicated for RX */ 999 vrp->rbufs = bufs_va; 1000 1001 /* and half is dedicated for TX */ 1002 vrp->sbufs = bufs_va + total_buf_space / 2; 1003 1004 /* set up the receive buffers */ 1005 for (i = 0; i < vrp->num_bufs / 2; i++) { 1006 struct scatterlist sg; 1007 void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE; 1008 1009 sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE); 1010 1011 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr, 1012 GFP_KERNEL); 1013 WARN_ON(err); /* sanity check; this can't really happen */ 1014 } 1015 1016 /* suppress "tx-complete" interrupts */ 1017 virtqueue_disable_cb(vrp->svq); 1018 1019 vdev->priv = vrp; 1020 1021 /* if supported by the remote processor, enable the name service */ 1022 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { 1023 /* a dedicated endpoint handles the name service msgs */ 1024 vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb, 1025 vrp, RPMSG_NS_ADDR); 1026 if (!vrp->ns_ept) { 1027 dev_err(&vdev->dev, "failed to create the ns ept\n"); 1028 err = -ENOMEM; 1029 goto free_coherent; 1030 } 1031 } 1032 1033 /* tell the remote processor it can start sending messages */ 1034 virtqueue_kick(vrp->rvq); 1035 1036 dev_info(&vdev->dev, "rpmsg host is online\n"); 1037 1038 return 0; 1039 1040 free_coherent: 1041 dma_free_coherent(vdev->dev.parent->parent, total_buf_space, 1042 bufs_va, vrp->bufs_dma); 1043 vqs_del: 1044 vdev->config->del_vqs(vrp->vdev); 1045 free_vrp: 1046 kfree(vrp); 1047 return err; 1048 } 1049 1050 static int rpmsg_remove_device(struct device *dev, void *data) 1051 { 1052 device_unregister(dev); 1053 1054 return 0; 1055 } 1056 1057 static void rpmsg_remove(struct virtio_device *vdev) 1058 { 1059 struct virtproc_info *vrp = vdev->priv; 1060 size_t total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE; 1061 int ret; 1062 1063 vdev->config->reset(vdev); 1064 1065 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); 1066 if (ret) 1067 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); 1068 1069 if (vrp->ns_ept) 1070 __rpmsg_destroy_ept(vrp, vrp->ns_ept); 1071 1072 idr_destroy(&vrp->endpoints); 1073 1074 vdev->config->del_vqs(vrp->vdev); 1075 1076 dma_free_coherent(vdev->dev.parent->parent, total_buf_space, 1077 vrp->rbufs, vrp->bufs_dma); 1078 1079 kfree(vrp); 1080 } 1081 1082 static struct virtio_device_id id_table[] = { 1083 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, 1084 { 0 }, 1085 }; 1086 1087 static unsigned int features[] = { 1088 VIRTIO_RPMSG_F_NS, 1089 }; 1090 1091 static struct virtio_driver virtio_ipc_driver = { 1092 .feature_table = features, 1093 .feature_table_size = ARRAY_SIZE(features), 1094 .driver.name = KBUILD_MODNAME, 1095 .driver.owner = THIS_MODULE, 1096 .id_table = id_table, 1097 .probe = rpmsg_probe, 1098 .remove = rpmsg_remove, 1099 }; 1100 1101 static int __init rpmsg_init(void) 1102 { 1103 int ret; 1104 1105 ret = bus_register(&rpmsg_bus); 1106 if (ret) { 1107 pr_err("failed to register rpmsg bus: %d\n", ret); 1108 return ret; 1109 } 1110 1111 ret = register_virtio_driver(&virtio_ipc_driver); 1112 if (ret) { 1113 pr_err("failed to register virtio driver: %d\n", ret); 1114 bus_unregister(&rpmsg_bus); 1115 } 1116 1117 return ret; 1118 } 1119 subsys_initcall(rpmsg_init); 1120 1121 static void __exit rpmsg_fini(void) 1122 { 1123 unregister_virtio_driver(&virtio_ipc_driver); 1124 bus_unregister(&rpmsg_bus); 1125 } 1126 module_exit(rpmsg_fini); 1127 1128 MODULE_DEVICE_TABLE(virtio, id_table); 1129 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); 1130 MODULE_LICENSE("GPL v2"); 1131