1 /* 2 * Virtio-based remote processor messaging bus 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * 10 * This software is licensed under the terms of the GNU General Public 11 * License version 2, as published by the Free Software Foundation, and 12 * may be copied, distributed, and modified under those terms. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #define pr_fmt(fmt) "%s: " fmt, __func__ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/virtio.h> 25 #include <linux/virtio_ids.h> 26 #include <linux/virtio_config.h> 27 #include <linux/scatterlist.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/slab.h> 30 #include <linux/idr.h> 31 #include <linux/jiffies.h> 32 #include <linux/sched.h> 33 #include <linux/wait.h> 34 #include <linux/rpmsg.h> 35 #include <linux/mutex.h> 36 37 /** 38 * struct virtproc_info - virtual remote processor state 39 * @vdev: the virtio device 40 * @rvq: rx virtqueue 41 * @svq: tx virtqueue 42 * @rbufs: kernel address of rx buffers 43 * @sbufs: kernel address of tx buffers 44 * @last_sbuf: index of last tx buffer used 45 * @bufs_dma: dma base addr of the buffers 46 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. 47 * sending a message might require waking up a dozing remote 48 * processor, which involves sleeping, hence the mutex. 49 * @endpoints: idr of local endpoints, allows fast retrieval 50 * @endpoints_lock: lock of the endpoints set 51 * @sendq: wait queue of sending contexts waiting for a tx buffers 52 * @sleepers: number of senders that are waiting for a tx buffer 53 * @ns_ept: the bus's name service endpoint 54 * 55 * This structure stores the rpmsg state of a given virtio remote processor 56 * device (there might be several virtio proc devices for each physical 57 * remote processor). 58 */ 59 struct virtproc_info { 60 struct virtio_device *vdev; 61 struct virtqueue *rvq, *svq; 62 void *rbufs, *sbufs; 63 int last_sbuf; 64 dma_addr_t bufs_dma; 65 struct mutex tx_lock; 66 struct idr endpoints; 67 struct mutex endpoints_lock; 68 wait_queue_head_t sendq; 69 atomic_t sleepers; 70 struct rpmsg_endpoint *ns_ept; 71 }; 72 73 /** 74 * struct rpmsg_channel_info - internal channel info representation 75 * @name: name of service 76 * @src: local address 77 * @dst: destination address 78 */ 79 struct rpmsg_channel_info { 80 char name[RPMSG_NAME_SIZE]; 81 u32 src; 82 u32 dst; 83 }; 84 85 #define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev) 86 #define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv) 87 88 /* 89 * We're allocating 512 buffers of 512 bytes for communications, and then 90 * using the first 256 buffers for RX, and the last 256 buffers for TX. 91 * 92 * Each buffer will have 16 bytes for the msg header and 496 bytes for 93 * the payload. 94 * 95 * This will require a total space of 256KB for the buffers. 96 * 97 * We might also want to add support for user-provided buffers in time. 98 * This will allow bigger buffer size flexibility, and can also be used 99 * to achieve zero-copy messaging. 100 * 101 * Note that these numbers are purely a decision of this driver - we 102 * can change this without changing anything in the firmware of the remote 103 * processor. 104 */ 105 #define RPMSG_NUM_BUFS (512) 106 #define RPMSG_BUF_SIZE (512) 107 #define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE) 108 109 /* 110 * Local addresses are dynamically allocated on-demand. 111 * We do not dynamically assign addresses from the low 1024 range, 112 * in order to reserve that address range for predefined services. 113 */ 114 #define RPMSG_RESERVED_ADDRESSES (1024) 115 116 /* Address 53 is reserved for advertising remote services */ 117 #define RPMSG_NS_ADDR (53) 118 119 /* sysfs show configuration fields */ 120 #define rpmsg_show_attr(field, path, format_string) \ 121 static ssize_t \ 122 field##_show(struct device *dev, \ 123 struct device_attribute *attr, char *buf) \ 124 { \ 125 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); \ 126 \ 127 return sprintf(buf, format_string, rpdev->path); \ 128 } 129 130 /* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */ 131 rpmsg_show_attr(name, id.name, "%s\n"); 132 rpmsg_show_attr(src, src, "0x%x\n"); 133 rpmsg_show_attr(dst, dst, "0x%x\n"); 134 rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n"); 135 136 /* 137 * Unique (and free running) index for rpmsg devices. 138 * 139 * Yeah, we're not recycling those numbers (yet?). will be easy 140 * to change if/when we want to. 141 */ 142 static unsigned int rpmsg_dev_index; 143 144 static ssize_t modalias_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 148 149 return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name); 150 } 151 152 static struct device_attribute rpmsg_dev_attrs[] = { 153 __ATTR_RO(name), 154 __ATTR_RO(modalias), 155 __ATTR_RO(dst), 156 __ATTR_RO(src), 157 __ATTR_RO(announce), 158 __ATTR_NULL 159 }; 160 161 /* rpmsg devices and drivers are matched using the service name */ 162 static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev, 163 const struct rpmsg_device_id *id) 164 { 165 return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0; 166 } 167 168 /* match rpmsg channel and rpmsg driver */ 169 static int rpmsg_dev_match(struct device *dev, struct device_driver *drv) 170 { 171 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 172 struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv); 173 const struct rpmsg_device_id *ids = rpdrv->id_table; 174 unsigned int i; 175 176 for (i = 0; ids[i].name[0]; i++) 177 if (rpmsg_id_match(rpdev, &ids[i])) 178 return 1; 179 180 return 0; 181 } 182 183 static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env) 184 { 185 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 186 187 return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT, 188 rpdev->id.name); 189 } 190 191 /* for more info, see below documentation of rpmsg_create_ept() */ 192 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, 193 struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb, 194 void *priv, u32 addr) 195 { 196 int err, tmpaddr, request; 197 struct rpmsg_endpoint *ept; 198 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; 199 200 if (!idr_pre_get(&vrp->endpoints, GFP_KERNEL)) 201 return NULL; 202 203 ept = kzalloc(sizeof(*ept), GFP_KERNEL); 204 if (!ept) { 205 dev_err(dev, "failed to kzalloc a new ept\n"); 206 return NULL; 207 } 208 209 ept->rpdev = rpdev; 210 ept->cb = cb; 211 ept->priv = priv; 212 213 /* do we need to allocate a local address ? */ 214 request = addr == RPMSG_ADDR_ANY ? RPMSG_RESERVED_ADDRESSES : addr; 215 216 mutex_lock(&vrp->endpoints_lock); 217 218 /* bind the endpoint to an rpmsg address (and allocate one if needed) */ 219 err = idr_get_new_above(&vrp->endpoints, ept, request, &tmpaddr); 220 if (err) { 221 dev_err(dev, "idr_get_new_above failed: %d\n", err); 222 goto free_ept; 223 } 224 225 /* make sure the user's address request is fulfilled, if relevant */ 226 if (addr != RPMSG_ADDR_ANY && tmpaddr != addr) { 227 dev_err(dev, "address 0x%x already in use\n", addr); 228 goto rem_idr; 229 } 230 231 ept->addr = tmpaddr; 232 233 mutex_unlock(&vrp->endpoints_lock); 234 235 return ept; 236 237 rem_idr: 238 idr_remove(&vrp->endpoints, request); 239 free_ept: 240 mutex_unlock(&vrp->endpoints_lock); 241 kfree(ept); 242 return NULL; 243 } 244 245 /** 246 * rpmsg_create_ept() - create a new rpmsg_endpoint 247 * @rpdev: rpmsg channel device 248 * @cb: rx callback handler 249 * @priv: private data for the driver's use 250 * @addr: local rpmsg address to bind with @cb 251 * 252 * Every rpmsg address in the system is bound to an rx callback (so when 253 * inbound messages arrive, they are dispatched by the rpmsg bus using the 254 * appropriate callback handler) by means of an rpmsg_endpoint struct. 255 * 256 * This function allows drivers to create such an endpoint, and by that, 257 * bind a callback, and possibly some private data too, to an rpmsg address 258 * (either one that is known in advance, or one that will be dynamically 259 * assigned for them). 260 * 261 * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint 262 * is already created for them when they are probed by the rpmsg bus 263 * (using the rx callback provided when they registered to the rpmsg bus). 264 * 265 * So things should just work for simple drivers: they already have an 266 * endpoint, their rx callback is bound to their rpmsg address, and when 267 * relevant inbound messages arrive (i.e. messages which their dst address 268 * equals to the src address of their rpmsg channel), the driver's handler 269 * is invoked to process it. 270 * 271 * That said, more complicated drivers might do need to allocate 272 * additional rpmsg addresses, and bind them to different rx callbacks. 273 * To accomplish that, those drivers need to call this function. 274 * 275 * Drivers should provide their @rpdev channel (so the new endpoint would belong 276 * to the same remote processor their channel belongs to), an rx callback 277 * function, an optional private data (which is provided back when the 278 * rx callback is invoked), and an address they want to bind with the 279 * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will 280 * dynamically assign them an available rpmsg address (drivers should have 281 * a very good reason why not to always use RPMSG_ADDR_ANY here). 282 * 283 * Returns a pointer to the endpoint on success, or NULL on error. 284 */ 285 struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev, 286 rpmsg_rx_cb_t cb, void *priv, u32 addr) 287 { 288 return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr); 289 } 290 EXPORT_SYMBOL(rpmsg_create_ept); 291 292 /** 293 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 294 * @vrp: virtproc which owns this ept 295 * @ept: endpoing to destroy 296 * 297 * An internal function which destroy an ept without assuming it is 298 * bound to an rpmsg channel. This is needed for handling the internal 299 * name service endpoint, which isn't bound to an rpmsg channel. 300 * See also __rpmsg_create_ept(). 301 */ 302 static void 303 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) 304 { 305 mutex_lock(&vrp->endpoints_lock); 306 idr_remove(&vrp->endpoints, ept->addr); 307 mutex_unlock(&vrp->endpoints_lock); 308 309 kfree(ept); 310 } 311 312 /** 313 * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 314 * @ept: endpoing to destroy 315 * 316 * Should be used by drivers to destroy an rpmsg endpoint previously 317 * created with rpmsg_create_ept(). 318 */ 319 void rpmsg_destroy_ept(struct rpmsg_endpoint *ept) 320 { 321 __rpmsg_destroy_ept(ept->rpdev->vrp, ept); 322 } 323 EXPORT_SYMBOL(rpmsg_destroy_ept); 324 325 /* 326 * when an rpmsg driver is probed with a channel, we seamlessly create 327 * it an endpoint, binding its rx callback to a unique local rpmsg 328 * address. 329 * 330 * if we need to, we also announce about this channel to the remote 331 * processor (needed in case the driver is exposing an rpmsg service). 332 */ 333 static int rpmsg_dev_probe(struct device *dev) 334 { 335 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 336 struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); 337 struct virtproc_info *vrp = rpdev->vrp; 338 struct rpmsg_endpoint *ept; 339 int err; 340 341 ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src); 342 if (!ept) { 343 dev_err(dev, "failed to create endpoint\n"); 344 err = -ENOMEM; 345 goto out; 346 } 347 348 rpdev->ept = ept; 349 rpdev->src = ept->addr; 350 351 err = rpdrv->probe(rpdev); 352 if (err) { 353 dev_err(dev, "%s: failed: %d\n", __func__, err); 354 rpmsg_destroy_ept(ept); 355 goto out; 356 } 357 358 /* need to tell remote processor's name service about this channel ? */ 359 if (rpdev->announce && 360 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 361 struct rpmsg_ns_msg nsm; 362 363 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 364 nsm.addr = rpdev->src; 365 nsm.flags = RPMSG_NS_CREATE; 366 367 err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 368 if (err) 369 dev_err(dev, "failed to announce service %d\n", err); 370 } 371 372 out: 373 return err; 374 } 375 376 static int rpmsg_dev_remove(struct device *dev) 377 { 378 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 379 struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); 380 struct virtproc_info *vrp = rpdev->vrp; 381 int err = 0; 382 383 /* tell remote processor's name service we're removing this channel */ 384 if (rpdev->announce && 385 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 386 struct rpmsg_ns_msg nsm; 387 388 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 389 nsm.addr = rpdev->src; 390 nsm.flags = RPMSG_NS_DESTROY; 391 392 err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 393 if (err) 394 dev_err(dev, "failed to announce service %d\n", err); 395 } 396 397 rpdrv->remove(rpdev); 398 399 rpmsg_destroy_ept(rpdev->ept); 400 401 return err; 402 } 403 404 static struct bus_type rpmsg_bus = { 405 .name = "rpmsg", 406 .match = rpmsg_dev_match, 407 .dev_attrs = rpmsg_dev_attrs, 408 .uevent = rpmsg_uevent, 409 .probe = rpmsg_dev_probe, 410 .remove = rpmsg_dev_remove, 411 }; 412 413 /** 414 * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus 415 * @rpdrv: pointer to a struct rpmsg_driver 416 * 417 * Returns 0 on success, and an appropriate error value on failure. 418 */ 419 int register_rpmsg_driver(struct rpmsg_driver *rpdrv) 420 { 421 rpdrv->drv.bus = &rpmsg_bus; 422 return driver_register(&rpdrv->drv); 423 } 424 EXPORT_SYMBOL(register_rpmsg_driver); 425 426 /** 427 * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus 428 * @rpdrv: pointer to a struct rpmsg_driver 429 * 430 * Returns 0 on success, and an appropriate error value on failure. 431 */ 432 void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv) 433 { 434 driver_unregister(&rpdrv->drv); 435 } 436 EXPORT_SYMBOL(unregister_rpmsg_driver); 437 438 static void rpmsg_release_device(struct device *dev) 439 { 440 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 441 442 kfree(rpdev); 443 } 444 445 /* 446 * match an rpmsg channel with a channel info struct. 447 * this is used to make sure we're not creating rpmsg devices for channels 448 * that already exist. 449 */ 450 static int rpmsg_channel_match(struct device *dev, void *data) 451 { 452 struct rpmsg_channel_info *chinfo = data; 453 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 454 455 if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src) 456 return 0; 457 458 if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst) 459 return 0; 460 461 if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE)) 462 return 0; 463 464 /* found a match ! */ 465 return 1; 466 } 467 468 /* 469 * create an rpmsg channel using its name and address info. 470 * this function will be used to create both static and dynamic 471 * channels. 472 */ 473 static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp, 474 struct rpmsg_channel_info *chinfo) 475 { 476 struct rpmsg_channel *rpdev; 477 struct device *tmp, *dev = &vrp->vdev->dev; 478 int ret; 479 480 /* make sure a similar channel doesn't already exist */ 481 tmp = device_find_child(dev, chinfo, rpmsg_channel_match); 482 if (tmp) { 483 /* decrement the matched device's refcount back */ 484 put_device(tmp); 485 dev_err(dev, "channel %s:%x:%x already exist\n", 486 chinfo->name, chinfo->src, chinfo->dst); 487 return NULL; 488 } 489 490 rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL); 491 if (!rpdev) { 492 pr_err("kzalloc failed\n"); 493 return NULL; 494 } 495 496 rpdev->vrp = vrp; 497 rpdev->src = chinfo->src; 498 rpdev->dst = chinfo->dst; 499 500 /* 501 * rpmsg server channels has predefined local address (for now), 502 * and their existence needs to be announced remotely 503 */ 504 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false; 505 506 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); 507 508 /* very simple device indexing plumbing which is enough for now */ 509 dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++); 510 511 rpdev->dev.parent = &vrp->vdev->dev; 512 rpdev->dev.bus = &rpmsg_bus; 513 rpdev->dev.release = rpmsg_release_device; 514 515 ret = device_register(&rpdev->dev); 516 if (ret) { 517 dev_err(dev, "device_register failed: %d\n", ret); 518 put_device(&rpdev->dev); 519 return NULL; 520 } 521 522 return rpdev; 523 } 524 525 /* 526 * find an existing channel using its name + address properties, 527 * and destroy it 528 */ 529 static int rpmsg_destroy_channel(struct virtproc_info *vrp, 530 struct rpmsg_channel_info *chinfo) 531 { 532 struct virtio_device *vdev = vrp->vdev; 533 struct device *dev; 534 535 dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match); 536 if (!dev) 537 return -EINVAL; 538 539 device_unregister(dev); 540 541 put_device(dev); 542 543 return 0; 544 } 545 546 /* super simple buffer "allocator" that is just enough for now */ 547 static void *get_a_tx_buf(struct virtproc_info *vrp) 548 { 549 unsigned int len; 550 void *ret; 551 552 /* support multiple concurrent senders */ 553 mutex_lock(&vrp->tx_lock); 554 555 /* 556 * either pick the next unused tx buffer 557 * (half of our buffers are used for sending messages) 558 */ 559 if (vrp->last_sbuf < RPMSG_NUM_BUFS / 2) 560 ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++; 561 /* or recycle a used one */ 562 else 563 ret = virtqueue_get_buf(vrp->svq, &len); 564 565 mutex_unlock(&vrp->tx_lock); 566 567 return ret; 568 } 569 570 /** 571 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed 572 * @vrp: virtual remote processor state 573 * 574 * This function is called before a sender is blocked, waiting for 575 * a tx buffer to become available. 576 * 577 * If we already have blocking senders, this function merely increases 578 * the "sleepers" reference count, and exits. 579 * 580 * Otherwise, if this is the first sender to block, we also enable 581 * virtio's tx callbacks, so we'd be immediately notified when a tx 582 * buffer is consumed (we rely on virtio's tx callback in order 583 * to wake up sleeping senders as soon as a tx buffer is used by the 584 * remote processor). 585 */ 586 static void rpmsg_upref_sleepers(struct virtproc_info *vrp) 587 { 588 /* support multiple concurrent senders */ 589 mutex_lock(&vrp->tx_lock); 590 591 /* are we the first sleeping context waiting for tx buffers ? */ 592 if (atomic_inc_return(&vrp->sleepers) == 1) 593 /* enable "tx-complete" interrupts before dozing off */ 594 virtqueue_enable_cb(vrp->svq); 595 596 mutex_unlock(&vrp->tx_lock); 597 } 598 599 /** 600 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed 601 * @vrp: virtual remote processor state 602 * 603 * This function is called after a sender, that waited for a tx buffer 604 * to become available, is unblocked. 605 * 606 * If we still have blocking senders, this function merely decreases 607 * the "sleepers" reference count, and exits. 608 * 609 * Otherwise, if there are no more blocking senders, we also disable 610 * virtio's tx callbacks, to avoid the overhead incurred with handling 611 * those (now redundant) interrupts. 612 */ 613 static void rpmsg_downref_sleepers(struct virtproc_info *vrp) 614 { 615 /* support multiple concurrent senders */ 616 mutex_lock(&vrp->tx_lock); 617 618 /* are we the last sleeping context waiting for tx buffers ? */ 619 if (atomic_dec_and_test(&vrp->sleepers)) 620 /* disable "tx-complete" interrupts */ 621 virtqueue_disable_cb(vrp->svq); 622 623 mutex_unlock(&vrp->tx_lock); 624 } 625 626 /** 627 * rpmsg_send_offchannel_raw() - send a message across to the remote processor 628 * @rpdev: the rpmsg channel 629 * @src: source address 630 * @dst: destination address 631 * @data: payload of message 632 * @len: length of payload 633 * @wait: indicates whether caller should block in case no TX buffers available 634 * 635 * This function is the base implementation for all of the rpmsg sending API. 636 * 637 * It will send @data of length @len to @dst, and say it's from @src. The 638 * message will be sent to the remote processor which the @rpdev channel 639 * belongs to. 640 * 641 * The message is sent using one of the TX buffers that are available for 642 * communication with this remote processor. 643 * 644 * If @wait is true, the caller will be blocked until either a TX buffer is 645 * available, or 15 seconds elapses (we don't want callers to 646 * sleep indefinitely due to misbehaving remote processors), and in that 647 * case -ERESTARTSYS is returned. The number '15' itself was picked 648 * arbitrarily; there's little point in asking drivers to provide a timeout 649 * value themselves. 650 * 651 * Otherwise, if @wait is false, and there are no TX buffers available, 652 * the function will immediately fail, and -ENOMEM will be returned. 653 * 654 * Normally drivers shouldn't use this function directly; instead, drivers 655 * should use the appropriate rpmsg_{try}send{to, _offchannel} API 656 * (see include/linux/rpmsg.h). 657 * 658 * Returns 0 on success and an appropriate error value on failure. 659 */ 660 int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst, 661 void *data, int len, bool wait) 662 { 663 struct virtproc_info *vrp = rpdev->vrp; 664 struct device *dev = &rpdev->dev; 665 struct scatterlist sg; 666 struct rpmsg_hdr *msg; 667 int err; 668 669 /* bcasting isn't allowed */ 670 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { 671 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); 672 return -EINVAL; 673 } 674 675 /* 676 * We currently use fixed-sized buffers, and therefore the payload 677 * length is limited. 678 * 679 * One of the possible improvements here is either to support 680 * user-provided buffers (and then we can also support zero-copy 681 * messaging), or to improve the buffer allocator, to support 682 * variable-length buffer sizes. 683 */ 684 if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) { 685 dev_err(dev, "message is too big (%d)\n", len); 686 return -EMSGSIZE; 687 } 688 689 /* grab a buffer */ 690 msg = get_a_tx_buf(vrp); 691 if (!msg && !wait) 692 return -ENOMEM; 693 694 /* no free buffer ? wait for one (but bail after 15 seconds) */ 695 while (!msg) { 696 /* enable "tx-complete" interrupts, if not already enabled */ 697 rpmsg_upref_sleepers(vrp); 698 699 /* 700 * sleep until a free buffer is available or 15 secs elapse. 701 * the timeout period is not configurable because there's 702 * little point in asking drivers to specify that. 703 * if later this happens to be required, it'd be easy to add. 704 */ 705 err = wait_event_interruptible_timeout(vrp->sendq, 706 (msg = get_a_tx_buf(vrp)), 707 msecs_to_jiffies(15000)); 708 709 /* disable "tx-complete" interrupts if we're the last sleeper */ 710 rpmsg_downref_sleepers(vrp); 711 712 /* timeout ? */ 713 if (!err) { 714 dev_err(dev, "timeout waiting for a tx buffer\n"); 715 return -ERESTARTSYS; 716 } 717 } 718 719 msg->len = len; 720 msg->flags = 0; 721 msg->src = src; 722 msg->dst = dst; 723 msg->reserved = 0; 724 memcpy(msg->data, data, len); 725 726 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", 727 msg->src, msg->dst, msg->len, 728 msg->flags, msg->reserved); 729 print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, 730 msg, sizeof(*msg) + msg->len, true); 731 732 sg_init_one(&sg, msg, sizeof(*msg) + len); 733 734 mutex_lock(&vrp->tx_lock); 735 736 /* add message to the remote processor's virtqueue */ 737 err = virtqueue_add_buf(vrp->svq, &sg, 1, 0, msg, GFP_KERNEL); 738 if (err < 0) { 739 /* 740 * need to reclaim the buffer here, otherwise it's lost 741 * (memory won't leak, but rpmsg won't use it again for TX). 742 * this will wait for a buffer management overhaul. 743 */ 744 dev_err(dev, "virtqueue_add_buf failed: %d\n", err); 745 goto out; 746 } 747 748 /* tell the remote processor it has a pending message to read */ 749 virtqueue_kick(vrp->svq); 750 751 err = 0; 752 out: 753 mutex_unlock(&vrp->tx_lock); 754 return err; 755 } 756 EXPORT_SYMBOL(rpmsg_send_offchannel_raw); 757 758 /* called when an rx buffer is used, and it's time to digest a message */ 759 static void rpmsg_recv_done(struct virtqueue *rvq) 760 { 761 struct rpmsg_hdr *msg; 762 unsigned int len; 763 struct rpmsg_endpoint *ept; 764 struct scatterlist sg; 765 struct virtproc_info *vrp = rvq->vdev->priv; 766 struct device *dev = &rvq->vdev->dev; 767 int err; 768 769 msg = virtqueue_get_buf(rvq, &len); 770 if (!msg) { 771 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); 772 return; 773 } 774 775 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", 776 msg->src, msg->dst, msg->len, 777 msg->flags, msg->reserved); 778 print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, 779 msg, sizeof(*msg) + msg->len, true); 780 781 /* 782 * We currently use fixed-sized buffers, so trivially sanitize 783 * the reported payload length. 784 */ 785 if (len > RPMSG_BUF_SIZE || 786 msg->len > (len - sizeof(struct rpmsg_hdr))) { 787 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len); 788 return; 789 } 790 791 /* use the dst addr to fetch the callback of the appropriate user */ 792 mutex_lock(&vrp->endpoints_lock); 793 ept = idr_find(&vrp->endpoints, msg->dst); 794 mutex_unlock(&vrp->endpoints_lock); 795 796 if (ept && ept->cb) 797 ept->cb(ept->rpdev, msg->data, msg->len, ept->priv, msg->src); 798 else 799 dev_warn(dev, "msg received with no recepient\n"); 800 801 /* publish the real size of the buffer */ 802 sg_init_one(&sg, msg, RPMSG_BUF_SIZE); 803 804 /* add the buffer back to the remote processor's virtqueue */ 805 err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, msg, GFP_KERNEL); 806 if (err < 0) { 807 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); 808 return; 809 } 810 811 /* tell the remote processor we added another available rx buffer */ 812 virtqueue_kick(vrp->rvq); 813 } 814 815 /* 816 * This is invoked whenever the remote processor completed processing 817 * a TX msg we just sent it, and the buffer is put back to the used ring. 818 * 819 * Normally, though, we suppress this "tx complete" interrupt in order to 820 * avoid the incurred overhead. 821 */ 822 static void rpmsg_xmit_done(struct virtqueue *svq) 823 { 824 struct virtproc_info *vrp = svq->vdev->priv; 825 826 dev_dbg(&svq->vdev->dev, "%s\n", __func__); 827 828 /* wake up potential senders that are waiting for a tx buffer */ 829 wake_up_interruptible(&vrp->sendq); 830 } 831 832 /* invoked when a name service announcement arrives */ 833 static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len, 834 void *priv, u32 src) 835 { 836 struct rpmsg_ns_msg *msg = data; 837 struct rpmsg_channel *newch; 838 struct rpmsg_channel_info chinfo; 839 struct virtproc_info *vrp = priv; 840 struct device *dev = &vrp->vdev->dev; 841 int ret; 842 843 print_hex_dump(KERN_DEBUG, "NS announcement: ", 844 DUMP_PREFIX_NONE, 16, 1, 845 data, len, true); 846 847 if (len != sizeof(*msg)) { 848 dev_err(dev, "malformed ns msg (%d)\n", len); 849 return; 850 } 851 852 /* 853 * the name service ept does _not_ belong to a real rpmsg channel, 854 * and is handled by the rpmsg bus itself. 855 * for sanity reasons, make sure a valid rpdev has _not_ sneaked 856 * in somehow. 857 */ 858 if (rpdev) { 859 dev_err(dev, "anomaly: ns ept has an rpdev handle\n"); 860 return; 861 } 862 863 /* don't trust the remote processor for null terminating the name */ 864 msg->name[RPMSG_NAME_SIZE - 1] = '\0'; 865 866 dev_info(dev, "%sing channel %s addr 0x%x\n", 867 msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat", 868 msg->name, msg->addr); 869 870 strncpy(chinfo.name, msg->name, sizeof(chinfo.name)); 871 chinfo.src = RPMSG_ADDR_ANY; 872 chinfo.dst = msg->addr; 873 874 if (msg->flags & RPMSG_NS_DESTROY) { 875 ret = rpmsg_destroy_channel(vrp, &chinfo); 876 if (ret) 877 dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret); 878 } else { 879 newch = rpmsg_create_channel(vrp, &chinfo); 880 if (!newch) 881 dev_err(dev, "rpmsg_create_channel failed\n"); 882 } 883 } 884 885 static int rpmsg_probe(struct virtio_device *vdev) 886 { 887 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; 888 const char *names[] = { "input", "output" }; 889 struct virtqueue *vqs[2]; 890 struct virtproc_info *vrp; 891 void *bufs_va; 892 int err = 0, i; 893 894 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); 895 if (!vrp) 896 return -ENOMEM; 897 898 vrp->vdev = vdev; 899 900 idr_init(&vrp->endpoints); 901 mutex_init(&vrp->endpoints_lock); 902 mutex_init(&vrp->tx_lock); 903 init_waitqueue_head(&vrp->sendq); 904 905 /* We expect two virtqueues, rx and tx (and in this order) */ 906 err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names); 907 if (err) 908 goto free_vrp; 909 910 vrp->rvq = vqs[0]; 911 vrp->svq = vqs[1]; 912 913 /* allocate coherent memory for the buffers */ 914 bufs_va = dma_alloc_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, 915 &vrp->bufs_dma, GFP_KERNEL); 916 if (!bufs_va) 917 goto vqs_del; 918 919 dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va, 920 (unsigned long long)vrp->bufs_dma); 921 922 /* half of the buffers is dedicated for RX */ 923 vrp->rbufs = bufs_va; 924 925 /* and half is dedicated for TX */ 926 vrp->sbufs = bufs_va + RPMSG_TOTAL_BUF_SPACE / 2; 927 928 /* set up the receive buffers */ 929 for (i = 0; i < RPMSG_NUM_BUFS / 2; i++) { 930 struct scatterlist sg; 931 void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE; 932 933 sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE); 934 935 err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, cpu_addr, 936 GFP_KERNEL); 937 WARN_ON(err < 0); /* sanity check; this can't really happen */ 938 } 939 940 /* suppress "tx-complete" interrupts */ 941 virtqueue_disable_cb(vrp->svq); 942 943 vdev->priv = vrp; 944 945 /* if supported by the remote processor, enable the name service */ 946 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { 947 /* a dedicated endpoint handles the name service msgs */ 948 vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb, 949 vrp, RPMSG_NS_ADDR); 950 if (!vrp->ns_ept) { 951 dev_err(&vdev->dev, "failed to create the ns ept\n"); 952 err = -ENOMEM; 953 goto free_coherent; 954 } 955 } 956 957 /* tell the remote processor it can start sending messages */ 958 virtqueue_kick(vrp->rvq); 959 960 dev_info(&vdev->dev, "rpmsg host is online\n"); 961 962 return 0; 963 964 free_coherent: 965 dma_free_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, bufs_va, 966 vrp->bufs_dma); 967 vqs_del: 968 vdev->config->del_vqs(vrp->vdev); 969 free_vrp: 970 kfree(vrp); 971 return err; 972 } 973 974 static int rpmsg_remove_device(struct device *dev, void *data) 975 { 976 device_unregister(dev); 977 978 return 0; 979 } 980 981 static void __devexit rpmsg_remove(struct virtio_device *vdev) 982 { 983 struct virtproc_info *vrp = vdev->priv; 984 int ret; 985 986 vdev->config->reset(vdev); 987 988 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); 989 if (ret) 990 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); 991 992 if (vrp->ns_ept) 993 __rpmsg_destroy_ept(vrp, vrp->ns_ept); 994 995 idr_remove_all(&vrp->endpoints); 996 idr_destroy(&vrp->endpoints); 997 998 vdev->config->del_vqs(vrp->vdev); 999 1000 dma_free_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, 1001 vrp->rbufs, vrp->bufs_dma); 1002 1003 kfree(vrp); 1004 } 1005 1006 static struct virtio_device_id id_table[] = { 1007 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, 1008 { 0 }, 1009 }; 1010 1011 static unsigned int features[] = { 1012 VIRTIO_RPMSG_F_NS, 1013 }; 1014 1015 static struct virtio_driver virtio_ipc_driver = { 1016 .feature_table = features, 1017 .feature_table_size = ARRAY_SIZE(features), 1018 .driver.name = KBUILD_MODNAME, 1019 .driver.owner = THIS_MODULE, 1020 .id_table = id_table, 1021 .probe = rpmsg_probe, 1022 .remove = __devexit_p(rpmsg_remove), 1023 }; 1024 1025 static int __init rpmsg_init(void) 1026 { 1027 int ret; 1028 1029 ret = bus_register(&rpmsg_bus); 1030 if (ret) { 1031 pr_err("failed to register rpmsg bus: %d\n", ret); 1032 return ret; 1033 } 1034 1035 ret = register_virtio_driver(&virtio_ipc_driver); 1036 if (ret) { 1037 pr_err("failed to register virtio driver: %d\n", ret); 1038 bus_unregister(&rpmsg_bus); 1039 } 1040 1041 return ret; 1042 } 1043 module_init(rpmsg_init); 1044 1045 static void __exit rpmsg_fini(void) 1046 { 1047 unregister_virtio_driver(&virtio_ipc_driver); 1048 bus_unregister(&rpmsg_bus); 1049 } 1050 module_exit(rpmsg_fini); 1051 1052 MODULE_DEVICE_TABLE(virtio, id_table); 1053 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); 1054 MODULE_LICENSE("GPL v2"); 1055