1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtio-based remote processor messaging bus 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 */ 11 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/dma-mapping.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/rpmsg.h> 21 #include <linux/rpmsg/byteorder.h> 22 #include <linux/rpmsg/ns.h> 23 #include <linux/scatterlist.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/virtio.h> 27 #include <linux/virtio_ids.h> 28 #include <linux/virtio_config.h> 29 #include <linux/wait.h> 30 31 #include "rpmsg_internal.h" 32 33 /** 34 * struct virtproc_info - virtual remote processor state 35 * @vdev: the virtio device 36 * @rvq: rx virtqueue 37 * @svq: tx virtqueue 38 * @rbufs: kernel address of rx buffers 39 * @sbufs: kernel address of tx buffers 40 * @num_bufs: total number of buffers for rx and tx 41 * @buf_size: size of one rx or tx buffer 42 * @last_sbuf: index of last tx buffer used 43 * @bufs_dma: dma base addr of the buffers 44 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. 45 * sending a message might require waking up a dozing remote 46 * processor, which involves sleeping, hence the mutex. 47 * @endpoints: idr of local endpoints, allows fast retrieval 48 * @endpoints_lock: lock of the endpoints set 49 * @sendq: wait queue of sending contexts waiting for a tx buffers 50 * @sleepers: number of senders that are waiting for a tx buffer 51 * 52 * This structure stores the rpmsg state of a given virtio remote processor 53 * device (there might be several virtio proc devices for each physical 54 * remote processor). 55 */ 56 struct virtproc_info { 57 struct virtio_device *vdev; 58 struct virtqueue *rvq, *svq; 59 void *rbufs, *sbufs; 60 unsigned int num_bufs; 61 unsigned int buf_size; 62 int last_sbuf; 63 dma_addr_t bufs_dma; 64 struct mutex tx_lock; 65 struct idr endpoints; 66 struct mutex endpoints_lock; 67 wait_queue_head_t sendq; 68 atomic_t sleepers; 69 }; 70 71 /* The feature bitmap for virtio rpmsg */ 72 #define VIRTIO_RPMSG_F_NS 0 /* RP supports name service notifications */ 73 74 /** 75 * struct rpmsg_hdr - common header for all rpmsg messages 76 * @src: source address 77 * @dst: destination address 78 * @reserved: reserved for future use 79 * @len: length of payload (in bytes) 80 * @flags: message flags 81 * @data: @len bytes of message payload data 82 * 83 * Every message sent(/received) on the rpmsg bus begins with this header. 84 */ 85 struct rpmsg_hdr { 86 __rpmsg32 src; 87 __rpmsg32 dst; 88 __rpmsg32 reserved; 89 __rpmsg16 len; 90 __rpmsg16 flags; 91 u8 data[]; 92 } __packed; 93 94 95 /** 96 * struct virtio_rpmsg_channel - rpmsg channel descriptor 97 * @rpdev: the rpmsg channel device 98 * @vrp: the virtio remote processor device this channel belongs to 99 * 100 * This structure stores the channel that links the rpmsg device to the virtio 101 * remote processor device. 102 */ 103 struct virtio_rpmsg_channel { 104 struct rpmsg_device rpdev; 105 106 struct virtproc_info *vrp; 107 }; 108 109 #define to_virtio_rpmsg_channel(_rpdev) \ 110 container_of(_rpdev, struct virtio_rpmsg_channel, rpdev) 111 112 /* 113 * We're allocating buffers of 512 bytes each for communications. The 114 * number of buffers will be computed from the number of buffers supported 115 * by the vring, upto a maximum of 512 buffers (256 in each direction). 116 * 117 * Each buffer will have 16 bytes for the msg header and 496 bytes for 118 * the payload. 119 * 120 * This will utilize a maximum total space of 256KB for the buffers. 121 * 122 * We might also want to add support for user-provided buffers in time. 123 * This will allow bigger buffer size flexibility, and can also be used 124 * to achieve zero-copy messaging. 125 * 126 * Note that these numbers are purely a decision of this driver - we 127 * can change this without changing anything in the firmware of the remote 128 * processor. 129 */ 130 #define MAX_RPMSG_NUM_BUFS (512) 131 #define MAX_RPMSG_BUF_SIZE (512) 132 133 /* 134 * Local addresses are dynamically allocated on-demand. 135 * We do not dynamically assign addresses from the low 1024 range, 136 * in order to reserve that address range for predefined services. 137 */ 138 #define RPMSG_RESERVED_ADDRESSES (1024) 139 140 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept); 141 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len); 142 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, 143 u32 dst); 144 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, 145 u32 dst, void *data, int len); 146 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len); 147 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, 148 int len, u32 dst); 149 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, 150 u32 dst, void *data, int len); 151 static ssize_t virtio_rpmsg_get_mtu(struct rpmsg_endpoint *ept); 152 static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp, 153 struct rpmsg_channel_info *chinfo); 154 155 static const struct rpmsg_endpoint_ops virtio_endpoint_ops = { 156 .destroy_ept = virtio_rpmsg_destroy_ept, 157 .send = virtio_rpmsg_send, 158 .sendto = virtio_rpmsg_sendto, 159 .send_offchannel = virtio_rpmsg_send_offchannel, 160 .trysend = virtio_rpmsg_trysend, 161 .trysendto = virtio_rpmsg_trysendto, 162 .trysend_offchannel = virtio_rpmsg_trysend_offchannel, 163 .get_mtu = virtio_rpmsg_get_mtu, 164 }; 165 166 /** 167 * rpmsg_sg_init - initialize scatterlist according to cpu address location 168 * @sg: scatterlist to fill 169 * @cpu_addr: virtual address of the buffer 170 * @len: buffer length 171 * 172 * An internal function filling scatterlist according to virtual address 173 * location (in vmalloc or in kernel). 174 */ 175 static void 176 rpmsg_sg_init(struct scatterlist *sg, void *cpu_addr, unsigned int len) 177 { 178 if (is_vmalloc_addr(cpu_addr)) { 179 sg_init_table(sg, 1); 180 sg_set_page(sg, vmalloc_to_page(cpu_addr), len, 181 offset_in_page(cpu_addr)); 182 } else { 183 WARN_ON(!virt_addr_valid(cpu_addr)); 184 sg_init_one(sg, cpu_addr, len); 185 } 186 } 187 188 /** 189 * __ept_release() - deallocate an rpmsg endpoint 190 * @kref: the ept's reference count 191 * 192 * This function deallocates an ept, and is invoked when its @kref refcount 193 * drops to zero. 194 * 195 * Never invoke this function directly! 196 */ 197 static void __ept_release(struct kref *kref) 198 { 199 struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint, 200 refcount); 201 /* 202 * At this point no one holds a reference to ept anymore, 203 * so we can directly free it 204 */ 205 kfree(ept); 206 } 207 208 /* for more info, see below documentation of rpmsg_create_ept() */ 209 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, 210 struct rpmsg_device *rpdev, 211 rpmsg_rx_cb_t cb, 212 void *priv, u32 addr) 213 { 214 int id_min, id_max, id; 215 struct rpmsg_endpoint *ept; 216 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; 217 218 ept = kzalloc(sizeof(*ept), GFP_KERNEL); 219 if (!ept) 220 return NULL; 221 222 kref_init(&ept->refcount); 223 mutex_init(&ept->cb_lock); 224 225 ept->rpdev = rpdev; 226 ept->cb = cb; 227 ept->priv = priv; 228 ept->ops = &virtio_endpoint_ops; 229 230 /* do we need to allocate a local address ? */ 231 if (addr == RPMSG_ADDR_ANY) { 232 id_min = RPMSG_RESERVED_ADDRESSES; 233 id_max = 0; 234 } else { 235 id_min = addr; 236 id_max = addr + 1; 237 } 238 239 mutex_lock(&vrp->endpoints_lock); 240 241 /* bind the endpoint to an rpmsg address (and allocate one if needed) */ 242 id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL); 243 if (id < 0) { 244 dev_err(dev, "idr_alloc failed: %d\n", id); 245 goto free_ept; 246 } 247 ept->addr = id; 248 249 mutex_unlock(&vrp->endpoints_lock); 250 251 return ept; 252 253 free_ept: 254 mutex_unlock(&vrp->endpoints_lock); 255 kref_put(&ept->refcount, __ept_release); 256 return NULL; 257 } 258 259 static struct rpmsg_device *virtio_rpmsg_create_channel(struct rpmsg_device *rpdev, 260 struct rpmsg_channel_info *chinfo) 261 { 262 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 263 struct virtproc_info *vrp = vch->vrp; 264 265 return __rpmsg_create_channel(vrp, chinfo); 266 } 267 268 static int virtio_rpmsg_release_channel(struct rpmsg_device *rpdev, 269 struct rpmsg_channel_info *chinfo) 270 { 271 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 272 struct virtproc_info *vrp = vch->vrp; 273 274 return rpmsg_unregister_device(&vrp->vdev->dev, chinfo); 275 } 276 277 static struct rpmsg_endpoint *virtio_rpmsg_create_ept(struct rpmsg_device *rpdev, 278 rpmsg_rx_cb_t cb, 279 void *priv, 280 struct rpmsg_channel_info chinfo) 281 { 282 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 283 284 return __rpmsg_create_ept(vch->vrp, rpdev, cb, priv, chinfo.src); 285 } 286 287 /** 288 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 289 * @vrp: virtproc which owns this ept 290 * @ept: endpoing to destroy 291 * 292 * An internal function which destroy an ept without assuming it is 293 * bound to an rpmsg channel. This is needed for handling the internal 294 * name service endpoint, which isn't bound to an rpmsg channel. 295 * See also __rpmsg_create_ept(). 296 */ 297 static void 298 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) 299 { 300 /* make sure new inbound messages can't find this ept anymore */ 301 mutex_lock(&vrp->endpoints_lock); 302 idr_remove(&vrp->endpoints, ept->addr); 303 mutex_unlock(&vrp->endpoints_lock); 304 305 /* make sure in-flight inbound messages won't invoke cb anymore */ 306 mutex_lock(&ept->cb_lock); 307 ept->cb = NULL; 308 mutex_unlock(&ept->cb_lock); 309 310 kref_put(&ept->refcount, __ept_release); 311 } 312 313 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept) 314 { 315 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(ept->rpdev); 316 317 __rpmsg_destroy_ept(vch->vrp, ept); 318 } 319 320 static int virtio_rpmsg_announce_create(struct rpmsg_device *rpdev) 321 { 322 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 323 struct virtproc_info *vrp = vch->vrp; 324 struct device *dev = &rpdev->dev; 325 int err = 0; 326 327 /* need to tell remote processor's name service about this channel ? */ 328 if (rpdev->announce && rpdev->ept && 329 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 330 struct rpmsg_ns_msg nsm; 331 332 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 333 nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr); 334 nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_CREATE); 335 336 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 337 if (err) 338 dev_err(dev, "failed to announce service %d\n", err); 339 } 340 341 return err; 342 } 343 344 static int virtio_rpmsg_announce_destroy(struct rpmsg_device *rpdev) 345 { 346 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 347 struct virtproc_info *vrp = vch->vrp; 348 struct device *dev = &rpdev->dev; 349 int err = 0; 350 351 /* tell remote processor's name service we're removing this channel */ 352 if (rpdev->announce && rpdev->ept && 353 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 354 struct rpmsg_ns_msg nsm; 355 356 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 357 nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr); 358 nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_DESTROY); 359 360 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 361 if (err) 362 dev_err(dev, "failed to announce service %d\n", err); 363 } 364 365 return err; 366 } 367 368 static const struct rpmsg_device_ops virtio_rpmsg_ops = { 369 .create_channel = virtio_rpmsg_create_channel, 370 .release_channel = virtio_rpmsg_release_channel, 371 .create_ept = virtio_rpmsg_create_ept, 372 .announce_create = virtio_rpmsg_announce_create, 373 .announce_destroy = virtio_rpmsg_announce_destroy, 374 }; 375 376 static void virtio_rpmsg_release_device(struct device *dev) 377 { 378 struct rpmsg_device *rpdev = to_rpmsg_device(dev); 379 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 380 381 kfree(vch); 382 } 383 384 /* 385 * create an rpmsg channel using its name and address info. 386 * this function will be used to create both static and dynamic 387 * channels. 388 */ 389 static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp, 390 struct rpmsg_channel_info *chinfo) 391 { 392 struct virtio_rpmsg_channel *vch; 393 struct rpmsg_device *rpdev; 394 struct device *tmp, *dev = &vrp->vdev->dev; 395 int ret; 396 397 /* make sure a similar channel doesn't already exist */ 398 tmp = rpmsg_find_device(dev, chinfo); 399 if (tmp) { 400 /* decrement the matched device's refcount back */ 401 put_device(tmp); 402 dev_err(dev, "channel %s:%x:%x already exist\n", 403 chinfo->name, chinfo->src, chinfo->dst); 404 return NULL; 405 } 406 407 vch = kzalloc(sizeof(*vch), GFP_KERNEL); 408 if (!vch) 409 return NULL; 410 411 /* Link the channel to our vrp */ 412 vch->vrp = vrp; 413 414 /* Assign public information to the rpmsg_device */ 415 rpdev = &vch->rpdev; 416 rpdev->src = chinfo->src; 417 rpdev->dst = chinfo->dst; 418 rpdev->ops = &virtio_rpmsg_ops; 419 rpdev->little_endian = virtio_is_little_endian(vrp->vdev); 420 421 /* 422 * rpmsg server channels has predefined local address (for now), 423 * and their existence needs to be announced remotely 424 */ 425 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY; 426 427 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); 428 429 rpdev->dev.parent = &vrp->vdev->dev; 430 rpdev->dev.release = virtio_rpmsg_release_device; 431 ret = rpmsg_register_device(rpdev); 432 if (ret) 433 return NULL; 434 435 return rpdev; 436 } 437 438 /* super simple buffer "allocator" that is just enough for now */ 439 static void *get_a_tx_buf(struct virtproc_info *vrp) 440 { 441 unsigned int len; 442 void *ret; 443 444 /* support multiple concurrent senders */ 445 mutex_lock(&vrp->tx_lock); 446 447 /* 448 * either pick the next unused tx buffer 449 * (half of our buffers are used for sending messages) 450 */ 451 if (vrp->last_sbuf < vrp->num_bufs / 2) 452 ret = vrp->sbufs + vrp->buf_size * vrp->last_sbuf++; 453 /* or recycle a used one */ 454 else 455 ret = virtqueue_get_buf(vrp->svq, &len); 456 457 mutex_unlock(&vrp->tx_lock); 458 459 return ret; 460 } 461 462 /** 463 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed 464 * @vrp: virtual remote processor state 465 * 466 * This function is called before a sender is blocked, waiting for 467 * a tx buffer to become available. 468 * 469 * If we already have blocking senders, this function merely increases 470 * the "sleepers" reference count, and exits. 471 * 472 * Otherwise, if this is the first sender to block, we also enable 473 * virtio's tx callbacks, so we'd be immediately notified when a tx 474 * buffer is consumed (we rely on virtio's tx callback in order 475 * to wake up sleeping senders as soon as a tx buffer is used by the 476 * remote processor). 477 */ 478 static void rpmsg_upref_sleepers(struct virtproc_info *vrp) 479 { 480 /* support multiple concurrent senders */ 481 mutex_lock(&vrp->tx_lock); 482 483 /* are we the first sleeping context waiting for tx buffers ? */ 484 if (atomic_inc_return(&vrp->sleepers) == 1) 485 /* enable "tx-complete" interrupts before dozing off */ 486 virtqueue_enable_cb(vrp->svq); 487 488 mutex_unlock(&vrp->tx_lock); 489 } 490 491 /** 492 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed 493 * @vrp: virtual remote processor state 494 * 495 * This function is called after a sender, that waited for a tx buffer 496 * to become available, is unblocked. 497 * 498 * If we still have blocking senders, this function merely decreases 499 * the "sleepers" reference count, and exits. 500 * 501 * Otherwise, if there are no more blocking senders, we also disable 502 * virtio's tx callbacks, to avoid the overhead incurred with handling 503 * those (now redundant) interrupts. 504 */ 505 static void rpmsg_downref_sleepers(struct virtproc_info *vrp) 506 { 507 /* support multiple concurrent senders */ 508 mutex_lock(&vrp->tx_lock); 509 510 /* are we the last sleeping context waiting for tx buffers ? */ 511 if (atomic_dec_and_test(&vrp->sleepers)) 512 /* disable "tx-complete" interrupts */ 513 virtqueue_disable_cb(vrp->svq); 514 515 mutex_unlock(&vrp->tx_lock); 516 } 517 518 /** 519 * rpmsg_send_offchannel_raw() - send a message across to the remote processor 520 * @rpdev: the rpmsg channel 521 * @src: source address 522 * @dst: destination address 523 * @data: payload of message 524 * @len: length of payload 525 * @wait: indicates whether caller should block in case no TX buffers available 526 * 527 * This function is the base implementation for all of the rpmsg sending API. 528 * 529 * It will send @data of length @len to @dst, and say it's from @src. The 530 * message will be sent to the remote processor which the @rpdev channel 531 * belongs to. 532 * 533 * The message is sent using one of the TX buffers that are available for 534 * communication with this remote processor. 535 * 536 * If @wait is true, the caller will be blocked until either a TX buffer is 537 * available, or 15 seconds elapses (we don't want callers to 538 * sleep indefinitely due to misbehaving remote processors), and in that 539 * case -ERESTARTSYS is returned. The number '15' itself was picked 540 * arbitrarily; there's little point in asking drivers to provide a timeout 541 * value themselves. 542 * 543 * Otherwise, if @wait is false, and there are no TX buffers available, 544 * the function will immediately fail, and -ENOMEM will be returned. 545 * 546 * Normally drivers shouldn't use this function directly; instead, drivers 547 * should use the appropriate rpmsg_{try}send{to, _offchannel} API 548 * (see include/linux/rpmsg.h). 549 * 550 * Return: 0 on success and an appropriate error value on failure. 551 */ 552 static int rpmsg_send_offchannel_raw(struct rpmsg_device *rpdev, 553 u32 src, u32 dst, 554 void *data, int len, bool wait) 555 { 556 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 557 struct virtproc_info *vrp = vch->vrp; 558 struct device *dev = &rpdev->dev; 559 struct scatterlist sg; 560 struct rpmsg_hdr *msg; 561 int err; 562 563 /* bcasting isn't allowed */ 564 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { 565 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); 566 return -EINVAL; 567 } 568 569 /* 570 * We currently use fixed-sized buffers, and therefore the payload 571 * length is limited. 572 * 573 * One of the possible improvements here is either to support 574 * user-provided buffers (and then we can also support zero-copy 575 * messaging), or to improve the buffer allocator, to support 576 * variable-length buffer sizes. 577 */ 578 if (len > vrp->buf_size - sizeof(struct rpmsg_hdr)) { 579 dev_err(dev, "message is too big (%d)\n", len); 580 return -EMSGSIZE; 581 } 582 583 /* grab a buffer */ 584 msg = get_a_tx_buf(vrp); 585 if (!msg && !wait) 586 return -ENOMEM; 587 588 /* no free buffer ? wait for one (but bail after 15 seconds) */ 589 while (!msg) { 590 /* enable "tx-complete" interrupts, if not already enabled */ 591 rpmsg_upref_sleepers(vrp); 592 593 /* 594 * sleep until a free buffer is available or 15 secs elapse. 595 * the timeout period is not configurable because there's 596 * little point in asking drivers to specify that. 597 * if later this happens to be required, it'd be easy to add. 598 */ 599 err = wait_event_interruptible_timeout(vrp->sendq, 600 (msg = get_a_tx_buf(vrp)), 601 msecs_to_jiffies(15000)); 602 603 /* disable "tx-complete" interrupts if we're the last sleeper */ 604 rpmsg_downref_sleepers(vrp); 605 606 /* timeout ? */ 607 if (!err) { 608 dev_err(dev, "timeout waiting for a tx buffer\n"); 609 return -ERESTARTSYS; 610 } 611 } 612 613 msg->len = cpu_to_rpmsg16(rpdev, len); 614 msg->flags = 0; 615 msg->src = cpu_to_rpmsg32(rpdev, src); 616 msg->dst = cpu_to_rpmsg32(rpdev, dst); 617 msg->reserved = 0; 618 memcpy(msg->data, data, len); 619 620 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", 621 src, dst, len, msg->flags, msg->reserved); 622 #if defined(CONFIG_DYNAMIC_DEBUG) 623 dynamic_hex_dump("rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, 624 msg, sizeof(*msg) + len, true); 625 #endif 626 627 rpmsg_sg_init(&sg, msg, sizeof(*msg) + len); 628 629 mutex_lock(&vrp->tx_lock); 630 631 /* add message to the remote processor's virtqueue */ 632 err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL); 633 if (err) { 634 /* 635 * need to reclaim the buffer here, otherwise it's lost 636 * (memory won't leak, but rpmsg won't use it again for TX). 637 * this will wait for a buffer management overhaul. 638 */ 639 dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err); 640 goto out; 641 } 642 643 /* tell the remote processor it has a pending message to read */ 644 virtqueue_kick(vrp->svq); 645 out: 646 mutex_unlock(&vrp->tx_lock); 647 return err; 648 } 649 650 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len) 651 { 652 struct rpmsg_device *rpdev = ept->rpdev; 653 u32 src = ept->addr, dst = rpdev->dst; 654 655 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 656 } 657 658 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, 659 u32 dst) 660 { 661 struct rpmsg_device *rpdev = ept->rpdev; 662 u32 src = ept->addr; 663 664 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 665 } 666 667 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, 668 u32 dst, void *data, int len) 669 { 670 struct rpmsg_device *rpdev = ept->rpdev; 671 672 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 673 } 674 675 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len) 676 { 677 struct rpmsg_device *rpdev = ept->rpdev; 678 u32 src = ept->addr, dst = rpdev->dst; 679 680 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 681 } 682 683 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, 684 int len, u32 dst) 685 { 686 struct rpmsg_device *rpdev = ept->rpdev; 687 u32 src = ept->addr; 688 689 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 690 } 691 692 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, 693 u32 dst, void *data, int len) 694 { 695 struct rpmsg_device *rpdev = ept->rpdev; 696 697 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 698 } 699 700 static ssize_t virtio_rpmsg_get_mtu(struct rpmsg_endpoint *ept) 701 { 702 struct rpmsg_device *rpdev = ept->rpdev; 703 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 704 705 return vch->vrp->buf_size - sizeof(struct rpmsg_hdr); 706 } 707 708 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev, 709 struct rpmsg_hdr *msg, unsigned int len) 710 { 711 struct rpmsg_endpoint *ept; 712 struct scatterlist sg; 713 bool little_endian = virtio_is_little_endian(vrp->vdev); 714 unsigned int msg_len = __rpmsg16_to_cpu(little_endian, msg->len); 715 int err; 716 717 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", 718 __rpmsg32_to_cpu(little_endian, msg->src), 719 __rpmsg32_to_cpu(little_endian, msg->dst), msg_len, 720 __rpmsg16_to_cpu(little_endian, msg->flags), 721 __rpmsg32_to_cpu(little_endian, msg->reserved)); 722 #if defined(CONFIG_DYNAMIC_DEBUG) 723 dynamic_hex_dump("rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, 724 msg, sizeof(*msg) + msg_len, true); 725 #endif 726 727 /* 728 * We currently use fixed-sized buffers, so trivially sanitize 729 * the reported payload length. 730 */ 731 if (len > vrp->buf_size || 732 msg_len > (len - sizeof(struct rpmsg_hdr))) { 733 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg_len); 734 return -EINVAL; 735 } 736 737 /* use the dst addr to fetch the callback of the appropriate user */ 738 mutex_lock(&vrp->endpoints_lock); 739 740 ept = idr_find(&vrp->endpoints, __rpmsg32_to_cpu(little_endian, msg->dst)); 741 742 /* let's make sure no one deallocates ept while we use it */ 743 if (ept) 744 kref_get(&ept->refcount); 745 746 mutex_unlock(&vrp->endpoints_lock); 747 748 if (ept) { 749 /* make sure ept->cb doesn't go away while we use it */ 750 mutex_lock(&ept->cb_lock); 751 752 if (ept->cb) 753 ept->cb(ept->rpdev, msg->data, msg_len, ept->priv, 754 __rpmsg32_to_cpu(little_endian, msg->src)); 755 756 mutex_unlock(&ept->cb_lock); 757 758 /* farewell, ept, we don't need you anymore */ 759 kref_put(&ept->refcount, __ept_release); 760 } else 761 dev_warn_ratelimited(dev, "msg received with no recipient\n"); 762 763 /* publish the real size of the buffer */ 764 rpmsg_sg_init(&sg, msg, vrp->buf_size); 765 766 /* add the buffer back to the remote processor's virtqueue */ 767 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL); 768 if (err < 0) { 769 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); 770 return err; 771 } 772 773 return 0; 774 } 775 776 /* called when an rx buffer is used, and it's time to digest a message */ 777 static void rpmsg_recv_done(struct virtqueue *rvq) 778 { 779 struct virtproc_info *vrp = rvq->vdev->priv; 780 struct device *dev = &rvq->vdev->dev; 781 struct rpmsg_hdr *msg; 782 unsigned int len, msgs_received = 0; 783 int err; 784 785 msg = virtqueue_get_buf(rvq, &len); 786 if (!msg) { 787 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); 788 return; 789 } 790 791 while (msg) { 792 err = rpmsg_recv_single(vrp, dev, msg, len); 793 if (err) 794 break; 795 796 msgs_received++; 797 798 msg = virtqueue_get_buf(rvq, &len); 799 } 800 801 dev_dbg(dev, "Received %u messages\n", msgs_received); 802 803 /* tell the remote processor we added another available rx buffer */ 804 if (msgs_received) 805 virtqueue_kick(vrp->rvq); 806 } 807 808 /* 809 * This is invoked whenever the remote processor completed processing 810 * a TX msg we just sent it, and the buffer is put back to the used ring. 811 * 812 * Normally, though, we suppress this "tx complete" interrupt in order to 813 * avoid the incurred overhead. 814 */ 815 static void rpmsg_xmit_done(struct virtqueue *svq) 816 { 817 struct virtproc_info *vrp = svq->vdev->priv; 818 819 dev_dbg(&svq->vdev->dev, "%s\n", __func__); 820 821 /* wake up potential senders that are waiting for a tx buffer */ 822 wake_up_interruptible(&vrp->sendq); 823 } 824 825 /* 826 * Called to expose to user a /dev/rpmsg_ctrlX interface allowing to 827 * create endpoint-to-endpoint communication without associated RPMsg channel. 828 * The endpoints are rattached to the ctrldev RPMsg device. 829 */ 830 static struct rpmsg_device *rpmsg_virtio_add_ctrl_dev(struct virtio_device *vdev) 831 { 832 struct virtproc_info *vrp = vdev->priv; 833 struct virtio_rpmsg_channel *vch; 834 struct rpmsg_device *rpdev_ctrl; 835 int err = 0; 836 837 vch = kzalloc(sizeof(*vch), GFP_KERNEL); 838 if (!vch) 839 return ERR_PTR(-ENOMEM); 840 841 /* Link the channel to the vrp */ 842 vch->vrp = vrp; 843 844 /* Assign public information to the rpmsg_device */ 845 rpdev_ctrl = &vch->rpdev; 846 rpdev_ctrl->ops = &virtio_rpmsg_ops; 847 848 rpdev_ctrl->dev.parent = &vrp->vdev->dev; 849 rpdev_ctrl->dev.release = virtio_rpmsg_release_device; 850 rpdev_ctrl->little_endian = virtio_is_little_endian(vrp->vdev); 851 852 err = rpmsg_chrdev_register_device(rpdev_ctrl); 853 if (err) { 854 kfree(vch); 855 return ERR_PTR(err); 856 } 857 858 return rpdev_ctrl; 859 } 860 861 static void rpmsg_virtio_del_ctrl_dev(struct rpmsg_device *rpdev_ctrl) 862 { 863 if (!rpdev_ctrl) 864 return; 865 kfree(to_virtio_rpmsg_channel(rpdev_ctrl)); 866 } 867 868 static int rpmsg_probe(struct virtio_device *vdev) 869 { 870 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; 871 static const char * const names[] = { "input", "output" }; 872 struct virtqueue *vqs[2]; 873 struct virtproc_info *vrp; 874 struct virtio_rpmsg_channel *vch = NULL; 875 struct rpmsg_device *rpdev_ns, *rpdev_ctrl; 876 void *bufs_va; 877 int err = 0, i; 878 size_t total_buf_space; 879 bool notify; 880 881 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); 882 if (!vrp) 883 return -ENOMEM; 884 885 vrp->vdev = vdev; 886 887 idr_init(&vrp->endpoints); 888 mutex_init(&vrp->endpoints_lock); 889 mutex_init(&vrp->tx_lock); 890 init_waitqueue_head(&vrp->sendq); 891 892 /* We expect two virtqueues, rx and tx (and in this order) */ 893 err = virtio_find_vqs(vdev, 2, vqs, vq_cbs, names, NULL); 894 if (err) 895 goto free_vrp; 896 897 vrp->rvq = vqs[0]; 898 vrp->svq = vqs[1]; 899 900 /* we expect symmetric tx/rx vrings */ 901 WARN_ON(virtqueue_get_vring_size(vrp->rvq) != 902 virtqueue_get_vring_size(vrp->svq)); 903 904 /* we need less buffers if vrings are small */ 905 if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2) 906 vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2; 907 else 908 vrp->num_bufs = MAX_RPMSG_NUM_BUFS; 909 910 vrp->buf_size = MAX_RPMSG_BUF_SIZE; 911 912 total_buf_space = vrp->num_bufs * vrp->buf_size; 913 914 /* allocate coherent memory for the buffers */ 915 bufs_va = dma_alloc_coherent(vdev->dev.parent, 916 total_buf_space, &vrp->bufs_dma, 917 GFP_KERNEL); 918 if (!bufs_va) { 919 err = -ENOMEM; 920 goto vqs_del; 921 } 922 923 dev_dbg(&vdev->dev, "buffers: va %pK, dma %pad\n", 924 bufs_va, &vrp->bufs_dma); 925 926 /* half of the buffers is dedicated for RX */ 927 vrp->rbufs = bufs_va; 928 929 /* and half is dedicated for TX */ 930 vrp->sbufs = bufs_va + total_buf_space / 2; 931 932 /* set up the receive buffers */ 933 for (i = 0; i < vrp->num_bufs / 2; i++) { 934 struct scatterlist sg; 935 void *cpu_addr = vrp->rbufs + i * vrp->buf_size; 936 937 rpmsg_sg_init(&sg, cpu_addr, vrp->buf_size); 938 939 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr, 940 GFP_KERNEL); 941 WARN_ON(err); /* sanity check; this can't really happen */ 942 } 943 944 /* suppress "tx-complete" interrupts */ 945 virtqueue_disable_cb(vrp->svq); 946 947 vdev->priv = vrp; 948 949 rpdev_ctrl = rpmsg_virtio_add_ctrl_dev(vdev); 950 if (IS_ERR(rpdev_ctrl)) { 951 err = PTR_ERR(rpdev_ctrl); 952 goto free_coherent; 953 } 954 955 /* if supported by the remote processor, enable the name service */ 956 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { 957 vch = kzalloc(sizeof(*vch), GFP_KERNEL); 958 if (!vch) { 959 err = -ENOMEM; 960 goto free_ctrldev; 961 } 962 963 /* Link the channel to our vrp */ 964 vch->vrp = vrp; 965 966 /* Assign public information to the rpmsg_device */ 967 rpdev_ns = &vch->rpdev; 968 rpdev_ns->ops = &virtio_rpmsg_ops; 969 rpdev_ns->little_endian = virtio_is_little_endian(vrp->vdev); 970 971 rpdev_ns->dev.parent = &vrp->vdev->dev; 972 rpdev_ns->dev.release = virtio_rpmsg_release_device; 973 974 err = rpmsg_ns_register_device(rpdev_ns); 975 if (err) 976 goto free_vch; 977 } 978 979 /* 980 * Prepare to kick but don't notify yet - we can't do this before 981 * device is ready. 982 */ 983 notify = virtqueue_kick_prepare(vrp->rvq); 984 985 /* From this point on, we can notify and get callbacks. */ 986 virtio_device_ready(vdev); 987 988 /* tell the remote processor it can start sending messages */ 989 /* 990 * this might be concurrent with callbacks, but we are only 991 * doing notify, not a full kick here, so that's ok. 992 */ 993 if (notify) 994 virtqueue_notify(vrp->rvq); 995 996 dev_info(&vdev->dev, "rpmsg host is online\n"); 997 998 return 0; 999 1000 free_vch: 1001 kfree(vch); 1002 free_ctrldev: 1003 rpmsg_virtio_del_ctrl_dev(rpdev_ctrl); 1004 free_coherent: 1005 dma_free_coherent(vdev->dev.parent, total_buf_space, 1006 bufs_va, vrp->bufs_dma); 1007 vqs_del: 1008 vdev->config->del_vqs(vrp->vdev); 1009 free_vrp: 1010 kfree(vrp); 1011 return err; 1012 } 1013 1014 static int rpmsg_remove_device(struct device *dev, void *data) 1015 { 1016 device_unregister(dev); 1017 1018 return 0; 1019 } 1020 1021 static void rpmsg_remove(struct virtio_device *vdev) 1022 { 1023 struct virtproc_info *vrp = vdev->priv; 1024 size_t total_buf_space = vrp->num_bufs * vrp->buf_size; 1025 int ret; 1026 1027 virtio_reset_device(vdev); 1028 1029 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); 1030 if (ret) 1031 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); 1032 1033 idr_destroy(&vrp->endpoints); 1034 1035 vdev->config->del_vqs(vrp->vdev); 1036 1037 dma_free_coherent(vdev->dev.parent, total_buf_space, 1038 vrp->rbufs, vrp->bufs_dma); 1039 1040 kfree(vrp); 1041 } 1042 1043 static struct virtio_device_id id_table[] = { 1044 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, 1045 { 0 }, 1046 }; 1047 1048 static unsigned int features[] = { 1049 VIRTIO_RPMSG_F_NS, 1050 }; 1051 1052 static struct virtio_driver virtio_ipc_driver = { 1053 .feature_table = features, 1054 .feature_table_size = ARRAY_SIZE(features), 1055 .driver.name = KBUILD_MODNAME, 1056 .driver.owner = THIS_MODULE, 1057 .id_table = id_table, 1058 .probe = rpmsg_probe, 1059 .remove = rpmsg_remove, 1060 }; 1061 1062 static int __init rpmsg_init(void) 1063 { 1064 int ret; 1065 1066 ret = register_virtio_driver(&virtio_ipc_driver); 1067 if (ret) 1068 pr_err("failed to register virtio driver: %d\n", ret); 1069 1070 return ret; 1071 } 1072 subsys_initcall(rpmsg_init); 1073 1074 static void __exit rpmsg_fini(void) 1075 { 1076 unregister_virtio_driver(&virtio_ipc_driver); 1077 } 1078 module_exit(rpmsg_fini); 1079 1080 MODULE_DEVICE_TABLE(virtio, id_table); 1081 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); 1082 MODULE_LICENSE("GPL v2"); 1083