1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2019 Intel Corporation. 4 * Lei Chuanhua <Chuanhua.lei@intel.com> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/init.h> 9 #include <linux/of_device.h> 10 #include <linux/platform_device.h> 11 #include <linux/reboot.h> 12 #include <linux/regmap.h> 13 #include <linux/reset-controller.h> 14 15 #define RCU_RST_STAT 0x0024 16 #define RCU_RST_REQ 0x0048 17 18 #define REG_OFFSET_MASK GENMASK(31, 16) 19 #define BIT_OFFSET_MASK GENMASK(15, 8) 20 #define STAT_BIT_OFFSET_MASK GENMASK(7, 0) 21 22 #define to_reset_data(x) container_of(x, struct intel_reset_data, rcdev) 23 24 struct intel_reset_soc { 25 bool legacy; 26 u32 reset_cell_count; 27 }; 28 29 struct intel_reset_data { 30 struct reset_controller_dev rcdev; 31 struct notifier_block restart_nb; 32 const struct intel_reset_soc *soc_data; 33 struct regmap *regmap; 34 struct device *dev; 35 u32 reboot_id; 36 }; 37 38 static const struct regmap_config intel_rcu_regmap_config = { 39 .name = "intel-reset", 40 .reg_bits = 32, 41 .reg_stride = 4, 42 .val_bits = 32, 43 .fast_io = true, 44 }; 45 46 /* 47 * Reset status register offset relative to 48 * the reset control register(X) is X + 4 49 */ 50 static u32 id_to_reg_and_bit_offsets(struct intel_reset_data *data, 51 unsigned long id, u32 *rst_req, 52 u32 *req_bit, u32 *stat_bit) 53 { 54 *rst_req = FIELD_GET(REG_OFFSET_MASK, id); 55 *req_bit = FIELD_GET(BIT_OFFSET_MASK, id); 56 57 if (data->soc_data->legacy) 58 *stat_bit = FIELD_GET(STAT_BIT_OFFSET_MASK, id); 59 else 60 *stat_bit = *req_bit; 61 62 if (data->soc_data->legacy && *rst_req == RCU_RST_REQ) 63 return RCU_RST_STAT; 64 else 65 return *rst_req + 0x4; 66 } 67 68 static int intel_set_clr_bits(struct intel_reset_data *data, unsigned long id, 69 bool set) 70 { 71 u32 rst_req, req_bit, rst_stat, stat_bit, val; 72 int ret; 73 74 rst_stat = id_to_reg_and_bit_offsets(data, id, &rst_req, 75 &req_bit, &stat_bit); 76 77 val = set ? BIT(req_bit) : 0; 78 ret = regmap_update_bits(data->regmap, rst_req, BIT(req_bit), val); 79 if (ret) 80 return ret; 81 82 return regmap_read_poll_timeout(data->regmap, rst_stat, val, 83 set == !!(val & BIT(stat_bit)), 20, 84 200); 85 } 86 87 static int intel_assert_device(struct reset_controller_dev *rcdev, 88 unsigned long id) 89 { 90 struct intel_reset_data *data = to_reset_data(rcdev); 91 int ret; 92 93 ret = intel_set_clr_bits(data, id, true); 94 if (ret) 95 dev_err(data->dev, "Reset assert failed %d\n", ret); 96 97 return ret; 98 } 99 100 static int intel_deassert_device(struct reset_controller_dev *rcdev, 101 unsigned long id) 102 { 103 struct intel_reset_data *data = to_reset_data(rcdev); 104 int ret; 105 106 ret = intel_set_clr_bits(data, id, false); 107 if (ret) 108 dev_err(data->dev, "Reset deassert failed %d\n", ret); 109 110 return ret; 111 } 112 113 static int intel_reset_status(struct reset_controller_dev *rcdev, 114 unsigned long id) 115 { 116 struct intel_reset_data *data = to_reset_data(rcdev); 117 u32 rst_req, req_bit, rst_stat, stat_bit, val; 118 int ret; 119 120 rst_stat = id_to_reg_and_bit_offsets(data, id, &rst_req, 121 &req_bit, &stat_bit); 122 ret = regmap_read(data->regmap, rst_stat, &val); 123 if (ret) 124 return ret; 125 126 return !!(val & BIT(stat_bit)); 127 } 128 129 static const struct reset_control_ops intel_reset_ops = { 130 .assert = intel_assert_device, 131 .deassert = intel_deassert_device, 132 .status = intel_reset_status, 133 }; 134 135 static int intel_reset_xlate(struct reset_controller_dev *rcdev, 136 const struct of_phandle_args *spec) 137 { 138 struct intel_reset_data *data = to_reset_data(rcdev); 139 u32 id; 140 141 if (spec->args[1] > 31) 142 return -EINVAL; 143 144 id = FIELD_PREP(REG_OFFSET_MASK, spec->args[0]); 145 id |= FIELD_PREP(BIT_OFFSET_MASK, spec->args[1]); 146 147 if (data->soc_data->legacy) { 148 if (spec->args[2] > 31) 149 return -EINVAL; 150 151 id |= FIELD_PREP(STAT_BIT_OFFSET_MASK, spec->args[2]); 152 } 153 154 return id; 155 } 156 157 static int intel_reset_restart_handler(struct notifier_block *nb, 158 unsigned long action, void *data) 159 { 160 struct intel_reset_data *reset_data; 161 162 reset_data = container_of(nb, struct intel_reset_data, restart_nb); 163 intel_assert_device(&reset_data->rcdev, reset_data->reboot_id); 164 165 return NOTIFY_DONE; 166 } 167 168 static int intel_reset_probe(struct platform_device *pdev) 169 { 170 struct device_node *np = pdev->dev.of_node; 171 struct device *dev = &pdev->dev; 172 struct intel_reset_data *data; 173 void __iomem *base; 174 u32 rb_id[3]; 175 int ret; 176 177 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 178 if (!data) 179 return -ENOMEM; 180 181 data->soc_data = of_device_get_match_data(dev); 182 if (!data->soc_data) 183 return -ENODEV; 184 185 base = devm_platform_ioremap_resource(pdev, 0); 186 if (IS_ERR(base)) 187 return PTR_ERR(base); 188 189 data->regmap = devm_regmap_init_mmio(dev, base, 190 &intel_rcu_regmap_config); 191 if (IS_ERR(data->regmap)) { 192 dev_err(dev, "regmap initialization failed\n"); 193 return PTR_ERR(data->regmap); 194 } 195 196 ret = device_property_read_u32_array(dev, "intel,global-reset", rb_id, 197 data->soc_data->reset_cell_count); 198 if (ret) { 199 dev_err(dev, "Failed to get global reset offset!\n"); 200 return ret; 201 } 202 203 data->dev = dev; 204 data->rcdev.of_node = np; 205 data->rcdev.owner = dev->driver->owner; 206 data->rcdev.ops = &intel_reset_ops; 207 data->rcdev.of_xlate = intel_reset_xlate; 208 data->rcdev.of_reset_n_cells = data->soc_data->reset_cell_count; 209 ret = devm_reset_controller_register(&pdev->dev, &data->rcdev); 210 if (ret) 211 return ret; 212 213 data->reboot_id = FIELD_PREP(REG_OFFSET_MASK, rb_id[0]); 214 data->reboot_id |= FIELD_PREP(BIT_OFFSET_MASK, rb_id[1]); 215 216 if (data->soc_data->legacy) 217 data->reboot_id |= FIELD_PREP(STAT_BIT_OFFSET_MASK, rb_id[2]); 218 219 data->restart_nb.notifier_call = intel_reset_restart_handler; 220 data->restart_nb.priority = 128; 221 register_restart_handler(&data->restart_nb); 222 223 return 0; 224 } 225 226 static const struct intel_reset_soc xrx200_data = { 227 .legacy = true, 228 .reset_cell_count = 3, 229 }; 230 231 static const struct intel_reset_soc lgm_data = { 232 .legacy = false, 233 .reset_cell_count = 2, 234 }; 235 236 static const struct of_device_id intel_reset_match[] = { 237 { .compatible = "intel,rcu-lgm", .data = &lgm_data }, 238 { .compatible = "intel,rcu-xrx200", .data = &xrx200_data }, 239 {} 240 }; 241 242 static struct platform_driver intel_reset_driver = { 243 .probe = intel_reset_probe, 244 .driver = { 245 .name = "intel-reset", 246 .of_match_table = intel_reset_match, 247 }, 248 }; 249 250 static int __init intel_reset_init(void) 251 { 252 return platform_driver_register(&intel_reset_driver); 253 } 254 255 /* 256 * RCU is system core entity which is in Always On Domain whose clocks 257 * or resource initialization happens in system core initialization. 258 * Also, it is required for most of the platform or architecture 259 * specific devices to perform reset operation as part of initialization. 260 * So perform RCU as post core initialization. 261 */ 262 postcore_initcall(intel_reset_init); 263