xref: /openbmc/linux/drivers/reset/reset-intel-gw.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Intel Corporation.
4  * Lei Chuanhua <Chuanhua.lei@intel.com>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/init.h>
9 #include <linux/of_device.h>
10 #include <linux/platform_device.h>
11 #include <linux/reboot.h>
12 #include <linux/regmap.h>
13 #include <linux/reset-controller.h>
14 
15 #define RCU_RST_STAT	0x0024
16 #define RCU_RST_REQ	0x0048
17 
18 #define REG_OFFSET	GENMASK(31, 16)
19 #define BIT_OFFSET	GENMASK(15, 8)
20 #define STAT_BIT_OFFSET	GENMASK(7, 0)
21 
22 #define to_reset_data(x)	container_of(x, struct intel_reset_data, rcdev)
23 
24 struct intel_reset_soc {
25 	bool legacy;
26 	u32 reset_cell_count;
27 };
28 
29 struct intel_reset_data {
30 	struct reset_controller_dev rcdev;
31 	struct notifier_block restart_nb;
32 	const struct intel_reset_soc *soc_data;
33 	struct regmap *regmap;
34 	struct device *dev;
35 	u32 reboot_id;
36 };
37 
38 static const struct regmap_config intel_rcu_regmap_config = {
39 	.name =		"intel-reset",
40 	.reg_bits =	32,
41 	.reg_stride =	4,
42 	.val_bits =	32,
43 	.fast_io =	true,
44 };
45 
46 /*
47  * Reset status register offset relative to
48  * the reset control register(X) is X + 4
49  */
50 static u32 id_to_reg_and_bit_offsets(struct intel_reset_data *data,
51 				     unsigned long id, u32 *rst_req,
52 				     u32 *req_bit, u32 *stat_bit)
53 {
54 	*rst_req = FIELD_GET(REG_OFFSET, id);
55 	*req_bit = FIELD_GET(BIT_OFFSET, id);
56 
57 	if (data->soc_data->legacy)
58 		*stat_bit = FIELD_GET(STAT_BIT_OFFSET, id);
59 	else
60 		*stat_bit = *req_bit;
61 
62 	if (data->soc_data->legacy && *rst_req == RCU_RST_REQ)
63 		return RCU_RST_STAT;
64 	else
65 		return *rst_req + 0x4;
66 }
67 
68 static int intel_set_clr_bits(struct intel_reset_data *data, unsigned long id,
69 			      bool set)
70 {
71 	u32 rst_req, req_bit, rst_stat, stat_bit, val;
72 	int ret;
73 
74 	rst_stat = id_to_reg_and_bit_offsets(data, id, &rst_req,
75 					     &req_bit, &stat_bit);
76 
77 	val = set ? BIT(req_bit) : 0;
78 	ret = regmap_update_bits(data->regmap, rst_req,  BIT(req_bit), val);
79 	if (ret)
80 		return ret;
81 
82 	return regmap_read_poll_timeout(data->regmap, rst_stat, val,
83 					set == !!(val & BIT(stat_bit)), 20,
84 					200);
85 }
86 
87 static int intel_assert_device(struct reset_controller_dev *rcdev,
88 			       unsigned long id)
89 {
90 	struct intel_reset_data *data = to_reset_data(rcdev);
91 	int ret;
92 
93 	ret = intel_set_clr_bits(data, id, true);
94 	if (ret)
95 		dev_err(data->dev, "Reset assert failed %d\n", ret);
96 
97 	return ret;
98 }
99 
100 static int intel_deassert_device(struct reset_controller_dev *rcdev,
101 				 unsigned long id)
102 {
103 	struct intel_reset_data *data = to_reset_data(rcdev);
104 	int ret;
105 
106 	ret = intel_set_clr_bits(data, id, false);
107 	if (ret)
108 		dev_err(data->dev, "Reset deassert failed %d\n", ret);
109 
110 	return ret;
111 }
112 
113 static int intel_reset_status(struct reset_controller_dev *rcdev,
114 			      unsigned long id)
115 {
116 	struct intel_reset_data *data = to_reset_data(rcdev);
117 	u32 rst_req, req_bit, rst_stat, stat_bit, val;
118 	int ret;
119 
120 	rst_stat = id_to_reg_and_bit_offsets(data, id, &rst_req,
121 					     &req_bit, &stat_bit);
122 	ret = regmap_read(data->regmap, rst_stat, &val);
123 	if (ret)
124 		return ret;
125 
126 	return !!(val & BIT(stat_bit));
127 }
128 
129 static const struct reset_control_ops intel_reset_ops = {
130 	.assert =	intel_assert_device,
131 	.deassert =	intel_deassert_device,
132 	.status	=	intel_reset_status,
133 };
134 
135 static int intel_reset_xlate(struct reset_controller_dev *rcdev,
136 			     const struct of_phandle_args *spec)
137 {
138 	struct intel_reset_data *data = to_reset_data(rcdev);
139 	u32 id;
140 
141 	if (spec->args[1] > 31)
142 		return -EINVAL;
143 
144 	id = FIELD_PREP(REG_OFFSET, spec->args[0]);
145 	id |= FIELD_PREP(BIT_OFFSET, spec->args[1]);
146 
147 	if (data->soc_data->legacy) {
148 		if (spec->args[2] > 31)
149 			return -EINVAL;
150 
151 		id |= FIELD_PREP(STAT_BIT_OFFSET, spec->args[2]);
152 	}
153 
154 	return id;
155 }
156 
157 static int intel_reset_restart_handler(struct notifier_block *nb,
158 				       unsigned long action, void *data)
159 {
160 	struct intel_reset_data *reset_data;
161 
162 	reset_data = container_of(nb, struct intel_reset_data, restart_nb);
163 	intel_assert_device(&reset_data->rcdev, reset_data->reboot_id);
164 
165 	return NOTIFY_DONE;
166 }
167 
168 static int intel_reset_probe(struct platform_device *pdev)
169 {
170 	struct device_node *np = pdev->dev.of_node;
171 	struct device *dev = &pdev->dev;
172 	struct intel_reset_data *data;
173 	void __iomem *base;
174 	u32 rb_id[3];
175 	int ret;
176 
177 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
178 	if (!data)
179 		return -ENOMEM;
180 
181 	data->soc_data = of_device_get_match_data(dev);
182 	if (!data->soc_data)
183 		return -ENODEV;
184 
185 	base = devm_platform_ioremap_resource(pdev, 0);
186 	if (IS_ERR(base))
187 		return PTR_ERR(base);
188 
189 	data->regmap = devm_regmap_init_mmio(dev, base,
190 					     &intel_rcu_regmap_config);
191 	if (IS_ERR(data->regmap)) {
192 		dev_err(dev, "regmap initialization failed\n");
193 		return PTR_ERR(data->regmap);
194 	}
195 
196 	ret = device_property_read_u32_array(dev, "intel,global-reset", rb_id,
197 					     data->soc_data->reset_cell_count);
198 	if (ret) {
199 		dev_err(dev, "Failed to get global reset offset!\n");
200 		return ret;
201 	}
202 
203 	data->dev =			dev;
204 	data->rcdev.of_node =		np;
205 	data->rcdev.owner =		dev->driver->owner;
206 	data->rcdev.ops	=		&intel_reset_ops;
207 	data->rcdev.of_xlate =		intel_reset_xlate;
208 	data->rcdev.of_reset_n_cells =	data->soc_data->reset_cell_count;
209 	ret = devm_reset_controller_register(&pdev->dev, &data->rcdev);
210 	if (ret)
211 		return ret;
212 
213 	data->reboot_id = FIELD_PREP(REG_OFFSET, rb_id[0]);
214 	data->reboot_id |= FIELD_PREP(BIT_OFFSET, rb_id[1]);
215 
216 	if (data->soc_data->legacy)
217 		data->reboot_id |= FIELD_PREP(STAT_BIT_OFFSET, rb_id[2]);
218 
219 	data->restart_nb.notifier_call =	intel_reset_restart_handler;
220 	data->restart_nb.priority =		128;
221 	register_restart_handler(&data->restart_nb);
222 
223 	return 0;
224 }
225 
226 static const struct intel_reset_soc xrx200_data = {
227 	.legacy =		true,
228 	.reset_cell_count =	3,
229 };
230 
231 static const struct intel_reset_soc lgm_data = {
232 	.legacy =		false,
233 	.reset_cell_count =	2,
234 };
235 
236 static const struct of_device_id intel_reset_match[] = {
237 	{ .compatible = "intel,rcu-lgm", .data = &lgm_data },
238 	{ .compatible = "intel,rcu-xrx200", .data = &xrx200_data },
239 	{}
240 };
241 
242 static struct platform_driver intel_reset_driver = {
243 	.probe = intel_reset_probe,
244 	.driver = {
245 		.name = "intel-reset",
246 		.of_match_table = intel_reset_match,
247 	},
248 };
249 
250 static int __init intel_reset_init(void)
251 {
252 	return platform_driver_register(&intel_reset_driver);
253 }
254 
255 /*
256  * RCU is system core entity which is in Always On Domain whose clocks
257  * or resource initialization happens in system core initialization.
258  * Also, it is required for most of the platform or architecture
259  * specific devices to perform reset operation as part of initialization.
260  * So perform RCU as post core initialization.
261  */
262 postcore_initcall(intel_reset_init);
263