xref: /openbmc/linux/drivers/remoteproc/xlnx_r5_remoteproc.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ZynqMP R5 Remote Processor driver
4  *
5  */
6 
7 #include <dt-bindings/power/xlnx-zynqmp-power.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/firmware/xlnx-zynqmp.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_address.h>
13 #include <linux/of_platform.h>
14 #include <linux/of_reserved_mem.h>
15 #include <linux/platform_device.h>
16 #include <linux/remoteproc.h>
17 #include <linux/slab.h>
18 
19 #include "remoteproc_internal.h"
20 
21 /*
22  * settings for RPU cluster mode which
23  * reflects possible values of xlnx,cluster-mode dt-property
24  */
25 enum zynqmp_r5_cluster_mode {
26 	SPLIT_MODE = 0, /* When cores run as separate processor */
27 	LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */
28 	SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */
29 };
30 
31 /**
32  * struct mem_bank_data - Memory Bank description
33  *
34  * @addr: Start address of memory bank
35  * @size: Size of Memory bank
36  * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off
37  * @bank_name: name of the bank for remoteproc framework
38  */
39 struct mem_bank_data {
40 	phys_addr_t addr;
41 	size_t size;
42 	u32 pm_domain_id;
43 	char *bank_name;
44 };
45 
46 /*
47  * Hardcoded TCM bank values. This will be removed once TCM bindings are
48  * accepted for system-dt specifications and upstreamed in linux kernel
49  */
50 static const struct mem_bank_data zynqmp_tcm_banks[] = {
51 	{0xffe00000UL, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
52 	{0xffe20000UL, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
53 	{0xffe90000UL, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
54 	{0xffeb0000UL, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
55 };
56 
57 /**
58  * struct zynqmp_r5_core
59  *
60  * @dev: device of RPU instance
61  * @np: device node of RPU instance
62  * @tcm_bank_count: number TCM banks accessible to this RPU
63  * @tcm_banks: array of each TCM bank data
64  * @rmem_count: Number of reserved mem regions
65  * @rmem: reserved memory region nodes from device tree
66  * @rproc: rproc handle
67  * @pm_domain_id: RPU CPU power domain id
68  */
69 struct zynqmp_r5_core {
70 	struct device *dev;
71 	struct device_node *np;
72 	int tcm_bank_count;
73 	struct mem_bank_data **tcm_banks;
74 	int rmem_count;
75 	struct reserved_mem **rmem;
76 	struct rproc *rproc;
77 	u32 pm_domain_id;
78 };
79 
80 /**
81  * struct zynqmp_r5_cluster
82  *
83  * @dev: r5f subsystem cluster device node
84  * @mode: cluster mode of type zynqmp_r5_cluster_mode
85  * @core_count: number of r5 cores used for this cluster mode
86  * @r5_cores: Array of pointers pointing to r5 core
87  */
88 struct zynqmp_r5_cluster {
89 	struct device *dev;
90 	enum  zynqmp_r5_cluster_mode mode;
91 	int core_count;
92 	struct zynqmp_r5_core **r5_cores;
93 };
94 
95 /*
96  * zynqmp_r5_set_mode()
97  *
98  * set RPU cluster and TCM operation mode
99  *
100  * @r5_core: pointer to zynqmp_r5_core type object
101  * @fw_reg_val: value expected by firmware to configure RPU cluster mode
102  * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split)
103  *
104  * Return: 0 for success and < 0 for failure
105  */
106 static int zynqmp_r5_set_mode(struct zynqmp_r5_core *r5_core,
107 			      enum rpu_oper_mode fw_reg_val,
108 			      enum rpu_tcm_comb tcm_mode)
109 {
110 	int ret;
111 
112 	ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val);
113 	if (ret < 0) {
114 		dev_err(r5_core->dev, "failed to set RPU mode\n");
115 		return ret;
116 	}
117 
118 	ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id, tcm_mode);
119 	if (ret < 0)
120 		dev_err(r5_core->dev, "failed to configure TCM\n");
121 
122 	return ret;
123 }
124 
125 /*
126  * zynqmp_r5_rproc_start()
127  * @rproc: single R5 core's corresponding rproc instance
128  *
129  * Start R5 Core from designated boot address.
130  *
131  * return 0 on success, otherwise non-zero value on failure
132  */
133 static int zynqmp_r5_rproc_start(struct rproc *rproc)
134 {
135 	struct zynqmp_r5_core *r5_core = rproc->priv;
136 	enum rpu_boot_mem bootmem;
137 	int ret;
138 
139 	/*
140 	 * The exception vector pointers (EVP) refer to the base-address of
141 	 * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector
142 	 * starts at the base-address and subsequent vectors are on 4-byte
143 	 * boundaries.
144 	 *
145 	 * Exception vectors can start either from 0x0000_0000 (LOVEC) or
146 	 * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory)
147 	 *
148 	 * Usually firmware will put Exception vectors at LOVEC.
149 	 *
150 	 * It is not recommend that you change the exception vector.
151 	 * Changing the EVP to HIVEC will result in increased interrupt latency
152 	 * and jitter. Also, if the OCM is secured and the Cortex-R5F processor
153 	 * is non-secured, then the Cortex-R5F processor cannot access the
154 	 * HIVEC exception vectors in the OCM.
155 	 */
156 	bootmem = (rproc->bootaddr >= 0xFFFC0000) ?
157 		   PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC;
158 
159 	dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr,
160 		bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM");
161 
162 	ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1,
163 				     bootmem, ZYNQMP_PM_REQUEST_ACK_NO);
164 	if (ret)
165 		dev_err(r5_core->dev,
166 			"failed to start RPU = 0x%x\n", r5_core->pm_domain_id);
167 	return ret;
168 }
169 
170 /*
171  * zynqmp_r5_rproc_stop()
172  * @rproc: single R5 core's corresponding rproc instance
173  *
174  * Power down  R5 Core.
175  *
176  * return 0 on success, otherwise non-zero value on failure
177  */
178 static int zynqmp_r5_rproc_stop(struct rproc *rproc)
179 {
180 	struct zynqmp_r5_core *r5_core = rproc->priv;
181 	int ret;
182 
183 	ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id,
184 				     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
185 	if (ret)
186 		dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret);
187 
188 	return ret;
189 }
190 
191 /*
192  * zynqmp_r5_mem_region_map()
193  * @rproc: single R5 core's corresponding rproc instance
194  * @mem: mem descriptor to map reserved memory-regions
195  *
196  * Callback to map va for memory-region's carveout.
197  *
198  * return 0 on success, otherwise non-zero value on failure
199  */
200 static int zynqmp_r5_mem_region_map(struct rproc *rproc,
201 				    struct rproc_mem_entry *mem)
202 {
203 	void __iomem *va;
204 
205 	va = ioremap_wc(mem->dma, mem->len);
206 	if (IS_ERR_OR_NULL(va))
207 		return -ENOMEM;
208 
209 	mem->va = (void *)va;
210 
211 	return 0;
212 }
213 
214 /*
215  * zynqmp_r5_rproc_mem_unmap
216  * @rproc: single R5 core's corresponding rproc instance
217  * @mem: mem entry to unmap
218  *
219  * Unmap memory-region carveout
220  *
221  * return: always returns 0
222  */
223 static int zynqmp_r5_mem_region_unmap(struct rproc *rproc,
224 				      struct rproc_mem_entry *mem)
225 {
226 	iounmap((void __iomem *)mem->va);
227 	return 0;
228 }
229 
230 /*
231  * add_mem_regions_carveout()
232  * @rproc: single R5 core's corresponding rproc instance
233  *
234  * Construct rproc mem carveouts from memory-region property nodes
235  *
236  * return 0 on success, otherwise non-zero value on failure
237  */
238 static int add_mem_regions_carveout(struct rproc *rproc)
239 {
240 	struct rproc_mem_entry *rproc_mem;
241 	struct zynqmp_r5_core *r5_core;
242 	struct reserved_mem *rmem;
243 	int i, num_mem_regions;
244 
245 	r5_core = (struct zynqmp_r5_core *)rproc->priv;
246 	num_mem_regions = r5_core->rmem_count;
247 
248 	for (i = 0; i < num_mem_regions; i++) {
249 		rmem = r5_core->rmem[i];
250 
251 		if (!strncmp(rmem->name, "vdev0buffer", strlen("vdev0buffer"))) {
252 			/* Init reserved memory for vdev buffer */
253 			rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i,
254 								 rmem->size,
255 								 rmem->base,
256 								 rmem->name);
257 		} else {
258 			/* Register associated reserved memory regions */
259 			rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
260 							 (dma_addr_t)rmem->base,
261 							 rmem->size, rmem->base,
262 							 zynqmp_r5_mem_region_map,
263 							 zynqmp_r5_mem_region_unmap,
264 							 rmem->name);
265 		}
266 
267 		if (!rproc_mem)
268 			return -ENOMEM;
269 
270 		rproc_add_carveout(rproc, rproc_mem);
271 
272 		dev_dbg(&rproc->dev, "reserved mem carveout %s addr=%llx, size=0x%llx",
273 			rmem->name, rmem->base, rmem->size);
274 	}
275 
276 	return 0;
277 }
278 
279 /*
280  * tcm_mem_unmap()
281  * @rproc: single R5 core's corresponding rproc instance
282  * @mem: tcm mem entry to unmap
283  *
284  * Unmap TCM banks when powering down R5 core.
285  *
286  * return always 0
287  */
288 static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem)
289 {
290 	iounmap((void __iomem *)mem->va);
291 
292 	return 0;
293 }
294 
295 /*
296  * tcm_mem_map()
297  * @rproc: single R5 core's corresponding rproc instance
298  * @mem: tcm memory entry descriptor
299  *
300  * Given TCM bank entry, this func setup virtual address for TCM bank
301  * remoteproc carveout. It also takes care of va to da address translation
302  *
303  * return 0 on success, otherwise non-zero value on failure
304  */
305 static int tcm_mem_map(struct rproc *rproc,
306 		       struct rproc_mem_entry *mem)
307 {
308 	void __iomem *va;
309 
310 	va = ioremap_wc(mem->dma, mem->len);
311 	if (IS_ERR_OR_NULL(va))
312 		return -ENOMEM;
313 
314 	/* Update memory entry va */
315 	mem->va = (void *)va;
316 
317 	/* clear TCMs */
318 	memset_io(va, 0, mem->len);
319 
320 	/*
321 	 * The R5s expect their TCM banks to be at address 0x0 and 0x2000,
322 	 * while on the Linux side they are at 0xffexxxxx.
323 	 *
324 	 * Zero out the high 12 bits of the address. This will give
325 	 * expected values for TCM Banks 0A and 0B (0x0 and 0x20000).
326 	 */
327 	mem->da &= 0x000fffff;
328 
329 	/*
330 	 * TCM Banks 1A and 1B still have to be translated.
331 	 *
332 	 * Below handle these two banks' absolute addresses (0xffe90000 and
333 	 * 0xffeb0000) and convert to the expected relative addresses
334 	 * (0x0 and 0x20000).
335 	 */
336 	if (mem->da == 0x90000 || mem->da == 0xB0000)
337 		mem->da -= 0x90000;
338 
339 	/* if translated TCM bank address is not valid report error */
340 	if (mem->da != 0x0 && mem->da != 0x20000) {
341 		dev_err(&rproc->dev, "invalid TCM address: %x\n", mem->da);
342 		return -EINVAL;
343 	}
344 	return 0;
345 }
346 
347 /*
348  * add_tcm_carveout_split_mode()
349  * @rproc: single R5 core's corresponding rproc instance
350  *
351  * allocate and add remoteproc carveout for TCM memory in split mode
352  *
353  * return 0 on success, otherwise non-zero value on failure
354  */
355 static int add_tcm_carveout_split_mode(struct rproc *rproc)
356 {
357 	struct rproc_mem_entry *rproc_mem;
358 	struct zynqmp_r5_core *r5_core;
359 	int i, num_banks, ret;
360 	phys_addr_t bank_addr;
361 	struct device *dev;
362 	u32 pm_domain_id;
363 	size_t bank_size;
364 	char *bank_name;
365 
366 	r5_core = (struct zynqmp_r5_core *)rproc->priv;
367 	dev = r5_core->dev;
368 	num_banks = r5_core->tcm_bank_count;
369 
370 	/*
371 	 * Power-on Each 64KB TCM,
372 	 * register its address space, map and unmap functions
373 	 * and add carveouts accordingly
374 	 */
375 	for (i = 0; i < num_banks; i++) {
376 		bank_addr = r5_core->tcm_banks[i]->addr;
377 		bank_name = r5_core->tcm_banks[i]->bank_name;
378 		bank_size = r5_core->tcm_banks[i]->size;
379 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
380 
381 		ret = zynqmp_pm_request_node(pm_domain_id,
382 					     ZYNQMP_PM_CAPABILITY_ACCESS, 0,
383 					     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
384 		if (ret < 0) {
385 			dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id);
386 			goto release_tcm_split;
387 		}
388 
389 		dev_dbg(dev, "TCM carveout split mode %s addr=%llx, size=0x%lx",
390 			bank_name, bank_addr, bank_size);
391 
392 		rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr,
393 						 bank_size, bank_addr,
394 						 tcm_mem_map, tcm_mem_unmap,
395 						 bank_name);
396 		if (!rproc_mem) {
397 			ret = -ENOMEM;
398 			zynqmp_pm_release_node(pm_domain_id);
399 			goto release_tcm_split;
400 		}
401 
402 		rproc_add_carveout(rproc, rproc_mem);
403 	}
404 
405 	return 0;
406 
407 release_tcm_split:
408 	/* If failed, Turn off all TCM banks turned on before */
409 	for (i--; i >= 0; i--) {
410 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
411 		zynqmp_pm_release_node(pm_domain_id);
412 	}
413 	return ret;
414 }
415 
416 /*
417  * add_tcm_carveout_lockstep_mode()
418  * @rproc: single R5 core's corresponding rproc instance
419  *
420  * allocate and add remoteproc carveout for TCM memory in lockstep mode
421  *
422  * return 0 on success, otherwise non-zero value on failure
423  */
424 static int add_tcm_carveout_lockstep_mode(struct rproc *rproc)
425 {
426 	struct rproc_mem_entry *rproc_mem;
427 	struct zynqmp_r5_core *r5_core;
428 	int i, num_banks, ret;
429 	phys_addr_t bank_addr;
430 	size_t bank_size = 0;
431 	struct device *dev;
432 	u32 pm_domain_id;
433 	char *bank_name;
434 
435 	r5_core = (struct zynqmp_r5_core *)rproc->priv;
436 	dev = r5_core->dev;
437 
438 	/* Go through zynqmp banks for r5 node */
439 	num_banks = r5_core->tcm_bank_count;
440 
441 	/*
442 	 * In lockstep mode, TCM is contiguous memory block
443 	 * However, each TCM block still needs to be enabled individually.
444 	 * So, Enable each TCM block individually, but add their size
445 	 * to create contiguous memory region.
446 	 */
447 	bank_addr = r5_core->tcm_banks[0]->addr;
448 	bank_name = r5_core->tcm_banks[0]->bank_name;
449 
450 	for (i = 0; i < num_banks; i++) {
451 		bank_size += r5_core->tcm_banks[i]->size;
452 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
453 
454 		/* Turn on each TCM bank individually */
455 		ret = zynqmp_pm_request_node(pm_domain_id,
456 					     ZYNQMP_PM_CAPABILITY_ACCESS, 0,
457 					     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
458 		if (ret < 0) {
459 			dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id);
460 			goto release_tcm_lockstep;
461 		}
462 	}
463 
464 	dev_dbg(dev, "TCM add carveout lockstep mode %s addr=0x%llx, size=0x%lx",
465 		bank_name, bank_addr, bank_size);
466 
467 	/* Register TCM address range, TCM map and unmap functions */
468 	rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr,
469 					 bank_size, bank_addr,
470 					 tcm_mem_map, tcm_mem_unmap,
471 					 bank_name);
472 	if (!rproc_mem) {
473 		ret = -ENOMEM;
474 		goto release_tcm_lockstep;
475 	}
476 
477 	/* If registration is success, add carveouts */
478 	rproc_add_carveout(rproc, rproc_mem);
479 
480 	return 0;
481 
482 release_tcm_lockstep:
483 	/* If failed, Turn off all TCM banks turned on before */
484 	for (i--; i >= 0; i--) {
485 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
486 		zynqmp_pm_release_node(pm_domain_id);
487 	}
488 	return ret;
489 }
490 
491 /*
492  * add_tcm_banks()
493  * @rproc: single R5 core's corresponding rproc instance
494  *
495  * allocate and add remoteproc carveouts for TCM memory based on cluster mode
496  *
497  * return 0 on success, otherwise non-zero value on failure
498  */
499 static int add_tcm_banks(struct rproc *rproc)
500 {
501 	struct zynqmp_r5_cluster *cluster;
502 	struct zynqmp_r5_core *r5_core;
503 	struct device *dev;
504 
505 	r5_core = (struct zynqmp_r5_core *)rproc->priv;
506 	if (!r5_core)
507 		return -EINVAL;
508 
509 	dev = r5_core->dev;
510 
511 	cluster = dev_get_drvdata(dev->parent);
512 	if (!cluster) {
513 		dev_err(dev->parent, "Invalid driver data\n");
514 		return -EINVAL;
515 	}
516 
517 	/*
518 	 * In lockstep mode TCM banks are one contiguous memory region of 256Kb
519 	 * In split mode, each TCM bank is 64Kb and not contiguous.
520 	 * We add memory carveouts accordingly.
521 	 */
522 	if (cluster->mode == SPLIT_MODE)
523 		return add_tcm_carveout_split_mode(rproc);
524 	else if (cluster->mode == LOCKSTEP_MODE)
525 		return add_tcm_carveout_lockstep_mode(rproc);
526 
527 	return -EINVAL;
528 }
529 
530 /*
531  * zynqmp_r5_parse_fw()
532  * @rproc: single R5 core's corresponding rproc instance
533  * @fw: ptr to firmware to be loaded onto r5 core
534  *
535  * get resource table if available
536  *
537  * return 0 on success, otherwise non-zero value on failure
538  */
539 static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw)
540 {
541 	int ret;
542 
543 	ret = rproc_elf_load_rsc_table(rproc, fw);
544 	if (ret == -EINVAL) {
545 		/*
546 		 * resource table only required for IPC.
547 		 * if not present, this is not necessarily an error;
548 		 * for example, loading r5 hello world application
549 		 * so simply inform user and keep going.
550 		 */
551 		dev_info(&rproc->dev, "no resource table found.\n");
552 		ret = 0;
553 	}
554 	return ret;
555 }
556 
557 /**
558  * zynqmp_r5_rproc_prepare()
559  * adds carveouts for TCM bank and reserved memory regions
560  *
561  * @rproc: Device node of each rproc
562  *
563  * Return: 0 for success else < 0 error code
564  */
565 static int zynqmp_r5_rproc_prepare(struct rproc *rproc)
566 {
567 	int ret;
568 
569 	ret = add_tcm_banks(rproc);
570 	if (ret) {
571 		dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret);
572 		return ret;
573 	}
574 
575 	ret = add_mem_regions_carveout(rproc);
576 	if (ret) {
577 		dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret);
578 		return ret;
579 	}
580 
581 	return 0;
582 }
583 
584 /**
585  * zynqmp_r5_rproc_unprepare()
586  * Turns off TCM banks using power-domain id
587  *
588  * @rproc: Device node of each rproc
589  *
590  * Return: always 0
591  */
592 static int zynqmp_r5_rproc_unprepare(struct rproc *rproc)
593 {
594 	struct zynqmp_r5_core *r5_core;
595 	u32 pm_domain_id;
596 	int i;
597 
598 	r5_core = (struct zynqmp_r5_core *)rproc->priv;
599 
600 	for (i = 0; i < r5_core->tcm_bank_count; i++) {
601 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
602 		if (zynqmp_pm_release_node(pm_domain_id))
603 			dev_warn(r5_core->dev,
604 				 "can't turn off TCM bank 0x%x", pm_domain_id);
605 	}
606 
607 	return 0;
608 }
609 
610 static const struct rproc_ops zynqmp_r5_rproc_ops = {
611 	.prepare	= zynqmp_r5_rproc_prepare,
612 	.unprepare	= zynqmp_r5_rproc_unprepare,
613 	.start		= zynqmp_r5_rproc_start,
614 	.stop		= zynqmp_r5_rproc_stop,
615 	.load		= rproc_elf_load_segments,
616 	.parse_fw	= zynqmp_r5_parse_fw,
617 	.find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
618 	.sanity_check	= rproc_elf_sanity_check,
619 	.get_boot_addr	= rproc_elf_get_boot_addr,
620 };
621 
622 /**
623  * zynqmp_r5_add_rproc_core()
624  * Allocate and add struct rproc object for each r5f core
625  * This is called for each individual r5f core
626  *
627  * @cdev: Device node of each r5 core
628  *
629  * Return: zynqmp_r5_core object for success else error code pointer
630  */
631 static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev)
632 {
633 	struct zynqmp_r5_core *r5_core;
634 	struct rproc *r5_rproc;
635 	int ret;
636 
637 	/* Set up DMA mask */
638 	ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32));
639 	if (ret)
640 		return ERR_PTR(ret);
641 
642 	/* Allocate remoteproc instance */
643 	r5_rproc = rproc_alloc(cdev, dev_name(cdev),
644 			       &zynqmp_r5_rproc_ops,
645 			       NULL, sizeof(struct zynqmp_r5_core));
646 	if (!r5_rproc) {
647 		dev_err(cdev, "failed to allocate memory for rproc instance\n");
648 		return ERR_PTR(-ENOMEM);
649 	}
650 
651 	r5_rproc->auto_boot = false;
652 	r5_core = (struct zynqmp_r5_core *)r5_rproc->priv;
653 	r5_core->dev = cdev;
654 	r5_core->np = dev_of_node(cdev);
655 	if (!r5_core->np) {
656 		dev_err(cdev, "can't get device node for r5 core\n");
657 		ret = -EINVAL;
658 		goto free_rproc;
659 	}
660 
661 	/* Add R5 remoteproc core */
662 	ret = rproc_add(r5_rproc);
663 	if (ret) {
664 		dev_err(cdev, "failed to add r5 remoteproc\n");
665 		goto free_rproc;
666 	}
667 
668 	r5_core->rproc = r5_rproc;
669 	return r5_core;
670 
671 free_rproc:
672 	rproc_free(r5_rproc);
673 	return ERR_PTR(ret);
674 }
675 
676 /**
677  * zynqmp_r5_get_tcm_node()
678  * Ideally this function should parse tcm node and store information
679  * in r5_core instance. For now, Hardcoded TCM information is used.
680  * This approach is used as TCM bindings for system-dt is being developed
681  *
682  * @cluster: pointer to zynqmp_r5_cluster type object
683  *
684  * Return: 0 for success and < 0 error code for failure.
685  */
686 static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster)
687 {
688 	struct device *dev = cluster->dev;
689 	struct zynqmp_r5_core *r5_core;
690 	int tcm_bank_count, tcm_node;
691 	int i, j;
692 
693 	tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks);
694 
695 	/* count per core tcm banks */
696 	tcm_bank_count = tcm_bank_count / cluster->core_count;
697 
698 	/*
699 	 * r5 core 0 will use all of TCM banks in lockstep mode.
700 	 * In split mode, r5 core0 will use 128k and r5 core1 will use another
701 	 * 128k. Assign TCM banks to each core accordingly
702 	 */
703 	tcm_node = 0;
704 	for (i = 0; i < cluster->core_count; i++) {
705 		r5_core = cluster->r5_cores[i];
706 		r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
707 						  sizeof(struct mem_bank_data *),
708 						  GFP_KERNEL);
709 		if (!r5_core->tcm_banks)
710 			return -ENOMEM;
711 
712 		for (j = 0; j < tcm_bank_count; j++) {
713 			/*
714 			 * Use pre-defined TCM reg values.
715 			 * Eventually this should be replaced by values
716 			 * parsed from dts.
717 			 */
718 			r5_core->tcm_banks[j] =
719 				(struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node];
720 			tcm_node++;
721 		}
722 
723 		r5_core->tcm_bank_count = tcm_bank_count;
724 	}
725 
726 	return 0;
727 }
728 
729 /**
730  * zynqmp_r5_get_mem_region_node()
731  * parse memory-region property and get reserved mem regions
732  *
733  * @r5_core: pointer to zynqmp_r5_core type object
734  *
735  * Return: 0 for success and error code for failure.
736  */
737 static int zynqmp_r5_get_mem_region_node(struct zynqmp_r5_core *r5_core)
738 {
739 	struct device_node *np, *rmem_np;
740 	struct reserved_mem **rmem;
741 	int res_mem_count, i;
742 	struct device *dev;
743 
744 	dev = r5_core->dev;
745 	np = r5_core->np;
746 
747 	res_mem_count = of_property_count_elems_of_size(np, "memory-region",
748 							sizeof(phandle));
749 	if (res_mem_count <= 0) {
750 		dev_warn(dev, "failed to get memory-region property %d\n",
751 			 res_mem_count);
752 		return 0;
753 	}
754 
755 	rmem = devm_kcalloc(dev, res_mem_count,
756 			    sizeof(struct reserved_mem *), GFP_KERNEL);
757 	if (!rmem)
758 		return -ENOMEM;
759 
760 	for (i = 0; i < res_mem_count; i++) {
761 		rmem_np = of_parse_phandle(np, "memory-region", i);
762 		if (!rmem_np)
763 			goto release_rmem;
764 
765 		rmem[i] = of_reserved_mem_lookup(rmem_np);
766 		if (!rmem[i]) {
767 			of_node_put(rmem_np);
768 			goto release_rmem;
769 		}
770 
771 		of_node_put(rmem_np);
772 	}
773 
774 	r5_core->rmem_count = res_mem_count;
775 	r5_core->rmem = rmem;
776 	return 0;
777 
778 release_rmem:
779 	return -EINVAL;
780 }
781 
782 /*
783  * zynqmp_r5_core_init()
784  * Create and initialize zynqmp_r5_core type object
785  *
786  * @cluster: pointer to zynqmp_r5_cluster type object
787  * @fw_reg_val: value expected by firmware to configure RPU cluster mode
788  * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split)
789  *
790  * Return: 0 for success and error code for failure.
791  */
792 static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster,
793 			       enum rpu_oper_mode fw_reg_val,
794 			       enum rpu_tcm_comb tcm_mode)
795 {
796 	struct device *dev = cluster->dev;
797 	struct zynqmp_r5_core *r5_core;
798 	int ret, i;
799 
800 	ret = zynqmp_r5_get_tcm_node(cluster);
801 	if (ret < 0) {
802 		dev_err(dev, "can't get tcm node, err %d\n", ret);
803 		return ret;
804 	}
805 
806 	for (i = 0; i < cluster->core_count; i++) {
807 		r5_core = cluster->r5_cores[i];
808 
809 		ret = zynqmp_r5_get_mem_region_node(r5_core);
810 		if (ret)
811 			dev_warn(dev, "memory-region prop failed %d\n", ret);
812 
813 		/* Initialize r5 cores with power-domains parsed from dts */
814 		ret = of_property_read_u32_index(r5_core->np, "power-domains",
815 						 1, &r5_core->pm_domain_id);
816 		if (ret) {
817 			dev_err(dev, "failed to get power-domains property\n");
818 			return ret;
819 		}
820 
821 		ret = zynqmp_r5_set_mode(r5_core, fw_reg_val, tcm_mode);
822 		if (ret) {
823 			dev_err(dev, "failed to set r5 cluster mode %d, err %d\n",
824 				cluster->mode, ret);
825 			return ret;
826 		}
827 	}
828 
829 	return 0;
830 }
831 
832 /*
833  * zynqmp_r5_cluster_init()
834  * Create and initialize zynqmp_r5_cluster type object
835  *
836  * @cluster: pointer to zynqmp_r5_cluster type object
837  *
838  * Return: 0 for success and error code for failure.
839  */
840 static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster)
841 {
842 	enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE;
843 	struct device *dev = cluster->dev;
844 	struct device_node *dev_node = dev_of_node(dev);
845 	struct platform_device *child_pdev;
846 	struct zynqmp_r5_core **r5_cores;
847 	enum rpu_oper_mode fw_reg_val;
848 	struct device **child_devs;
849 	struct device_node *child;
850 	enum rpu_tcm_comb tcm_mode;
851 	int core_count, ret, i;
852 
853 	ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode);
854 
855 	/*
856 	 * on success returns 0, if not defined then returns -EINVAL,
857 	 * In that case, default is LOCKSTEP mode. Other than that
858 	 * returns relative error code < 0.
859 	 */
860 	if (ret != -EINVAL && ret != 0) {
861 		dev_err(dev, "Invalid xlnx,cluster-mode property\n");
862 		return ret;
863 	}
864 
865 	/*
866 	 * For now driver only supports split mode and lockstep mode.
867 	 * fail driver probe if either of that is not set in dts.
868 	 */
869 	if (cluster_mode == LOCKSTEP_MODE) {
870 		tcm_mode = PM_RPU_TCM_COMB;
871 		fw_reg_val = PM_RPU_MODE_LOCKSTEP;
872 	} else if (cluster_mode == SPLIT_MODE) {
873 		tcm_mode = PM_RPU_TCM_SPLIT;
874 		fw_reg_val = PM_RPU_MODE_SPLIT;
875 	} else {
876 		dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode);
877 		return -EINVAL;
878 	}
879 
880 	/*
881 	 * Number of cores is decided by number of child nodes of
882 	 * r5f subsystem node in dts. If Split mode is used in dts
883 	 * 2 child nodes are expected.
884 	 * In lockstep mode if two child nodes are available,
885 	 * only use first child node and consider it as core0
886 	 * and ignore core1 dt node.
887 	 */
888 	core_count = of_get_available_child_count(dev_node);
889 	if (core_count == 0) {
890 		dev_err(dev, "Invalid number of r5 cores %d", core_count);
891 		return -EINVAL;
892 	} else if (cluster_mode == SPLIT_MODE && core_count != 2) {
893 		dev_err(dev, "Invalid number of r5 cores for split mode\n");
894 		return -EINVAL;
895 	} else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) {
896 		dev_warn(dev, "Only r5 core0 will be used\n");
897 		core_count = 1;
898 	}
899 
900 	child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL);
901 	if (!child_devs)
902 		return -ENOMEM;
903 
904 	r5_cores = kcalloc(core_count,
905 			   sizeof(struct zynqmp_r5_core *), GFP_KERNEL);
906 	if (!r5_cores) {
907 		kfree(child_devs);
908 		return -ENOMEM;
909 	}
910 
911 	i = 0;
912 	for_each_available_child_of_node(dev_node, child) {
913 		child_pdev = of_find_device_by_node(child);
914 		if (!child_pdev) {
915 			of_node_put(child);
916 			ret = -ENODEV;
917 			goto release_r5_cores;
918 		}
919 
920 		child_devs[i] = &child_pdev->dev;
921 
922 		/* create and add remoteproc instance of type struct rproc */
923 		r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev);
924 		if (IS_ERR(r5_cores[i])) {
925 			of_node_put(child);
926 			ret = PTR_ERR(r5_cores[i]);
927 			r5_cores[i] = NULL;
928 			goto release_r5_cores;
929 		}
930 
931 		/*
932 		 * If two child nodes are available in dts in lockstep mode,
933 		 * then ignore second child node.
934 		 */
935 		if (cluster_mode == LOCKSTEP_MODE) {
936 			of_node_put(child);
937 			break;
938 		}
939 
940 		i++;
941 	}
942 
943 	cluster->mode = cluster_mode;
944 	cluster->core_count = core_count;
945 	cluster->r5_cores = r5_cores;
946 
947 	ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode);
948 	if (ret < 0) {
949 		dev_err(dev, "failed to init r5 core err %d\n", ret);
950 		cluster->core_count = 0;
951 		cluster->r5_cores = NULL;
952 
953 		/*
954 		 * at this point rproc resources for each core are allocated.
955 		 * adjust index to free resources in reverse order
956 		 */
957 		i = core_count - 1;
958 		goto release_r5_cores;
959 	}
960 
961 	kfree(child_devs);
962 	return 0;
963 
964 release_r5_cores:
965 	while (i >= 0) {
966 		put_device(child_devs[i]);
967 		if (r5_cores[i]) {
968 			of_reserved_mem_device_release(r5_cores[i]->dev);
969 			rproc_del(r5_cores[i]->rproc);
970 			rproc_free(r5_cores[i]->rproc);
971 		}
972 		i--;
973 	}
974 	kfree(r5_cores);
975 	kfree(child_devs);
976 	return ret;
977 }
978 
979 static void zynqmp_r5_cluster_exit(void *data)
980 {
981 	struct platform_device *pdev = (struct platform_device *)data;
982 	struct zynqmp_r5_cluster *cluster;
983 	struct zynqmp_r5_core *r5_core;
984 	int i;
985 
986 	cluster = (struct zynqmp_r5_cluster *)platform_get_drvdata(pdev);
987 	if (!cluster)
988 		return;
989 
990 	for (i = 0; i < cluster->core_count; i++) {
991 		r5_core = cluster->r5_cores[i];
992 		of_reserved_mem_device_release(r5_core->dev);
993 		put_device(r5_core->dev);
994 		rproc_del(r5_core->rproc);
995 		rproc_free(r5_core->rproc);
996 	}
997 
998 	kfree(cluster->r5_cores);
999 	kfree(cluster);
1000 	platform_set_drvdata(pdev, NULL);
1001 }
1002 
1003 /*
1004  * zynqmp_r5_remoteproc_probe()
1005  * parse device-tree, initialize hardware and allocate required resources
1006  * and remoteproc ops
1007  *
1008  * @pdev: domain platform device for R5 cluster
1009  *
1010  * Return: 0 for success and < 0 for failure.
1011  */
1012 static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev)
1013 {
1014 	struct zynqmp_r5_cluster *cluster;
1015 	struct device *dev = &pdev->dev;
1016 	int ret;
1017 
1018 	cluster = kzalloc(sizeof(*cluster), GFP_KERNEL);
1019 	if (!cluster)
1020 		return -ENOMEM;
1021 
1022 	cluster->dev = dev;
1023 
1024 	ret = devm_of_platform_populate(dev);
1025 	if (ret) {
1026 		dev_err_probe(dev, ret, "failed to populate platform dev\n");
1027 		kfree(cluster);
1028 		return ret;
1029 	}
1030 
1031 	/* wire in so each core can be cleaned up at driver remove */
1032 	platform_set_drvdata(pdev, cluster);
1033 
1034 	ret = zynqmp_r5_cluster_init(cluster);
1035 	if (ret) {
1036 		kfree(cluster);
1037 		platform_set_drvdata(pdev, NULL);
1038 		dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n");
1039 		return ret;
1040 	}
1041 
1042 	ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev);
1043 	if (ret)
1044 		return ret;
1045 
1046 	return 0;
1047 }
1048 
1049 /* Match table for OF platform binding */
1050 static const struct of_device_id zynqmp_r5_remoteproc_match[] = {
1051 	{ .compatible = "xlnx,zynqmp-r5fss", },
1052 	{ /* end of list */ },
1053 };
1054 MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match);
1055 
1056 static struct platform_driver zynqmp_r5_remoteproc_driver = {
1057 	.probe = zynqmp_r5_remoteproc_probe,
1058 	.driver = {
1059 		.name = "zynqmp_r5_remoteproc",
1060 		.of_match_table = zynqmp_r5_remoteproc_match,
1061 	},
1062 };
1063 module_platform_driver(zynqmp_r5_remoteproc_driver);
1064 
1065 MODULE_DESCRIPTION("Xilinx R5F remote processor driver");
1066 MODULE_AUTHOR("Xilinx Inc.");
1067 MODULE_LICENSE("GPL");
1068