1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ZynqMP R5 Remote Processor driver 4 * 5 */ 6 7 #include <dt-bindings/power/xlnx-zynqmp-power.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/firmware/xlnx-zynqmp.h> 10 #include <linux/kernel.h> 11 #include <linux/mailbox_client.h> 12 #include <linux/mailbox/zynqmp-ipi-message.h> 13 #include <linux/module.h> 14 #include <linux/of_address.h> 15 #include <linux/of_platform.h> 16 #include <linux/of_reserved_mem.h> 17 #include <linux/platform_device.h> 18 #include <linux/remoteproc.h> 19 20 #include "remoteproc_internal.h" 21 22 /* IPI buffer MAX length */ 23 #define IPI_BUF_LEN_MAX 32U 24 25 /* RX mailbox client buffer max length */ 26 #define MBOX_CLIENT_BUF_MAX (IPI_BUF_LEN_MAX + \ 27 sizeof(struct zynqmp_ipi_message)) 28 /* 29 * settings for RPU cluster mode which 30 * reflects possible values of xlnx,cluster-mode dt-property 31 */ 32 enum zynqmp_r5_cluster_mode { 33 SPLIT_MODE = 0, /* When cores run as separate processor */ 34 LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */ 35 SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */ 36 }; 37 38 /** 39 * struct mem_bank_data - Memory Bank description 40 * 41 * @addr: Start address of memory bank 42 * @size: Size of Memory bank 43 * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off 44 * @bank_name: name of the bank for remoteproc framework 45 */ 46 struct mem_bank_data { 47 phys_addr_t addr; 48 size_t size; 49 u32 pm_domain_id; 50 char *bank_name; 51 }; 52 53 /** 54 * struct mbox_info 55 * 56 * @rx_mc_buf: to copy data from mailbox rx channel 57 * @tx_mc_buf: to copy data to mailbox tx channel 58 * @r5_core: this mailbox's corresponding r5_core pointer 59 * @mbox_work: schedule work after receiving data from mailbox 60 * @mbox_cl: mailbox client 61 * @tx_chan: mailbox tx channel 62 * @rx_chan: mailbox rx channel 63 */ 64 struct mbox_info { 65 unsigned char rx_mc_buf[MBOX_CLIENT_BUF_MAX]; 66 unsigned char tx_mc_buf[MBOX_CLIENT_BUF_MAX]; 67 struct zynqmp_r5_core *r5_core; 68 struct work_struct mbox_work; 69 struct mbox_client mbox_cl; 70 struct mbox_chan *tx_chan; 71 struct mbox_chan *rx_chan; 72 }; 73 74 /* 75 * Hardcoded TCM bank values. This will be removed once TCM bindings are 76 * accepted for system-dt specifications and upstreamed in linux kernel 77 */ 78 static const struct mem_bank_data zynqmp_tcm_banks[] = { 79 {0xffe00000UL, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */ 80 {0xffe20000UL, 0x10000UL, PD_R5_0_BTCM, "btcm0"}, 81 {0xffe90000UL, 0x10000UL, PD_R5_1_ATCM, "atcm1"}, 82 {0xffeb0000UL, 0x10000UL, PD_R5_1_BTCM, "btcm1"}, 83 }; 84 85 /** 86 * struct zynqmp_r5_core 87 * 88 * @dev: device of RPU instance 89 * @np: device node of RPU instance 90 * @tcm_bank_count: number TCM banks accessible to this RPU 91 * @tcm_banks: array of each TCM bank data 92 * @rproc: rproc handle 93 * @pm_domain_id: RPU CPU power domain id 94 * @ipi: pointer to mailbox information 95 */ 96 struct zynqmp_r5_core { 97 struct device *dev; 98 struct device_node *np; 99 int tcm_bank_count; 100 struct mem_bank_data **tcm_banks; 101 struct rproc *rproc; 102 u32 pm_domain_id; 103 struct mbox_info *ipi; 104 }; 105 106 /** 107 * struct zynqmp_r5_cluster 108 * 109 * @dev: r5f subsystem cluster device node 110 * @mode: cluster mode of type zynqmp_r5_cluster_mode 111 * @core_count: number of r5 cores used for this cluster mode 112 * @r5_cores: Array of pointers pointing to r5 core 113 */ 114 struct zynqmp_r5_cluster { 115 struct device *dev; 116 enum zynqmp_r5_cluster_mode mode; 117 int core_count; 118 struct zynqmp_r5_core **r5_cores; 119 }; 120 121 /** 122 * event_notified_idr_cb() - callback for vq_interrupt per notifyid 123 * @id: rproc->notify id 124 * @ptr: pointer to idr private data 125 * @data: data passed to idr_for_each callback 126 * 127 * Pass notification to remoteproc virtio 128 * 129 * Return: 0. having return is to satisfy the idr_for_each() function 130 * pointer input argument requirement. 131 **/ 132 static int event_notified_idr_cb(int id, void *ptr, void *data) 133 { 134 struct rproc *rproc = data; 135 136 if (rproc_vq_interrupt(rproc, id) == IRQ_NONE) 137 dev_dbg(&rproc->dev, "data not found for vqid=%d\n", id); 138 139 return 0; 140 } 141 142 /** 143 * handle_event_notified() - remoteproc notification work function 144 * @work: pointer to the work structure 145 * 146 * It checks each registered remoteproc notify IDs. 147 */ 148 static void handle_event_notified(struct work_struct *work) 149 { 150 struct mbox_info *ipi; 151 struct rproc *rproc; 152 153 ipi = container_of(work, struct mbox_info, mbox_work); 154 rproc = ipi->r5_core->rproc; 155 156 /* 157 * We only use IPI for interrupt. The RPU firmware side may or may 158 * not write the notifyid when it trigger IPI. 159 * And thus, we scan through all the registered notifyids and 160 * find which one is valid to get the message. 161 * Even if message from firmware is NULL, we attempt to get vqid 162 */ 163 idr_for_each(&rproc->notifyids, event_notified_idr_cb, rproc); 164 } 165 166 /** 167 * zynqmp_r5_mb_rx_cb() - receive channel mailbox callback 168 * @cl: mailbox client 169 * @msg: message pointer 170 * 171 * Receive data from ipi buffer, ack interrupt and then 172 * it will schedule the R5 notification work. 173 */ 174 static void zynqmp_r5_mb_rx_cb(struct mbox_client *cl, void *msg) 175 { 176 struct zynqmp_ipi_message *ipi_msg, *buf_msg; 177 struct mbox_info *ipi; 178 size_t len; 179 180 ipi = container_of(cl, struct mbox_info, mbox_cl); 181 182 /* copy data from ipi buffer to r5_core */ 183 ipi_msg = (struct zynqmp_ipi_message *)msg; 184 buf_msg = (struct zynqmp_ipi_message *)ipi->rx_mc_buf; 185 len = ipi_msg->len; 186 if (len > IPI_BUF_LEN_MAX) { 187 dev_warn(cl->dev, "msg size exceeded than %d\n", 188 IPI_BUF_LEN_MAX); 189 len = IPI_BUF_LEN_MAX; 190 } 191 buf_msg->len = len; 192 memcpy(buf_msg->data, ipi_msg->data, len); 193 194 /* received and processed interrupt ack */ 195 if (mbox_send_message(ipi->rx_chan, NULL) < 0) 196 dev_err(cl->dev, "ack failed to mbox rx_chan\n"); 197 198 schedule_work(&ipi->mbox_work); 199 } 200 201 /** 202 * zynqmp_r5_setup_mbox() - Setup mailboxes related properties 203 * this is used for each individual R5 core 204 * 205 * @cdev: child node device 206 * 207 * Function to setup mailboxes related properties 208 * return : NULL if failed else pointer to mbox_info 209 */ 210 static struct mbox_info *zynqmp_r5_setup_mbox(struct device *cdev) 211 { 212 struct mbox_client *mbox_cl; 213 struct mbox_info *ipi; 214 215 ipi = kzalloc(sizeof(*ipi), GFP_KERNEL); 216 if (!ipi) 217 return NULL; 218 219 mbox_cl = &ipi->mbox_cl; 220 mbox_cl->rx_callback = zynqmp_r5_mb_rx_cb; 221 mbox_cl->tx_block = false; 222 mbox_cl->knows_txdone = false; 223 mbox_cl->tx_done = NULL; 224 mbox_cl->dev = cdev; 225 226 /* Request TX and RX channels */ 227 ipi->tx_chan = mbox_request_channel_byname(mbox_cl, "tx"); 228 if (IS_ERR(ipi->tx_chan)) { 229 ipi->tx_chan = NULL; 230 kfree(ipi); 231 dev_warn(cdev, "mbox tx channel request failed\n"); 232 return NULL; 233 } 234 235 ipi->rx_chan = mbox_request_channel_byname(mbox_cl, "rx"); 236 if (IS_ERR(ipi->rx_chan)) { 237 mbox_free_channel(ipi->tx_chan); 238 ipi->rx_chan = NULL; 239 ipi->tx_chan = NULL; 240 kfree(ipi); 241 dev_warn(cdev, "mbox rx channel request failed\n"); 242 return NULL; 243 } 244 245 INIT_WORK(&ipi->mbox_work, handle_event_notified); 246 247 return ipi; 248 } 249 250 static void zynqmp_r5_free_mbox(struct mbox_info *ipi) 251 { 252 if (!ipi) 253 return; 254 255 if (ipi->tx_chan) { 256 mbox_free_channel(ipi->tx_chan); 257 ipi->tx_chan = NULL; 258 } 259 260 if (ipi->rx_chan) { 261 mbox_free_channel(ipi->rx_chan); 262 ipi->rx_chan = NULL; 263 } 264 265 kfree(ipi); 266 } 267 268 /* 269 * zynqmp_r5_core_kick() - kick a firmware if mbox is provided 270 * @rproc: r5 core's corresponding rproc structure 271 * @vqid: virtqueue ID 272 */ 273 static void zynqmp_r5_rproc_kick(struct rproc *rproc, int vqid) 274 { 275 struct zynqmp_r5_core *r5_core = rproc->priv; 276 struct device *dev = r5_core->dev; 277 struct zynqmp_ipi_message *mb_msg; 278 struct mbox_info *ipi; 279 int ret; 280 281 ipi = r5_core->ipi; 282 if (!ipi) 283 return; 284 285 mb_msg = (struct zynqmp_ipi_message *)ipi->tx_mc_buf; 286 memcpy(mb_msg->data, &vqid, sizeof(vqid)); 287 mb_msg->len = sizeof(vqid); 288 ret = mbox_send_message(ipi->tx_chan, mb_msg); 289 if (ret < 0) 290 dev_warn(dev, "failed to send message\n"); 291 } 292 293 /* 294 * zynqmp_r5_set_mode() 295 * 296 * set RPU cluster and TCM operation mode 297 * 298 * @r5_core: pointer to zynqmp_r5_core type object 299 * @fw_reg_val: value expected by firmware to configure RPU cluster mode 300 * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split) 301 * 302 * Return: 0 for success and < 0 for failure 303 */ 304 static int zynqmp_r5_set_mode(struct zynqmp_r5_core *r5_core, 305 enum rpu_oper_mode fw_reg_val, 306 enum rpu_tcm_comb tcm_mode) 307 { 308 int ret; 309 310 ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val); 311 if (ret < 0) { 312 dev_err(r5_core->dev, "failed to set RPU mode\n"); 313 return ret; 314 } 315 316 ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id, tcm_mode); 317 if (ret < 0) 318 dev_err(r5_core->dev, "failed to configure TCM\n"); 319 320 return ret; 321 } 322 323 /* 324 * zynqmp_r5_rproc_start() 325 * @rproc: single R5 core's corresponding rproc instance 326 * 327 * Start R5 Core from designated boot address. 328 * 329 * return 0 on success, otherwise non-zero value on failure 330 */ 331 static int zynqmp_r5_rproc_start(struct rproc *rproc) 332 { 333 struct zynqmp_r5_core *r5_core = rproc->priv; 334 enum rpu_boot_mem bootmem; 335 int ret; 336 337 /* 338 * The exception vector pointers (EVP) refer to the base-address of 339 * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector 340 * starts at the base-address and subsequent vectors are on 4-byte 341 * boundaries. 342 * 343 * Exception vectors can start either from 0x0000_0000 (LOVEC) or 344 * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory) 345 * 346 * Usually firmware will put Exception vectors at LOVEC. 347 * 348 * It is not recommend that you change the exception vector. 349 * Changing the EVP to HIVEC will result in increased interrupt latency 350 * and jitter. Also, if the OCM is secured and the Cortex-R5F processor 351 * is non-secured, then the Cortex-R5F processor cannot access the 352 * HIVEC exception vectors in the OCM. 353 */ 354 bootmem = (rproc->bootaddr >= 0xFFFC0000) ? 355 PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC; 356 357 dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr, 358 bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM"); 359 360 ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1, 361 bootmem, ZYNQMP_PM_REQUEST_ACK_NO); 362 if (ret) 363 dev_err(r5_core->dev, 364 "failed to start RPU = 0x%x\n", r5_core->pm_domain_id); 365 return ret; 366 } 367 368 /* 369 * zynqmp_r5_rproc_stop() 370 * @rproc: single R5 core's corresponding rproc instance 371 * 372 * Power down R5 Core. 373 * 374 * return 0 on success, otherwise non-zero value on failure 375 */ 376 static int zynqmp_r5_rproc_stop(struct rproc *rproc) 377 { 378 struct zynqmp_r5_core *r5_core = rproc->priv; 379 int ret; 380 381 ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id, 382 ZYNQMP_PM_REQUEST_ACK_BLOCKING); 383 if (ret) 384 dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret); 385 386 return ret; 387 } 388 389 /* 390 * zynqmp_r5_mem_region_map() 391 * @rproc: single R5 core's corresponding rproc instance 392 * @mem: mem descriptor to map reserved memory-regions 393 * 394 * Callback to map va for memory-region's carveout. 395 * 396 * return 0 on success, otherwise non-zero value on failure 397 */ 398 static int zynqmp_r5_mem_region_map(struct rproc *rproc, 399 struct rproc_mem_entry *mem) 400 { 401 void __iomem *va; 402 403 va = ioremap_wc(mem->dma, mem->len); 404 if (IS_ERR_OR_NULL(va)) 405 return -ENOMEM; 406 407 mem->va = (void *)va; 408 409 return 0; 410 } 411 412 /* 413 * zynqmp_r5_rproc_mem_unmap 414 * @rproc: single R5 core's corresponding rproc instance 415 * @mem: mem entry to unmap 416 * 417 * Unmap memory-region carveout 418 * 419 * return: always returns 0 420 */ 421 static int zynqmp_r5_mem_region_unmap(struct rproc *rproc, 422 struct rproc_mem_entry *mem) 423 { 424 iounmap((void __iomem *)mem->va); 425 return 0; 426 } 427 428 /* 429 * add_mem_regions_carveout() 430 * @rproc: single R5 core's corresponding rproc instance 431 * 432 * Construct rproc mem carveouts from memory-region property nodes 433 * 434 * return 0 on success, otherwise non-zero value on failure 435 */ 436 static int add_mem_regions_carveout(struct rproc *rproc) 437 { 438 struct rproc_mem_entry *rproc_mem; 439 struct zynqmp_r5_core *r5_core; 440 struct of_phandle_iterator it; 441 struct reserved_mem *rmem; 442 int i = 0; 443 444 r5_core = rproc->priv; 445 446 /* Register associated reserved memory regions */ 447 of_phandle_iterator_init(&it, r5_core->np, "memory-region", NULL, 0); 448 449 while (of_phandle_iterator_next(&it) == 0) { 450 rmem = of_reserved_mem_lookup(it.node); 451 if (!rmem) { 452 of_node_put(it.node); 453 dev_err(&rproc->dev, "unable to acquire memory-region\n"); 454 return -EINVAL; 455 } 456 457 if (!strcmp(it.node->name, "vdev0buffer")) { 458 /* Init reserved memory for vdev buffer */ 459 rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i, 460 rmem->size, 461 rmem->base, 462 it.node->name); 463 } else { 464 /* Register associated reserved memory regions */ 465 rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL, 466 (dma_addr_t)rmem->base, 467 rmem->size, rmem->base, 468 zynqmp_r5_mem_region_map, 469 zynqmp_r5_mem_region_unmap, 470 it.node->name); 471 } 472 473 if (!rproc_mem) { 474 of_node_put(it.node); 475 return -ENOMEM; 476 } 477 478 rproc_add_carveout(rproc, rproc_mem); 479 480 dev_dbg(&rproc->dev, "reserved mem carveout %s addr=%llx, size=0x%llx", 481 it.node->name, rmem->base, rmem->size); 482 i++; 483 } 484 485 return 0; 486 } 487 488 /* 489 * tcm_mem_unmap() 490 * @rproc: single R5 core's corresponding rproc instance 491 * @mem: tcm mem entry to unmap 492 * 493 * Unmap TCM banks when powering down R5 core. 494 * 495 * return always 0 496 */ 497 static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem) 498 { 499 iounmap((void __iomem *)mem->va); 500 501 return 0; 502 } 503 504 /* 505 * tcm_mem_map() 506 * @rproc: single R5 core's corresponding rproc instance 507 * @mem: tcm memory entry descriptor 508 * 509 * Given TCM bank entry, this func setup virtual address for TCM bank 510 * remoteproc carveout. It also takes care of va to da address translation 511 * 512 * return 0 on success, otherwise non-zero value on failure 513 */ 514 static int tcm_mem_map(struct rproc *rproc, 515 struct rproc_mem_entry *mem) 516 { 517 void __iomem *va; 518 519 va = ioremap_wc(mem->dma, mem->len); 520 if (IS_ERR_OR_NULL(va)) 521 return -ENOMEM; 522 523 /* Update memory entry va */ 524 mem->va = (void *)va; 525 526 /* clear TCMs */ 527 memset_io(va, 0, mem->len); 528 529 /* 530 * The R5s expect their TCM banks to be at address 0x0 and 0x2000, 531 * while on the Linux side they are at 0xffexxxxx. 532 * 533 * Zero out the high 12 bits of the address. This will give 534 * expected values for TCM Banks 0A and 0B (0x0 and 0x20000). 535 */ 536 mem->da &= 0x000fffff; 537 538 /* 539 * TCM Banks 1A and 1B still have to be translated. 540 * 541 * Below handle these two banks' absolute addresses (0xffe90000 and 542 * 0xffeb0000) and convert to the expected relative addresses 543 * (0x0 and 0x20000). 544 */ 545 if (mem->da == 0x90000 || mem->da == 0xB0000) 546 mem->da -= 0x90000; 547 548 /* if translated TCM bank address is not valid report error */ 549 if (mem->da != 0x0 && mem->da != 0x20000) { 550 dev_err(&rproc->dev, "invalid TCM address: %x\n", mem->da); 551 return -EINVAL; 552 } 553 return 0; 554 } 555 556 /* 557 * add_tcm_carveout_split_mode() 558 * @rproc: single R5 core's corresponding rproc instance 559 * 560 * allocate and add remoteproc carveout for TCM memory in split mode 561 * 562 * return 0 on success, otherwise non-zero value on failure 563 */ 564 static int add_tcm_carveout_split_mode(struct rproc *rproc) 565 { 566 struct rproc_mem_entry *rproc_mem; 567 struct zynqmp_r5_core *r5_core; 568 int i, num_banks, ret; 569 phys_addr_t bank_addr; 570 struct device *dev; 571 u32 pm_domain_id; 572 size_t bank_size; 573 char *bank_name; 574 575 r5_core = rproc->priv; 576 dev = r5_core->dev; 577 num_banks = r5_core->tcm_bank_count; 578 579 /* 580 * Power-on Each 64KB TCM, 581 * register its address space, map and unmap functions 582 * and add carveouts accordingly 583 */ 584 for (i = 0; i < num_banks; i++) { 585 bank_addr = r5_core->tcm_banks[i]->addr; 586 bank_name = r5_core->tcm_banks[i]->bank_name; 587 bank_size = r5_core->tcm_banks[i]->size; 588 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 589 590 ret = zynqmp_pm_request_node(pm_domain_id, 591 ZYNQMP_PM_CAPABILITY_ACCESS, 0, 592 ZYNQMP_PM_REQUEST_ACK_BLOCKING); 593 if (ret < 0) { 594 dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id); 595 goto release_tcm_split; 596 } 597 598 dev_dbg(dev, "TCM carveout split mode %s addr=%llx, size=0x%lx", 599 bank_name, bank_addr, bank_size); 600 601 rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr, 602 bank_size, bank_addr, 603 tcm_mem_map, tcm_mem_unmap, 604 bank_name); 605 if (!rproc_mem) { 606 ret = -ENOMEM; 607 zynqmp_pm_release_node(pm_domain_id); 608 goto release_tcm_split; 609 } 610 611 rproc_add_carveout(rproc, rproc_mem); 612 } 613 614 return 0; 615 616 release_tcm_split: 617 /* If failed, Turn off all TCM banks turned on before */ 618 for (i--; i >= 0; i--) { 619 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 620 zynqmp_pm_release_node(pm_domain_id); 621 } 622 return ret; 623 } 624 625 /* 626 * add_tcm_carveout_lockstep_mode() 627 * @rproc: single R5 core's corresponding rproc instance 628 * 629 * allocate and add remoteproc carveout for TCM memory in lockstep mode 630 * 631 * return 0 on success, otherwise non-zero value on failure 632 */ 633 static int add_tcm_carveout_lockstep_mode(struct rproc *rproc) 634 { 635 struct rproc_mem_entry *rproc_mem; 636 struct zynqmp_r5_core *r5_core; 637 int i, num_banks, ret; 638 phys_addr_t bank_addr; 639 size_t bank_size = 0; 640 struct device *dev; 641 u32 pm_domain_id; 642 char *bank_name; 643 644 r5_core = rproc->priv; 645 dev = r5_core->dev; 646 647 /* Go through zynqmp banks for r5 node */ 648 num_banks = r5_core->tcm_bank_count; 649 650 /* 651 * In lockstep mode, TCM is contiguous memory block 652 * However, each TCM block still needs to be enabled individually. 653 * So, Enable each TCM block individually, but add their size 654 * to create contiguous memory region. 655 */ 656 bank_addr = r5_core->tcm_banks[0]->addr; 657 bank_name = r5_core->tcm_banks[0]->bank_name; 658 659 for (i = 0; i < num_banks; i++) { 660 bank_size += r5_core->tcm_banks[i]->size; 661 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 662 663 /* Turn on each TCM bank individually */ 664 ret = zynqmp_pm_request_node(pm_domain_id, 665 ZYNQMP_PM_CAPABILITY_ACCESS, 0, 666 ZYNQMP_PM_REQUEST_ACK_BLOCKING); 667 if (ret < 0) { 668 dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id); 669 goto release_tcm_lockstep; 670 } 671 } 672 673 dev_dbg(dev, "TCM add carveout lockstep mode %s addr=0x%llx, size=0x%lx", 674 bank_name, bank_addr, bank_size); 675 676 /* Register TCM address range, TCM map and unmap functions */ 677 rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr, 678 bank_size, bank_addr, 679 tcm_mem_map, tcm_mem_unmap, 680 bank_name); 681 if (!rproc_mem) { 682 ret = -ENOMEM; 683 goto release_tcm_lockstep; 684 } 685 686 /* If registration is success, add carveouts */ 687 rproc_add_carveout(rproc, rproc_mem); 688 689 return 0; 690 691 release_tcm_lockstep: 692 /* If failed, Turn off all TCM banks turned on before */ 693 for (i--; i >= 0; i--) { 694 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 695 zynqmp_pm_release_node(pm_domain_id); 696 } 697 return ret; 698 } 699 700 /* 701 * add_tcm_banks() 702 * @rproc: single R5 core's corresponding rproc instance 703 * 704 * allocate and add remoteproc carveouts for TCM memory based on cluster mode 705 * 706 * return 0 on success, otherwise non-zero value on failure 707 */ 708 static int add_tcm_banks(struct rproc *rproc) 709 { 710 struct zynqmp_r5_cluster *cluster; 711 struct zynqmp_r5_core *r5_core; 712 struct device *dev; 713 714 r5_core = rproc->priv; 715 if (!r5_core) 716 return -EINVAL; 717 718 dev = r5_core->dev; 719 720 cluster = dev_get_drvdata(dev->parent); 721 if (!cluster) { 722 dev_err(dev->parent, "Invalid driver data\n"); 723 return -EINVAL; 724 } 725 726 /* 727 * In lockstep mode TCM banks are one contiguous memory region of 256Kb 728 * In split mode, each TCM bank is 64Kb and not contiguous. 729 * We add memory carveouts accordingly. 730 */ 731 if (cluster->mode == SPLIT_MODE) 732 return add_tcm_carveout_split_mode(rproc); 733 else if (cluster->mode == LOCKSTEP_MODE) 734 return add_tcm_carveout_lockstep_mode(rproc); 735 736 return -EINVAL; 737 } 738 739 /* 740 * zynqmp_r5_parse_fw() 741 * @rproc: single R5 core's corresponding rproc instance 742 * @fw: ptr to firmware to be loaded onto r5 core 743 * 744 * get resource table if available 745 * 746 * return 0 on success, otherwise non-zero value on failure 747 */ 748 static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw) 749 { 750 int ret; 751 752 ret = rproc_elf_load_rsc_table(rproc, fw); 753 if (ret == -EINVAL) { 754 /* 755 * resource table only required for IPC. 756 * if not present, this is not necessarily an error; 757 * for example, loading r5 hello world application 758 * so simply inform user and keep going. 759 */ 760 dev_info(&rproc->dev, "no resource table found.\n"); 761 ret = 0; 762 } 763 return ret; 764 } 765 766 /** 767 * zynqmp_r5_rproc_prepare() 768 * adds carveouts for TCM bank and reserved memory regions 769 * 770 * @rproc: Device node of each rproc 771 * 772 * Return: 0 for success else < 0 error code 773 */ 774 static int zynqmp_r5_rproc_prepare(struct rproc *rproc) 775 { 776 int ret; 777 778 ret = add_tcm_banks(rproc); 779 if (ret) { 780 dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret); 781 return ret; 782 } 783 784 ret = add_mem_regions_carveout(rproc); 785 if (ret) { 786 dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret); 787 return ret; 788 } 789 790 return 0; 791 } 792 793 /** 794 * zynqmp_r5_rproc_unprepare() 795 * Turns off TCM banks using power-domain id 796 * 797 * @rproc: Device node of each rproc 798 * 799 * Return: always 0 800 */ 801 static int zynqmp_r5_rproc_unprepare(struct rproc *rproc) 802 { 803 struct zynqmp_r5_core *r5_core; 804 u32 pm_domain_id; 805 int i; 806 807 r5_core = rproc->priv; 808 809 for (i = 0; i < r5_core->tcm_bank_count; i++) { 810 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 811 if (zynqmp_pm_release_node(pm_domain_id)) 812 dev_warn(r5_core->dev, 813 "can't turn off TCM bank 0x%x", pm_domain_id); 814 } 815 816 return 0; 817 } 818 819 static const struct rproc_ops zynqmp_r5_rproc_ops = { 820 .prepare = zynqmp_r5_rproc_prepare, 821 .unprepare = zynqmp_r5_rproc_unprepare, 822 .start = zynqmp_r5_rproc_start, 823 .stop = zynqmp_r5_rproc_stop, 824 .load = rproc_elf_load_segments, 825 .parse_fw = zynqmp_r5_parse_fw, 826 .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, 827 .sanity_check = rproc_elf_sanity_check, 828 .get_boot_addr = rproc_elf_get_boot_addr, 829 .kick = zynqmp_r5_rproc_kick, 830 }; 831 832 /** 833 * zynqmp_r5_add_rproc_core() 834 * Allocate and add struct rproc object for each r5f core 835 * This is called for each individual r5f core 836 * 837 * @cdev: Device node of each r5 core 838 * 839 * Return: zynqmp_r5_core object for success else error code pointer 840 */ 841 static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev) 842 { 843 struct zynqmp_r5_core *r5_core; 844 struct rproc *r5_rproc; 845 int ret; 846 847 /* Set up DMA mask */ 848 ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32)); 849 if (ret) 850 return ERR_PTR(ret); 851 852 /* Allocate remoteproc instance */ 853 r5_rproc = rproc_alloc(cdev, dev_name(cdev), 854 &zynqmp_r5_rproc_ops, 855 NULL, sizeof(struct zynqmp_r5_core)); 856 if (!r5_rproc) { 857 dev_err(cdev, "failed to allocate memory for rproc instance\n"); 858 return ERR_PTR(-ENOMEM); 859 } 860 861 r5_rproc->auto_boot = false; 862 r5_core = r5_rproc->priv; 863 r5_core->dev = cdev; 864 r5_core->np = dev_of_node(cdev); 865 if (!r5_core->np) { 866 dev_err(cdev, "can't get device node for r5 core\n"); 867 ret = -EINVAL; 868 goto free_rproc; 869 } 870 871 /* Add R5 remoteproc core */ 872 ret = rproc_add(r5_rproc); 873 if (ret) { 874 dev_err(cdev, "failed to add r5 remoteproc\n"); 875 goto free_rproc; 876 } 877 878 r5_core->rproc = r5_rproc; 879 return r5_core; 880 881 free_rproc: 882 rproc_free(r5_rproc); 883 return ERR_PTR(ret); 884 } 885 886 /** 887 * zynqmp_r5_get_tcm_node() 888 * Ideally this function should parse tcm node and store information 889 * in r5_core instance. For now, Hardcoded TCM information is used. 890 * This approach is used as TCM bindings for system-dt is being developed 891 * 892 * @cluster: pointer to zynqmp_r5_cluster type object 893 * 894 * Return: 0 for success and < 0 error code for failure. 895 */ 896 static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster) 897 { 898 struct device *dev = cluster->dev; 899 struct zynqmp_r5_core *r5_core; 900 int tcm_bank_count, tcm_node; 901 int i, j; 902 903 tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks); 904 905 /* count per core tcm banks */ 906 tcm_bank_count = tcm_bank_count / cluster->core_count; 907 908 /* 909 * r5 core 0 will use all of TCM banks in lockstep mode. 910 * In split mode, r5 core0 will use 128k and r5 core1 will use another 911 * 128k. Assign TCM banks to each core accordingly 912 */ 913 tcm_node = 0; 914 for (i = 0; i < cluster->core_count; i++) { 915 r5_core = cluster->r5_cores[i]; 916 r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count, 917 sizeof(struct mem_bank_data *), 918 GFP_KERNEL); 919 if (!r5_core->tcm_banks) 920 return -ENOMEM; 921 922 for (j = 0; j < tcm_bank_count; j++) { 923 /* 924 * Use pre-defined TCM reg values. 925 * Eventually this should be replaced by values 926 * parsed from dts. 927 */ 928 r5_core->tcm_banks[j] = 929 (struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node]; 930 tcm_node++; 931 } 932 933 r5_core->tcm_bank_count = tcm_bank_count; 934 } 935 936 return 0; 937 } 938 939 /* 940 * zynqmp_r5_core_init() 941 * Create and initialize zynqmp_r5_core type object 942 * 943 * @cluster: pointer to zynqmp_r5_cluster type object 944 * @fw_reg_val: value expected by firmware to configure RPU cluster mode 945 * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split) 946 * 947 * Return: 0 for success and error code for failure. 948 */ 949 static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster, 950 enum rpu_oper_mode fw_reg_val, 951 enum rpu_tcm_comb tcm_mode) 952 { 953 struct device *dev = cluster->dev; 954 struct zynqmp_r5_core *r5_core; 955 int ret, i; 956 957 ret = zynqmp_r5_get_tcm_node(cluster); 958 if (ret < 0) { 959 dev_err(dev, "can't get tcm node, err %d\n", ret); 960 return ret; 961 } 962 963 for (i = 0; i < cluster->core_count; i++) { 964 r5_core = cluster->r5_cores[i]; 965 966 /* Initialize r5 cores with power-domains parsed from dts */ 967 ret = of_property_read_u32_index(r5_core->np, "power-domains", 968 1, &r5_core->pm_domain_id); 969 if (ret) { 970 dev_err(dev, "failed to get power-domains property\n"); 971 return ret; 972 } 973 974 ret = zynqmp_r5_set_mode(r5_core, fw_reg_val, tcm_mode); 975 if (ret) { 976 dev_err(dev, "failed to set r5 cluster mode %d, err %d\n", 977 cluster->mode, ret); 978 return ret; 979 } 980 } 981 982 return 0; 983 } 984 985 /* 986 * zynqmp_r5_cluster_init() 987 * Create and initialize zynqmp_r5_cluster type object 988 * 989 * @cluster: pointer to zynqmp_r5_cluster type object 990 * 991 * Return: 0 for success and error code for failure. 992 */ 993 static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster) 994 { 995 enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE; 996 struct device *dev = cluster->dev; 997 struct device_node *dev_node = dev_of_node(dev); 998 struct platform_device *child_pdev; 999 struct zynqmp_r5_core **r5_cores; 1000 enum rpu_oper_mode fw_reg_val; 1001 struct device **child_devs; 1002 struct device_node *child; 1003 enum rpu_tcm_comb tcm_mode; 1004 int core_count, ret, i; 1005 struct mbox_info *ipi; 1006 1007 ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode); 1008 1009 /* 1010 * on success returns 0, if not defined then returns -EINVAL, 1011 * In that case, default is LOCKSTEP mode. Other than that 1012 * returns relative error code < 0. 1013 */ 1014 if (ret != -EINVAL && ret != 0) { 1015 dev_err(dev, "Invalid xlnx,cluster-mode property\n"); 1016 return ret; 1017 } 1018 1019 /* 1020 * For now driver only supports split mode and lockstep mode. 1021 * fail driver probe if either of that is not set in dts. 1022 */ 1023 if (cluster_mode == LOCKSTEP_MODE) { 1024 tcm_mode = PM_RPU_TCM_COMB; 1025 fw_reg_val = PM_RPU_MODE_LOCKSTEP; 1026 } else if (cluster_mode == SPLIT_MODE) { 1027 tcm_mode = PM_RPU_TCM_SPLIT; 1028 fw_reg_val = PM_RPU_MODE_SPLIT; 1029 } else { 1030 dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode); 1031 return -EINVAL; 1032 } 1033 1034 /* 1035 * Number of cores is decided by number of child nodes of 1036 * r5f subsystem node in dts. If Split mode is used in dts 1037 * 2 child nodes are expected. 1038 * In lockstep mode if two child nodes are available, 1039 * only use first child node and consider it as core0 1040 * and ignore core1 dt node. 1041 */ 1042 core_count = of_get_available_child_count(dev_node); 1043 if (core_count == 0) { 1044 dev_err(dev, "Invalid number of r5 cores %d", core_count); 1045 return -EINVAL; 1046 } else if (cluster_mode == SPLIT_MODE && core_count != 2) { 1047 dev_err(dev, "Invalid number of r5 cores for split mode\n"); 1048 return -EINVAL; 1049 } else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) { 1050 dev_warn(dev, "Only r5 core0 will be used\n"); 1051 core_count = 1; 1052 } 1053 1054 child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL); 1055 if (!child_devs) 1056 return -ENOMEM; 1057 1058 r5_cores = kcalloc(core_count, 1059 sizeof(struct zynqmp_r5_core *), GFP_KERNEL); 1060 if (!r5_cores) { 1061 kfree(child_devs); 1062 return -ENOMEM; 1063 } 1064 1065 i = 0; 1066 for_each_available_child_of_node(dev_node, child) { 1067 child_pdev = of_find_device_by_node(child); 1068 if (!child_pdev) { 1069 of_node_put(child); 1070 ret = -ENODEV; 1071 goto release_r5_cores; 1072 } 1073 1074 child_devs[i] = &child_pdev->dev; 1075 1076 /* create and add remoteproc instance of type struct rproc */ 1077 r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev); 1078 if (IS_ERR(r5_cores[i])) { 1079 of_node_put(child); 1080 ret = PTR_ERR(r5_cores[i]); 1081 r5_cores[i] = NULL; 1082 goto release_r5_cores; 1083 } 1084 1085 /* 1086 * If mailbox nodes are disabled using "status" property then 1087 * setting up mailbox channels will fail. 1088 */ 1089 ipi = zynqmp_r5_setup_mbox(&child_pdev->dev); 1090 if (ipi) { 1091 r5_cores[i]->ipi = ipi; 1092 ipi->r5_core = r5_cores[i]; 1093 } 1094 1095 /* 1096 * If two child nodes are available in dts in lockstep mode, 1097 * then ignore second child node. 1098 */ 1099 if (cluster_mode == LOCKSTEP_MODE) { 1100 of_node_put(child); 1101 break; 1102 } 1103 1104 i++; 1105 } 1106 1107 cluster->mode = cluster_mode; 1108 cluster->core_count = core_count; 1109 cluster->r5_cores = r5_cores; 1110 1111 ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode); 1112 if (ret < 0) { 1113 dev_err(dev, "failed to init r5 core err %d\n", ret); 1114 cluster->core_count = 0; 1115 cluster->r5_cores = NULL; 1116 1117 /* 1118 * at this point rproc resources for each core are allocated. 1119 * adjust index to free resources in reverse order 1120 */ 1121 i = core_count - 1; 1122 goto release_r5_cores; 1123 } 1124 1125 kfree(child_devs); 1126 return 0; 1127 1128 release_r5_cores: 1129 while (i >= 0) { 1130 put_device(child_devs[i]); 1131 if (r5_cores[i]) { 1132 zynqmp_r5_free_mbox(r5_cores[i]->ipi); 1133 of_reserved_mem_device_release(r5_cores[i]->dev); 1134 rproc_del(r5_cores[i]->rproc); 1135 rproc_free(r5_cores[i]->rproc); 1136 } 1137 i--; 1138 } 1139 kfree(r5_cores); 1140 kfree(child_devs); 1141 return ret; 1142 } 1143 1144 static void zynqmp_r5_cluster_exit(void *data) 1145 { 1146 struct platform_device *pdev = data; 1147 struct zynqmp_r5_cluster *cluster; 1148 struct zynqmp_r5_core *r5_core; 1149 int i; 1150 1151 cluster = platform_get_drvdata(pdev); 1152 if (!cluster) 1153 return; 1154 1155 for (i = 0; i < cluster->core_count; i++) { 1156 r5_core = cluster->r5_cores[i]; 1157 zynqmp_r5_free_mbox(r5_core->ipi); 1158 of_reserved_mem_device_release(r5_core->dev); 1159 put_device(r5_core->dev); 1160 rproc_del(r5_core->rproc); 1161 rproc_free(r5_core->rproc); 1162 } 1163 1164 kfree(cluster->r5_cores); 1165 kfree(cluster); 1166 platform_set_drvdata(pdev, NULL); 1167 } 1168 1169 /* 1170 * zynqmp_r5_remoteproc_probe() 1171 * parse device-tree, initialize hardware and allocate required resources 1172 * and remoteproc ops 1173 * 1174 * @pdev: domain platform device for R5 cluster 1175 * 1176 * Return: 0 for success and < 0 for failure. 1177 */ 1178 static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev) 1179 { 1180 struct zynqmp_r5_cluster *cluster; 1181 struct device *dev = &pdev->dev; 1182 int ret; 1183 1184 cluster = kzalloc(sizeof(*cluster), GFP_KERNEL); 1185 if (!cluster) 1186 return -ENOMEM; 1187 1188 cluster->dev = dev; 1189 1190 ret = devm_of_platform_populate(dev); 1191 if (ret) { 1192 dev_err_probe(dev, ret, "failed to populate platform dev\n"); 1193 kfree(cluster); 1194 return ret; 1195 } 1196 1197 /* wire in so each core can be cleaned up at driver remove */ 1198 platform_set_drvdata(pdev, cluster); 1199 1200 ret = zynqmp_r5_cluster_init(cluster); 1201 if (ret) { 1202 kfree(cluster); 1203 platform_set_drvdata(pdev, NULL); 1204 dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n"); 1205 return ret; 1206 } 1207 1208 ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev); 1209 if (ret) 1210 return ret; 1211 1212 return 0; 1213 } 1214 1215 /* Match table for OF platform binding */ 1216 static const struct of_device_id zynqmp_r5_remoteproc_match[] = { 1217 { .compatible = "xlnx,zynqmp-r5fss", }, 1218 { /* end of list */ }, 1219 }; 1220 MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match); 1221 1222 static struct platform_driver zynqmp_r5_remoteproc_driver = { 1223 .probe = zynqmp_r5_remoteproc_probe, 1224 .driver = { 1225 .name = "zynqmp_r5_remoteproc", 1226 .of_match_table = zynqmp_r5_remoteproc_match, 1227 }, 1228 }; 1229 module_platform_driver(zynqmp_r5_remoteproc_driver); 1230 1231 MODULE_DESCRIPTION("Xilinx R5F remote processor driver"); 1232 MODULE_AUTHOR("Xilinx Inc."); 1233 MODULE_LICENSE("GPL"); 1234