1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI K3 R5F (MCU) Remote Processor driver 4 * 5 * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/ 6 * Suman Anna <s-anna@ti.com> 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/mailbox_client.h> 14 #include <linux/module.h> 15 #include <linux/of_address.h> 16 #include <linux/of_device.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/omap-mailbox.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/remoteproc.h> 22 #include <linux/reset.h> 23 #include <linux/slab.h> 24 25 #include "omap_remoteproc.h" 26 #include "remoteproc_internal.h" 27 #include "ti_sci_proc.h" 28 29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */ 30 #define K3_R5_TCM_DEV_ADDR 0x41010000 31 32 /* R5 TI-SCI Processor Configuration Flags */ 33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 41 /* Available from J7200 SoCs onwards */ 42 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 43 /* Applicable to only AM64x SoCs */ 44 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 45 46 /* R5 TI-SCI Processor Control Flags */ 47 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 48 49 /* R5 TI-SCI Processor Status Flags */ 50 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 51 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 52 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 53 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 54 /* Applicable to only AM64x SoCs */ 55 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 56 57 /** 58 * struct k3_r5_mem - internal memory structure 59 * @cpu_addr: MPU virtual address of the memory region 60 * @bus_addr: Bus address used to access the memory region 61 * @dev_addr: Device address from remoteproc view 62 * @size: Size of the memory region 63 */ 64 struct k3_r5_mem { 65 void __iomem *cpu_addr; 66 phys_addr_t bus_addr; 67 u32 dev_addr; 68 size_t size; 69 }; 70 71 /* 72 * All cluster mode values are not applicable on all SoCs. The following 73 * are the modes supported on various SoCs: 74 * Split mode : AM65x, J721E, J7200 and AM64x SoCs 75 * LockStep mode : AM65x, J721E and J7200 SoCs 76 * Single-CPU mode : AM64x SoCs only 77 */ 78 enum cluster_mode { 79 CLUSTER_MODE_SPLIT = 0, 80 CLUSTER_MODE_LOCKSTEP, 81 CLUSTER_MODE_SINGLECPU, 82 }; 83 84 /** 85 * struct k3_r5_soc_data - match data to handle SoC variations 86 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes 87 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC 88 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode 89 */ 90 struct k3_r5_soc_data { 91 bool tcm_is_double; 92 bool tcm_ecc_autoinit; 93 bool single_cpu_mode; 94 }; 95 96 /** 97 * struct k3_r5_cluster - K3 R5F Cluster structure 98 * @dev: cached device pointer 99 * @mode: Mode to configure the Cluster - Split or LockStep 100 * @cores: list of R5 cores within the cluster 101 * @soc_data: SoC-specific feature data for a R5FSS 102 */ 103 struct k3_r5_cluster { 104 struct device *dev; 105 enum cluster_mode mode; 106 struct list_head cores; 107 const struct k3_r5_soc_data *soc_data; 108 }; 109 110 /** 111 * struct k3_r5_core - K3 R5 core structure 112 * @elem: linked list item 113 * @dev: cached device pointer 114 * @rproc: rproc handle representing this core 115 * @mem: internal memory regions data 116 * @sram: on-chip SRAM memory regions data 117 * @num_mems: number of internal memory regions 118 * @num_sram: number of on-chip SRAM memory regions 119 * @reset: reset control handle 120 * @tsp: TI-SCI processor control handle 121 * @ti_sci: TI-SCI handle 122 * @ti_sci_id: TI-SCI device identifier 123 * @atcm_enable: flag to control ATCM enablement 124 * @btcm_enable: flag to control BTCM enablement 125 * @loczrama: flag to dictate which TCM is at device address 0x0 126 */ 127 struct k3_r5_core { 128 struct list_head elem; 129 struct device *dev; 130 struct rproc *rproc; 131 struct k3_r5_mem *mem; 132 struct k3_r5_mem *sram; 133 int num_mems; 134 int num_sram; 135 struct reset_control *reset; 136 struct ti_sci_proc *tsp; 137 const struct ti_sci_handle *ti_sci; 138 u32 ti_sci_id; 139 u32 atcm_enable; 140 u32 btcm_enable; 141 u32 loczrama; 142 }; 143 144 /** 145 * struct k3_r5_rproc - K3 remote processor state 146 * @dev: cached device pointer 147 * @cluster: cached pointer to parent cluster structure 148 * @mbox: mailbox channel handle 149 * @client: mailbox client to request the mailbox channel 150 * @rproc: rproc handle 151 * @core: cached pointer to r5 core structure being used 152 * @rmem: reserved memory regions data 153 * @num_rmems: number of reserved memory regions 154 */ 155 struct k3_r5_rproc { 156 struct device *dev; 157 struct k3_r5_cluster *cluster; 158 struct mbox_chan *mbox; 159 struct mbox_client client; 160 struct rproc *rproc; 161 struct k3_r5_core *core; 162 struct k3_r5_mem *rmem; 163 int num_rmems; 164 }; 165 166 /** 167 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler 168 * @client: mailbox client pointer used for requesting the mailbox channel 169 * @data: mailbox payload 170 * 171 * This handler is invoked by the OMAP mailbox driver whenever a mailbox 172 * message is received. Usually, the mailbox payload simply contains 173 * the index of the virtqueue that is kicked by the remote processor, 174 * and we let remoteproc core handle it. 175 * 176 * In addition to virtqueue indices, we also have some out-of-band values 177 * that indicate different events. Those values are deliberately very 178 * large so they don't coincide with virtqueue indices. 179 */ 180 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) 181 { 182 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, 183 client); 184 struct device *dev = kproc->rproc->dev.parent; 185 const char *name = kproc->rproc->name; 186 u32 msg = omap_mbox_message(data); 187 188 dev_dbg(dev, "mbox msg: 0x%x\n", msg); 189 190 switch (msg) { 191 case RP_MBOX_CRASH: 192 /* 193 * remoteproc detected an exception, but error recovery is not 194 * supported. So, just log this for now 195 */ 196 dev_err(dev, "K3 R5F rproc %s crashed\n", name); 197 break; 198 case RP_MBOX_ECHO_REPLY: 199 dev_info(dev, "received echo reply from %s\n", name); 200 break; 201 default: 202 /* silently handle all other valid messages */ 203 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 204 return; 205 if (msg > kproc->rproc->max_notifyid) { 206 dev_dbg(dev, "dropping unknown message 0x%x", msg); 207 return; 208 } 209 /* msg contains the index of the triggered vring */ 210 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) 211 dev_dbg(dev, "no message was found in vqid %d\n", msg); 212 } 213 } 214 215 /* kick a virtqueue */ 216 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) 217 { 218 struct k3_r5_rproc *kproc = rproc->priv; 219 struct device *dev = rproc->dev.parent; 220 mbox_msg_t msg = (mbox_msg_t)vqid; 221 int ret; 222 223 /* send the index of the triggered virtqueue in the mailbox payload */ 224 ret = mbox_send_message(kproc->mbox, (void *)msg); 225 if (ret < 0) 226 dev_err(dev, "failed to send mailbox message, status = %d\n", 227 ret); 228 } 229 230 static int k3_r5_split_reset(struct k3_r5_core *core) 231 { 232 int ret; 233 234 ret = reset_control_assert(core->reset); 235 if (ret) { 236 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 237 ret); 238 return ret; 239 } 240 241 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 242 core->ti_sci_id); 243 if (ret) { 244 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 245 ret); 246 if (reset_control_deassert(core->reset)) 247 dev_warn(core->dev, "local-reset deassert back failed\n"); 248 } 249 250 return ret; 251 } 252 253 static int k3_r5_split_release(struct k3_r5_core *core) 254 { 255 int ret; 256 257 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 258 core->ti_sci_id); 259 if (ret) { 260 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 261 ret); 262 return ret; 263 } 264 265 ret = reset_control_deassert(core->reset); 266 if (ret) { 267 dev_err(core->dev, "local-reset deassert failed, ret = %d\n", 268 ret); 269 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 270 core->ti_sci_id)) 271 dev_warn(core->dev, "module-reset assert back failed\n"); 272 } 273 274 return ret; 275 } 276 277 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) 278 { 279 struct k3_r5_core *core; 280 int ret; 281 282 /* assert local reset on all applicable cores */ 283 list_for_each_entry(core, &cluster->cores, elem) { 284 ret = reset_control_assert(core->reset); 285 if (ret) { 286 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 287 ret); 288 core = list_prev_entry(core, elem); 289 goto unroll_local_reset; 290 } 291 } 292 293 /* disable PSC modules on all applicable cores */ 294 list_for_each_entry(core, &cluster->cores, elem) { 295 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 296 core->ti_sci_id); 297 if (ret) { 298 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 299 ret); 300 goto unroll_module_reset; 301 } 302 } 303 304 return 0; 305 306 unroll_module_reset: 307 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { 308 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 309 core->ti_sci_id)) 310 dev_warn(core->dev, "module-reset assert back failed\n"); 311 } 312 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 313 unroll_local_reset: 314 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 315 if (reset_control_deassert(core->reset)) 316 dev_warn(core->dev, "local-reset deassert back failed\n"); 317 } 318 319 return ret; 320 } 321 322 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) 323 { 324 struct k3_r5_core *core; 325 int ret; 326 327 /* enable PSC modules on all applicable cores */ 328 list_for_each_entry_reverse(core, &cluster->cores, elem) { 329 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 330 core->ti_sci_id); 331 if (ret) { 332 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 333 ret); 334 core = list_next_entry(core, elem); 335 goto unroll_module_reset; 336 } 337 } 338 339 /* deassert local reset on all applicable cores */ 340 list_for_each_entry_reverse(core, &cluster->cores, elem) { 341 ret = reset_control_deassert(core->reset); 342 if (ret) { 343 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 344 ret); 345 goto unroll_local_reset; 346 } 347 } 348 349 return 0; 350 351 unroll_local_reset: 352 list_for_each_entry_continue(core, &cluster->cores, elem) { 353 if (reset_control_assert(core->reset)) 354 dev_warn(core->dev, "local-reset assert back failed\n"); 355 } 356 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 357 unroll_module_reset: 358 list_for_each_entry_from(core, &cluster->cores, elem) { 359 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 360 core->ti_sci_id)) 361 dev_warn(core->dev, "module-reset assert back failed\n"); 362 } 363 364 return ret; 365 } 366 367 static inline int k3_r5_core_halt(struct k3_r5_core *core) 368 { 369 return ti_sci_proc_set_control(core->tsp, 370 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); 371 } 372 373 static inline int k3_r5_core_run(struct k3_r5_core *core) 374 { 375 return ti_sci_proc_set_control(core->tsp, 376 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); 377 } 378 379 /* 380 * The R5F cores have controls for both a reset and a halt/run. The code 381 * execution from DDR requires the initial boot-strapping code to be run 382 * from the internal TCMs. This function is used to release the resets on 383 * applicable cores to allow loading into the TCMs. The .prepare() ops is 384 * invoked by remoteproc core before any firmware loading, and is followed 385 * by the .start() ops after loading to actually let the R5 cores run. 386 * 387 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to 388 * execute code, but combines the TCMs from both cores. The resets for both 389 * cores need to be released to make this possible, as the TCMs are in general 390 * private to each core. Only Core0 needs to be unhalted for running the 391 * cluster in this mode. The function uses the same reset logic as LockStep 392 * mode for this (though the behavior is agnostic of the reset release order). 393 */ 394 static int k3_r5_rproc_prepare(struct rproc *rproc) 395 { 396 struct k3_r5_rproc *kproc = rproc->priv; 397 struct k3_r5_cluster *cluster = kproc->cluster; 398 struct k3_r5_core *core = kproc->core; 399 struct device *dev = kproc->dev; 400 u32 ctrl = 0, cfg = 0, stat = 0; 401 u64 boot_vec = 0; 402 bool mem_init_dis; 403 int ret; 404 405 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); 406 if (ret < 0) 407 return ret; 408 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); 409 410 /* Re-use LockStep-mode reset logic for Single-CPU mode */ 411 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 412 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 413 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); 414 if (ret) { 415 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", 416 ret); 417 return ret; 418 } 419 420 /* 421 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization 422 * of TCMs, so there is no need to perform the s/w memzero. This bit is 423 * configurable through System Firmware, the default value does perform 424 * auto-init, but account for it in case it is disabled 425 */ 426 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { 427 dev_dbg(dev, "leveraging h/w init for TCM memories\n"); 428 return 0; 429 } 430 431 /* 432 * Zero out both TCMs unconditionally (access from v8 Arm core is not 433 * affected by ATCM & BTCM enable configuration values) so that ECC 434 * can be effective on all TCM addresses. 435 */ 436 dev_dbg(dev, "zeroing out ATCM memory\n"); 437 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); 438 439 dev_dbg(dev, "zeroing out BTCM memory\n"); 440 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); 441 442 return 0; 443 } 444 445 /* 446 * This function implements the .unprepare() ops and performs the complimentary 447 * operations to that of the .prepare() ops. The function is used to assert the 448 * resets on all applicable cores for the rproc device (depending on LockStep 449 * or Split mode). This completes the second portion of powering down the R5F 450 * cores. The cores themselves are only halted in the .stop() ops, and the 451 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is 452 * stopped. 453 * 454 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from 455 * both cores. The access is made possible only with releasing the resets for 456 * both cores, but with only Core0 unhalted. This function re-uses the same 457 * reset assert logic as LockStep mode for this mode (though the behavior is 458 * agnostic of the reset assert order). 459 */ 460 static int k3_r5_rproc_unprepare(struct rproc *rproc) 461 { 462 struct k3_r5_rproc *kproc = rproc->priv; 463 struct k3_r5_cluster *cluster = kproc->cluster; 464 struct k3_r5_core *core = kproc->core; 465 struct device *dev = kproc->dev; 466 int ret; 467 468 /* Re-use LockStep-mode reset logic for Single-CPU mode */ 469 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 470 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 471 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); 472 if (ret) 473 dev_err(dev, "unable to disable cores, ret = %d\n", ret); 474 475 return ret; 476 } 477 478 /* 479 * The R5F start sequence includes two different operations 480 * 1. Configure the boot vector for R5F core(s) 481 * 2. Unhalt/Run the R5F core(s) 482 * 483 * The sequence is different between LockStep and Split modes. The LockStep 484 * mode requires the boot vector to be configured only for Core0, and then 485 * unhalt both the cores to start the execution - Core1 needs to be unhalted 486 * first followed by Core0. The Split-mode requires that Core0 to be maintained 487 * always in a higher power state that Core1 (implying Core1 needs to be started 488 * always only after Core0 is started). 489 * 490 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute 491 * code, so only Core0 needs to be unhalted. The function uses the same logic 492 * flow as Split-mode for this. 493 */ 494 static int k3_r5_rproc_start(struct rproc *rproc) 495 { 496 struct k3_r5_rproc *kproc = rproc->priv; 497 struct k3_r5_cluster *cluster = kproc->cluster; 498 struct mbox_client *client = &kproc->client; 499 struct device *dev = kproc->dev; 500 struct k3_r5_core *core; 501 u32 boot_addr; 502 int ret; 503 504 client->dev = dev; 505 client->tx_done = NULL; 506 client->rx_callback = k3_r5_rproc_mbox_callback; 507 client->tx_block = false; 508 client->knows_txdone = false; 509 510 kproc->mbox = mbox_request_channel(client, 0); 511 if (IS_ERR(kproc->mbox)) { 512 ret = -EBUSY; 513 dev_err(dev, "mbox_request_channel failed: %ld\n", 514 PTR_ERR(kproc->mbox)); 515 return ret; 516 } 517 518 /* 519 * Ping the remote processor, this is only for sanity-sake for now; 520 * there is no functional effect whatsoever. 521 * 522 * Note that the reply will _not_ arrive immediately: this message 523 * will wait in the mailbox fifo until the remote processor is booted. 524 */ 525 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 526 if (ret < 0) { 527 dev_err(dev, "mbox_send_message failed: %d\n", ret); 528 goto put_mbox; 529 } 530 531 boot_addr = rproc->bootaddr; 532 /* TODO: add boot_addr sanity checking */ 533 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); 534 535 /* boot vector need not be programmed for Core1 in LockStep mode */ 536 core = kproc->core; 537 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); 538 if (ret) 539 goto put_mbox; 540 541 /* unhalt/run all applicable cores */ 542 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 543 list_for_each_entry_reverse(core, &cluster->cores, elem) { 544 ret = k3_r5_core_run(core); 545 if (ret) 546 goto unroll_core_run; 547 } 548 } else { 549 ret = k3_r5_core_run(core); 550 if (ret) 551 goto put_mbox; 552 } 553 554 return 0; 555 556 unroll_core_run: 557 list_for_each_entry_continue(core, &cluster->cores, elem) { 558 if (k3_r5_core_halt(core)) 559 dev_warn(core->dev, "core halt back failed\n"); 560 } 561 put_mbox: 562 mbox_free_channel(kproc->mbox); 563 return ret; 564 } 565 566 /* 567 * The R5F stop function includes the following operations 568 * 1. Halt R5F core(s) 569 * 570 * The sequence is different between LockStep and Split modes, and the order 571 * of cores the operations are performed are also in general reverse to that 572 * of the start function. The LockStep mode requires each operation to be 573 * performed first on Core0 followed by Core1. The Split-mode requires that 574 * Core0 to be maintained always in a higher power state that Core1 (implying 575 * Core1 needs to be stopped first before Core0). 576 * 577 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute 578 * code, so only Core0 needs to be halted. The function uses the same logic 579 * flow as Split-mode for this. 580 * 581 * Note that the R5F halt operation in general is not effective when the R5F 582 * core is running, but is needed to make sure the core won't run after 583 * deasserting the reset the subsequent time. The asserting of reset can 584 * be done here, but is preferred to be done in the .unprepare() ops - this 585 * maintains the symmetric behavior between the .start(), .stop(), .prepare() 586 * and .unprepare() ops, and also balances them well between sysfs 'state' 587 * flow and device bind/unbind or module removal. 588 */ 589 static int k3_r5_rproc_stop(struct rproc *rproc) 590 { 591 struct k3_r5_rproc *kproc = rproc->priv; 592 struct k3_r5_cluster *cluster = kproc->cluster; 593 struct k3_r5_core *core = kproc->core; 594 int ret; 595 596 /* halt all applicable cores */ 597 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 598 list_for_each_entry(core, &cluster->cores, elem) { 599 ret = k3_r5_core_halt(core); 600 if (ret) { 601 core = list_prev_entry(core, elem); 602 goto unroll_core_halt; 603 } 604 } 605 } else { 606 ret = k3_r5_core_halt(core); 607 if (ret) 608 goto out; 609 } 610 611 mbox_free_channel(kproc->mbox); 612 613 return 0; 614 615 unroll_core_halt: 616 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 617 if (k3_r5_core_run(core)) 618 dev_warn(core->dev, "core run back failed\n"); 619 } 620 out: 621 return ret; 622 } 623 624 /* 625 * Internal Memory translation helper 626 * 627 * Custom function implementing the rproc .da_to_va ops to provide address 628 * translation (device address to kernel virtual address) for internal RAMs 629 * present in a DSP or IPU device). The translated addresses can be used 630 * either by the remoteproc core for loading, or by any rpmsg bus drivers. 631 */ 632 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 633 { 634 struct k3_r5_rproc *kproc = rproc->priv; 635 struct k3_r5_core *core = kproc->core; 636 void __iomem *va = NULL; 637 phys_addr_t bus_addr; 638 u32 dev_addr, offset; 639 size_t size; 640 int i; 641 642 if (len == 0) 643 return NULL; 644 645 /* handle both R5 and SoC views of ATCM and BTCM */ 646 for (i = 0; i < core->num_mems; i++) { 647 bus_addr = core->mem[i].bus_addr; 648 dev_addr = core->mem[i].dev_addr; 649 size = core->mem[i].size; 650 651 /* handle R5-view addresses of TCMs */ 652 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 653 offset = da - dev_addr; 654 va = core->mem[i].cpu_addr + offset; 655 return (__force void *)va; 656 } 657 658 /* handle SoC-view addresses of TCMs */ 659 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { 660 offset = da - bus_addr; 661 va = core->mem[i].cpu_addr + offset; 662 return (__force void *)va; 663 } 664 } 665 666 /* handle any SRAM regions using SoC-view addresses */ 667 for (i = 0; i < core->num_sram; i++) { 668 dev_addr = core->sram[i].dev_addr; 669 size = core->sram[i].size; 670 671 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 672 offset = da - dev_addr; 673 va = core->sram[i].cpu_addr + offset; 674 return (__force void *)va; 675 } 676 } 677 678 /* handle static DDR reserved memory regions */ 679 for (i = 0; i < kproc->num_rmems; i++) { 680 dev_addr = kproc->rmem[i].dev_addr; 681 size = kproc->rmem[i].size; 682 683 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 684 offset = da - dev_addr; 685 va = kproc->rmem[i].cpu_addr + offset; 686 return (__force void *)va; 687 } 688 } 689 690 return NULL; 691 } 692 693 static const struct rproc_ops k3_r5_rproc_ops = { 694 .prepare = k3_r5_rproc_prepare, 695 .unprepare = k3_r5_rproc_unprepare, 696 .start = k3_r5_rproc_start, 697 .stop = k3_r5_rproc_stop, 698 .kick = k3_r5_rproc_kick, 699 .da_to_va = k3_r5_rproc_da_to_va, 700 }; 701 702 /* 703 * Internal R5F Core configuration 704 * 705 * Each R5FSS has a cluster-level setting for configuring the processor 706 * subsystem either in a safety/fault-tolerant LockStep mode or a performance 707 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode 708 * as an alternate for LockStep mode that exercises only a single R5F core 709 * called Single-CPU mode. Each R5F core has a number of settings to either 710 * enable/disable each of the TCMs, control which TCM appears at the R5F core's 711 * address 0x0. These settings need to be configured before the resets for the 712 * corresponding core are released. These settings are all protected and managed 713 * by the System Processor. 714 * 715 * This function is used to pre-configure these settings for each R5F core, and 716 * the configuration is all done through various ti_sci_proc functions that 717 * communicate with the System Processor. The function also ensures that both 718 * the cores are halted before the .prepare() step. 719 * 720 * The function is called from k3_r5_cluster_rproc_init() and is invoked either 721 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support 722 * for LockStep-mode is dictated by an eFUSE register bit, and the config 723 * settings retrieved from DT are adjusted accordingly as per the permitted 724 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only 725 * supports a Single-CPU mode. All cluster level settings like Cluster mode and 726 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set 727 * and retrieved using Core0. 728 * 729 * The function behavior is different based on the cluster mode. The R5F cores 730 * are configured independently as per their individual settings in Split mode. 731 * They are identically configured in LockStep mode using the primary Core0 732 * settings. However, some individual settings cannot be set in LockStep mode. 733 * This is overcome by switching to Split-mode initially and then programming 734 * both the cores with the same settings, before reconfiguing again for 735 * LockStep mode. 736 */ 737 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) 738 { 739 struct k3_r5_cluster *cluster = kproc->cluster; 740 struct device *dev = kproc->dev; 741 struct k3_r5_core *core0, *core, *temp; 742 u32 ctrl = 0, cfg = 0, stat = 0; 743 u32 set_cfg = 0, clr_cfg = 0; 744 u64 boot_vec = 0; 745 bool lockstep_en; 746 bool single_cpu; 747 int ret; 748 749 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 750 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 751 cluster->mode == CLUSTER_MODE_SINGLECPU) { 752 core = core0; 753 } else { 754 core = kproc->core; 755 } 756 757 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, 758 &stat); 759 if (ret < 0) 760 return ret; 761 762 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", 763 boot_vec, cfg, ctrl, stat); 764 765 /* check if only Single-CPU mode is supported on applicable SoCs */ 766 if (cluster->soc_data->single_cpu_mode) { 767 single_cpu = 768 !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); 769 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { 770 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); 771 cluster->mode = CLUSTER_MODE_SINGLECPU; 772 } 773 goto config; 774 } 775 776 /* check conventional LockStep vs Split mode configuration */ 777 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); 778 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { 779 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); 780 cluster->mode = CLUSTER_MODE_SPLIT; 781 } 782 783 config: 784 /* always enable ARM mode and set boot vector to 0 */ 785 boot_vec = 0x0; 786 if (core == core0) { 787 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; 788 if (cluster->soc_data->single_cpu_mode) { 789 /* 790 * Single-CPU configuration bit can only be configured 791 * on Core0 and system firmware will NACK any requests 792 * with the bit configured, so program it only on 793 * permitted cores 794 */ 795 if (cluster->mode == CLUSTER_MODE_SINGLECPU) 796 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; 797 } else { 798 /* 799 * LockStep configuration bit is Read-only on Split-mode 800 * _only_ devices and system firmware will NACK any 801 * requests with the bit configured, so program it only 802 * on permitted devices 803 */ 804 if (lockstep_en) 805 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 806 } 807 } 808 809 if (core->atcm_enable) 810 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 811 else 812 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 813 814 if (core->btcm_enable) 815 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 816 else 817 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 818 819 if (core->loczrama) 820 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 821 else 822 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 823 824 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 825 /* 826 * work around system firmware limitations to make sure both 827 * cores are programmed symmetrically in LockStep. LockStep 828 * and TEINIT config is only allowed with Core0. 829 */ 830 list_for_each_entry(temp, &cluster->cores, elem) { 831 ret = k3_r5_core_halt(temp); 832 if (ret) 833 goto out; 834 835 if (temp != core) { 836 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 837 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; 838 } 839 ret = ti_sci_proc_set_config(temp->tsp, boot_vec, 840 set_cfg, clr_cfg); 841 if (ret) 842 goto out; 843 } 844 845 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 846 clr_cfg = 0; 847 ret = ti_sci_proc_set_config(core->tsp, boot_vec, 848 set_cfg, clr_cfg); 849 } else { 850 ret = k3_r5_core_halt(core); 851 if (ret) 852 goto out; 853 854 ret = ti_sci_proc_set_config(core->tsp, boot_vec, 855 set_cfg, clr_cfg); 856 } 857 858 out: 859 return ret; 860 } 861 862 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) 863 { 864 struct device *dev = kproc->dev; 865 struct device_node *np = dev_of_node(dev); 866 struct device_node *rmem_np; 867 struct reserved_mem *rmem; 868 int num_rmems; 869 int ret, i; 870 871 num_rmems = of_property_count_elems_of_size(np, "memory-region", 872 sizeof(phandle)); 873 if (num_rmems <= 0) { 874 dev_err(dev, "device does not have reserved memory regions, ret = %d\n", 875 num_rmems); 876 return -EINVAL; 877 } 878 if (num_rmems < 2) { 879 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", 880 num_rmems); 881 return -EINVAL; 882 } 883 884 /* use reserved memory region 0 for vring DMA allocations */ 885 ret = of_reserved_mem_device_init_by_idx(dev, np, 0); 886 if (ret) { 887 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", 888 ret); 889 return ret; 890 } 891 892 num_rmems--; 893 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); 894 if (!kproc->rmem) { 895 ret = -ENOMEM; 896 goto release_rmem; 897 } 898 899 /* use remaining reserved memory regions for static carveouts */ 900 for (i = 0; i < num_rmems; i++) { 901 rmem_np = of_parse_phandle(np, "memory-region", i + 1); 902 if (!rmem_np) { 903 ret = -EINVAL; 904 goto unmap_rmem; 905 } 906 907 rmem = of_reserved_mem_lookup(rmem_np); 908 if (!rmem) { 909 of_node_put(rmem_np); 910 ret = -EINVAL; 911 goto unmap_rmem; 912 } 913 of_node_put(rmem_np); 914 915 kproc->rmem[i].bus_addr = rmem->base; 916 /* 917 * R5Fs do not have an MMU, but have a Region Address Translator 918 * (RAT) module that provides a fixed entry translation between 919 * the 32-bit processor addresses to 64-bit bus addresses. The 920 * RAT is programmable only by the R5F cores. Support for RAT 921 * is currently not supported, so 64-bit address regions are not 922 * supported. The absence of MMUs implies that the R5F device 923 * addresses/supported memory regions are restricted to 32-bit 924 * bus addresses, and are identical 925 */ 926 kproc->rmem[i].dev_addr = (u32)rmem->base; 927 kproc->rmem[i].size = rmem->size; 928 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); 929 if (!kproc->rmem[i].cpu_addr) { 930 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", 931 i + 1, &rmem->base, &rmem->size); 932 ret = -ENOMEM; 933 goto unmap_rmem; 934 } 935 936 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 937 i + 1, &kproc->rmem[i].bus_addr, 938 kproc->rmem[i].size, kproc->rmem[i].cpu_addr, 939 kproc->rmem[i].dev_addr); 940 } 941 kproc->num_rmems = num_rmems; 942 943 return 0; 944 945 unmap_rmem: 946 for (i--; i >= 0; i--) 947 iounmap(kproc->rmem[i].cpu_addr); 948 kfree(kproc->rmem); 949 release_rmem: 950 of_reserved_mem_device_release(dev); 951 return ret; 952 } 953 954 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) 955 { 956 int i; 957 958 for (i = 0; i < kproc->num_rmems; i++) 959 iounmap(kproc->rmem[i].cpu_addr); 960 kfree(kproc->rmem); 961 962 of_reserved_mem_device_release(kproc->dev); 963 } 964 965 /* 966 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, 967 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both 968 * cores are usable in Split-mode, but only the Core0 TCMs can be used in 969 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by 970 * leveraging the Core1 TCMs as well in certain modes where they would have 971 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on 972 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the 973 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for 974 * the Core0 TCMs, and the dts representation reflects this increased size on 975 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only 976 * half the original size in Split mode. 977 */ 978 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc) 979 { 980 struct k3_r5_cluster *cluster = kproc->cluster; 981 struct k3_r5_core *core = kproc->core; 982 struct device *cdev = core->dev; 983 struct k3_r5_core *core0; 984 985 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 986 cluster->mode == CLUSTER_MODE_SINGLECPU || 987 !cluster->soc_data->tcm_is_double) 988 return; 989 990 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 991 if (core == core0) { 992 WARN_ON(core->mem[0].size != SZ_64K); 993 WARN_ON(core->mem[1].size != SZ_64K); 994 995 core->mem[0].size /= 2; 996 core->mem[1].size /= 2; 997 998 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", 999 core->mem[0].size, core->mem[1].size); 1000 } 1001 } 1002 1003 static int k3_r5_cluster_rproc_init(struct platform_device *pdev) 1004 { 1005 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1006 struct device *dev = &pdev->dev; 1007 struct k3_r5_rproc *kproc; 1008 struct k3_r5_core *core, *core1; 1009 struct device *cdev; 1010 const char *fw_name; 1011 struct rproc *rproc; 1012 int ret; 1013 1014 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 1015 list_for_each_entry(core, &cluster->cores, elem) { 1016 cdev = core->dev; 1017 ret = rproc_of_parse_firmware(cdev, 0, &fw_name); 1018 if (ret) { 1019 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 1020 ret); 1021 goto out; 1022 } 1023 1024 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, 1025 fw_name, sizeof(*kproc)); 1026 if (!rproc) { 1027 ret = -ENOMEM; 1028 goto out; 1029 } 1030 1031 /* K3 R5s have a Region Address Translator (RAT) but no MMU */ 1032 rproc->has_iommu = false; 1033 /* error recovery is not supported at present */ 1034 rproc->recovery_disabled = true; 1035 1036 kproc = rproc->priv; 1037 kproc->cluster = cluster; 1038 kproc->core = core; 1039 kproc->dev = cdev; 1040 kproc->rproc = rproc; 1041 core->rproc = rproc; 1042 1043 ret = k3_r5_rproc_configure(kproc); 1044 if (ret) { 1045 dev_err(dev, "initial configure failed, ret = %d\n", 1046 ret); 1047 goto err_config; 1048 } 1049 1050 k3_r5_adjust_tcm_sizes(kproc); 1051 1052 ret = k3_r5_reserved_mem_init(kproc); 1053 if (ret) { 1054 dev_err(dev, "reserved memory init failed, ret = %d\n", 1055 ret); 1056 goto err_config; 1057 } 1058 1059 ret = rproc_add(rproc); 1060 if (ret) { 1061 dev_err(dev, "rproc_add failed, ret = %d\n", ret); 1062 goto err_add; 1063 } 1064 1065 /* create only one rproc in lockstep mode or single-cpu mode */ 1066 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1067 cluster->mode == CLUSTER_MODE_SINGLECPU) 1068 break; 1069 } 1070 1071 return 0; 1072 1073 err_split: 1074 rproc_del(rproc); 1075 err_add: 1076 k3_r5_reserved_mem_exit(kproc); 1077 err_config: 1078 rproc_free(rproc); 1079 core->rproc = NULL; 1080 out: 1081 /* undo core0 upon any failures on core1 in split-mode */ 1082 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { 1083 core = list_prev_entry(core, elem); 1084 rproc = core->rproc; 1085 kproc = rproc->priv; 1086 goto err_split; 1087 } 1088 return ret; 1089 } 1090 1091 static void k3_r5_cluster_rproc_exit(void *data) 1092 { 1093 struct k3_r5_cluster *cluster = platform_get_drvdata(data); 1094 struct k3_r5_rproc *kproc; 1095 struct k3_r5_core *core; 1096 struct rproc *rproc; 1097 1098 /* 1099 * lockstep mode and single-cpu modes have only one rproc associated 1100 * with first core, whereas split-mode has two rprocs associated with 1101 * each core, and requires that core1 be powered down first 1102 */ 1103 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1104 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 1105 list_first_entry(&cluster->cores, struct k3_r5_core, elem) : 1106 list_last_entry(&cluster->cores, struct k3_r5_core, elem); 1107 1108 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 1109 rproc = core->rproc; 1110 kproc = rproc->priv; 1111 1112 rproc_del(rproc); 1113 1114 k3_r5_reserved_mem_exit(kproc); 1115 1116 rproc_free(rproc); 1117 core->rproc = NULL; 1118 } 1119 } 1120 1121 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, 1122 struct k3_r5_core *core) 1123 { 1124 static const char * const mem_names[] = {"atcm", "btcm"}; 1125 struct device *dev = &pdev->dev; 1126 struct resource *res; 1127 int num_mems; 1128 int i; 1129 1130 num_mems = ARRAY_SIZE(mem_names); 1131 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); 1132 if (!core->mem) 1133 return -ENOMEM; 1134 1135 for (i = 0; i < num_mems; i++) { 1136 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1137 mem_names[i]); 1138 if (!res) { 1139 dev_err(dev, "found no memory resource for %s\n", 1140 mem_names[i]); 1141 return -EINVAL; 1142 } 1143 if (!devm_request_mem_region(dev, res->start, 1144 resource_size(res), 1145 dev_name(dev))) { 1146 dev_err(dev, "could not request %s region for resource\n", 1147 mem_names[i]); 1148 return -EBUSY; 1149 } 1150 1151 /* 1152 * TCMs are designed in general to support RAM-like backing 1153 * memories. So, map these as Normal Non-Cached memories. This 1154 * also avoids/fixes any potential alignment faults due to 1155 * unaligned data accesses when using memcpy() or memset() 1156 * functions (normally seen with device type memory). 1157 */ 1158 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, 1159 resource_size(res)); 1160 if (!core->mem[i].cpu_addr) { 1161 dev_err(dev, "failed to map %s memory\n", mem_names[i]); 1162 return -ENOMEM; 1163 } 1164 core->mem[i].bus_addr = res->start; 1165 1166 /* 1167 * TODO: 1168 * The R5F cores can place ATCM & BTCM anywhere in its address 1169 * based on the corresponding Region Registers in the System 1170 * Control coprocessor. For now, place ATCM and BTCM at 1171 * addresses 0 and 0x41010000 (same as the bus address on AM65x 1172 * SoCs) based on loczrama setting 1173 */ 1174 if (!strcmp(mem_names[i], "atcm")) { 1175 core->mem[i].dev_addr = core->loczrama ? 1176 0 : K3_R5_TCM_DEV_ADDR; 1177 } else { 1178 core->mem[i].dev_addr = core->loczrama ? 1179 K3_R5_TCM_DEV_ADDR : 0; 1180 } 1181 core->mem[i].size = resource_size(res); 1182 1183 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1184 mem_names[i], &core->mem[i].bus_addr, 1185 core->mem[i].size, core->mem[i].cpu_addr, 1186 core->mem[i].dev_addr); 1187 } 1188 core->num_mems = num_mems; 1189 1190 return 0; 1191 } 1192 1193 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, 1194 struct k3_r5_core *core) 1195 { 1196 struct device_node *np = pdev->dev.of_node; 1197 struct device *dev = &pdev->dev; 1198 struct device_node *sram_np; 1199 struct resource res; 1200 int num_sram; 1201 int i, ret; 1202 1203 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); 1204 if (num_sram <= 0) { 1205 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", 1206 num_sram); 1207 return 0; 1208 } 1209 1210 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); 1211 if (!core->sram) 1212 return -ENOMEM; 1213 1214 for (i = 0; i < num_sram; i++) { 1215 sram_np = of_parse_phandle(np, "sram", i); 1216 if (!sram_np) 1217 return -EINVAL; 1218 1219 if (!of_device_is_available(sram_np)) { 1220 of_node_put(sram_np); 1221 return -EINVAL; 1222 } 1223 1224 ret = of_address_to_resource(sram_np, 0, &res); 1225 of_node_put(sram_np); 1226 if (ret) 1227 return -EINVAL; 1228 1229 core->sram[i].bus_addr = res.start; 1230 core->sram[i].dev_addr = res.start; 1231 core->sram[i].size = resource_size(&res); 1232 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, 1233 resource_size(&res)); 1234 if (!core->sram[i].cpu_addr) { 1235 dev_err(dev, "failed to parse and map sram%d memory at %pad\n", 1236 i, &res.start); 1237 return -ENOMEM; 1238 } 1239 1240 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1241 i, &core->sram[i].bus_addr, 1242 core->sram[i].size, core->sram[i].cpu_addr, 1243 core->sram[i].dev_addr); 1244 } 1245 core->num_sram = num_sram; 1246 1247 return 0; 1248 } 1249 1250 static 1251 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, 1252 const struct ti_sci_handle *sci) 1253 { 1254 struct ti_sci_proc *tsp; 1255 u32 temp[2]; 1256 int ret; 1257 1258 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", 1259 temp, 2); 1260 if (ret < 0) 1261 return ERR_PTR(ret); 1262 1263 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); 1264 if (!tsp) 1265 return ERR_PTR(-ENOMEM); 1266 1267 tsp->dev = dev; 1268 tsp->sci = sci; 1269 tsp->ops = &sci->ops.proc_ops; 1270 tsp->proc_id = temp[0]; 1271 tsp->host_id = temp[1]; 1272 1273 return tsp; 1274 } 1275 1276 static int k3_r5_core_of_init(struct platform_device *pdev) 1277 { 1278 struct device *dev = &pdev->dev; 1279 struct device_node *np = dev_of_node(dev); 1280 struct k3_r5_core *core; 1281 int ret; 1282 1283 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) 1284 return -ENOMEM; 1285 1286 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); 1287 if (!core) { 1288 ret = -ENOMEM; 1289 goto err; 1290 } 1291 1292 core->dev = dev; 1293 /* 1294 * Use SoC Power-on-Reset values as default if no DT properties are 1295 * used to dictate the TCM configurations 1296 */ 1297 core->atcm_enable = 0; 1298 core->btcm_enable = 1; 1299 core->loczrama = 1; 1300 1301 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); 1302 if (ret < 0 && ret != -EINVAL) { 1303 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", 1304 ret); 1305 goto err; 1306 } 1307 1308 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); 1309 if (ret < 0 && ret != -EINVAL) { 1310 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", 1311 ret); 1312 goto err; 1313 } 1314 1315 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); 1316 if (ret < 0 && ret != -EINVAL) { 1317 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); 1318 goto err; 1319 } 1320 1321 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); 1322 if (IS_ERR(core->ti_sci)) { 1323 ret = PTR_ERR(core->ti_sci); 1324 if (ret != -EPROBE_DEFER) { 1325 dev_err(dev, "failed to get ti-sci handle, ret = %d\n", 1326 ret); 1327 } 1328 core->ti_sci = NULL; 1329 goto err; 1330 } 1331 1332 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); 1333 if (ret) { 1334 dev_err(dev, "missing 'ti,sci-dev-id' property\n"); 1335 goto err; 1336 } 1337 1338 core->reset = devm_reset_control_get_exclusive(dev, NULL); 1339 if (IS_ERR_OR_NULL(core->reset)) { 1340 ret = PTR_ERR_OR_ZERO(core->reset); 1341 if (!ret) 1342 ret = -ENODEV; 1343 if (ret != -EPROBE_DEFER) { 1344 dev_err(dev, "failed to get reset handle, ret = %d\n", 1345 ret); 1346 } 1347 goto err; 1348 } 1349 1350 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); 1351 if (IS_ERR(core->tsp)) { 1352 ret = PTR_ERR(core->tsp); 1353 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", 1354 ret); 1355 goto err; 1356 } 1357 1358 ret = k3_r5_core_of_get_internal_memories(pdev, core); 1359 if (ret) { 1360 dev_err(dev, "failed to get internal memories, ret = %d\n", 1361 ret); 1362 goto err; 1363 } 1364 1365 ret = k3_r5_core_of_get_sram_memories(pdev, core); 1366 if (ret) { 1367 dev_err(dev, "failed to get sram memories, ret = %d\n", ret); 1368 goto err; 1369 } 1370 1371 ret = ti_sci_proc_request(core->tsp); 1372 if (ret < 0) { 1373 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); 1374 goto err; 1375 } 1376 1377 platform_set_drvdata(pdev, core); 1378 devres_close_group(dev, k3_r5_core_of_init); 1379 1380 return 0; 1381 1382 err: 1383 devres_release_group(dev, k3_r5_core_of_init); 1384 return ret; 1385 } 1386 1387 /* 1388 * free the resources explicitly since driver model is not being used 1389 * for the child R5F devices 1390 */ 1391 static void k3_r5_core_of_exit(struct platform_device *pdev) 1392 { 1393 struct k3_r5_core *core = platform_get_drvdata(pdev); 1394 struct device *dev = &pdev->dev; 1395 int ret; 1396 1397 ret = ti_sci_proc_release(core->tsp); 1398 if (ret) 1399 dev_err(dev, "failed to release proc, ret = %d\n", ret); 1400 1401 platform_set_drvdata(pdev, NULL); 1402 devres_release_group(dev, k3_r5_core_of_init); 1403 } 1404 1405 static void k3_r5_cluster_of_exit(void *data) 1406 { 1407 struct k3_r5_cluster *cluster = platform_get_drvdata(data); 1408 struct platform_device *cpdev; 1409 struct k3_r5_core *core, *temp; 1410 1411 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { 1412 list_del(&core->elem); 1413 cpdev = to_platform_device(core->dev); 1414 k3_r5_core_of_exit(cpdev); 1415 } 1416 } 1417 1418 static int k3_r5_cluster_of_init(struct platform_device *pdev) 1419 { 1420 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1421 struct device *dev = &pdev->dev; 1422 struct device_node *np = dev_of_node(dev); 1423 struct platform_device *cpdev; 1424 struct device_node *child; 1425 struct k3_r5_core *core; 1426 int ret; 1427 1428 for_each_available_child_of_node(np, child) { 1429 cpdev = of_find_device_by_node(child); 1430 if (!cpdev) { 1431 ret = -ENODEV; 1432 dev_err(dev, "could not get R5 core platform device\n"); 1433 goto fail; 1434 } 1435 1436 ret = k3_r5_core_of_init(cpdev); 1437 if (ret) { 1438 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", 1439 ret); 1440 put_device(&cpdev->dev); 1441 goto fail; 1442 } 1443 1444 core = platform_get_drvdata(cpdev); 1445 put_device(&cpdev->dev); 1446 list_add_tail(&core->elem, &cluster->cores); 1447 } 1448 1449 return 0; 1450 1451 fail: 1452 k3_r5_cluster_of_exit(pdev); 1453 return ret; 1454 } 1455 1456 static int k3_r5_probe(struct platform_device *pdev) 1457 { 1458 struct device *dev = &pdev->dev; 1459 struct device_node *np = dev_of_node(dev); 1460 struct k3_r5_cluster *cluster; 1461 const struct k3_r5_soc_data *data; 1462 int ret; 1463 int num_cores; 1464 1465 data = of_device_get_match_data(&pdev->dev); 1466 if (!data) { 1467 dev_err(dev, "SoC-specific data is not defined\n"); 1468 return -ENODEV; 1469 } 1470 1471 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); 1472 if (!cluster) 1473 return -ENOMEM; 1474 1475 cluster->dev = dev; 1476 /* 1477 * default to most common efuse configurations - Split-mode on AM64x 1478 * and LockStep-mode on all others 1479 */ 1480 cluster->mode = data->single_cpu_mode ? 1481 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; 1482 cluster->soc_data = data; 1483 INIT_LIST_HEAD(&cluster->cores); 1484 1485 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); 1486 if (ret < 0 && ret != -EINVAL) { 1487 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", 1488 ret); 1489 return ret; 1490 } 1491 1492 num_cores = of_get_available_child_count(np); 1493 if (num_cores != 2) { 1494 dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n", 1495 num_cores); 1496 return -ENODEV; 1497 } 1498 1499 platform_set_drvdata(pdev, cluster); 1500 1501 ret = devm_of_platform_populate(dev); 1502 if (ret) { 1503 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", 1504 ret); 1505 return ret; 1506 } 1507 1508 ret = k3_r5_cluster_of_init(pdev); 1509 if (ret) { 1510 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); 1511 return ret; 1512 } 1513 1514 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); 1515 if (ret) 1516 return ret; 1517 1518 ret = k3_r5_cluster_rproc_init(pdev); 1519 if (ret) { 1520 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", 1521 ret); 1522 return ret; 1523 } 1524 1525 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); 1526 if (ret) 1527 return ret; 1528 1529 return 0; 1530 } 1531 1532 static const struct k3_r5_soc_data am65_j721e_soc_data = { 1533 .tcm_is_double = false, 1534 .tcm_ecc_autoinit = false, 1535 .single_cpu_mode = false, 1536 }; 1537 1538 static const struct k3_r5_soc_data j7200_j721s2_soc_data = { 1539 .tcm_is_double = true, 1540 .tcm_ecc_autoinit = true, 1541 .single_cpu_mode = false, 1542 }; 1543 1544 static const struct k3_r5_soc_data am64_soc_data = { 1545 .tcm_is_double = true, 1546 .tcm_ecc_autoinit = true, 1547 .single_cpu_mode = true, 1548 }; 1549 1550 static const struct of_device_id k3_r5_of_match[] = { 1551 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, 1552 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, 1553 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, 1554 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, 1555 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, 1556 { /* sentinel */ }, 1557 }; 1558 MODULE_DEVICE_TABLE(of, k3_r5_of_match); 1559 1560 static struct platform_driver k3_r5_rproc_driver = { 1561 .probe = k3_r5_probe, 1562 .driver = { 1563 .name = "k3_r5_rproc", 1564 .of_match_table = k3_r5_of_match, 1565 }, 1566 }; 1567 1568 module_platform_driver(k3_r5_rproc_driver); 1569 1570 MODULE_LICENSE("GPL v2"); 1571 MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); 1572 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 1573