1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI K3 R5F (MCU) Remote Processor driver 4 * 5 * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/ 6 * Suman Anna <s-anna@ti.com> 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/mailbox_client.h> 14 #include <linux/module.h> 15 #include <linux/of_address.h> 16 #include <linux/of_device.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/omap-mailbox.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/remoteproc.h> 22 #include <linux/reset.h> 23 #include <linux/slab.h> 24 25 #include "omap_remoteproc.h" 26 #include "remoteproc_internal.h" 27 #include "ti_sci_proc.h" 28 29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */ 30 #define K3_R5_TCM_DEV_ADDR 0x41010000 31 32 /* R5 TI-SCI Processor Configuration Flags */ 33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 41 42 /* R5 TI-SCI Processor Control Flags */ 43 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 44 45 /* R5 TI-SCI Processor Status Flags */ 46 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 47 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 48 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 49 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 50 51 /** 52 * struct k3_r5_mem - internal memory structure 53 * @cpu_addr: MPU virtual address of the memory region 54 * @bus_addr: Bus address used to access the memory region 55 * @dev_addr: Device address from remoteproc view 56 * @size: Size of the memory region 57 */ 58 struct k3_r5_mem { 59 void __iomem *cpu_addr; 60 phys_addr_t bus_addr; 61 u32 dev_addr; 62 size_t size; 63 }; 64 65 enum cluster_mode { 66 CLUSTER_MODE_SPLIT = 0, 67 CLUSTER_MODE_LOCKSTEP, 68 }; 69 70 /** 71 * struct k3_r5_cluster - K3 R5F Cluster structure 72 * @dev: cached device pointer 73 * @mode: Mode to configure the Cluster - Split or LockStep 74 * @cores: list of R5 cores within the cluster 75 */ 76 struct k3_r5_cluster { 77 struct device *dev; 78 enum cluster_mode mode; 79 struct list_head cores; 80 }; 81 82 /** 83 * struct k3_r5_core - K3 R5 core structure 84 * @elem: linked list item 85 * @dev: cached device pointer 86 * @rproc: rproc handle representing this core 87 * @mem: internal memory regions data 88 * @sram: on-chip SRAM memory regions data 89 * @num_mems: number of internal memory regions 90 * @num_sram: number of on-chip SRAM memory regions 91 * @reset: reset control handle 92 * @tsp: TI-SCI processor control handle 93 * @ti_sci: TI-SCI handle 94 * @ti_sci_id: TI-SCI device identifier 95 * @atcm_enable: flag to control ATCM enablement 96 * @btcm_enable: flag to control BTCM enablement 97 * @loczrama: flag to dictate which TCM is at device address 0x0 98 */ 99 struct k3_r5_core { 100 struct list_head elem; 101 struct device *dev; 102 struct rproc *rproc; 103 struct k3_r5_mem *mem; 104 struct k3_r5_mem *sram; 105 int num_mems; 106 int num_sram; 107 struct reset_control *reset; 108 struct ti_sci_proc *tsp; 109 const struct ti_sci_handle *ti_sci; 110 u32 ti_sci_id; 111 u32 atcm_enable; 112 u32 btcm_enable; 113 u32 loczrama; 114 }; 115 116 /** 117 * struct k3_r5_rproc - K3 remote processor state 118 * @dev: cached device pointer 119 * @cluster: cached pointer to parent cluster structure 120 * @mbox: mailbox channel handle 121 * @client: mailbox client to request the mailbox channel 122 * @rproc: rproc handle 123 * @core: cached pointer to r5 core structure being used 124 * @rmem: reserved memory regions data 125 * @num_rmems: number of reserved memory regions 126 */ 127 struct k3_r5_rproc { 128 struct device *dev; 129 struct k3_r5_cluster *cluster; 130 struct mbox_chan *mbox; 131 struct mbox_client client; 132 struct rproc *rproc; 133 struct k3_r5_core *core; 134 struct k3_r5_mem *rmem; 135 int num_rmems; 136 }; 137 138 /** 139 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler 140 * @client: mailbox client pointer used for requesting the mailbox channel 141 * @data: mailbox payload 142 * 143 * This handler is invoked by the OMAP mailbox driver whenever a mailbox 144 * message is received. Usually, the mailbox payload simply contains 145 * the index of the virtqueue that is kicked by the remote processor, 146 * and we let remoteproc core handle it. 147 * 148 * In addition to virtqueue indices, we also have some out-of-band values 149 * that indicate different events. Those values are deliberately very 150 * large so they don't coincide with virtqueue indices. 151 */ 152 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) 153 { 154 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, 155 client); 156 struct device *dev = kproc->rproc->dev.parent; 157 const char *name = kproc->rproc->name; 158 u32 msg = omap_mbox_message(data); 159 160 dev_dbg(dev, "mbox msg: 0x%x\n", msg); 161 162 switch (msg) { 163 case RP_MBOX_CRASH: 164 /* 165 * remoteproc detected an exception, but error recovery is not 166 * supported. So, just log this for now 167 */ 168 dev_err(dev, "K3 R5F rproc %s crashed\n", name); 169 break; 170 case RP_MBOX_ECHO_REPLY: 171 dev_info(dev, "received echo reply from %s\n", name); 172 break; 173 default: 174 /* silently handle all other valid messages */ 175 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 176 return; 177 if (msg > kproc->rproc->max_notifyid) { 178 dev_dbg(dev, "dropping unknown message 0x%x", msg); 179 return; 180 } 181 /* msg contains the index of the triggered vring */ 182 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) 183 dev_dbg(dev, "no message was found in vqid %d\n", msg); 184 } 185 } 186 187 /* kick a virtqueue */ 188 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) 189 { 190 struct k3_r5_rproc *kproc = rproc->priv; 191 struct device *dev = rproc->dev.parent; 192 mbox_msg_t msg = (mbox_msg_t)vqid; 193 int ret; 194 195 /* send the index of the triggered virtqueue in the mailbox payload */ 196 ret = mbox_send_message(kproc->mbox, (void *)msg); 197 if (ret < 0) 198 dev_err(dev, "failed to send mailbox message, status = %d\n", 199 ret); 200 } 201 202 static int k3_r5_split_reset(struct k3_r5_core *core) 203 { 204 int ret; 205 206 ret = reset_control_assert(core->reset); 207 if (ret) { 208 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 209 ret); 210 return ret; 211 } 212 213 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 214 core->ti_sci_id); 215 if (ret) { 216 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 217 ret); 218 if (reset_control_deassert(core->reset)) 219 dev_warn(core->dev, "local-reset deassert back failed\n"); 220 } 221 222 return ret; 223 } 224 225 static int k3_r5_split_release(struct k3_r5_core *core) 226 { 227 int ret; 228 229 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 230 core->ti_sci_id); 231 if (ret) { 232 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 233 ret); 234 return ret; 235 } 236 237 ret = reset_control_deassert(core->reset); 238 if (ret) { 239 dev_err(core->dev, "local-reset deassert failed, ret = %d\n", 240 ret); 241 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 242 core->ti_sci_id)) 243 dev_warn(core->dev, "module-reset assert back failed\n"); 244 } 245 246 return ret; 247 } 248 249 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) 250 { 251 struct k3_r5_core *core; 252 int ret; 253 254 /* assert local reset on all applicable cores */ 255 list_for_each_entry(core, &cluster->cores, elem) { 256 ret = reset_control_assert(core->reset); 257 if (ret) { 258 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 259 ret); 260 core = list_prev_entry(core, elem); 261 goto unroll_local_reset; 262 } 263 } 264 265 /* disable PSC modules on all applicable cores */ 266 list_for_each_entry(core, &cluster->cores, elem) { 267 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 268 core->ti_sci_id); 269 if (ret) { 270 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 271 ret); 272 goto unroll_module_reset; 273 } 274 } 275 276 return 0; 277 278 unroll_module_reset: 279 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { 280 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 281 core->ti_sci_id)) 282 dev_warn(core->dev, "module-reset assert back failed\n"); 283 } 284 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 285 unroll_local_reset: 286 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 287 if (reset_control_deassert(core->reset)) 288 dev_warn(core->dev, "local-reset deassert back failed\n"); 289 } 290 291 return ret; 292 } 293 294 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) 295 { 296 struct k3_r5_core *core; 297 int ret; 298 299 /* enable PSC modules on all applicable cores */ 300 list_for_each_entry_reverse(core, &cluster->cores, elem) { 301 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 302 core->ti_sci_id); 303 if (ret) { 304 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 305 ret); 306 core = list_next_entry(core, elem); 307 goto unroll_module_reset; 308 } 309 } 310 311 /* deassert local reset on all applicable cores */ 312 list_for_each_entry_reverse(core, &cluster->cores, elem) { 313 ret = reset_control_deassert(core->reset); 314 if (ret) { 315 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 316 ret); 317 goto unroll_local_reset; 318 } 319 } 320 321 return 0; 322 323 unroll_local_reset: 324 list_for_each_entry_continue(core, &cluster->cores, elem) { 325 if (reset_control_assert(core->reset)) 326 dev_warn(core->dev, "local-reset assert back failed\n"); 327 } 328 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 329 unroll_module_reset: 330 list_for_each_entry_from(core, &cluster->cores, elem) { 331 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 332 core->ti_sci_id)) 333 dev_warn(core->dev, "module-reset assert back failed\n"); 334 } 335 336 return ret; 337 } 338 339 static inline int k3_r5_core_halt(struct k3_r5_core *core) 340 { 341 return ti_sci_proc_set_control(core->tsp, 342 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); 343 } 344 345 static inline int k3_r5_core_run(struct k3_r5_core *core) 346 { 347 return ti_sci_proc_set_control(core->tsp, 348 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); 349 } 350 351 /* 352 * The R5F cores have controls for both a reset and a halt/run. The code 353 * execution from DDR requires the initial boot-strapping code to be run 354 * from the internal TCMs. This function is used to release the resets on 355 * applicable cores to allow loading into the TCMs. The .prepare() ops is 356 * invoked by remoteproc core before any firmware loading, and is followed 357 * by the .start() ops after loading to actually let the R5 cores run. 358 */ 359 static int k3_r5_rproc_prepare(struct rproc *rproc) 360 { 361 struct k3_r5_rproc *kproc = rproc->priv; 362 struct k3_r5_cluster *cluster = kproc->cluster; 363 struct k3_r5_core *core = kproc->core; 364 struct device *dev = kproc->dev; 365 int ret; 366 367 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? 368 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); 369 if (ret) { 370 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", 371 ret); 372 return ret; 373 } 374 375 /* 376 * Zero out both TCMs unconditionally (access from v8 Arm core is not 377 * affected by ATCM & BTCM enable configuration values) so that ECC 378 * can be effective on all TCM addresses. 379 */ 380 dev_dbg(dev, "zeroing out ATCM memory\n"); 381 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); 382 383 dev_dbg(dev, "zeroing out BTCM memory\n"); 384 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); 385 386 return 0; 387 } 388 389 /* 390 * This function implements the .unprepare() ops and performs the complimentary 391 * operations to that of the .prepare() ops. The function is used to assert the 392 * resets on all applicable cores for the rproc device (depending on LockStep 393 * or Split mode). This completes the second portion of powering down the R5F 394 * cores. The cores themselves are only halted in the .stop() ops, and the 395 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is 396 * stopped. 397 */ 398 static int k3_r5_rproc_unprepare(struct rproc *rproc) 399 { 400 struct k3_r5_rproc *kproc = rproc->priv; 401 struct k3_r5_cluster *cluster = kproc->cluster; 402 struct k3_r5_core *core = kproc->core; 403 struct device *dev = kproc->dev; 404 int ret; 405 406 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? 407 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); 408 if (ret) 409 dev_err(dev, "unable to disable cores, ret = %d\n", ret); 410 411 return ret; 412 } 413 414 /* 415 * The R5F start sequence includes two different operations 416 * 1. Configure the boot vector for R5F core(s) 417 * 2. Unhalt/Run the R5F core(s) 418 * 419 * The sequence is different between LockStep and Split modes. The LockStep 420 * mode requires the boot vector to be configured only for Core0, and then 421 * unhalt both the cores to start the execution - Core1 needs to be unhalted 422 * first followed by Core0. The Split-mode requires that Core0 to be maintained 423 * always in a higher power state that Core1 (implying Core1 needs to be started 424 * always only after Core0 is started). 425 */ 426 static int k3_r5_rproc_start(struct rproc *rproc) 427 { 428 struct k3_r5_rproc *kproc = rproc->priv; 429 struct k3_r5_cluster *cluster = kproc->cluster; 430 struct mbox_client *client = &kproc->client; 431 struct device *dev = kproc->dev; 432 struct k3_r5_core *core; 433 u32 boot_addr; 434 int ret; 435 436 client->dev = dev; 437 client->tx_done = NULL; 438 client->rx_callback = k3_r5_rproc_mbox_callback; 439 client->tx_block = false; 440 client->knows_txdone = false; 441 442 kproc->mbox = mbox_request_channel(client, 0); 443 if (IS_ERR(kproc->mbox)) { 444 ret = -EBUSY; 445 dev_err(dev, "mbox_request_channel failed: %ld\n", 446 PTR_ERR(kproc->mbox)); 447 return ret; 448 } 449 450 /* 451 * Ping the remote processor, this is only for sanity-sake for now; 452 * there is no functional effect whatsoever. 453 * 454 * Note that the reply will _not_ arrive immediately: this message 455 * will wait in the mailbox fifo until the remote processor is booted. 456 */ 457 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 458 if (ret < 0) { 459 dev_err(dev, "mbox_send_message failed: %d\n", ret); 460 goto put_mbox; 461 } 462 463 boot_addr = rproc->bootaddr; 464 /* TODO: add boot_addr sanity checking */ 465 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); 466 467 /* boot vector need not be programmed for Core1 in LockStep mode */ 468 core = kproc->core; 469 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); 470 if (ret) 471 goto put_mbox; 472 473 /* unhalt/run all applicable cores */ 474 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 475 list_for_each_entry_reverse(core, &cluster->cores, elem) { 476 ret = k3_r5_core_run(core); 477 if (ret) 478 goto unroll_core_run; 479 } 480 } else { 481 ret = k3_r5_core_run(core); 482 if (ret) 483 goto put_mbox; 484 } 485 486 return 0; 487 488 unroll_core_run: 489 list_for_each_entry_continue(core, &cluster->cores, elem) { 490 if (k3_r5_core_halt(core)) 491 dev_warn(core->dev, "core halt back failed\n"); 492 } 493 put_mbox: 494 mbox_free_channel(kproc->mbox); 495 return ret; 496 } 497 498 /* 499 * The R5F stop function includes the following operations 500 * 1. Halt R5F core(s) 501 * 502 * The sequence is different between LockStep and Split modes, and the order 503 * of cores the operations are performed are also in general reverse to that 504 * of the start function. The LockStep mode requires each operation to be 505 * performed first on Core0 followed by Core1. The Split-mode requires that 506 * Core0 to be maintained always in a higher power state that Core1 (implying 507 * Core1 needs to be stopped first before Core0). 508 * 509 * Note that the R5F halt operation in general is not effective when the R5F 510 * core is running, but is needed to make sure the core won't run after 511 * deasserting the reset the subsequent time. The asserting of reset can 512 * be done here, but is preferred to be done in the .unprepare() ops - this 513 * maintains the symmetric behavior between the .start(), .stop(), .prepare() 514 * and .unprepare() ops, and also balances them well between sysfs 'state' 515 * flow and device bind/unbind or module removal. 516 */ 517 static int k3_r5_rproc_stop(struct rproc *rproc) 518 { 519 struct k3_r5_rproc *kproc = rproc->priv; 520 struct k3_r5_cluster *cluster = kproc->cluster; 521 struct k3_r5_core *core = kproc->core; 522 int ret; 523 524 /* halt all applicable cores */ 525 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 526 list_for_each_entry(core, &cluster->cores, elem) { 527 ret = k3_r5_core_halt(core); 528 if (ret) { 529 core = list_prev_entry(core, elem); 530 goto unroll_core_halt; 531 } 532 } 533 } else { 534 ret = k3_r5_core_halt(core); 535 if (ret) 536 goto out; 537 } 538 539 mbox_free_channel(kproc->mbox); 540 541 return 0; 542 543 unroll_core_halt: 544 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 545 if (k3_r5_core_run(core)) 546 dev_warn(core->dev, "core run back failed\n"); 547 } 548 out: 549 return ret; 550 } 551 552 /* 553 * Internal Memory translation helper 554 * 555 * Custom function implementing the rproc .da_to_va ops to provide address 556 * translation (device address to kernel virtual address) for internal RAMs 557 * present in a DSP or IPU device). The translated addresses can be used 558 * either by the remoteproc core for loading, or by any rpmsg bus drivers. 559 */ 560 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 561 { 562 struct k3_r5_rproc *kproc = rproc->priv; 563 struct k3_r5_core *core = kproc->core; 564 void __iomem *va = NULL; 565 phys_addr_t bus_addr; 566 u32 dev_addr, offset; 567 size_t size; 568 int i; 569 570 if (len == 0) 571 return NULL; 572 573 /* handle both R5 and SoC views of ATCM and BTCM */ 574 for (i = 0; i < core->num_mems; i++) { 575 bus_addr = core->mem[i].bus_addr; 576 dev_addr = core->mem[i].dev_addr; 577 size = core->mem[i].size; 578 579 /* handle R5-view addresses of TCMs */ 580 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 581 offset = da - dev_addr; 582 va = core->mem[i].cpu_addr + offset; 583 return (__force void *)va; 584 } 585 586 /* handle SoC-view addresses of TCMs */ 587 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { 588 offset = da - bus_addr; 589 va = core->mem[i].cpu_addr + offset; 590 return (__force void *)va; 591 } 592 } 593 594 /* handle any SRAM regions using SoC-view addresses */ 595 for (i = 0; i < core->num_sram; i++) { 596 dev_addr = core->sram[i].dev_addr; 597 size = core->sram[i].size; 598 599 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 600 offset = da - dev_addr; 601 va = core->sram[i].cpu_addr + offset; 602 return (__force void *)va; 603 } 604 } 605 606 /* handle static DDR reserved memory regions */ 607 for (i = 0; i < kproc->num_rmems; i++) { 608 dev_addr = kproc->rmem[i].dev_addr; 609 size = kproc->rmem[i].size; 610 611 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 612 offset = da - dev_addr; 613 va = kproc->rmem[i].cpu_addr + offset; 614 return (__force void *)va; 615 } 616 } 617 618 return NULL; 619 } 620 621 static const struct rproc_ops k3_r5_rproc_ops = { 622 .prepare = k3_r5_rproc_prepare, 623 .unprepare = k3_r5_rproc_unprepare, 624 .start = k3_r5_rproc_start, 625 .stop = k3_r5_rproc_stop, 626 .kick = k3_r5_rproc_kick, 627 .da_to_va = k3_r5_rproc_da_to_va, 628 }; 629 630 /* 631 * Internal R5F Core configuration 632 * 633 * Each R5FSS has a cluster-level setting for configuring the processor 634 * subsystem either in a safety/fault-tolerant LockStep mode or a performance 635 * oriented Split mode. Each R5F core has a number of settings to either 636 * enable/disable each of the TCMs, control which TCM appears at the R5F core's 637 * address 0x0. These settings need to be configured before the resets for the 638 * corresponding core are released. These settings are all protected and managed 639 * by the System Processor. 640 * 641 * This function is used to pre-configure these settings for each R5F core, and 642 * the configuration is all done through various ti_sci_proc functions that 643 * communicate with the System Processor. The function also ensures that both 644 * the cores are halted before the .prepare() step. 645 * 646 * The function is called from k3_r5_cluster_rproc_init() and is invoked either 647 * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode 648 * is dictated by an eFUSE register bit, and the config settings retrieved from 649 * DT are adjusted accordingly as per the permitted cluster mode. All cluster 650 * level settings like Cluster mode and TEINIT (exception handling state 651 * dictating ARM or Thumb mode) can only be set and retrieved using Core0. 652 * 653 * The function behavior is different based on the cluster mode. The R5F cores 654 * are configured independently as per their individual settings in Split mode. 655 * They are identically configured in LockStep mode using the primary Core0 656 * settings. However, some individual settings cannot be set in LockStep mode. 657 * This is overcome by switching to Split-mode initially and then programming 658 * both the cores with the same settings, before reconfiguing again for 659 * LockStep mode. 660 */ 661 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) 662 { 663 struct k3_r5_cluster *cluster = kproc->cluster; 664 struct device *dev = kproc->dev; 665 struct k3_r5_core *core0, *core, *temp; 666 u32 ctrl = 0, cfg = 0, stat = 0; 667 u32 set_cfg = 0, clr_cfg = 0; 668 u64 boot_vec = 0; 669 bool lockstep_en; 670 int ret; 671 672 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 673 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core; 674 675 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, 676 &stat); 677 if (ret < 0) 678 return ret; 679 680 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", 681 boot_vec, cfg, ctrl, stat); 682 683 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); 684 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { 685 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); 686 cluster->mode = CLUSTER_MODE_SPLIT; 687 } 688 689 /* always enable ARM mode and set boot vector to 0 */ 690 boot_vec = 0x0; 691 if (core == core0) { 692 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; 693 /* 694 * LockStep configuration bit is Read-only on Split-mode _only_ 695 * devices and system firmware will NACK any requests with the 696 * bit configured, so program it only on permitted devices 697 */ 698 if (lockstep_en) 699 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 700 } 701 702 if (core->atcm_enable) 703 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 704 else 705 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 706 707 if (core->btcm_enable) 708 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 709 else 710 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 711 712 if (core->loczrama) 713 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 714 else 715 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 716 717 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 718 /* 719 * work around system firmware limitations to make sure both 720 * cores are programmed symmetrically in LockStep. LockStep 721 * and TEINIT config is only allowed with Core0. 722 */ 723 list_for_each_entry(temp, &cluster->cores, elem) { 724 ret = k3_r5_core_halt(temp); 725 if (ret) 726 goto out; 727 728 if (temp != core) { 729 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 730 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; 731 } 732 ret = ti_sci_proc_set_config(temp->tsp, boot_vec, 733 set_cfg, clr_cfg); 734 if (ret) 735 goto out; 736 } 737 738 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 739 clr_cfg = 0; 740 ret = ti_sci_proc_set_config(core->tsp, boot_vec, 741 set_cfg, clr_cfg); 742 } else { 743 ret = k3_r5_core_halt(core); 744 if (ret) 745 goto out; 746 747 ret = ti_sci_proc_set_config(core->tsp, boot_vec, 748 set_cfg, clr_cfg); 749 } 750 751 out: 752 return ret; 753 } 754 755 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) 756 { 757 struct device *dev = kproc->dev; 758 struct device_node *np = dev_of_node(dev); 759 struct device_node *rmem_np; 760 struct reserved_mem *rmem; 761 int num_rmems; 762 int ret, i; 763 764 num_rmems = of_property_count_elems_of_size(np, "memory-region", 765 sizeof(phandle)); 766 if (num_rmems <= 0) { 767 dev_err(dev, "device does not have reserved memory regions, ret = %d\n", 768 num_rmems); 769 return -EINVAL; 770 } 771 if (num_rmems < 2) { 772 dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n", 773 num_rmems); 774 return -EINVAL; 775 } 776 777 /* use reserved memory region 0 for vring DMA allocations */ 778 ret = of_reserved_mem_device_init_by_idx(dev, np, 0); 779 if (ret) { 780 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", 781 ret); 782 return ret; 783 } 784 785 num_rmems--; 786 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); 787 if (!kproc->rmem) { 788 ret = -ENOMEM; 789 goto release_rmem; 790 } 791 792 /* use remaining reserved memory regions for static carveouts */ 793 for (i = 0; i < num_rmems; i++) { 794 rmem_np = of_parse_phandle(np, "memory-region", i + 1); 795 if (!rmem_np) { 796 ret = -EINVAL; 797 goto unmap_rmem; 798 } 799 800 rmem = of_reserved_mem_lookup(rmem_np); 801 if (!rmem) { 802 of_node_put(rmem_np); 803 ret = -EINVAL; 804 goto unmap_rmem; 805 } 806 of_node_put(rmem_np); 807 808 kproc->rmem[i].bus_addr = rmem->base; 809 /* 810 * R5Fs do not have an MMU, but have a Region Address Translator 811 * (RAT) module that provides a fixed entry translation between 812 * the 32-bit processor addresses to 64-bit bus addresses. The 813 * RAT is programmable only by the R5F cores. Support for RAT 814 * is currently not supported, so 64-bit address regions are not 815 * supported. The absence of MMUs implies that the R5F device 816 * addresses/supported memory regions are restricted to 32-bit 817 * bus addresses, and are identical 818 */ 819 kproc->rmem[i].dev_addr = (u32)rmem->base; 820 kproc->rmem[i].size = rmem->size; 821 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); 822 if (!kproc->rmem[i].cpu_addr) { 823 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", 824 i + 1, &rmem->base, &rmem->size); 825 ret = -ENOMEM; 826 goto unmap_rmem; 827 } 828 829 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 830 i + 1, &kproc->rmem[i].bus_addr, 831 kproc->rmem[i].size, kproc->rmem[i].cpu_addr, 832 kproc->rmem[i].dev_addr); 833 } 834 kproc->num_rmems = num_rmems; 835 836 return 0; 837 838 unmap_rmem: 839 for (i--; i >= 0; i--) 840 iounmap(kproc->rmem[i].cpu_addr); 841 kfree(kproc->rmem); 842 release_rmem: 843 of_reserved_mem_device_release(dev); 844 return ret; 845 } 846 847 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) 848 { 849 int i; 850 851 for (i = 0; i < kproc->num_rmems; i++) 852 iounmap(kproc->rmem[i].cpu_addr); 853 kfree(kproc->rmem); 854 855 of_reserved_mem_device_release(kproc->dev); 856 } 857 858 static int k3_r5_cluster_rproc_init(struct platform_device *pdev) 859 { 860 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 861 struct device *dev = &pdev->dev; 862 struct k3_r5_rproc *kproc; 863 struct k3_r5_core *core, *core1; 864 struct device *cdev; 865 const char *fw_name; 866 struct rproc *rproc; 867 int ret; 868 869 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 870 list_for_each_entry(core, &cluster->cores, elem) { 871 cdev = core->dev; 872 ret = rproc_of_parse_firmware(cdev, 0, &fw_name); 873 if (ret) { 874 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 875 ret); 876 goto out; 877 } 878 879 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, 880 fw_name, sizeof(*kproc)); 881 if (!rproc) { 882 ret = -ENOMEM; 883 goto out; 884 } 885 886 /* K3 R5s have a Region Address Translator (RAT) but no MMU */ 887 rproc->has_iommu = false; 888 /* error recovery is not supported at present */ 889 rproc->recovery_disabled = true; 890 891 kproc = rproc->priv; 892 kproc->cluster = cluster; 893 kproc->core = core; 894 kproc->dev = cdev; 895 kproc->rproc = rproc; 896 core->rproc = rproc; 897 898 ret = k3_r5_rproc_configure(kproc); 899 if (ret) { 900 dev_err(dev, "initial configure failed, ret = %d\n", 901 ret); 902 goto err_config; 903 } 904 905 ret = k3_r5_reserved_mem_init(kproc); 906 if (ret) { 907 dev_err(dev, "reserved memory init failed, ret = %d\n", 908 ret); 909 goto err_config; 910 } 911 912 ret = rproc_add(rproc); 913 if (ret) { 914 dev_err(dev, "rproc_add failed, ret = %d\n", ret); 915 goto err_add; 916 } 917 918 /* create only one rproc in lockstep mode */ 919 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) 920 break; 921 } 922 923 return 0; 924 925 err_split: 926 rproc_del(rproc); 927 err_add: 928 k3_r5_reserved_mem_exit(kproc); 929 err_config: 930 rproc_free(rproc); 931 core->rproc = NULL; 932 out: 933 /* undo core0 upon any failures on core1 in split-mode */ 934 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { 935 core = list_prev_entry(core, elem); 936 rproc = core->rproc; 937 kproc = rproc->priv; 938 goto err_split; 939 } 940 return ret; 941 } 942 943 static int k3_r5_cluster_rproc_exit(struct platform_device *pdev) 944 { 945 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 946 struct k3_r5_rproc *kproc; 947 struct k3_r5_core *core; 948 struct rproc *rproc; 949 950 /* 951 * lockstep mode has only one rproc associated with first core, whereas 952 * split-mode has two rprocs associated with each core, and requires 953 * that core1 be powered down first 954 */ 955 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? 956 list_first_entry(&cluster->cores, struct k3_r5_core, elem) : 957 list_last_entry(&cluster->cores, struct k3_r5_core, elem); 958 959 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 960 rproc = core->rproc; 961 kproc = rproc->priv; 962 963 rproc_del(rproc); 964 965 k3_r5_reserved_mem_exit(kproc); 966 967 rproc_free(rproc); 968 core->rproc = NULL; 969 } 970 971 return 0; 972 } 973 974 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, 975 struct k3_r5_core *core) 976 { 977 static const char * const mem_names[] = {"atcm", "btcm"}; 978 struct device *dev = &pdev->dev; 979 struct resource *res; 980 int num_mems; 981 int i; 982 983 num_mems = ARRAY_SIZE(mem_names); 984 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); 985 if (!core->mem) 986 return -ENOMEM; 987 988 for (i = 0; i < num_mems; i++) { 989 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 990 mem_names[i]); 991 if (!res) { 992 dev_err(dev, "found no memory resource for %s\n", 993 mem_names[i]); 994 return -EINVAL; 995 } 996 if (!devm_request_mem_region(dev, res->start, 997 resource_size(res), 998 dev_name(dev))) { 999 dev_err(dev, "could not request %s region for resource\n", 1000 mem_names[i]); 1001 return -EBUSY; 1002 } 1003 1004 /* 1005 * TCMs are designed in general to support RAM-like backing 1006 * memories. So, map these as Normal Non-Cached memories. This 1007 * also avoids/fixes any potential alignment faults due to 1008 * unaligned data accesses when using memcpy() or memset() 1009 * functions (normally seen with device type memory). 1010 */ 1011 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, 1012 resource_size(res)); 1013 if (!core->mem[i].cpu_addr) { 1014 dev_err(dev, "failed to map %s memory\n", mem_names[i]); 1015 return -ENOMEM; 1016 } 1017 core->mem[i].bus_addr = res->start; 1018 1019 /* 1020 * TODO: 1021 * The R5F cores can place ATCM & BTCM anywhere in its address 1022 * based on the corresponding Region Registers in the System 1023 * Control coprocessor. For now, place ATCM and BTCM at 1024 * addresses 0 and 0x41010000 (same as the bus address on AM65x 1025 * SoCs) based on loczrama setting 1026 */ 1027 if (!strcmp(mem_names[i], "atcm")) { 1028 core->mem[i].dev_addr = core->loczrama ? 1029 0 : K3_R5_TCM_DEV_ADDR; 1030 } else { 1031 core->mem[i].dev_addr = core->loczrama ? 1032 K3_R5_TCM_DEV_ADDR : 0; 1033 } 1034 core->mem[i].size = resource_size(res); 1035 1036 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1037 mem_names[i], &core->mem[i].bus_addr, 1038 core->mem[i].size, core->mem[i].cpu_addr, 1039 core->mem[i].dev_addr); 1040 } 1041 core->num_mems = num_mems; 1042 1043 return 0; 1044 } 1045 1046 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, 1047 struct k3_r5_core *core) 1048 { 1049 struct device_node *np = pdev->dev.of_node; 1050 struct device *dev = &pdev->dev; 1051 struct device_node *sram_np; 1052 struct resource res; 1053 int num_sram; 1054 int i, ret; 1055 1056 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); 1057 if (num_sram <= 0) { 1058 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", 1059 num_sram); 1060 return 0; 1061 } 1062 1063 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); 1064 if (!core->sram) 1065 return -ENOMEM; 1066 1067 for (i = 0; i < num_sram; i++) { 1068 sram_np = of_parse_phandle(np, "sram", i); 1069 if (!sram_np) 1070 return -EINVAL; 1071 1072 if (!of_device_is_available(sram_np)) { 1073 of_node_put(sram_np); 1074 return -EINVAL; 1075 } 1076 1077 ret = of_address_to_resource(sram_np, 0, &res); 1078 of_node_put(sram_np); 1079 if (ret) 1080 return -EINVAL; 1081 1082 core->sram[i].bus_addr = res.start; 1083 core->sram[i].dev_addr = res.start; 1084 core->sram[i].size = resource_size(&res); 1085 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, 1086 resource_size(&res)); 1087 if (!core->sram[i].cpu_addr) { 1088 dev_err(dev, "failed to parse and map sram%d memory at %pad\n", 1089 i, &res.start); 1090 return -ENOMEM; 1091 } 1092 1093 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1094 i, &core->sram[i].bus_addr, 1095 core->sram[i].size, core->sram[i].cpu_addr, 1096 core->sram[i].dev_addr); 1097 } 1098 core->num_sram = num_sram; 1099 1100 return 0; 1101 } 1102 1103 static 1104 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, 1105 const struct ti_sci_handle *sci) 1106 { 1107 struct ti_sci_proc *tsp; 1108 u32 temp[2]; 1109 int ret; 1110 1111 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", 1112 temp, 2); 1113 if (ret < 0) 1114 return ERR_PTR(ret); 1115 1116 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); 1117 if (!tsp) 1118 return ERR_PTR(-ENOMEM); 1119 1120 tsp->dev = dev; 1121 tsp->sci = sci; 1122 tsp->ops = &sci->ops.proc_ops; 1123 tsp->proc_id = temp[0]; 1124 tsp->host_id = temp[1]; 1125 1126 return tsp; 1127 } 1128 1129 static int k3_r5_core_of_init(struct platform_device *pdev) 1130 { 1131 struct device *dev = &pdev->dev; 1132 struct device_node *np = dev_of_node(dev); 1133 struct k3_r5_core *core; 1134 int ret; 1135 1136 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) 1137 return -ENOMEM; 1138 1139 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); 1140 if (!core) { 1141 ret = -ENOMEM; 1142 goto err; 1143 } 1144 1145 core->dev = dev; 1146 /* 1147 * Use SoC Power-on-Reset values as default if no DT properties are 1148 * used to dictate the TCM configurations 1149 */ 1150 core->atcm_enable = 0; 1151 core->btcm_enable = 1; 1152 core->loczrama = 1; 1153 1154 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); 1155 if (ret < 0 && ret != -EINVAL) { 1156 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", 1157 ret); 1158 goto err; 1159 } 1160 1161 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); 1162 if (ret < 0 && ret != -EINVAL) { 1163 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", 1164 ret); 1165 goto err; 1166 } 1167 1168 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); 1169 if (ret < 0 && ret != -EINVAL) { 1170 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); 1171 goto err; 1172 } 1173 1174 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); 1175 if (IS_ERR(core->ti_sci)) { 1176 ret = PTR_ERR(core->ti_sci); 1177 if (ret != -EPROBE_DEFER) { 1178 dev_err(dev, "failed to get ti-sci handle, ret = %d\n", 1179 ret); 1180 } 1181 core->ti_sci = NULL; 1182 goto err; 1183 } 1184 1185 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); 1186 if (ret) { 1187 dev_err(dev, "missing 'ti,sci-dev-id' property\n"); 1188 goto err; 1189 } 1190 1191 core->reset = devm_reset_control_get_exclusive(dev, NULL); 1192 if (IS_ERR_OR_NULL(core->reset)) { 1193 ret = PTR_ERR_OR_ZERO(core->reset); 1194 if (!ret) 1195 ret = -ENODEV; 1196 if (ret != -EPROBE_DEFER) { 1197 dev_err(dev, "failed to get reset handle, ret = %d\n", 1198 ret); 1199 } 1200 goto err; 1201 } 1202 1203 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); 1204 if (IS_ERR(core->tsp)) { 1205 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", 1206 ret); 1207 ret = PTR_ERR(core->tsp); 1208 goto err; 1209 } 1210 1211 ret = k3_r5_core_of_get_internal_memories(pdev, core); 1212 if (ret) { 1213 dev_err(dev, "failed to get internal memories, ret = %d\n", 1214 ret); 1215 goto err; 1216 } 1217 1218 ret = k3_r5_core_of_get_sram_memories(pdev, core); 1219 if (ret) { 1220 dev_err(dev, "failed to get sram memories, ret = %d\n", ret); 1221 goto err; 1222 } 1223 1224 ret = ti_sci_proc_request(core->tsp); 1225 if (ret < 0) { 1226 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); 1227 goto err; 1228 } 1229 1230 platform_set_drvdata(pdev, core); 1231 devres_close_group(dev, k3_r5_core_of_init); 1232 1233 return 0; 1234 1235 err: 1236 devres_release_group(dev, k3_r5_core_of_init); 1237 return ret; 1238 } 1239 1240 /* 1241 * free the resources explicitly since driver model is not being used 1242 * for the child R5F devices 1243 */ 1244 static void k3_r5_core_of_exit(struct platform_device *pdev) 1245 { 1246 struct k3_r5_core *core = platform_get_drvdata(pdev); 1247 struct device *dev = &pdev->dev; 1248 int ret; 1249 1250 ret = ti_sci_proc_release(core->tsp); 1251 if (ret) 1252 dev_err(dev, "failed to release proc, ret = %d\n", ret); 1253 1254 platform_set_drvdata(pdev, NULL); 1255 devres_release_group(dev, k3_r5_core_of_init); 1256 } 1257 1258 static void k3_r5_cluster_of_exit(struct platform_device *pdev) 1259 { 1260 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1261 struct platform_device *cpdev; 1262 struct k3_r5_core *core, *temp; 1263 1264 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { 1265 list_del(&core->elem); 1266 cpdev = to_platform_device(core->dev); 1267 k3_r5_core_of_exit(cpdev); 1268 } 1269 } 1270 1271 static int k3_r5_cluster_of_init(struct platform_device *pdev) 1272 { 1273 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1274 struct device *dev = &pdev->dev; 1275 struct device_node *np = dev_of_node(dev); 1276 struct platform_device *cpdev; 1277 struct device_node *child; 1278 struct k3_r5_core *core; 1279 int ret; 1280 1281 for_each_available_child_of_node(np, child) { 1282 cpdev = of_find_device_by_node(child); 1283 if (!cpdev) { 1284 ret = -ENODEV; 1285 dev_err(dev, "could not get R5 core platform device\n"); 1286 goto fail; 1287 } 1288 1289 ret = k3_r5_core_of_init(cpdev); 1290 if (ret) { 1291 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", 1292 ret); 1293 put_device(&cpdev->dev); 1294 goto fail; 1295 } 1296 1297 core = platform_get_drvdata(cpdev); 1298 put_device(&cpdev->dev); 1299 list_add_tail(&core->elem, &cluster->cores); 1300 } 1301 1302 return 0; 1303 1304 fail: 1305 k3_r5_cluster_of_exit(pdev); 1306 return ret; 1307 } 1308 1309 static int k3_r5_probe(struct platform_device *pdev) 1310 { 1311 struct device *dev = &pdev->dev; 1312 struct device_node *np = dev_of_node(dev); 1313 struct k3_r5_cluster *cluster; 1314 int ret; 1315 int num_cores; 1316 1317 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); 1318 if (!cluster) 1319 return -ENOMEM; 1320 1321 cluster->dev = dev; 1322 cluster->mode = CLUSTER_MODE_LOCKSTEP; 1323 INIT_LIST_HEAD(&cluster->cores); 1324 1325 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); 1326 if (ret < 0 && ret != -EINVAL) { 1327 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", 1328 ret); 1329 return ret; 1330 } 1331 1332 num_cores = of_get_available_child_count(np); 1333 if (num_cores != 2) { 1334 dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n", 1335 num_cores); 1336 return -ENODEV; 1337 } 1338 1339 platform_set_drvdata(pdev, cluster); 1340 1341 ret = devm_of_platform_populate(dev); 1342 if (ret) { 1343 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", 1344 ret); 1345 return ret; 1346 } 1347 1348 ret = k3_r5_cluster_of_init(pdev); 1349 if (ret) { 1350 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); 1351 return ret; 1352 } 1353 1354 ret = devm_add_action_or_reset(dev, 1355 (void(*)(void *))k3_r5_cluster_of_exit, 1356 pdev); 1357 if (ret) 1358 return ret; 1359 1360 ret = k3_r5_cluster_rproc_init(pdev); 1361 if (ret) { 1362 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", 1363 ret); 1364 return ret; 1365 } 1366 1367 ret = devm_add_action_or_reset(dev, 1368 (void(*)(void *))k3_r5_cluster_rproc_exit, 1369 pdev); 1370 if (ret) 1371 return ret; 1372 1373 return 0; 1374 } 1375 1376 static const struct of_device_id k3_r5_of_match[] = { 1377 { .compatible = "ti,am654-r5fss", }, 1378 { .compatible = "ti,j721e-r5fss", }, 1379 { /* sentinel */ }, 1380 }; 1381 MODULE_DEVICE_TABLE(of, k3_r5_of_match); 1382 1383 static struct platform_driver k3_r5_rproc_driver = { 1384 .probe = k3_r5_probe, 1385 .driver = { 1386 .name = "k3_r5_rproc", 1387 .of_match_table = k3_r5_of_match, 1388 }, 1389 }; 1390 1391 module_platform_driver(k3_r5_rproc_driver); 1392 1393 MODULE_LICENSE("GPL v2"); 1394 MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); 1395 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 1396