1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 R5F (MCU) Remote Processor driver
4  *
5  * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *	Suman Anna <s-anna@ti.com>
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/omap-mailbox.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/remoteproc.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
24 
25 #include "omap_remoteproc.h"
26 #include "remoteproc_internal.h"
27 #include "ti_sci_proc.h"
28 
29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
30 #define K3_R5_TCM_DEV_ADDR	0x41010000
31 
32 /* R5 TI-SCI Processor Configuration Flags */
33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
41 /* Available from J7200 SoCs onwards */
42 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS		0x00004000
43 /* Applicable to only AM64x SoCs */
44 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE		0x00008000
45 
46 /* R5 TI-SCI Processor Control Flags */
47 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
48 
49 /* R5 TI-SCI Processor Status Flags */
50 #define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
51 #define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
52 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
53 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
54 /* Applicable to only AM64x SoCs */
55 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY	0x00000200
56 
57 /**
58  * struct k3_r5_mem - internal memory structure
59  * @cpu_addr: MPU virtual address of the memory region
60  * @bus_addr: Bus address used to access the memory region
61  * @dev_addr: Device address from remoteproc view
62  * @size: Size of the memory region
63  */
64 struct k3_r5_mem {
65 	void __iomem *cpu_addr;
66 	phys_addr_t bus_addr;
67 	u32 dev_addr;
68 	size_t size;
69 };
70 
71 /*
72  * All cluster mode values are not applicable on all SoCs. The following
73  * are the modes supported on various SoCs:
74  *   Split mode       : AM65x, J721E, J7200 and AM64x SoCs
75  *   LockStep mode    : AM65x, J721E and J7200 SoCs
76  *   Single-CPU mode  : AM64x SoCs only
77  *   Single-Core mode : AM62x, AM62A SoCs
78  */
79 enum cluster_mode {
80 	CLUSTER_MODE_SPLIT = 0,
81 	CLUSTER_MODE_LOCKSTEP,
82 	CLUSTER_MODE_SINGLECPU,
83 	CLUSTER_MODE_SINGLECORE
84 };
85 
86 /**
87  * struct k3_r5_soc_data - match data to handle SoC variations
88  * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
89  * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
90  * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
91  * @is_single_core: flag to denote if SoC/IP has only single core R5
92  */
93 struct k3_r5_soc_data {
94 	bool tcm_is_double;
95 	bool tcm_ecc_autoinit;
96 	bool single_cpu_mode;
97 	bool is_single_core;
98 };
99 
100 /**
101  * struct k3_r5_cluster - K3 R5F Cluster structure
102  * @dev: cached device pointer
103  * @mode: Mode to configure the Cluster - Split or LockStep
104  * @cores: list of R5 cores within the cluster
105  * @soc_data: SoC-specific feature data for a R5FSS
106  */
107 struct k3_r5_cluster {
108 	struct device *dev;
109 	enum cluster_mode mode;
110 	struct list_head cores;
111 	const struct k3_r5_soc_data *soc_data;
112 };
113 
114 /**
115  * struct k3_r5_core - K3 R5 core structure
116  * @elem: linked list item
117  * @dev: cached device pointer
118  * @rproc: rproc handle representing this core
119  * @mem: internal memory regions data
120  * @sram: on-chip SRAM memory regions data
121  * @num_mems: number of internal memory regions
122  * @num_sram: number of on-chip SRAM memory regions
123  * @reset: reset control handle
124  * @tsp: TI-SCI processor control handle
125  * @ti_sci: TI-SCI handle
126  * @ti_sci_id: TI-SCI device identifier
127  * @atcm_enable: flag to control ATCM enablement
128  * @btcm_enable: flag to control BTCM enablement
129  * @loczrama: flag to dictate which TCM is at device address 0x0
130  */
131 struct k3_r5_core {
132 	struct list_head elem;
133 	struct device *dev;
134 	struct rproc *rproc;
135 	struct k3_r5_mem *mem;
136 	struct k3_r5_mem *sram;
137 	int num_mems;
138 	int num_sram;
139 	struct reset_control *reset;
140 	struct ti_sci_proc *tsp;
141 	const struct ti_sci_handle *ti_sci;
142 	u32 ti_sci_id;
143 	u32 atcm_enable;
144 	u32 btcm_enable;
145 	u32 loczrama;
146 };
147 
148 /**
149  * struct k3_r5_rproc - K3 remote processor state
150  * @dev: cached device pointer
151  * @cluster: cached pointer to parent cluster structure
152  * @mbox: mailbox channel handle
153  * @client: mailbox client to request the mailbox channel
154  * @rproc: rproc handle
155  * @core: cached pointer to r5 core structure being used
156  * @rmem: reserved memory regions data
157  * @num_rmems: number of reserved memory regions
158  */
159 struct k3_r5_rproc {
160 	struct device *dev;
161 	struct k3_r5_cluster *cluster;
162 	struct mbox_chan *mbox;
163 	struct mbox_client client;
164 	struct rproc *rproc;
165 	struct k3_r5_core *core;
166 	struct k3_r5_mem *rmem;
167 	int num_rmems;
168 };
169 
170 /**
171  * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
172  * @client: mailbox client pointer used for requesting the mailbox channel
173  * @data: mailbox payload
174  *
175  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
176  * message is received. Usually, the mailbox payload simply contains
177  * the index of the virtqueue that is kicked by the remote processor,
178  * and we let remoteproc core handle it.
179  *
180  * In addition to virtqueue indices, we also have some out-of-band values
181  * that indicate different events. Those values are deliberately very
182  * large so they don't coincide with virtqueue indices.
183  */
184 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
185 {
186 	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
187 						client);
188 	struct device *dev = kproc->rproc->dev.parent;
189 	const char *name = kproc->rproc->name;
190 	u32 msg = omap_mbox_message(data);
191 
192 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
193 
194 	switch (msg) {
195 	case RP_MBOX_CRASH:
196 		/*
197 		 * remoteproc detected an exception, but error recovery is not
198 		 * supported. So, just log this for now
199 		 */
200 		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
201 		break;
202 	case RP_MBOX_ECHO_REPLY:
203 		dev_info(dev, "received echo reply from %s\n", name);
204 		break;
205 	default:
206 		/* silently handle all other valid messages */
207 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
208 			return;
209 		if (msg > kproc->rproc->max_notifyid) {
210 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
211 			return;
212 		}
213 		/* msg contains the index of the triggered vring */
214 		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
215 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
216 	}
217 }
218 
219 /* kick a virtqueue */
220 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
221 {
222 	struct k3_r5_rproc *kproc = rproc->priv;
223 	struct device *dev = rproc->dev.parent;
224 	mbox_msg_t msg = (mbox_msg_t)vqid;
225 	int ret;
226 
227 	/* send the index of the triggered virtqueue in the mailbox payload */
228 	ret = mbox_send_message(kproc->mbox, (void *)msg);
229 	if (ret < 0)
230 		dev_err(dev, "failed to send mailbox message, status = %d\n",
231 			ret);
232 }
233 
234 static int k3_r5_split_reset(struct k3_r5_core *core)
235 {
236 	int ret;
237 
238 	ret = reset_control_assert(core->reset);
239 	if (ret) {
240 		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
241 			ret);
242 		return ret;
243 	}
244 
245 	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
246 						   core->ti_sci_id);
247 	if (ret) {
248 		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
249 			ret);
250 		if (reset_control_deassert(core->reset))
251 			dev_warn(core->dev, "local-reset deassert back failed\n");
252 	}
253 
254 	return ret;
255 }
256 
257 static int k3_r5_split_release(struct k3_r5_core *core)
258 {
259 	int ret;
260 
261 	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
262 						   core->ti_sci_id);
263 	if (ret) {
264 		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
265 			ret);
266 		return ret;
267 	}
268 
269 	ret = reset_control_deassert(core->reset);
270 	if (ret) {
271 		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
272 			ret);
273 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
274 							 core->ti_sci_id))
275 			dev_warn(core->dev, "module-reset assert back failed\n");
276 	}
277 
278 	return ret;
279 }
280 
281 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
282 {
283 	struct k3_r5_core *core;
284 	int ret;
285 
286 	/* assert local reset on all applicable cores */
287 	list_for_each_entry(core, &cluster->cores, elem) {
288 		ret = reset_control_assert(core->reset);
289 		if (ret) {
290 			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
291 				ret);
292 			core = list_prev_entry(core, elem);
293 			goto unroll_local_reset;
294 		}
295 	}
296 
297 	/* disable PSC modules on all applicable cores */
298 	list_for_each_entry(core, &cluster->cores, elem) {
299 		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
300 							   core->ti_sci_id);
301 		if (ret) {
302 			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
303 				ret);
304 			goto unroll_module_reset;
305 		}
306 	}
307 
308 	return 0;
309 
310 unroll_module_reset:
311 	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
312 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
313 							 core->ti_sci_id))
314 			dev_warn(core->dev, "module-reset assert back failed\n");
315 	}
316 	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
317 unroll_local_reset:
318 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
319 		if (reset_control_deassert(core->reset))
320 			dev_warn(core->dev, "local-reset deassert back failed\n");
321 	}
322 
323 	return ret;
324 }
325 
326 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
327 {
328 	struct k3_r5_core *core;
329 	int ret;
330 
331 	/* enable PSC modules on all applicable cores */
332 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
333 		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
334 							   core->ti_sci_id);
335 		if (ret) {
336 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
337 				ret);
338 			core = list_next_entry(core, elem);
339 			goto unroll_module_reset;
340 		}
341 	}
342 
343 	/* deassert local reset on all applicable cores */
344 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
345 		ret = reset_control_deassert(core->reset);
346 		if (ret) {
347 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
348 				ret);
349 			goto unroll_local_reset;
350 		}
351 	}
352 
353 	return 0;
354 
355 unroll_local_reset:
356 	list_for_each_entry_continue(core, &cluster->cores, elem) {
357 		if (reset_control_assert(core->reset))
358 			dev_warn(core->dev, "local-reset assert back failed\n");
359 	}
360 	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
361 unroll_module_reset:
362 	list_for_each_entry_from(core, &cluster->cores, elem) {
363 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
364 							 core->ti_sci_id))
365 			dev_warn(core->dev, "module-reset assert back failed\n");
366 	}
367 
368 	return ret;
369 }
370 
371 static inline int k3_r5_core_halt(struct k3_r5_core *core)
372 {
373 	return ti_sci_proc_set_control(core->tsp,
374 				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
375 }
376 
377 static inline int k3_r5_core_run(struct k3_r5_core *core)
378 {
379 	return ti_sci_proc_set_control(core->tsp,
380 				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
381 }
382 
383 static int k3_r5_rproc_request_mbox(struct rproc *rproc)
384 {
385 	struct k3_r5_rproc *kproc = rproc->priv;
386 	struct mbox_client *client = &kproc->client;
387 	struct device *dev = kproc->dev;
388 	int ret;
389 
390 	client->dev = dev;
391 	client->tx_done = NULL;
392 	client->rx_callback = k3_r5_rproc_mbox_callback;
393 	client->tx_block = false;
394 	client->knows_txdone = false;
395 
396 	kproc->mbox = mbox_request_channel(client, 0);
397 	if (IS_ERR(kproc->mbox)) {
398 		ret = -EBUSY;
399 		dev_err(dev, "mbox_request_channel failed: %ld\n",
400 			PTR_ERR(kproc->mbox));
401 		return ret;
402 	}
403 
404 	/*
405 	 * Ping the remote processor, this is only for sanity-sake for now;
406 	 * there is no functional effect whatsoever.
407 	 *
408 	 * Note that the reply will _not_ arrive immediately: this message
409 	 * will wait in the mailbox fifo until the remote processor is booted.
410 	 */
411 	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
412 	if (ret < 0) {
413 		dev_err(dev, "mbox_send_message failed: %d\n", ret);
414 		mbox_free_channel(kproc->mbox);
415 		return ret;
416 	}
417 
418 	return 0;
419 }
420 
421 /*
422  * The R5F cores have controls for both a reset and a halt/run. The code
423  * execution from DDR requires the initial boot-strapping code to be run
424  * from the internal TCMs. This function is used to release the resets on
425  * applicable cores to allow loading into the TCMs. The .prepare() ops is
426  * invoked by remoteproc core before any firmware loading, and is followed
427  * by the .start() ops after loading to actually let the R5 cores run.
428  *
429  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
430  * execute code, but combines the TCMs from both cores. The resets for both
431  * cores need to be released to make this possible, as the TCMs are in general
432  * private to each core. Only Core0 needs to be unhalted for running the
433  * cluster in this mode. The function uses the same reset logic as LockStep
434  * mode for this (though the behavior is agnostic of the reset release order).
435  * This callback is invoked only in remoteproc mode.
436  */
437 static int k3_r5_rproc_prepare(struct rproc *rproc)
438 {
439 	struct k3_r5_rproc *kproc = rproc->priv;
440 	struct k3_r5_cluster *cluster = kproc->cluster;
441 	struct k3_r5_core *core = kproc->core;
442 	struct device *dev = kproc->dev;
443 	u32 ctrl = 0, cfg = 0, stat = 0;
444 	u64 boot_vec = 0;
445 	bool mem_init_dis;
446 	int ret;
447 
448 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
449 	if (ret < 0)
450 		return ret;
451 	mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
452 
453 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
454 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
455 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
456 		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
457 	if (ret) {
458 		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
459 			ret);
460 		return ret;
461 	}
462 
463 	/*
464 	 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
465 	 * of TCMs, so there is no need to perform the s/w memzero. This bit is
466 	 * configurable through System Firmware, the default value does perform
467 	 * auto-init, but account for it in case it is disabled
468 	 */
469 	if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
470 		dev_dbg(dev, "leveraging h/w init for TCM memories\n");
471 		return 0;
472 	}
473 
474 	/*
475 	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
476 	 * affected by ATCM & BTCM enable configuration values) so that ECC
477 	 * can be effective on all TCM addresses.
478 	 */
479 	dev_dbg(dev, "zeroing out ATCM memory\n");
480 	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
481 
482 	dev_dbg(dev, "zeroing out BTCM memory\n");
483 	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
484 
485 	return 0;
486 }
487 
488 /*
489  * This function implements the .unprepare() ops and performs the complimentary
490  * operations to that of the .prepare() ops. The function is used to assert the
491  * resets on all applicable cores for the rproc device (depending on LockStep
492  * or Split mode). This completes the second portion of powering down the R5F
493  * cores. The cores themselves are only halted in the .stop() ops, and the
494  * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
495  * stopped.
496  *
497  * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
498  * both cores. The access is made possible only with releasing the resets for
499  * both cores, but with only Core0 unhalted. This function re-uses the same
500  * reset assert logic as LockStep mode for this mode (though the behavior is
501  * agnostic of the reset assert order). This callback is invoked only in
502  * remoteproc mode.
503  */
504 static int k3_r5_rproc_unprepare(struct rproc *rproc)
505 {
506 	struct k3_r5_rproc *kproc = rproc->priv;
507 	struct k3_r5_cluster *cluster = kproc->cluster;
508 	struct k3_r5_core *core = kproc->core;
509 	struct device *dev = kproc->dev;
510 	int ret;
511 
512 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
513 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
514 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
515 		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
516 	if (ret)
517 		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
518 
519 	return ret;
520 }
521 
522 /*
523  * The R5F start sequence includes two different operations
524  * 1. Configure the boot vector for R5F core(s)
525  * 2. Unhalt/Run the R5F core(s)
526  *
527  * The sequence is different between LockStep and Split modes. The LockStep
528  * mode requires the boot vector to be configured only for Core0, and then
529  * unhalt both the cores to start the execution - Core1 needs to be unhalted
530  * first followed by Core0. The Split-mode requires that Core0 to be maintained
531  * always in a higher power state that Core1 (implying Core1 needs to be started
532  * always only after Core0 is started).
533  *
534  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
535  * code, so only Core0 needs to be unhalted. The function uses the same logic
536  * flow as Split-mode for this. This callback is invoked only in remoteproc
537  * mode.
538  */
539 static int k3_r5_rproc_start(struct rproc *rproc)
540 {
541 	struct k3_r5_rproc *kproc = rproc->priv;
542 	struct k3_r5_cluster *cluster = kproc->cluster;
543 	struct device *dev = kproc->dev;
544 	struct k3_r5_core *core;
545 	u32 boot_addr;
546 	int ret;
547 
548 	ret = k3_r5_rproc_request_mbox(rproc);
549 	if (ret)
550 		return ret;
551 
552 	boot_addr = rproc->bootaddr;
553 	/* TODO: add boot_addr sanity checking */
554 	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
555 
556 	/* boot vector need not be programmed for Core1 in LockStep mode */
557 	core = kproc->core;
558 	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
559 	if (ret)
560 		goto put_mbox;
561 
562 	/* unhalt/run all applicable cores */
563 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
564 		list_for_each_entry_reverse(core, &cluster->cores, elem) {
565 			ret = k3_r5_core_run(core);
566 			if (ret)
567 				goto unroll_core_run;
568 		}
569 	} else {
570 		ret = k3_r5_core_run(core);
571 		if (ret)
572 			goto put_mbox;
573 	}
574 
575 	return 0;
576 
577 unroll_core_run:
578 	list_for_each_entry_continue(core, &cluster->cores, elem) {
579 		if (k3_r5_core_halt(core))
580 			dev_warn(core->dev, "core halt back failed\n");
581 	}
582 put_mbox:
583 	mbox_free_channel(kproc->mbox);
584 	return ret;
585 }
586 
587 /*
588  * The R5F stop function includes the following operations
589  * 1. Halt R5F core(s)
590  *
591  * The sequence is different between LockStep and Split modes, and the order
592  * of cores the operations are performed are also in general reverse to that
593  * of the start function. The LockStep mode requires each operation to be
594  * performed first on Core0 followed by Core1. The Split-mode requires that
595  * Core0 to be maintained always in a higher power state that Core1 (implying
596  * Core1 needs to be stopped first before Core0).
597  *
598  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
599  * code, so only Core0 needs to be halted. The function uses the same logic
600  * flow as Split-mode for this.
601  *
602  * Note that the R5F halt operation in general is not effective when the R5F
603  * core is running, but is needed to make sure the core won't run after
604  * deasserting the reset the subsequent time. The asserting of reset can
605  * be done here, but is preferred to be done in the .unprepare() ops - this
606  * maintains the symmetric behavior between the .start(), .stop(), .prepare()
607  * and .unprepare() ops, and also balances them well between sysfs 'state'
608  * flow and device bind/unbind or module removal. This callback is invoked
609  * only in remoteproc mode.
610  */
611 static int k3_r5_rproc_stop(struct rproc *rproc)
612 {
613 	struct k3_r5_rproc *kproc = rproc->priv;
614 	struct k3_r5_cluster *cluster = kproc->cluster;
615 	struct k3_r5_core *core = kproc->core;
616 	int ret;
617 
618 	/* halt all applicable cores */
619 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
620 		list_for_each_entry(core, &cluster->cores, elem) {
621 			ret = k3_r5_core_halt(core);
622 			if (ret) {
623 				core = list_prev_entry(core, elem);
624 				goto unroll_core_halt;
625 			}
626 		}
627 	} else {
628 		ret = k3_r5_core_halt(core);
629 		if (ret)
630 			goto out;
631 	}
632 
633 	mbox_free_channel(kproc->mbox);
634 
635 	return 0;
636 
637 unroll_core_halt:
638 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
639 		if (k3_r5_core_run(core))
640 			dev_warn(core->dev, "core run back failed\n");
641 	}
642 out:
643 	return ret;
644 }
645 
646 /*
647  * Attach to a running R5F remote processor (IPC-only mode)
648  *
649  * The R5F attach callback only needs to request the mailbox, the remote
650  * processor is already booted, so there is no need to issue any TI-SCI
651  * commands to boot the R5F cores in IPC-only mode. This callback is invoked
652  * only in IPC-only mode.
653  */
654 static int k3_r5_rproc_attach(struct rproc *rproc)
655 {
656 	struct k3_r5_rproc *kproc = rproc->priv;
657 	struct device *dev = kproc->dev;
658 	int ret;
659 
660 	ret = k3_r5_rproc_request_mbox(rproc);
661 	if (ret)
662 		return ret;
663 
664 	dev_info(dev, "R5F core initialized in IPC-only mode\n");
665 	return 0;
666 }
667 
668 /*
669  * Detach from a running R5F remote processor (IPC-only mode)
670  *
671  * The R5F detach callback performs the opposite operation to attach callback
672  * and only needs to release the mailbox, the R5F cores are not stopped and
673  * will be left in booted state in IPC-only mode. This callback is invoked
674  * only in IPC-only mode.
675  */
676 static int k3_r5_rproc_detach(struct rproc *rproc)
677 {
678 	struct k3_r5_rproc *kproc = rproc->priv;
679 	struct device *dev = kproc->dev;
680 
681 	mbox_free_channel(kproc->mbox);
682 	dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
683 	return 0;
684 }
685 
686 /*
687  * This function implements the .get_loaded_rsc_table() callback and is used
688  * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
689  * firmwares follow a design-by-contract approach and are expected to have the
690  * resource table at the base of the DDR region reserved for firmware usage.
691  * This provides flexibility for the remote processor to be booted by different
692  * bootloaders that may or may not have the ability to publish the resource table
693  * address and size through a DT property. This callback is invoked only in
694  * IPC-only mode.
695  */
696 static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
697 							 size_t *rsc_table_sz)
698 {
699 	struct k3_r5_rproc *kproc = rproc->priv;
700 	struct device *dev = kproc->dev;
701 
702 	if (!kproc->rmem[0].cpu_addr) {
703 		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
704 		return ERR_PTR(-ENOMEM);
705 	}
706 
707 	/*
708 	 * NOTE: The resource table size is currently hard-coded to a maximum
709 	 * of 256 bytes. The most common resource table usage for K3 firmwares
710 	 * is to only have the vdev resource entry and an optional trace entry.
711 	 * The exact size could be computed based on resource table address, but
712 	 * the hard-coded value suffices to support the IPC-only mode.
713 	 */
714 	*rsc_table_sz = 256;
715 	return (struct resource_table *)kproc->rmem[0].cpu_addr;
716 }
717 
718 /*
719  * Internal Memory translation helper
720  *
721  * Custom function implementing the rproc .da_to_va ops to provide address
722  * translation (device address to kernel virtual address) for internal RAMs
723  * present in a DSP or IPU device). The translated addresses can be used
724  * either by the remoteproc core for loading, or by any rpmsg bus drivers.
725  */
726 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
727 {
728 	struct k3_r5_rproc *kproc = rproc->priv;
729 	struct k3_r5_core *core = kproc->core;
730 	void __iomem *va = NULL;
731 	phys_addr_t bus_addr;
732 	u32 dev_addr, offset;
733 	size_t size;
734 	int i;
735 
736 	if (len == 0)
737 		return NULL;
738 
739 	/* handle both R5 and SoC views of ATCM and BTCM */
740 	for (i = 0; i < core->num_mems; i++) {
741 		bus_addr = core->mem[i].bus_addr;
742 		dev_addr = core->mem[i].dev_addr;
743 		size = core->mem[i].size;
744 
745 		/* handle R5-view addresses of TCMs */
746 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
747 			offset = da - dev_addr;
748 			va = core->mem[i].cpu_addr + offset;
749 			return (__force void *)va;
750 		}
751 
752 		/* handle SoC-view addresses of TCMs */
753 		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
754 			offset = da - bus_addr;
755 			va = core->mem[i].cpu_addr + offset;
756 			return (__force void *)va;
757 		}
758 	}
759 
760 	/* handle any SRAM regions using SoC-view addresses */
761 	for (i = 0; i < core->num_sram; i++) {
762 		dev_addr = core->sram[i].dev_addr;
763 		size = core->sram[i].size;
764 
765 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
766 			offset = da - dev_addr;
767 			va = core->sram[i].cpu_addr + offset;
768 			return (__force void *)va;
769 		}
770 	}
771 
772 	/* handle static DDR reserved memory regions */
773 	for (i = 0; i < kproc->num_rmems; i++) {
774 		dev_addr = kproc->rmem[i].dev_addr;
775 		size = kproc->rmem[i].size;
776 
777 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
778 			offset = da - dev_addr;
779 			va = kproc->rmem[i].cpu_addr + offset;
780 			return (__force void *)va;
781 		}
782 	}
783 
784 	return NULL;
785 }
786 
787 static const struct rproc_ops k3_r5_rproc_ops = {
788 	.prepare	= k3_r5_rproc_prepare,
789 	.unprepare	= k3_r5_rproc_unprepare,
790 	.start		= k3_r5_rproc_start,
791 	.stop		= k3_r5_rproc_stop,
792 	.kick		= k3_r5_rproc_kick,
793 	.da_to_va	= k3_r5_rproc_da_to_va,
794 };
795 
796 /*
797  * Internal R5F Core configuration
798  *
799  * Each R5FSS has a cluster-level setting for configuring the processor
800  * subsystem either in a safety/fault-tolerant LockStep mode or a performance
801  * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
802  * as an alternate for LockStep mode that exercises only a single R5F core
803  * called Single-CPU mode. Each R5F core has a number of settings to either
804  * enable/disable each of the TCMs, control which TCM appears at the R5F core's
805  * address 0x0. These settings need to be configured before the resets for the
806  * corresponding core are released. These settings are all protected and managed
807  * by the System Processor.
808  *
809  * This function is used to pre-configure these settings for each R5F core, and
810  * the configuration is all done through various ti_sci_proc functions that
811  * communicate with the System Processor. The function also ensures that both
812  * the cores are halted before the .prepare() step.
813  *
814  * The function is called from k3_r5_cluster_rproc_init() and is invoked either
815  * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
816  * for LockStep-mode is dictated by an eFUSE register bit, and the config
817  * settings retrieved from DT are adjusted accordingly as per the permitted
818  * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
819  * supports a Single-CPU mode. All cluster level settings like Cluster mode and
820  * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
821  * and retrieved using Core0.
822  *
823  * The function behavior is different based on the cluster mode. The R5F cores
824  * are configured independently as per their individual settings in Split mode.
825  * They are identically configured in LockStep mode using the primary Core0
826  * settings. However, some individual settings cannot be set in LockStep mode.
827  * This is overcome by switching to Split-mode initially and then programming
828  * both the cores with the same settings, before reconfiguing again for
829  * LockStep mode.
830  */
831 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
832 {
833 	struct k3_r5_cluster *cluster = kproc->cluster;
834 	struct device *dev = kproc->dev;
835 	struct k3_r5_core *core0, *core, *temp;
836 	u32 ctrl = 0, cfg = 0, stat = 0;
837 	u32 set_cfg = 0, clr_cfg = 0;
838 	u64 boot_vec = 0;
839 	bool lockstep_en;
840 	bool single_cpu;
841 	int ret;
842 
843 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
844 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
845 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
846 	    cluster->mode == CLUSTER_MODE_SINGLECORE) {
847 		core = core0;
848 	} else {
849 		core = kproc->core;
850 	}
851 
852 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
853 				     &stat);
854 	if (ret < 0)
855 		return ret;
856 
857 	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
858 		boot_vec, cfg, ctrl, stat);
859 
860 	single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
861 	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
862 
863 	/* Override to single CPU mode if set in status flag */
864 	if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
865 		dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
866 		cluster->mode = CLUSTER_MODE_SINGLECPU;
867 	}
868 
869 	/* Override to split mode if lockstep enable bit is not set in status flag */
870 	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
871 		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
872 		cluster->mode = CLUSTER_MODE_SPLIT;
873 	}
874 
875 	/* always enable ARM mode and set boot vector to 0 */
876 	boot_vec = 0x0;
877 	if (core == core0) {
878 		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
879 		/*
880 		 * Single-CPU configuration bit can only be configured
881 		 * on Core0 and system firmware will NACK any requests
882 		 * with the bit configured, so program it only on
883 		 * permitted cores
884 		 */
885 		if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
886 		    cluster->mode == CLUSTER_MODE_SINGLECORE) {
887 			set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
888 		} else {
889 			/*
890 			 * LockStep configuration bit is Read-only on Split-mode
891 			 * _only_ devices and system firmware will NACK any
892 			 * requests with the bit configured, so program it only
893 			 * on permitted devices
894 			 */
895 			if (lockstep_en)
896 				clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
897 		}
898 	}
899 
900 	if (core->atcm_enable)
901 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
902 	else
903 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
904 
905 	if (core->btcm_enable)
906 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
907 	else
908 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
909 
910 	if (core->loczrama)
911 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
912 	else
913 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
914 
915 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
916 		/*
917 		 * work around system firmware limitations to make sure both
918 		 * cores are programmed symmetrically in LockStep. LockStep
919 		 * and TEINIT config is only allowed with Core0.
920 		 */
921 		list_for_each_entry(temp, &cluster->cores, elem) {
922 			ret = k3_r5_core_halt(temp);
923 			if (ret)
924 				goto out;
925 
926 			if (temp != core) {
927 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
928 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
929 			}
930 			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
931 						     set_cfg, clr_cfg);
932 			if (ret)
933 				goto out;
934 		}
935 
936 		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
937 		clr_cfg = 0;
938 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
939 					     set_cfg, clr_cfg);
940 	} else {
941 		ret = k3_r5_core_halt(core);
942 		if (ret)
943 			goto out;
944 
945 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
946 					     set_cfg, clr_cfg);
947 	}
948 
949 out:
950 	return ret;
951 }
952 
953 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
954 {
955 	struct device *dev = kproc->dev;
956 	struct device_node *np = dev_of_node(dev);
957 	struct device_node *rmem_np;
958 	struct reserved_mem *rmem;
959 	int num_rmems;
960 	int ret, i;
961 
962 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
963 						    sizeof(phandle));
964 	if (num_rmems <= 0) {
965 		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
966 			num_rmems);
967 		return -EINVAL;
968 	}
969 	if (num_rmems < 2) {
970 		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
971 			num_rmems);
972 		return -EINVAL;
973 	}
974 
975 	/* use reserved memory region 0 for vring DMA allocations */
976 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
977 	if (ret) {
978 		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
979 			ret);
980 		return ret;
981 	}
982 
983 	num_rmems--;
984 	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
985 	if (!kproc->rmem) {
986 		ret = -ENOMEM;
987 		goto release_rmem;
988 	}
989 
990 	/* use remaining reserved memory regions for static carveouts */
991 	for (i = 0; i < num_rmems; i++) {
992 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
993 		if (!rmem_np) {
994 			ret = -EINVAL;
995 			goto unmap_rmem;
996 		}
997 
998 		rmem = of_reserved_mem_lookup(rmem_np);
999 		if (!rmem) {
1000 			of_node_put(rmem_np);
1001 			ret = -EINVAL;
1002 			goto unmap_rmem;
1003 		}
1004 		of_node_put(rmem_np);
1005 
1006 		kproc->rmem[i].bus_addr = rmem->base;
1007 		/*
1008 		 * R5Fs do not have an MMU, but have a Region Address Translator
1009 		 * (RAT) module that provides a fixed entry translation between
1010 		 * the 32-bit processor addresses to 64-bit bus addresses. The
1011 		 * RAT is programmable only by the R5F cores. Support for RAT
1012 		 * is currently not supported, so 64-bit address regions are not
1013 		 * supported. The absence of MMUs implies that the R5F device
1014 		 * addresses/supported memory regions are restricted to 32-bit
1015 		 * bus addresses, and are identical
1016 		 */
1017 		kproc->rmem[i].dev_addr = (u32)rmem->base;
1018 		kproc->rmem[i].size = rmem->size;
1019 		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1020 		if (!kproc->rmem[i].cpu_addr) {
1021 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1022 				i + 1, &rmem->base, &rmem->size);
1023 			ret = -ENOMEM;
1024 			goto unmap_rmem;
1025 		}
1026 
1027 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1028 			i + 1, &kproc->rmem[i].bus_addr,
1029 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1030 			kproc->rmem[i].dev_addr);
1031 	}
1032 	kproc->num_rmems = num_rmems;
1033 
1034 	return 0;
1035 
1036 unmap_rmem:
1037 	for (i--; i >= 0; i--)
1038 		iounmap(kproc->rmem[i].cpu_addr);
1039 	kfree(kproc->rmem);
1040 release_rmem:
1041 	of_reserved_mem_device_release(dev);
1042 	return ret;
1043 }
1044 
1045 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1046 {
1047 	int i;
1048 
1049 	for (i = 0; i < kproc->num_rmems; i++)
1050 		iounmap(kproc->rmem[i].cpu_addr);
1051 	kfree(kproc->rmem);
1052 
1053 	of_reserved_mem_device_release(kproc->dev);
1054 }
1055 
1056 /*
1057  * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1058  * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1059  * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1060  * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1061  * leveraging the Core1 TCMs as well in certain modes where they would have
1062  * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1063  * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1064  * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1065  * the Core0 TCMs, and the dts representation reflects this increased size on
1066  * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1067  * half the original size in Split mode.
1068  */
1069 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1070 {
1071 	struct k3_r5_cluster *cluster = kproc->cluster;
1072 	struct k3_r5_core *core = kproc->core;
1073 	struct device *cdev = core->dev;
1074 	struct k3_r5_core *core0;
1075 
1076 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1077 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
1078 	    cluster->mode == CLUSTER_MODE_SINGLECORE ||
1079 	    !cluster->soc_data->tcm_is_double)
1080 		return;
1081 
1082 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1083 	if (core == core0) {
1084 		WARN_ON(core->mem[0].size != SZ_64K);
1085 		WARN_ON(core->mem[1].size != SZ_64K);
1086 
1087 		core->mem[0].size /= 2;
1088 		core->mem[1].size /= 2;
1089 
1090 		dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1091 			core->mem[0].size, core->mem[1].size);
1092 	}
1093 }
1094 
1095 /*
1096  * This function checks and configures a R5F core for IPC-only or remoteproc
1097  * mode. The driver is configured to be in IPC-only mode for a R5F core when
1098  * the core has been loaded and started by a bootloader. The IPC-only mode is
1099  * detected by querying the System Firmware for reset, power on and halt status
1100  * and ensuring that the core is running. Any incomplete steps at bootloader
1101  * are validated and errored out.
1102  *
1103  * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1104  * and cluster mode parsed originally from kernel DT are updated to reflect the
1105  * actual values configured by bootloader. The driver internal device memory
1106  * addresses for TCMs are also updated.
1107  */
1108 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1109 {
1110 	struct k3_r5_cluster *cluster = kproc->cluster;
1111 	struct k3_r5_core *core = kproc->core;
1112 	struct device *cdev = core->dev;
1113 	bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1114 	u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1115 	u64 boot_vec = 0;
1116 	u32 atcm_enable, btcm_enable, loczrama;
1117 	struct k3_r5_core *core0;
1118 	enum cluster_mode mode = cluster->mode;
1119 	int ret;
1120 
1121 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1122 
1123 	ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1124 					      &r_state, &c_state);
1125 	if (ret) {
1126 		dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1127 			ret);
1128 		return ret;
1129 	}
1130 	if (r_state != c_state) {
1131 		dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1132 			 r_state, c_state);
1133 	}
1134 
1135 	ret = reset_control_status(core->reset);
1136 	if (ret < 0) {
1137 		dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1138 			ret);
1139 		return ret;
1140 	}
1141 
1142 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1143 				     &stat);
1144 	if (ret < 0) {
1145 		dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1146 			ret);
1147 		return ret;
1148 	}
1149 	atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ?  1 : 0;
1150 	btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ?  1 : 0;
1151 	loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ?  1 : 0;
1152 	single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1153 	lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1154 
1155 	if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1156 		mode = CLUSTER_MODE_SINGLECPU;
1157 	if (lockstep_en)
1158 		mode = CLUSTER_MODE_LOCKSTEP;
1159 
1160 	halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1161 
1162 	/*
1163 	 * IPC-only mode detection requires both local and module resets to
1164 	 * be deasserted and R5F core to be unhalted. Local reset status is
1165 	 * irrelevant if module reset is asserted (POR value has local reset
1166 	 * deasserted), and is deemed as remoteproc mode
1167 	 */
1168 	if (c_state && !ret && !halted) {
1169 		dev_info(cdev, "configured R5F for IPC-only mode\n");
1170 		kproc->rproc->state = RPROC_DETACHED;
1171 		ret = 1;
1172 		/* override rproc ops with only required IPC-only mode ops */
1173 		kproc->rproc->ops->prepare = NULL;
1174 		kproc->rproc->ops->unprepare = NULL;
1175 		kproc->rproc->ops->start = NULL;
1176 		kproc->rproc->ops->stop = NULL;
1177 		kproc->rproc->ops->attach = k3_r5_rproc_attach;
1178 		kproc->rproc->ops->detach = k3_r5_rproc_detach;
1179 		kproc->rproc->ops->get_loaded_rsc_table =
1180 						k3_r5_get_loaded_rsc_table;
1181 	} else if (!c_state) {
1182 		dev_info(cdev, "configured R5F for remoteproc mode\n");
1183 		ret = 0;
1184 	} else {
1185 		dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1186 			!ret ? "deasserted" : "asserted",
1187 			c_state ? "deasserted" : "asserted",
1188 			halted ? "halted" : "unhalted");
1189 		ret = -EINVAL;
1190 	}
1191 
1192 	/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1193 	if (ret > 0) {
1194 		if (core == core0)
1195 			cluster->mode = mode;
1196 		core->atcm_enable = atcm_enable;
1197 		core->btcm_enable = btcm_enable;
1198 		core->loczrama = loczrama;
1199 		core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1200 		core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1201 	}
1202 
1203 	return ret;
1204 }
1205 
1206 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1207 {
1208 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1209 	struct device *dev = &pdev->dev;
1210 	struct k3_r5_rproc *kproc;
1211 	struct k3_r5_core *core, *core1;
1212 	struct device *cdev;
1213 	const char *fw_name;
1214 	struct rproc *rproc;
1215 	int ret, ret1;
1216 
1217 	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1218 	list_for_each_entry(core, &cluster->cores, elem) {
1219 		cdev = core->dev;
1220 		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1221 		if (ret) {
1222 			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1223 				ret);
1224 			goto out;
1225 		}
1226 
1227 		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1228 				    fw_name, sizeof(*kproc));
1229 		if (!rproc) {
1230 			ret = -ENOMEM;
1231 			goto out;
1232 		}
1233 
1234 		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
1235 		rproc->has_iommu = false;
1236 		/* error recovery is not supported at present */
1237 		rproc->recovery_disabled = true;
1238 
1239 		kproc = rproc->priv;
1240 		kproc->cluster = cluster;
1241 		kproc->core = core;
1242 		kproc->dev = cdev;
1243 		kproc->rproc = rproc;
1244 		core->rproc = rproc;
1245 
1246 		ret = k3_r5_rproc_configure_mode(kproc);
1247 		if (ret < 0)
1248 			goto err_config;
1249 		if (ret)
1250 			goto init_rmem;
1251 
1252 		ret = k3_r5_rproc_configure(kproc);
1253 		if (ret) {
1254 			dev_err(dev, "initial configure failed, ret = %d\n",
1255 				ret);
1256 			goto err_config;
1257 		}
1258 
1259 init_rmem:
1260 		k3_r5_adjust_tcm_sizes(kproc);
1261 
1262 		ret = k3_r5_reserved_mem_init(kproc);
1263 		if (ret) {
1264 			dev_err(dev, "reserved memory init failed, ret = %d\n",
1265 				ret);
1266 			goto err_config;
1267 		}
1268 
1269 		ret = rproc_add(rproc);
1270 		if (ret) {
1271 			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1272 			goto err_add;
1273 		}
1274 
1275 		/* create only one rproc in lockstep, single-cpu or
1276 		 * single core mode
1277 		 */
1278 		if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1279 		    cluster->mode == CLUSTER_MODE_SINGLECPU ||
1280 		    cluster->mode == CLUSTER_MODE_SINGLECORE)
1281 			break;
1282 	}
1283 
1284 	return 0;
1285 
1286 err_split:
1287 	if (rproc->state == RPROC_ATTACHED) {
1288 		ret1 = rproc_detach(rproc);
1289 		if (ret1) {
1290 			dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1291 				ret1);
1292 			return ret1;
1293 		}
1294 	}
1295 
1296 	rproc_del(rproc);
1297 err_add:
1298 	k3_r5_reserved_mem_exit(kproc);
1299 err_config:
1300 	rproc_free(rproc);
1301 	core->rproc = NULL;
1302 out:
1303 	/* undo core0 upon any failures on core1 in split-mode */
1304 	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1305 		core = list_prev_entry(core, elem);
1306 		rproc = core->rproc;
1307 		kproc = rproc->priv;
1308 		goto err_split;
1309 	}
1310 	return ret;
1311 }
1312 
1313 static void k3_r5_cluster_rproc_exit(void *data)
1314 {
1315 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1316 	struct k3_r5_rproc *kproc;
1317 	struct k3_r5_core *core;
1318 	struct rproc *rproc;
1319 	int ret;
1320 
1321 	/*
1322 	 * lockstep mode and single-cpu modes have only one rproc associated
1323 	 * with first core, whereas split-mode has two rprocs associated with
1324 	 * each core, and requires that core1 be powered down first
1325 	 */
1326 	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1327 		cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1328 		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1329 		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1330 
1331 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1332 		rproc = core->rproc;
1333 		kproc = rproc->priv;
1334 
1335 		if (rproc->state == RPROC_ATTACHED) {
1336 			ret = rproc_detach(rproc);
1337 			if (ret) {
1338 				dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1339 				return;
1340 			}
1341 		}
1342 
1343 		rproc_del(rproc);
1344 
1345 		k3_r5_reserved_mem_exit(kproc);
1346 
1347 		rproc_free(rproc);
1348 		core->rproc = NULL;
1349 	}
1350 }
1351 
1352 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1353 					       struct k3_r5_core *core)
1354 {
1355 	static const char * const mem_names[] = {"atcm", "btcm"};
1356 	struct device *dev = &pdev->dev;
1357 	struct resource *res;
1358 	int num_mems;
1359 	int i;
1360 
1361 	num_mems = ARRAY_SIZE(mem_names);
1362 	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1363 	if (!core->mem)
1364 		return -ENOMEM;
1365 
1366 	for (i = 0; i < num_mems; i++) {
1367 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1368 						   mem_names[i]);
1369 		if (!res) {
1370 			dev_err(dev, "found no memory resource for %s\n",
1371 				mem_names[i]);
1372 			return -EINVAL;
1373 		}
1374 		if (!devm_request_mem_region(dev, res->start,
1375 					     resource_size(res),
1376 					     dev_name(dev))) {
1377 			dev_err(dev, "could not request %s region for resource\n",
1378 				mem_names[i]);
1379 			return -EBUSY;
1380 		}
1381 
1382 		/*
1383 		 * TCMs are designed in general to support RAM-like backing
1384 		 * memories. So, map these as Normal Non-Cached memories. This
1385 		 * also avoids/fixes any potential alignment faults due to
1386 		 * unaligned data accesses when using memcpy() or memset()
1387 		 * functions (normally seen with device type memory).
1388 		 */
1389 		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1390 							resource_size(res));
1391 		if (!core->mem[i].cpu_addr) {
1392 			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1393 			return -ENOMEM;
1394 		}
1395 		core->mem[i].bus_addr = res->start;
1396 
1397 		/*
1398 		 * TODO:
1399 		 * The R5F cores can place ATCM & BTCM anywhere in its address
1400 		 * based on the corresponding Region Registers in the System
1401 		 * Control coprocessor. For now, place ATCM and BTCM at
1402 		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1403 		 * SoCs) based on loczrama setting
1404 		 */
1405 		if (!strcmp(mem_names[i], "atcm")) {
1406 			core->mem[i].dev_addr = core->loczrama ?
1407 							0 : K3_R5_TCM_DEV_ADDR;
1408 		} else {
1409 			core->mem[i].dev_addr = core->loczrama ?
1410 							K3_R5_TCM_DEV_ADDR : 0;
1411 		}
1412 		core->mem[i].size = resource_size(res);
1413 
1414 		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1415 			mem_names[i], &core->mem[i].bus_addr,
1416 			core->mem[i].size, core->mem[i].cpu_addr,
1417 			core->mem[i].dev_addr);
1418 	}
1419 	core->num_mems = num_mems;
1420 
1421 	return 0;
1422 }
1423 
1424 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1425 					   struct k3_r5_core *core)
1426 {
1427 	struct device_node *np = pdev->dev.of_node;
1428 	struct device *dev = &pdev->dev;
1429 	struct device_node *sram_np;
1430 	struct resource res;
1431 	int num_sram;
1432 	int i, ret;
1433 
1434 	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1435 	if (num_sram <= 0) {
1436 		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1437 			num_sram);
1438 		return 0;
1439 	}
1440 
1441 	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1442 	if (!core->sram)
1443 		return -ENOMEM;
1444 
1445 	for (i = 0; i < num_sram; i++) {
1446 		sram_np = of_parse_phandle(np, "sram", i);
1447 		if (!sram_np)
1448 			return -EINVAL;
1449 
1450 		if (!of_device_is_available(sram_np)) {
1451 			of_node_put(sram_np);
1452 			return -EINVAL;
1453 		}
1454 
1455 		ret = of_address_to_resource(sram_np, 0, &res);
1456 		of_node_put(sram_np);
1457 		if (ret)
1458 			return -EINVAL;
1459 
1460 		core->sram[i].bus_addr = res.start;
1461 		core->sram[i].dev_addr = res.start;
1462 		core->sram[i].size = resource_size(&res);
1463 		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1464 							 resource_size(&res));
1465 		if (!core->sram[i].cpu_addr) {
1466 			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1467 				i, &res.start);
1468 			return -ENOMEM;
1469 		}
1470 
1471 		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1472 			i, &core->sram[i].bus_addr,
1473 			core->sram[i].size, core->sram[i].cpu_addr,
1474 			core->sram[i].dev_addr);
1475 	}
1476 	core->num_sram = num_sram;
1477 
1478 	return 0;
1479 }
1480 
1481 static
1482 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1483 					  const struct ti_sci_handle *sci)
1484 {
1485 	struct ti_sci_proc *tsp;
1486 	u32 temp[2];
1487 	int ret;
1488 
1489 	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1490 					 temp, 2);
1491 	if (ret < 0)
1492 		return ERR_PTR(ret);
1493 
1494 	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1495 	if (!tsp)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	tsp->dev = dev;
1499 	tsp->sci = sci;
1500 	tsp->ops = &sci->ops.proc_ops;
1501 	tsp->proc_id = temp[0];
1502 	tsp->host_id = temp[1];
1503 
1504 	return tsp;
1505 }
1506 
1507 static int k3_r5_core_of_init(struct platform_device *pdev)
1508 {
1509 	struct device *dev = &pdev->dev;
1510 	struct device_node *np = dev_of_node(dev);
1511 	struct k3_r5_core *core;
1512 	int ret;
1513 
1514 	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1515 		return -ENOMEM;
1516 
1517 	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1518 	if (!core) {
1519 		ret = -ENOMEM;
1520 		goto err;
1521 	}
1522 
1523 	core->dev = dev;
1524 	/*
1525 	 * Use SoC Power-on-Reset values as default if no DT properties are
1526 	 * used to dictate the TCM configurations
1527 	 */
1528 	core->atcm_enable = 0;
1529 	core->btcm_enable = 1;
1530 	core->loczrama = 1;
1531 
1532 	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1533 	if (ret < 0 && ret != -EINVAL) {
1534 		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1535 			ret);
1536 		goto err;
1537 	}
1538 
1539 	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1540 	if (ret < 0 && ret != -EINVAL) {
1541 		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1542 			ret);
1543 		goto err;
1544 	}
1545 
1546 	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1547 	if (ret < 0 && ret != -EINVAL) {
1548 		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1549 		goto err;
1550 	}
1551 
1552 	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1553 	if (IS_ERR(core->ti_sci)) {
1554 		ret = PTR_ERR(core->ti_sci);
1555 		if (ret != -EPROBE_DEFER) {
1556 			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1557 				ret);
1558 		}
1559 		core->ti_sci = NULL;
1560 		goto err;
1561 	}
1562 
1563 	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1564 	if (ret) {
1565 		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1566 		goto err;
1567 	}
1568 
1569 	core->reset = devm_reset_control_get_exclusive(dev, NULL);
1570 	if (IS_ERR_OR_NULL(core->reset)) {
1571 		ret = PTR_ERR_OR_ZERO(core->reset);
1572 		if (!ret)
1573 			ret = -ENODEV;
1574 		if (ret != -EPROBE_DEFER) {
1575 			dev_err(dev, "failed to get reset handle, ret = %d\n",
1576 				ret);
1577 		}
1578 		goto err;
1579 	}
1580 
1581 	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1582 	if (IS_ERR(core->tsp)) {
1583 		ret = PTR_ERR(core->tsp);
1584 		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1585 			ret);
1586 		goto err;
1587 	}
1588 
1589 	ret = k3_r5_core_of_get_internal_memories(pdev, core);
1590 	if (ret) {
1591 		dev_err(dev, "failed to get internal memories, ret = %d\n",
1592 			ret);
1593 		goto err;
1594 	}
1595 
1596 	ret = k3_r5_core_of_get_sram_memories(pdev, core);
1597 	if (ret) {
1598 		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1599 		goto err;
1600 	}
1601 
1602 	ret = ti_sci_proc_request(core->tsp);
1603 	if (ret < 0) {
1604 		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1605 		goto err;
1606 	}
1607 
1608 	platform_set_drvdata(pdev, core);
1609 	devres_close_group(dev, k3_r5_core_of_init);
1610 
1611 	return 0;
1612 
1613 err:
1614 	devres_release_group(dev, k3_r5_core_of_init);
1615 	return ret;
1616 }
1617 
1618 /*
1619  * free the resources explicitly since driver model is not being used
1620  * for the child R5F devices
1621  */
1622 static void k3_r5_core_of_exit(struct platform_device *pdev)
1623 {
1624 	struct k3_r5_core *core = platform_get_drvdata(pdev);
1625 	struct device *dev = &pdev->dev;
1626 	int ret;
1627 
1628 	ret = ti_sci_proc_release(core->tsp);
1629 	if (ret)
1630 		dev_err(dev, "failed to release proc, ret = %d\n", ret);
1631 
1632 	platform_set_drvdata(pdev, NULL);
1633 	devres_release_group(dev, k3_r5_core_of_init);
1634 }
1635 
1636 static void k3_r5_cluster_of_exit(void *data)
1637 {
1638 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1639 	struct platform_device *cpdev;
1640 	struct k3_r5_core *core, *temp;
1641 
1642 	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1643 		list_del(&core->elem);
1644 		cpdev = to_platform_device(core->dev);
1645 		k3_r5_core_of_exit(cpdev);
1646 	}
1647 }
1648 
1649 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1650 {
1651 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1652 	struct device *dev = &pdev->dev;
1653 	struct device_node *np = dev_of_node(dev);
1654 	struct platform_device *cpdev;
1655 	struct device_node *child;
1656 	struct k3_r5_core *core;
1657 	int ret;
1658 
1659 	for_each_available_child_of_node(np, child) {
1660 		cpdev = of_find_device_by_node(child);
1661 		if (!cpdev) {
1662 			ret = -ENODEV;
1663 			dev_err(dev, "could not get R5 core platform device\n");
1664 			of_node_put(child);
1665 			goto fail;
1666 		}
1667 
1668 		ret = k3_r5_core_of_init(cpdev);
1669 		if (ret) {
1670 			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1671 				ret);
1672 			put_device(&cpdev->dev);
1673 			of_node_put(child);
1674 			goto fail;
1675 		}
1676 
1677 		core = platform_get_drvdata(cpdev);
1678 		put_device(&cpdev->dev);
1679 		list_add_tail(&core->elem, &cluster->cores);
1680 	}
1681 
1682 	return 0;
1683 
1684 fail:
1685 	k3_r5_cluster_of_exit(pdev);
1686 	return ret;
1687 }
1688 
1689 static int k3_r5_probe(struct platform_device *pdev)
1690 {
1691 	struct device *dev = &pdev->dev;
1692 	struct device_node *np = dev_of_node(dev);
1693 	struct k3_r5_cluster *cluster;
1694 	const struct k3_r5_soc_data *data;
1695 	int ret;
1696 	int num_cores;
1697 
1698 	data = of_device_get_match_data(&pdev->dev);
1699 	if (!data) {
1700 		dev_err(dev, "SoC-specific data is not defined\n");
1701 		return -ENODEV;
1702 	}
1703 
1704 	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1705 	if (!cluster)
1706 		return -ENOMEM;
1707 
1708 	cluster->dev = dev;
1709 	cluster->soc_data = data;
1710 	INIT_LIST_HEAD(&cluster->cores);
1711 
1712 	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1713 	if (ret < 0 && ret != -EINVAL) {
1714 		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1715 			ret);
1716 		return ret;
1717 	}
1718 
1719 	if (ret == -EINVAL) {
1720 		/*
1721 		 * default to most common efuse configurations - Split-mode on AM64x
1722 		 * and LockStep-mode on all others
1723 		 * default to most common efuse configurations -
1724 		 * Split-mode on AM64x
1725 		 * Single core on AM62x
1726 		 * LockStep-mode on all others
1727 		 */
1728 		if (!data->is_single_core)
1729 			cluster->mode = data->single_cpu_mode ?
1730 					CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1731 		else
1732 			cluster->mode = CLUSTER_MODE_SINGLECORE;
1733 	}
1734 
1735 	if  ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1736 	     (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
1737 		dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
1738 		return -EINVAL;
1739 	}
1740 
1741 	num_cores = of_get_available_child_count(np);
1742 	if (num_cores != 2 && !data->is_single_core) {
1743 		dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1744 			num_cores);
1745 		return -ENODEV;
1746 	}
1747 
1748 	if (num_cores != 1 && data->is_single_core) {
1749 		dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
1750 			num_cores);
1751 		return -ENODEV;
1752 	}
1753 
1754 	platform_set_drvdata(pdev, cluster);
1755 
1756 	ret = devm_of_platform_populate(dev);
1757 	if (ret) {
1758 		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1759 			ret);
1760 		return ret;
1761 	}
1762 
1763 	ret = k3_r5_cluster_of_init(pdev);
1764 	if (ret) {
1765 		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1766 		return ret;
1767 	}
1768 
1769 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1770 	if (ret)
1771 		return ret;
1772 
1773 	ret = k3_r5_cluster_rproc_init(pdev);
1774 	if (ret) {
1775 		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1776 			ret);
1777 		return ret;
1778 	}
1779 
1780 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1781 	if (ret)
1782 		return ret;
1783 
1784 	return 0;
1785 }
1786 
1787 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1788 	.tcm_is_double = false,
1789 	.tcm_ecc_autoinit = false,
1790 	.single_cpu_mode = false,
1791 	.is_single_core = false,
1792 };
1793 
1794 static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1795 	.tcm_is_double = true,
1796 	.tcm_ecc_autoinit = true,
1797 	.single_cpu_mode = false,
1798 	.is_single_core = false,
1799 };
1800 
1801 static const struct k3_r5_soc_data am64_soc_data = {
1802 	.tcm_is_double = true,
1803 	.tcm_ecc_autoinit = true,
1804 	.single_cpu_mode = true,
1805 	.is_single_core = false,
1806 };
1807 
1808 static const struct k3_r5_soc_data am62_soc_data = {
1809 	.tcm_is_double = false,
1810 	.tcm_ecc_autoinit = true,
1811 	.single_cpu_mode = false,
1812 	.is_single_core = true,
1813 };
1814 
1815 static const struct of_device_id k3_r5_of_match[] = {
1816 	{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1817 	{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1818 	{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1819 	{ .compatible = "ti,am64-r5fss",  .data = &am64_soc_data, },
1820 	{ .compatible = "ti,am62-r5fss",  .data = &am62_soc_data, },
1821 	{ .compatible = "ti,j721s2-r5fss",  .data = &j7200_j721s2_soc_data, },
1822 	{ /* sentinel */ },
1823 };
1824 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1825 
1826 static struct platform_driver k3_r5_rproc_driver = {
1827 	.probe = k3_r5_probe,
1828 	.driver = {
1829 		.name = "k3_r5_rproc",
1830 		.of_match_table = k3_r5_of_match,
1831 	},
1832 };
1833 
1834 module_platform_driver(k3_r5_rproc_driver);
1835 
1836 MODULE_LICENSE("GPL v2");
1837 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1838 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1839