1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 R5F (MCU) Remote Processor driver
4  *
5  * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *	Suman Anna <s-anna@ti.com>
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/of_platform.h>
19 #include <linux/omap-mailbox.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/remoteproc.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 
26 #include "omap_remoteproc.h"
27 #include "remoteproc_internal.h"
28 #include "ti_sci_proc.h"
29 
30 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
31 #define K3_R5_TCM_DEV_ADDR	0x41010000
32 
33 /* R5 TI-SCI Processor Configuration Flags */
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
35 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
36 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
37 #define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
38 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
39 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
40 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
41 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
42 /* Available from J7200 SoCs onwards */
43 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS		0x00004000
44 /* Applicable to only AM64x SoCs */
45 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE		0x00008000
46 
47 /* R5 TI-SCI Processor Control Flags */
48 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
49 
50 /* R5 TI-SCI Processor Status Flags */
51 #define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
52 #define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
53 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
54 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
55 /* Applicable to only AM64x SoCs */
56 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY	0x00000200
57 
58 /**
59  * struct k3_r5_mem - internal memory structure
60  * @cpu_addr: MPU virtual address of the memory region
61  * @bus_addr: Bus address used to access the memory region
62  * @dev_addr: Device address from remoteproc view
63  * @size: Size of the memory region
64  */
65 struct k3_r5_mem {
66 	void __iomem *cpu_addr;
67 	phys_addr_t bus_addr;
68 	u32 dev_addr;
69 	size_t size;
70 };
71 
72 /*
73  * All cluster mode values are not applicable on all SoCs. The following
74  * are the modes supported on various SoCs:
75  *   Split mode       : AM65x, J721E, J7200 and AM64x SoCs
76  *   LockStep mode    : AM65x, J721E and J7200 SoCs
77  *   Single-CPU mode  : AM64x SoCs only
78  *   Single-Core mode : AM62x, AM62A SoCs
79  */
80 enum cluster_mode {
81 	CLUSTER_MODE_SPLIT = 0,
82 	CLUSTER_MODE_LOCKSTEP,
83 	CLUSTER_MODE_SINGLECPU,
84 	CLUSTER_MODE_SINGLECORE
85 };
86 
87 /**
88  * struct k3_r5_soc_data - match data to handle SoC variations
89  * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90  * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91  * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92  * @is_single_core: flag to denote if SoC/IP has only single core R5
93  */
94 struct k3_r5_soc_data {
95 	bool tcm_is_double;
96 	bool tcm_ecc_autoinit;
97 	bool single_cpu_mode;
98 	bool is_single_core;
99 };
100 
101 /**
102  * struct k3_r5_cluster - K3 R5F Cluster structure
103  * @dev: cached device pointer
104  * @mode: Mode to configure the Cluster - Split or LockStep
105  * @cores: list of R5 cores within the cluster
106  * @soc_data: SoC-specific feature data for a R5FSS
107  */
108 struct k3_r5_cluster {
109 	struct device *dev;
110 	enum cluster_mode mode;
111 	struct list_head cores;
112 	const struct k3_r5_soc_data *soc_data;
113 };
114 
115 /**
116  * struct k3_r5_core - K3 R5 core structure
117  * @elem: linked list item
118  * @dev: cached device pointer
119  * @rproc: rproc handle representing this core
120  * @mem: internal memory regions data
121  * @sram: on-chip SRAM memory regions data
122  * @num_mems: number of internal memory regions
123  * @num_sram: number of on-chip SRAM memory regions
124  * @reset: reset control handle
125  * @tsp: TI-SCI processor control handle
126  * @ti_sci: TI-SCI handle
127  * @ti_sci_id: TI-SCI device identifier
128  * @atcm_enable: flag to control ATCM enablement
129  * @btcm_enable: flag to control BTCM enablement
130  * @loczrama: flag to dictate which TCM is at device address 0x0
131  */
132 struct k3_r5_core {
133 	struct list_head elem;
134 	struct device *dev;
135 	struct rproc *rproc;
136 	struct k3_r5_mem *mem;
137 	struct k3_r5_mem *sram;
138 	int num_mems;
139 	int num_sram;
140 	struct reset_control *reset;
141 	struct ti_sci_proc *tsp;
142 	const struct ti_sci_handle *ti_sci;
143 	u32 ti_sci_id;
144 	u32 atcm_enable;
145 	u32 btcm_enable;
146 	u32 loczrama;
147 };
148 
149 /**
150  * struct k3_r5_rproc - K3 remote processor state
151  * @dev: cached device pointer
152  * @cluster: cached pointer to parent cluster structure
153  * @mbox: mailbox channel handle
154  * @client: mailbox client to request the mailbox channel
155  * @rproc: rproc handle
156  * @core: cached pointer to r5 core structure being used
157  * @rmem: reserved memory regions data
158  * @num_rmems: number of reserved memory regions
159  */
160 struct k3_r5_rproc {
161 	struct device *dev;
162 	struct k3_r5_cluster *cluster;
163 	struct mbox_chan *mbox;
164 	struct mbox_client client;
165 	struct rproc *rproc;
166 	struct k3_r5_core *core;
167 	struct k3_r5_mem *rmem;
168 	int num_rmems;
169 };
170 
171 /**
172  * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
173  * @client: mailbox client pointer used for requesting the mailbox channel
174  * @data: mailbox payload
175  *
176  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
177  * message is received. Usually, the mailbox payload simply contains
178  * the index of the virtqueue that is kicked by the remote processor,
179  * and we let remoteproc core handle it.
180  *
181  * In addition to virtqueue indices, we also have some out-of-band values
182  * that indicate different events. Those values are deliberately very
183  * large so they don't coincide with virtqueue indices.
184  */
185 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
186 {
187 	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
188 						client);
189 	struct device *dev = kproc->rproc->dev.parent;
190 	const char *name = kproc->rproc->name;
191 	u32 msg = omap_mbox_message(data);
192 
193 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
194 
195 	switch (msg) {
196 	case RP_MBOX_CRASH:
197 		/*
198 		 * remoteproc detected an exception, but error recovery is not
199 		 * supported. So, just log this for now
200 		 */
201 		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
202 		break;
203 	case RP_MBOX_ECHO_REPLY:
204 		dev_info(dev, "received echo reply from %s\n", name);
205 		break;
206 	default:
207 		/* silently handle all other valid messages */
208 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
209 			return;
210 		if (msg > kproc->rproc->max_notifyid) {
211 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
212 			return;
213 		}
214 		/* msg contains the index of the triggered vring */
215 		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
216 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
217 	}
218 }
219 
220 /* kick a virtqueue */
221 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
222 {
223 	struct k3_r5_rproc *kproc = rproc->priv;
224 	struct device *dev = rproc->dev.parent;
225 	mbox_msg_t msg = (mbox_msg_t)vqid;
226 	int ret;
227 
228 	/* send the index of the triggered virtqueue in the mailbox payload */
229 	ret = mbox_send_message(kproc->mbox, (void *)msg);
230 	if (ret < 0)
231 		dev_err(dev, "failed to send mailbox message, status = %d\n",
232 			ret);
233 }
234 
235 static int k3_r5_split_reset(struct k3_r5_core *core)
236 {
237 	int ret;
238 
239 	ret = reset_control_assert(core->reset);
240 	if (ret) {
241 		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
242 			ret);
243 		return ret;
244 	}
245 
246 	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
247 						   core->ti_sci_id);
248 	if (ret) {
249 		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
250 			ret);
251 		if (reset_control_deassert(core->reset))
252 			dev_warn(core->dev, "local-reset deassert back failed\n");
253 	}
254 
255 	return ret;
256 }
257 
258 static int k3_r5_split_release(struct k3_r5_core *core)
259 {
260 	int ret;
261 
262 	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
263 						   core->ti_sci_id);
264 	if (ret) {
265 		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
266 			ret);
267 		return ret;
268 	}
269 
270 	ret = reset_control_deassert(core->reset);
271 	if (ret) {
272 		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
273 			ret);
274 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
275 							 core->ti_sci_id))
276 			dev_warn(core->dev, "module-reset assert back failed\n");
277 	}
278 
279 	return ret;
280 }
281 
282 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
283 {
284 	struct k3_r5_core *core;
285 	int ret;
286 
287 	/* assert local reset on all applicable cores */
288 	list_for_each_entry(core, &cluster->cores, elem) {
289 		ret = reset_control_assert(core->reset);
290 		if (ret) {
291 			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
292 				ret);
293 			core = list_prev_entry(core, elem);
294 			goto unroll_local_reset;
295 		}
296 	}
297 
298 	/* disable PSC modules on all applicable cores */
299 	list_for_each_entry(core, &cluster->cores, elem) {
300 		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
301 							   core->ti_sci_id);
302 		if (ret) {
303 			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
304 				ret);
305 			goto unroll_module_reset;
306 		}
307 	}
308 
309 	return 0;
310 
311 unroll_module_reset:
312 	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
313 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
314 							 core->ti_sci_id))
315 			dev_warn(core->dev, "module-reset assert back failed\n");
316 	}
317 	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
318 unroll_local_reset:
319 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
320 		if (reset_control_deassert(core->reset))
321 			dev_warn(core->dev, "local-reset deassert back failed\n");
322 	}
323 
324 	return ret;
325 }
326 
327 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
328 {
329 	struct k3_r5_core *core;
330 	int ret;
331 
332 	/* enable PSC modules on all applicable cores */
333 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
334 		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
335 							   core->ti_sci_id);
336 		if (ret) {
337 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
338 				ret);
339 			core = list_next_entry(core, elem);
340 			goto unroll_module_reset;
341 		}
342 	}
343 
344 	/* deassert local reset on all applicable cores */
345 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
346 		ret = reset_control_deassert(core->reset);
347 		if (ret) {
348 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
349 				ret);
350 			goto unroll_local_reset;
351 		}
352 	}
353 
354 	return 0;
355 
356 unroll_local_reset:
357 	list_for_each_entry_continue(core, &cluster->cores, elem) {
358 		if (reset_control_assert(core->reset))
359 			dev_warn(core->dev, "local-reset assert back failed\n");
360 	}
361 	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
362 unroll_module_reset:
363 	list_for_each_entry_from(core, &cluster->cores, elem) {
364 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
365 							 core->ti_sci_id))
366 			dev_warn(core->dev, "module-reset assert back failed\n");
367 	}
368 
369 	return ret;
370 }
371 
372 static inline int k3_r5_core_halt(struct k3_r5_core *core)
373 {
374 	return ti_sci_proc_set_control(core->tsp,
375 				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
376 }
377 
378 static inline int k3_r5_core_run(struct k3_r5_core *core)
379 {
380 	return ti_sci_proc_set_control(core->tsp,
381 				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
382 }
383 
384 static int k3_r5_rproc_request_mbox(struct rproc *rproc)
385 {
386 	struct k3_r5_rproc *kproc = rproc->priv;
387 	struct mbox_client *client = &kproc->client;
388 	struct device *dev = kproc->dev;
389 	int ret;
390 
391 	client->dev = dev;
392 	client->tx_done = NULL;
393 	client->rx_callback = k3_r5_rproc_mbox_callback;
394 	client->tx_block = false;
395 	client->knows_txdone = false;
396 
397 	kproc->mbox = mbox_request_channel(client, 0);
398 	if (IS_ERR(kproc->mbox)) {
399 		ret = -EBUSY;
400 		dev_err(dev, "mbox_request_channel failed: %ld\n",
401 			PTR_ERR(kproc->mbox));
402 		return ret;
403 	}
404 
405 	/*
406 	 * Ping the remote processor, this is only for sanity-sake for now;
407 	 * there is no functional effect whatsoever.
408 	 *
409 	 * Note that the reply will _not_ arrive immediately: this message
410 	 * will wait in the mailbox fifo until the remote processor is booted.
411 	 */
412 	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
413 	if (ret < 0) {
414 		dev_err(dev, "mbox_send_message failed: %d\n", ret);
415 		mbox_free_channel(kproc->mbox);
416 		return ret;
417 	}
418 
419 	return 0;
420 }
421 
422 /*
423  * The R5F cores have controls for both a reset and a halt/run. The code
424  * execution from DDR requires the initial boot-strapping code to be run
425  * from the internal TCMs. This function is used to release the resets on
426  * applicable cores to allow loading into the TCMs. The .prepare() ops is
427  * invoked by remoteproc core before any firmware loading, and is followed
428  * by the .start() ops after loading to actually let the R5 cores run.
429  *
430  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
431  * execute code, but combines the TCMs from both cores. The resets for both
432  * cores need to be released to make this possible, as the TCMs are in general
433  * private to each core. Only Core0 needs to be unhalted for running the
434  * cluster in this mode. The function uses the same reset logic as LockStep
435  * mode for this (though the behavior is agnostic of the reset release order).
436  * This callback is invoked only in remoteproc mode.
437  */
438 static int k3_r5_rproc_prepare(struct rproc *rproc)
439 {
440 	struct k3_r5_rproc *kproc = rproc->priv;
441 	struct k3_r5_cluster *cluster = kproc->cluster;
442 	struct k3_r5_core *core = kproc->core;
443 	struct device *dev = kproc->dev;
444 	u32 ctrl = 0, cfg = 0, stat = 0;
445 	u64 boot_vec = 0;
446 	bool mem_init_dis;
447 	int ret;
448 
449 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
450 	if (ret < 0)
451 		return ret;
452 	mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
453 
454 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
455 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
456 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
457 		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
458 	if (ret) {
459 		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
460 			ret);
461 		return ret;
462 	}
463 
464 	/*
465 	 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
466 	 * of TCMs, so there is no need to perform the s/w memzero. This bit is
467 	 * configurable through System Firmware, the default value does perform
468 	 * auto-init, but account for it in case it is disabled
469 	 */
470 	if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
471 		dev_dbg(dev, "leveraging h/w init for TCM memories\n");
472 		return 0;
473 	}
474 
475 	/*
476 	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
477 	 * affected by ATCM & BTCM enable configuration values) so that ECC
478 	 * can be effective on all TCM addresses.
479 	 */
480 	dev_dbg(dev, "zeroing out ATCM memory\n");
481 	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
482 
483 	dev_dbg(dev, "zeroing out BTCM memory\n");
484 	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
485 
486 	return 0;
487 }
488 
489 /*
490  * This function implements the .unprepare() ops and performs the complimentary
491  * operations to that of the .prepare() ops. The function is used to assert the
492  * resets on all applicable cores for the rproc device (depending on LockStep
493  * or Split mode). This completes the second portion of powering down the R5F
494  * cores. The cores themselves are only halted in the .stop() ops, and the
495  * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
496  * stopped.
497  *
498  * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
499  * both cores. The access is made possible only with releasing the resets for
500  * both cores, but with only Core0 unhalted. This function re-uses the same
501  * reset assert logic as LockStep mode for this mode (though the behavior is
502  * agnostic of the reset assert order). This callback is invoked only in
503  * remoteproc mode.
504  */
505 static int k3_r5_rproc_unprepare(struct rproc *rproc)
506 {
507 	struct k3_r5_rproc *kproc = rproc->priv;
508 	struct k3_r5_cluster *cluster = kproc->cluster;
509 	struct k3_r5_core *core = kproc->core;
510 	struct device *dev = kproc->dev;
511 	int ret;
512 
513 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
514 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
515 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
516 		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
517 	if (ret)
518 		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
519 
520 	return ret;
521 }
522 
523 /*
524  * The R5F start sequence includes two different operations
525  * 1. Configure the boot vector for R5F core(s)
526  * 2. Unhalt/Run the R5F core(s)
527  *
528  * The sequence is different between LockStep and Split modes. The LockStep
529  * mode requires the boot vector to be configured only for Core0, and then
530  * unhalt both the cores to start the execution - Core1 needs to be unhalted
531  * first followed by Core0. The Split-mode requires that Core0 to be maintained
532  * always in a higher power state that Core1 (implying Core1 needs to be started
533  * always only after Core0 is started).
534  *
535  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
536  * code, so only Core0 needs to be unhalted. The function uses the same logic
537  * flow as Split-mode for this. This callback is invoked only in remoteproc
538  * mode.
539  */
540 static int k3_r5_rproc_start(struct rproc *rproc)
541 {
542 	struct k3_r5_rproc *kproc = rproc->priv;
543 	struct k3_r5_cluster *cluster = kproc->cluster;
544 	struct device *dev = kproc->dev;
545 	struct k3_r5_core *core;
546 	u32 boot_addr;
547 	int ret;
548 
549 	ret = k3_r5_rproc_request_mbox(rproc);
550 	if (ret)
551 		return ret;
552 
553 	boot_addr = rproc->bootaddr;
554 	/* TODO: add boot_addr sanity checking */
555 	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
556 
557 	/* boot vector need not be programmed for Core1 in LockStep mode */
558 	core = kproc->core;
559 	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
560 	if (ret)
561 		goto put_mbox;
562 
563 	/* unhalt/run all applicable cores */
564 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
565 		list_for_each_entry_reverse(core, &cluster->cores, elem) {
566 			ret = k3_r5_core_run(core);
567 			if (ret)
568 				goto unroll_core_run;
569 		}
570 	} else {
571 		ret = k3_r5_core_run(core);
572 		if (ret)
573 			goto put_mbox;
574 	}
575 
576 	return 0;
577 
578 unroll_core_run:
579 	list_for_each_entry_continue(core, &cluster->cores, elem) {
580 		if (k3_r5_core_halt(core))
581 			dev_warn(core->dev, "core halt back failed\n");
582 	}
583 put_mbox:
584 	mbox_free_channel(kproc->mbox);
585 	return ret;
586 }
587 
588 /*
589  * The R5F stop function includes the following operations
590  * 1. Halt R5F core(s)
591  *
592  * The sequence is different between LockStep and Split modes, and the order
593  * of cores the operations are performed are also in general reverse to that
594  * of the start function. The LockStep mode requires each operation to be
595  * performed first on Core0 followed by Core1. The Split-mode requires that
596  * Core0 to be maintained always in a higher power state that Core1 (implying
597  * Core1 needs to be stopped first before Core0).
598  *
599  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
600  * code, so only Core0 needs to be halted. The function uses the same logic
601  * flow as Split-mode for this.
602  *
603  * Note that the R5F halt operation in general is not effective when the R5F
604  * core is running, but is needed to make sure the core won't run after
605  * deasserting the reset the subsequent time. The asserting of reset can
606  * be done here, but is preferred to be done in the .unprepare() ops - this
607  * maintains the symmetric behavior between the .start(), .stop(), .prepare()
608  * and .unprepare() ops, and also balances them well between sysfs 'state'
609  * flow and device bind/unbind or module removal. This callback is invoked
610  * only in remoteproc mode.
611  */
612 static int k3_r5_rproc_stop(struct rproc *rproc)
613 {
614 	struct k3_r5_rproc *kproc = rproc->priv;
615 	struct k3_r5_cluster *cluster = kproc->cluster;
616 	struct k3_r5_core *core = kproc->core;
617 	int ret;
618 
619 	/* halt all applicable cores */
620 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
621 		list_for_each_entry(core, &cluster->cores, elem) {
622 			ret = k3_r5_core_halt(core);
623 			if (ret) {
624 				core = list_prev_entry(core, elem);
625 				goto unroll_core_halt;
626 			}
627 		}
628 	} else {
629 		ret = k3_r5_core_halt(core);
630 		if (ret)
631 			goto out;
632 	}
633 
634 	mbox_free_channel(kproc->mbox);
635 
636 	return 0;
637 
638 unroll_core_halt:
639 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
640 		if (k3_r5_core_run(core))
641 			dev_warn(core->dev, "core run back failed\n");
642 	}
643 out:
644 	return ret;
645 }
646 
647 /*
648  * Attach to a running R5F remote processor (IPC-only mode)
649  *
650  * The R5F attach callback only needs to request the mailbox, the remote
651  * processor is already booted, so there is no need to issue any TI-SCI
652  * commands to boot the R5F cores in IPC-only mode. This callback is invoked
653  * only in IPC-only mode.
654  */
655 static int k3_r5_rproc_attach(struct rproc *rproc)
656 {
657 	struct k3_r5_rproc *kproc = rproc->priv;
658 	struct device *dev = kproc->dev;
659 	int ret;
660 
661 	ret = k3_r5_rproc_request_mbox(rproc);
662 	if (ret)
663 		return ret;
664 
665 	dev_info(dev, "R5F core initialized in IPC-only mode\n");
666 	return 0;
667 }
668 
669 /*
670  * Detach from a running R5F remote processor (IPC-only mode)
671  *
672  * The R5F detach callback performs the opposite operation to attach callback
673  * and only needs to release the mailbox, the R5F cores are not stopped and
674  * will be left in booted state in IPC-only mode. This callback is invoked
675  * only in IPC-only mode.
676  */
677 static int k3_r5_rproc_detach(struct rproc *rproc)
678 {
679 	struct k3_r5_rproc *kproc = rproc->priv;
680 	struct device *dev = kproc->dev;
681 
682 	mbox_free_channel(kproc->mbox);
683 	dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
684 	return 0;
685 }
686 
687 /*
688  * This function implements the .get_loaded_rsc_table() callback and is used
689  * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
690  * firmwares follow a design-by-contract approach and are expected to have the
691  * resource table at the base of the DDR region reserved for firmware usage.
692  * This provides flexibility for the remote processor to be booted by different
693  * bootloaders that may or may not have the ability to publish the resource table
694  * address and size through a DT property. This callback is invoked only in
695  * IPC-only mode.
696  */
697 static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
698 							 size_t *rsc_table_sz)
699 {
700 	struct k3_r5_rproc *kproc = rproc->priv;
701 	struct device *dev = kproc->dev;
702 
703 	if (!kproc->rmem[0].cpu_addr) {
704 		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
705 		return ERR_PTR(-ENOMEM);
706 	}
707 
708 	/*
709 	 * NOTE: The resource table size is currently hard-coded to a maximum
710 	 * of 256 bytes. The most common resource table usage for K3 firmwares
711 	 * is to only have the vdev resource entry and an optional trace entry.
712 	 * The exact size could be computed based on resource table address, but
713 	 * the hard-coded value suffices to support the IPC-only mode.
714 	 */
715 	*rsc_table_sz = 256;
716 	return (struct resource_table *)kproc->rmem[0].cpu_addr;
717 }
718 
719 /*
720  * Internal Memory translation helper
721  *
722  * Custom function implementing the rproc .da_to_va ops to provide address
723  * translation (device address to kernel virtual address) for internal RAMs
724  * present in a DSP or IPU device). The translated addresses can be used
725  * either by the remoteproc core for loading, or by any rpmsg bus drivers.
726  */
727 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
728 {
729 	struct k3_r5_rproc *kproc = rproc->priv;
730 	struct k3_r5_core *core = kproc->core;
731 	void __iomem *va = NULL;
732 	phys_addr_t bus_addr;
733 	u32 dev_addr, offset;
734 	size_t size;
735 	int i;
736 
737 	if (len == 0)
738 		return NULL;
739 
740 	/* handle both R5 and SoC views of ATCM and BTCM */
741 	for (i = 0; i < core->num_mems; i++) {
742 		bus_addr = core->mem[i].bus_addr;
743 		dev_addr = core->mem[i].dev_addr;
744 		size = core->mem[i].size;
745 
746 		/* handle R5-view addresses of TCMs */
747 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
748 			offset = da - dev_addr;
749 			va = core->mem[i].cpu_addr + offset;
750 			return (__force void *)va;
751 		}
752 
753 		/* handle SoC-view addresses of TCMs */
754 		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
755 			offset = da - bus_addr;
756 			va = core->mem[i].cpu_addr + offset;
757 			return (__force void *)va;
758 		}
759 	}
760 
761 	/* handle any SRAM regions using SoC-view addresses */
762 	for (i = 0; i < core->num_sram; i++) {
763 		dev_addr = core->sram[i].dev_addr;
764 		size = core->sram[i].size;
765 
766 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
767 			offset = da - dev_addr;
768 			va = core->sram[i].cpu_addr + offset;
769 			return (__force void *)va;
770 		}
771 	}
772 
773 	/* handle static DDR reserved memory regions */
774 	for (i = 0; i < kproc->num_rmems; i++) {
775 		dev_addr = kproc->rmem[i].dev_addr;
776 		size = kproc->rmem[i].size;
777 
778 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
779 			offset = da - dev_addr;
780 			va = kproc->rmem[i].cpu_addr + offset;
781 			return (__force void *)va;
782 		}
783 	}
784 
785 	return NULL;
786 }
787 
788 static const struct rproc_ops k3_r5_rproc_ops = {
789 	.prepare	= k3_r5_rproc_prepare,
790 	.unprepare	= k3_r5_rproc_unprepare,
791 	.start		= k3_r5_rproc_start,
792 	.stop		= k3_r5_rproc_stop,
793 	.kick		= k3_r5_rproc_kick,
794 	.da_to_va	= k3_r5_rproc_da_to_va,
795 };
796 
797 /*
798  * Internal R5F Core configuration
799  *
800  * Each R5FSS has a cluster-level setting for configuring the processor
801  * subsystem either in a safety/fault-tolerant LockStep mode or a performance
802  * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
803  * as an alternate for LockStep mode that exercises only a single R5F core
804  * called Single-CPU mode. Each R5F core has a number of settings to either
805  * enable/disable each of the TCMs, control which TCM appears at the R5F core's
806  * address 0x0. These settings need to be configured before the resets for the
807  * corresponding core are released. These settings are all protected and managed
808  * by the System Processor.
809  *
810  * This function is used to pre-configure these settings for each R5F core, and
811  * the configuration is all done through various ti_sci_proc functions that
812  * communicate with the System Processor. The function also ensures that both
813  * the cores are halted before the .prepare() step.
814  *
815  * The function is called from k3_r5_cluster_rproc_init() and is invoked either
816  * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
817  * for LockStep-mode is dictated by an eFUSE register bit, and the config
818  * settings retrieved from DT are adjusted accordingly as per the permitted
819  * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
820  * supports a Single-CPU mode. All cluster level settings like Cluster mode and
821  * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
822  * and retrieved using Core0.
823  *
824  * The function behavior is different based on the cluster mode. The R5F cores
825  * are configured independently as per their individual settings in Split mode.
826  * They are identically configured in LockStep mode using the primary Core0
827  * settings. However, some individual settings cannot be set in LockStep mode.
828  * This is overcome by switching to Split-mode initially and then programming
829  * both the cores with the same settings, before reconfiguing again for
830  * LockStep mode.
831  */
832 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
833 {
834 	struct k3_r5_cluster *cluster = kproc->cluster;
835 	struct device *dev = kproc->dev;
836 	struct k3_r5_core *core0, *core, *temp;
837 	u32 ctrl = 0, cfg = 0, stat = 0;
838 	u32 set_cfg = 0, clr_cfg = 0;
839 	u64 boot_vec = 0;
840 	bool lockstep_en;
841 	bool single_cpu;
842 	int ret;
843 
844 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
845 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
846 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
847 	    cluster->mode == CLUSTER_MODE_SINGLECORE) {
848 		core = core0;
849 	} else {
850 		core = kproc->core;
851 	}
852 
853 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
854 				     &stat);
855 	if (ret < 0)
856 		return ret;
857 
858 	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
859 		boot_vec, cfg, ctrl, stat);
860 
861 	single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
862 	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
863 
864 	/* Override to single CPU mode if set in status flag */
865 	if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
866 		dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
867 		cluster->mode = CLUSTER_MODE_SINGLECPU;
868 	}
869 
870 	/* Override to split mode if lockstep enable bit is not set in status flag */
871 	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
872 		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
873 		cluster->mode = CLUSTER_MODE_SPLIT;
874 	}
875 
876 	/* always enable ARM mode and set boot vector to 0 */
877 	boot_vec = 0x0;
878 	if (core == core0) {
879 		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
880 		/*
881 		 * Single-CPU configuration bit can only be configured
882 		 * on Core0 and system firmware will NACK any requests
883 		 * with the bit configured, so program it only on
884 		 * permitted cores
885 		 */
886 		if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
887 		    cluster->mode == CLUSTER_MODE_SINGLECORE) {
888 			set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
889 		} else {
890 			/*
891 			 * LockStep configuration bit is Read-only on Split-mode
892 			 * _only_ devices and system firmware will NACK any
893 			 * requests with the bit configured, so program it only
894 			 * on permitted devices
895 			 */
896 			if (lockstep_en)
897 				clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
898 		}
899 	}
900 
901 	if (core->atcm_enable)
902 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
903 	else
904 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
905 
906 	if (core->btcm_enable)
907 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
908 	else
909 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
910 
911 	if (core->loczrama)
912 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
913 	else
914 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
915 
916 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
917 		/*
918 		 * work around system firmware limitations to make sure both
919 		 * cores are programmed symmetrically in LockStep. LockStep
920 		 * and TEINIT config is only allowed with Core0.
921 		 */
922 		list_for_each_entry(temp, &cluster->cores, elem) {
923 			ret = k3_r5_core_halt(temp);
924 			if (ret)
925 				goto out;
926 
927 			if (temp != core) {
928 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
929 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
930 			}
931 			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
932 						     set_cfg, clr_cfg);
933 			if (ret)
934 				goto out;
935 		}
936 
937 		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
938 		clr_cfg = 0;
939 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
940 					     set_cfg, clr_cfg);
941 	} else {
942 		ret = k3_r5_core_halt(core);
943 		if (ret)
944 			goto out;
945 
946 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
947 					     set_cfg, clr_cfg);
948 	}
949 
950 out:
951 	return ret;
952 }
953 
954 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
955 {
956 	struct device *dev = kproc->dev;
957 	struct device_node *np = dev_of_node(dev);
958 	struct device_node *rmem_np;
959 	struct reserved_mem *rmem;
960 	int num_rmems;
961 	int ret, i;
962 
963 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
964 						    sizeof(phandle));
965 	if (num_rmems <= 0) {
966 		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
967 			num_rmems);
968 		return -EINVAL;
969 	}
970 	if (num_rmems < 2) {
971 		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
972 			num_rmems);
973 		return -EINVAL;
974 	}
975 
976 	/* use reserved memory region 0 for vring DMA allocations */
977 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
978 	if (ret) {
979 		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
980 			ret);
981 		return ret;
982 	}
983 
984 	num_rmems--;
985 	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
986 	if (!kproc->rmem) {
987 		ret = -ENOMEM;
988 		goto release_rmem;
989 	}
990 
991 	/* use remaining reserved memory regions for static carveouts */
992 	for (i = 0; i < num_rmems; i++) {
993 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
994 		if (!rmem_np) {
995 			ret = -EINVAL;
996 			goto unmap_rmem;
997 		}
998 
999 		rmem = of_reserved_mem_lookup(rmem_np);
1000 		if (!rmem) {
1001 			of_node_put(rmem_np);
1002 			ret = -EINVAL;
1003 			goto unmap_rmem;
1004 		}
1005 		of_node_put(rmem_np);
1006 
1007 		kproc->rmem[i].bus_addr = rmem->base;
1008 		/*
1009 		 * R5Fs do not have an MMU, but have a Region Address Translator
1010 		 * (RAT) module that provides a fixed entry translation between
1011 		 * the 32-bit processor addresses to 64-bit bus addresses. The
1012 		 * RAT is programmable only by the R5F cores. Support for RAT
1013 		 * is currently not supported, so 64-bit address regions are not
1014 		 * supported. The absence of MMUs implies that the R5F device
1015 		 * addresses/supported memory regions are restricted to 32-bit
1016 		 * bus addresses, and are identical
1017 		 */
1018 		kproc->rmem[i].dev_addr = (u32)rmem->base;
1019 		kproc->rmem[i].size = rmem->size;
1020 		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1021 		if (!kproc->rmem[i].cpu_addr) {
1022 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1023 				i + 1, &rmem->base, &rmem->size);
1024 			ret = -ENOMEM;
1025 			goto unmap_rmem;
1026 		}
1027 
1028 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1029 			i + 1, &kproc->rmem[i].bus_addr,
1030 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1031 			kproc->rmem[i].dev_addr);
1032 	}
1033 	kproc->num_rmems = num_rmems;
1034 
1035 	return 0;
1036 
1037 unmap_rmem:
1038 	for (i--; i >= 0; i--)
1039 		iounmap(kproc->rmem[i].cpu_addr);
1040 	kfree(kproc->rmem);
1041 release_rmem:
1042 	of_reserved_mem_device_release(dev);
1043 	return ret;
1044 }
1045 
1046 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1047 {
1048 	int i;
1049 
1050 	for (i = 0; i < kproc->num_rmems; i++)
1051 		iounmap(kproc->rmem[i].cpu_addr);
1052 	kfree(kproc->rmem);
1053 
1054 	of_reserved_mem_device_release(kproc->dev);
1055 }
1056 
1057 /*
1058  * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1059  * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1060  * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1061  * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1062  * leveraging the Core1 TCMs as well in certain modes where they would have
1063  * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1064  * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1065  * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1066  * the Core0 TCMs, and the dts representation reflects this increased size on
1067  * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1068  * half the original size in Split mode.
1069  */
1070 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1071 {
1072 	struct k3_r5_cluster *cluster = kproc->cluster;
1073 	struct k3_r5_core *core = kproc->core;
1074 	struct device *cdev = core->dev;
1075 	struct k3_r5_core *core0;
1076 
1077 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1078 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
1079 	    cluster->mode == CLUSTER_MODE_SINGLECORE ||
1080 	    !cluster->soc_data->tcm_is_double)
1081 		return;
1082 
1083 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1084 	if (core == core0) {
1085 		WARN_ON(core->mem[0].size != SZ_64K);
1086 		WARN_ON(core->mem[1].size != SZ_64K);
1087 
1088 		core->mem[0].size /= 2;
1089 		core->mem[1].size /= 2;
1090 
1091 		dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1092 			core->mem[0].size, core->mem[1].size);
1093 	}
1094 }
1095 
1096 /*
1097  * This function checks and configures a R5F core for IPC-only or remoteproc
1098  * mode. The driver is configured to be in IPC-only mode for a R5F core when
1099  * the core has been loaded and started by a bootloader. The IPC-only mode is
1100  * detected by querying the System Firmware for reset, power on and halt status
1101  * and ensuring that the core is running. Any incomplete steps at bootloader
1102  * are validated and errored out.
1103  *
1104  * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1105  * and cluster mode parsed originally from kernel DT are updated to reflect the
1106  * actual values configured by bootloader. The driver internal device memory
1107  * addresses for TCMs are also updated.
1108  */
1109 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1110 {
1111 	struct k3_r5_cluster *cluster = kproc->cluster;
1112 	struct k3_r5_core *core = kproc->core;
1113 	struct device *cdev = core->dev;
1114 	bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1115 	u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1116 	u64 boot_vec = 0;
1117 	u32 atcm_enable, btcm_enable, loczrama;
1118 	struct k3_r5_core *core0;
1119 	enum cluster_mode mode = cluster->mode;
1120 	int ret;
1121 
1122 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1123 
1124 	ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1125 					      &r_state, &c_state);
1126 	if (ret) {
1127 		dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1128 			ret);
1129 		return ret;
1130 	}
1131 	if (r_state != c_state) {
1132 		dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1133 			 r_state, c_state);
1134 	}
1135 
1136 	ret = reset_control_status(core->reset);
1137 	if (ret < 0) {
1138 		dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1139 			ret);
1140 		return ret;
1141 	}
1142 
1143 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1144 				     &stat);
1145 	if (ret < 0) {
1146 		dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1147 			ret);
1148 		return ret;
1149 	}
1150 	atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ?  1 : 0;
1151 	btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ?  1 : 0;
1152 	loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ?  1 : 0;
1153 	single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1154 	lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1155 
1156 	if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1157 		mode = CLUSTER_MODE_SINGLECPU;
1158 	if (lockstep_en)
1159 		mode = CLUSTER_MODE_LOCKSTEP;
1160 
1161 	halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1162 
1163 	/*
1164 	 * IPC-only mode detection requires both local and module resets to
1165 	 * be deasserted and R5F core to be unhalted. Local reset status is
1166 	 * irrelevant if module reset is asserted (POR value has local reset
1167 	 * deasserted), and is deemed as remoteproc mode
1168 	 */
1169 	if (c_state && !ret && !halted) {
1170 		dev_info(cdev, "configured R5F for IPC-only mode\n");
1171 		kproc->rproc->state = RPROC_DETACHED;
1172 		ret = 1;
1173 		/* override rproc ops with only required IPC-only mode ops */
1174 		kproc->rproc->ops->prepare = NULL;
1175 		kproc->rproc->ops->unprepare = NULL;
1176 		kproc->rproc->ops->start = NULL;
1177 		kproc->rproc->ops->stop = NULL;
1178 		kproc->rproc->ops->attach = k3_r5_rproc_attach;
1179 		kproc->rproc->ops->detach = k3_r5_rproc_detach;
1180 		kproc->rproc->ops->get_loaded_rsc_table =
1181 						k3_r5_get_loaded_rsc_table;
1182 	} else if (!c_state) {
1183 		dev_info(cdev, "configured R5F for remoteproc mode\n");
1184 		ret = 0;
1185 	} else {
1186 		dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1187 			!ret ? "deasserted" : "asserted",
1188 			c_state ? "deasserted" : "asserted",
1189 			halted ? "halted" : "unhalted");
1190 		ret = -EINVAL;
1191 	}
1192 
1193 	/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1194 	if (ret > 0) {
1195 		if (core == core0)
1196 			cluster->mode = mode;
1197 		core->atcm_enable = atcm_enable;
1198 		core->btcm_enable = btcm_enable;
1199 		core->loczrama = loczrama;
1200 		core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1201 		core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1208 {
1209 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1210 	struct device *dev = &pdev->dev;
1211 	struct k3_r5_rproc *kproc;
1212 	struct k3_r5_core *core, *core1;
1213 	struct device *cdev;
1214 	const char *fw_name;
1215 	struct rproc *rproc;
1216 	int ret, ret1;
1217 
1218 	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1219 	list_for_each_entry(core, &cluster->cores, elem) {
1220 		cdev = core->dev;
1221 		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1222 		if (ret) {
1223 			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1224 				ret);
1225 			goto out;
1226 		}
1227 
1228 		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1229 				    fw_name, sizeof(*kproc));
1230 		if (!rproc) {
1231 			ret = -ENOMEM;
1232 			goto out;
1233 		}
1234 
1235 		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
1236 		rproc->has_iommu = false;
1237 		/* error recovery is not supported at present */
1238 		rproc->recovery_disabled = true;
1239 
1240 		kproc = rproc->priv;
1241 		kproc->cluster = cluster;
1242 		kproc->core = core;
1243 		kproc->dev = cdev;
1244 		kproc->rproc = rproc;
1245 		core->rproc = rproc;
1246 
1247 		ret = k3_r5_rproc_configure_mode(kproc);
1248 		if (ret < 0)
1249 			goto err_config;
1250 		if (ret)
1251 			goto init_rmem;
1252 
1253 		ret = k3_r5_rproc_configure(kproc);
1254 		if (ret) {
1255 			dev_err(dev, "initial configure failed, ret = %d\n",
1256 				ret);
1257 			goto err_config;
1258 		}
1259 
1260 init_rmem:
1261 		k3_r5_adjust_tcm_sizes(kproc);
1262 
1263 		ret = k3_r5_reserved_mem_init(kproc);
1264 		if (ret) {
1265 			dev_err(dev, "reserved memory init failed, ret = %d\n",
1266 				ret);
1267 			goto err_config;
1268 		}
1269 
1270 		ret = rproc_add(rproc);
1271 		if (ret) {
1272 			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1273 			goto err_add;
1274 		}
1275 
1276 		/* create only one rproc in lockstep, single-cpu or
1277 		 * single core mode
1278 		 */
1279 		if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1280 		    cluster->mode == CLUSTER_MODE_SINGLECPU ||
1281 		    cluster->mode == CLUSTER_MODE_SINGLECORE)
1282 			break;
1283 	}
1284 
1285 	return 0;
1286 
1287 err_split:
1288 	if (rproc->state == RPROC_ATTACHED) {
1289 		ret1 = rproc_detach(rproc);
1290 		if (ret1) {
1291 			dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1292 				ret1);
1293 			return ret1;
1294 		}
1295 	}
1296 
1297 	rproc_del(rproc);
1298 err_add:
1299 	k3_r5_reserved_mem_exit(kproc);
1300 err_config:
1301 	rproc_free(rproc);
1302 	core->rproc = NULL;
1303 out:
1304 	/* undo core0 upon any failures on core1 in split-mode */
1305 	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1306 		core = list_prev_entry(core, elem);
1307 		rproc = core->rproc;
1308 		kproc = rproc->priv;
1309 		goto err_split;
1310 	}
1311 	return ret;
1312 }
1313 
1314 static void k3_r5_cluster_rproc_exit(void *data)
1315 {
1316 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1317 	struct k3_r5_rproc *kproc;
1318 	struct k3_r5_core *core;
1319 	struct rproc *rproc;
1320 	int ret;
1321 
1322 	/*
1323 	 * lockstep mode and single-cpu modes have only one rproc associated
1324 	 * with first core, whereas split-mode has two rprocs associated with
1325 	 * each core, and requires that core1 be powered down first
1326 	 */
1327 	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1328 		cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1329 		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1330 		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1331 
1332 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1333 		rproc = core->rproc;
1334 		kproc = rproc->priv;
1335 
1336 		if (rproc->state == RPROC_ATTACHED) {
1337 			ret = rproc_detach(rproc);
1338 			if (ret) {
1339 				dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1340 				return;
1341 			}
1342 		}
1343 
1344 		rproc_del(rproc);
1345 
1346 		k3_r5_reserved_mem_exit(kproc);
1347 
1348 		rproc_free(rproc);
1349 		core->rproc = NULL;
1350 	}
1351 }
1352 
1353 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1354 					       struct k3_r5_core *core)
1355 {
1356 	static const char * const mem_names[] = {"atcm", "btcm"};
1357 	struct device *dev = &pdev->dev;
1358 	struct resource *res;
1359 	int num_mems;
1360 	int i;
1361 
1362 	num_mems = ARRAY_SIZE(mem_names);
1363 	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1364 	if (!core->mem)
1365 		return -ENOMEM;
1366 
1367 	for (i = 0; i < num_mems; i++) {
1368 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1369 						   mem_names[i]);
1370 		if (!res) {
1371 			dev_err(dev, "found no memory resource for %s\n",
1372 				mem_names[i]);
1373 			return -EINVAL;
1374 		}
1375 		if (!devm_request_mem_region(dev, res->start,
1376 					     resource_size(res),
1377 					     dev_name(dev))) {
1378 			dev_err(dev, "could not request %s region for resource\n",
1379 				mem_names[i]);
1380 			return -EBUSY;
1381 		}
1382 
1383 		/*
1384 		 * TCMs are designed in general to support RAM-like backing
1385 		 * memories. So, map these as Normal Non-Cached memories. This
1386 		 * also avoids/fixes any potential alignment faults due to
1387 		 * unaligned data accesses when using memcpy() or memset()
1388 		 * functions (normally seen with device type memory).
1389 		 */
1390 		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1391 							resource_size(res));
1392 		if (!core->mem[i].cpu_addr) {
1393 			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1394 			return -ENOMEM;
1395 		}
1396 		core->mem[i].bus_addr = res->start;
1397 
1398 		/*
1399 		 * TODO:
1400 		 * The R5F cores can place ATCM & BTCM anywhere in its address
1401 		 * based on the corresponding Region Registers in the System
1402 		 * Control coprocessor. For now, place ATCM and BTCM at
1403 		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1404 		 * SoCs) based on loczrama setting
1405 		 */
1406 		if (!strcmp(mem_names[i], "atcm")) {
1407 			core->mem[i].dev_addr = core->loczrama ?
1408 							0 : K3_R5_TCM_DEV_ADDR;
1409 		} else {
1410 			core->mem[i].dev_addr = core->loczrama ?
1411 							K3_R5_TCM_DEV_ADDR : 0;
1412 		}
1413 		core->mem[i].size = resource_size(res);
1414 
1415 		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1416 			mem_names[i], &core->mem[i].bus_addr,
1417 			core->mem[i].size, core->mem[i].cpu_addr,
1418 			core->mem[i].dev_addr);
1419 	}
1420 	core->num_mems = num_mems;
1421 
1422 	return 0;
1423 }
1424 
1425 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1426 					   struct k3_r5_core *core)
1427 {
1428 	struct device_node *np = pdev->dev.of_node;
1429 	struct device *dev = &pdev->dev;
1430 	struct device_node *sram_np;
1431 	struct resource res;
1432 	int num_sram;
1433 	int i, ret;
1434 
1435 	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1436 	if (num_sram <= 0) {
1437 		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1438 			num_sram);
1439 		return 0;
1440 	}
1441 
1442 	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1443 	if (!core->sram)
1444 		return -ENOMEM;
1445 
1446 	for (i = 0; i < num_sram; i++) {
1447 		sram_np = of_parse_phandle(np, "sram", i);
1448 		if (!sram_np)
1449 			return -EINVAL;
1450 
1451 		if (!of_device_is_available(sram_np)) {
1452 			of_node_put(sram_np);
1453 			return -EINVAL;
1454 		}
1455 
1456 		ret = of_address_to_resource(sram_np, 0, &res);
1457 		of_node_put(sram_np);
1458 		if (ret)
1459 			return -EINVAL;
1460 
1461 		core->sram[i].bus_addr = res.start;
1462 		core->sram[i].dev_addr = res.start;
1463 		core->sram[i].size = resource_size(&res);
1464 		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1465 							 resource_size(&res));
1466 		if (!core->sram[i].cpu_addr) {
1467 			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1468 				i, &res.start);
1469 			return -ENOMEM;
1470 		}
1471 
1472 		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1473 			i, &core->sram[i].bus_addr,
1474 			core->sram[i].size, core->sram[i].cpu_addr,
1475 			core->sram[i].dev_addr);
1476 	}
1477 	core->num_sram = num_sram;
1478 
1479 	return 0;
1480 }
1481 
1482 static
1483 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1484 					  const struct ti_sci_handle *sci)
1485 {
1486 	struct ti_sci_proc *tsp;
1487 	u32 temp[2];
1488 	int ret;
1489 
1490 	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1491 					 temp, 2);
1492 	if (ret < 0)
1493 		return ERR_PTR(ret);
1494 
1495 	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1496 	if (!tsp)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	tsp->dev = dev;
1500 	tsp->sci = sci;
1501 	tsp->ops = &sci->ops.proc_ops;
1502 	tsp->proc_id = temp[0];
1503 	tsp->host_id = temp[1];
1504 
1505 	return tsp;
1506 }
1507 
1508 static int k3_r5_core_of_init(struct platform_device *pdev)
1509 {
1510 	struct device *dev = &pdev->dev;
1511 	struct device_node *np = dev_of_node(dev);
1512 	struct k3_r5_core *core;
1513 	int ret;
1514 
1515 	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1516 		return -ENOMEM;
1517 
1518 	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1519 	if (!core) {
1520 		ret = -ENOMEM;
1521 		goto err;
1522 	}
1523 
1524 	core->dev = dev;
1525 	/*
1526 	 * Use SoC Power-on-Reset values as default if no DT properties are
1527 	 * used to dictate the TCM configurations
1528 	 */
1529 	core->atcm_enable = 0;
1530 	core->btcm_enable = 1;
1531 	core->loczrama = 1;
1532 
1533 	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1534 	if (ret < 0 && ret != -EINVAL) {
1535 		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1536 			ret);
1537 		goto err;
1538 	}
1539 
1540 	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1541 	if (ret < 0 && ret != -EINVAL) {
1542 		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1543 			ret);
1544 		goto err;
1545 	}
1546 
1547 	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1548 	if (ret < 0 && ret != -EINVAL) {
1549 		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1550 		goto err;
1551 	}
1552 
1553 	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1554 	if (IS_ERR(core->ti_sci)) {
1555 		ret = PTR_ERR(core->ti_sci);
1556 		if (ret != -EPROBE_DEFER) {
1557 			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1558 				ret);
1559 		}
1560 		core->ti_sci = NULL;
1561 		goto err;
1562 	}
1563 
1564 	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1565 	if (ret) {
1566 		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1567 		goto err;
1568 	}
1569 
1570 	core->reset = devm_reset_control_get_exclusive(dev, NULL);
1571 	if (IS_ERR_OR_NULL(core->reset)) {
1572 		ret = PTR_ERR_OR_ZERO(core->reset);
1573 		if (!ret)
1574 			ret = -ENODEV;
1575 		if (ret != -EPROBE_DEFER) {
1576 			dev_err(dev, "failed to get reset handle, ret = %d\n",
1577 				ret);
1578 		}
1579 		goto err;
1580 	}
1581 
1582 	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1583 	if (IS_ERR(core->tsp)) {
1584 		ret = PTR_ERR(core->tsp);
1585 		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1586 			ret);
1587 		goto err;
1588 	}
1589 
1590 	ret = k3_r5_core_of_get_internal_memories(pdev, core);
1591 	if (ret) {
1592 		dev_err(dev, "failed to get internal memories, ret = %d\n",
1593 			ret);
1594 		goto err;
1595 	}
1596 
1597 	ret = k3_r5_core_of_get_sram_memories(pdev, core);
1598 	if (ret) {
1599 		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1600 		goto err;
1601 	}
1602 
1603 	ret = ti_sci_proc_request(core->tsp);
1604 	if (ret < 0) {
1605 		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1606 		goto err;
1607 	}
1608 
1609 	platform_set_drvdata(pdev, core);
1610 	devres_close_group(dev, k3_r5_core_of_init);
1611 
1612 	return 0;
1613 
1614 err:
1615 	devres_release_group(dev, k3_r5_core_of_init);
1616 	return ret;
1617 }
1618 
1619 /*
1620  * free the resources explicitly since driver model is not being used
1621  * for the child R5F devices
1622  */
1623 static void k3_r5_core_of_exit(struct platform_device *pdev)
1624 {
1625 	struct k3_r5_core *core = platform_get_drvdata(pdev);
1626 	struct device *dev = &pdev->dev;
1627 	int ret;
1628 
1629 	ret = ti_sci_proc_release(core->tsp);
1630 	if (ret)
1631 		dev_err(dev, "failed to release proc, ret = %d\n", ret);
1632 
1633 	platform_set_drvdata(pdev, NULL);
1634 	devres_release_group(dev, k3_r5_core_of_init);
1635 }
1636 
1637 static void k3_r5_cluster_of_exit(void *data)
1638 {
1639 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1640 	struct platform_device *cpdev;
1641 	struct k3_r5_core *core, *temp;
1642 
1643 	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1644 		list_del(&core->elem);
1645 		cpdev = to_platform_device(core->dev);
1646 		k3_r5_core_of_exit(cpdev);
1647 	}
1648 }
1649 
1650 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1651 {
1652 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1653 	struct device *dev = &pdev->dev;
1654 	struct device_node *np = dev_of_node(dev);
1655 	struct platform_device *cpdev;
1656 	struct device_node *child;
1657 	struct k3_r5_core *core;
1658 	int ret;
1659 
1660 	for_each_available_child_of_node(np, child) {
1661 		cpdev = of_find_device_by_node(child);
1662 		if (!cpdev) {
1663 			ret = -ENODEV;
1664 			dev_err(dev, "could not get R5 core platform device\n");
1665 			of_node_put(child);
1666 			goto fail;
1667 		}
1668 
1669 		ret = k3_r5_core_of_init(cpdev);
1670 		if (ret) {
1671 			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1672 				ret);
1673 			put_device(&cpdev->dev);
1674 			of_node_put(child);
1675 			goto fail;
1676 		}
1677 
1678 		core = platform_get_drvdata(cpdev);
1679 		put_device(&cpdev->dev);
1680 		list_add_tail(&core->elem, &cluster->cores);
1681 	}
1682 
1683 	return 0;
1684 
1685 fail:
1686 	k3_r5_cluster_of_exit(pdev);
1687 	return ret;
1688 }
1689 
1690 static int k3_r5_probe(struct platform_device *pdev)
1691 {
1692 	struct device *dev = &pdev->dev;
1693 	struct device_node *np = dev_of_node(dev);
1694 	struct k3_r5_cluster *cluster;
1695 	const struct k3_r5_soc_data *data;
1696 	int ret;
1697 	int num_cores;
1698 
1699 	data = of_device_get_match_data(&pdev->dev);
1700 	if (!data) {
1701 		dev_err(dev, "SoC-specific data is not defined\n");
1702 		return -ENODEV;
1703 	}
1704 
1705 	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1706 	if (!cluster)
1707 		return -ENOMEM;
1708 
1709 	cluster->dev = dev;
1710 	cluster->soc_data = data;
1711 	INIT_LIST_HEAD(&cluster->cores);
1712 
1713 	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1714 	if (ret < 0 && ret != -EINVAL) {
1715 		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1716 			ret);
1717 		return ret;
1718 	}
1719 
1720 	if (ret == -EINVAL) {
1721 		/*
1722 		 * default to most common efuse configurations - Split-mode on AM64x
1723 		 * and LockStep-mode on all others
1724 		 * default to most common efuse configurations -
1725 		 * Split-mode on AM64x
1726 		 * Single core on AM62x
1727 		 * LockStep-mode on all others
1728 		 */
1729 		if (!data->is_single_core)
1730 			cluster->mode = data->single_cpu_mode ?
1731 					CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1732 		else
1733 			cluster->mode = CLUSTER_MODE_SINGLECORE;
1734 	}
1735 
1736 	if  ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1737 	     (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
1738 		dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
1739 		return -EINVAL;
1740 	}
1741 
1742 	num_cores = of_get_available_child_count(np);
1743 	if (num_cores != 2 && !data->is_single_core) {
1744 		dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1745 			num_cores);
1746 		return -ENODEV;
1747 	}
1748 
1749 	if (num_cores != 1 && data->is_single_core) {
1750 		dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
1751 			num_cores);
1752 		return -ENODEV;
1753 	}
1754 
1755 	platform_set_drvdata(pdev, cluster);
1756 
1757 	ret = devm_of_platform_populate(dev);
1758 	if (ret) {
1759 		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1760 			ret);
1761 		return ret;
1762 	}
1763 
1764 	ret = k3_r5_cluster_of_init(pdev);
1765 	if (ret) {
1766 		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1767 		return ret;
1768 	}
1769 
1770 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1771 	if (ret)
1772 		return ret;
1773 
1774 	ret = k3_r5_cluster_rproc_init(pdev);
1775 	if (ret) {
1776 		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1777 			ret);
1778 		return ret;
1779 	}
1780 
1781 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1782 	if (ret)
1783 		return ret;
1784 
1785 	return 0;
1786 }
1787 
1788 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1789 	.tcm_is_double = false,
1790 	.tcm_ecc_autoinit = false,
1791 	.single_cpu_mode = false,
1792 	.is_single_core = false,
1793 };
1794 
1795 static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1796 	.tcm_is_double = true,
1797 	.tcm_ecc_autoinit = true,
1798 	.single_cpu_mode = false,
1799 	.is_single_core = false,
1800 };
1801 
1802 static const struct k3_r5_soc_data am64_soc_data = {
1803 	.tcm_is_double = true,
1804 	.tcm_ecc_autoinit = true,
1805 	.single_cpu_mode = true,
1806 	.is_single_core = false,
1807 };
1808 
1809 static const struct k3_r5_soc_data am62_soc_data = {
1810 	.tcm_is_double = false,
1811 	.tcm_ecc_autoinit = true,
1812 	.single_cpu_mode = false,
1813 	.is_single_core = true,
1814 };
1815 
1816 static const struct of_device_id k3_r5_of_match[] = {
1817 	{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1818 	{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1819 	{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1820 	{ .compatible = "ti,am64-r5fss",  .data = &am64_soc_data, },
1821 	{ .compatible = "ti,am62-r5fss",  .data = &am62_soc_data, },
1822 	{ .compatible = "ti,j721s2-r5fss",  .data = &j7200_j721s2_soc_data, },
1823 	{ /* sentinel */ },
1824 };
1825 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1826 
1827 static struct platform_driver k3_r5_rproc_driver = {
1828 	.probe = k3_r5_probe,
1829 	.driver = {
1830 		.name = "k3_r5_rproc",
1831 		.of_match_table = k3_r5_of_match,
1832 	},
1833 };
1834 
1835 module_platform_driver(k3_r5_rproc_driver);
1836 
1837 MODULE_LICENSE("GPL v2");
1838 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1839 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1840