1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI K3 DSP Remote Processor(s) driver 4 * 5 * Copyright (C) 2018-2020 Texas Instruments Incorporated - https://www.ti.com/ 6 * Suman Anna <s-anna@ti.com> 7 */ 8 9 #include <linux/io.h> 10 #include <linux/mailbox_client.h> 11 #include <linux/module.h> 12 #include <linux/of_device.h> 13 #include <linux/of_reserved_mem.h> 14 #include <linux/omap-mailbox.h> 15 #include <linux/platform_device.h> 16 #include <linux/remoteproc.h> 17 #include <linux/reset.h> 18 #include <linux/slab.h> 19 20 #include "omap_remoteproc.h" 21 #include "remoteproc_internal.h" 22 #include "ti_sci_proc.h" 23 24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) 25 26 /** 27 * struct k3_dsp_mem - internal memory structure 28 * @cpu_addr: MPU virtual address of the memory region 29 * @bus_addr: Bus address used to access the memory region 30 * @dev_addr: Device address of the memory region from DSP view 31 * @size: Size of the memory region 32 */ 33 struct k3_dsp_mem { 34 void __iomem *cpu_addr; 35 phys_addr_t bus_addr; 36 u32 dev_addr; 37 size_t size; 38 }; 39 40 /** 41 * struct k3_dsp_mem_data - memory definitions for a DSP 42 * @name: name for this memory entry 43 * @dev_addr: device address for the memory entry 44 */ 45 struct k3_dsp_mem_data { 46 const char *name; 47 const u32 dev_addr; 48 }; 49 50 /** 51 * struct k3_dsp_dev_data - device data structure for a DSP 52 * @mems: pointer to memory definitions for a DSP 53 * @num_mems: number of memory regions in @mems 54 * @boot_align_addr: boot vector address alignment granularity 55 * @uses_lreset: flag to denote the need for local reset management 56 */ 57 struct k3_dsp_dev_data { 58 const struct k3_dsp_mem_data *mems; 59 u32 num_mems; 60 u32 boot_align_addr; 61 bool uses_lreset; 62 }; 63 64 /** 65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure 66 * @dev: cached device pointer 67 * @rproc: remoteproc device handle 68 * @mem: internal memory regions data 69 * @num_mems: number of internal memory regions 70 * @rmem: reserved memory regions data 71 * @num_rmems: number of reserved memory regions 72 * @reset: reset control handle 73 * @data: pointer to DSP-specific device data 74 * @tsp: TI-SCI processor control handle 75 * @ti_sci: TI-SCI handle 76 * @ti_sci_id: TI-SCI device identifier 77 * @mbox: mailbox channel handle 78 * @client: mailbox client to request the mailbox channel 79 */ 80 struct k3_dsp_rproc { 81 struct device *dev; 82 struct rproc *rproc; 83 struct k3_dsp_mem *mem; 84 int num_mems; 85 struct k3_dsp_mem *rmem; 86 int num_rmems; 87 struct reset_control *reset; 88 const struct k3_dsp_dev_data *data; 89 struct ti_sci_proc *tsp; 90 const struct ti_sci_handle *ti_sci; 91 u32 ti_sci_id; 92 struct mbox_chan *mbox; 93 struct mbox_client client; 94 }; 95 96 /** 97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler 98 * @client: mailbox client pointer used for requesting the mailbox channel 99 * @data: mailbox payload 100 * 101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox 102 * message is received. Usually, the mailbox payload simply contains 103 * the index of the virtqueue that is kicked by the remote processor, 104 * and we let remoteproc core handle it. 105 * 106 * In addition to virtqueue indices, we also have some out-of-band values 107 * that indicate different events. Those values are deliberately very 108 * large so they don't coincide with virtqueue indices. 109 */ 110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data) 111 { 112 struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc, 113 client); 114 struct device *dev = kproc->rproc->dev.parent; 115 const char *name = kproc->rproc->name; 116 u32 msg = omap_mbox_message(data); 117 118 dev_dbg(dev, "mbox msg: 0x%x\n", msg); 119 120 switch (msg) { 121 case RP_MBOX_CRASH: 122 /* 123 * remoteproc detected an exception, but error recovery is not 124 * supported. So, just log this for now 125 */ 126 dev_err(dev, "K3 DSP rproc %s crashed\n", name); 127 break; 128 case RP_MBOX_ECHO_REPLY: 129 dev_info(dev, "received echo reply from %s\n", name); 130 break; 131 default: 132 /* silently handle all other valid messages */ 133 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 134 return; 135 if (msg > kproc->rproc->max_notifyid) { 136 dev_dbg(dev, "dropping unknown message 0x%x", msg); 137 return; 138 } 139 /* msg contains the index of the triggered vring */ 140 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) 141 dev_dbg(dev, "no message was found in vqid %d\n", msg); 142 } 143 } 144 145 /* 146 * Kick the remote processor to notify about pending unprocessed messages. 147 * The vqid usage is not used and is inconsequential, as the kick is performed 148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register), 149 * the remote processor is expected to process both its Tx and Rx virtqueues. 150 */ 151 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid) 152 { 153 struct k3_dsp_rproc *kproc = rproc->priv; 154 struct device *dev = rproc->dev.parent; 155 mbox_msg_t msg = (mbox_msg_t)vqid; 156 int ret; 157 158 /* send the index of the triggered virtqueue in the mailbox payload */ 159 ret = mbox_send_message(kproc->mbox, (void *)msg); 160 if (ret < 0) 161 dev_err(dev, "failed to send mailbox message, status = %d\n", 162 ret); 163 } 164 165 /* Put the DSP processor into reset */ 166 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc) 167 { 168 struct device *dev = kproc->dev; 169 int ret; 170 171 ret = reset_control_assert(kproc->reset); 172 if (ret) { 173 dev_err(dev, "local-reset assert failed, ret = %d\n", ret); 174 return ret; 175 } 176 177 if (kproc->data->uses_lreset) 178 return ret; 179 180 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 181 kproc->ti_sci_id); 182 if (ret) { 183 dev_err(dev, "module-reset assert failed, ret = %d\n", ret); 184 if (reset_control_deassert(kproc->reset)) 185 dev_warn(dev, "local-reset deassert back failed\n"); 186 } 187 188 return ret; 189 } 190 191 /* Release the DSP processor from reset */ 192 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc) 193 { 194 struct device *dev = kproc->dev; 195 int ret; 196 197 if (kproc->data->uses_lreset) 198 goto lreset; 199 200 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, 201 kproc->ti_sci_id); 202 if (ret) { 203 dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); 204 return ret; 205 } 206 207 lreset: 208 ret = reset_control_deassert(kproc->reset); 209 if (ret) { 210 dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); 211 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 212 kproc->ti_sci_id)) 213 dev_warn(dev, "module-reset assert back failed\n"); 214 } 215 216 return ret; 217 } 218 219 /* 220 * The C66x DSP cores have a local reset that affects only the CPU, and a 221 * generic module reset that powers on the device and allows the DSP internal 222 * memories to be accessed while the local reset is asserted. This function is 223 * used to release the global reset on C66x DSPs to allow loading into the DSP 224 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any 225 * firmware loading, and is followed by the .start() ops after loading to 226 * actually let the C66x DSP cores run. 227 */ 228 static int k3_dsp_rproc_prepare(struct rproc *rproc) 229 { 230 struct k3_dsp_rproc *kproc = rproc->priv; 231 struct device *dev = kproc->dev; 232 int ret; 233 234 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, 235 kproc->ti_sci_id); 236 if (ret) 237 dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", 238 ret); 239 240 return ret; 241 } 242 243 /* 244 * This function implements the .unprepare() ops and performs the complimentary 245 * operations to that of the .prepare() ops. The function is used to assert the 246 * global reset on applicable C66x cores. This completes the second portion of 247 * powering down the C66x DSP cores. The cores themselves are only halted in the 248 * .stop() callback through the local reset, and the .unprepare() ops is invoked 249 * by the remoteproc core after the remoteproc is stopped to balance the global 250 * reset. 251 */ 252 static int k3_dsp_rproc_unprepare(struct rproc *rproc) 253 { 254 struct k3_dsp_rproc *kproc = rproc->priv; 255 struct device *dev = kproc->dev; 256 int ret; 257 258 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 259 kproc->ti_sci_id); 260 if (ret) 261 dev_err(dev, "module-reset assert failed, ret = %d\n", ret); 262 263 return ret; 264 } 265 266 /* 267 * Power up the DSP remote processor. 268 * 269 * This function will be invoked only after the firmware for this rproc 270 * was loaded, parsed successfully, and all of its resource requirements 271 * were met. 272 */ 273 static int k3_dsp_rproc_start(struct rproc *rproc) 274 { 275 struct k3_dsp_rproc *kproc = rproc->priv; 276 struct mbox_client *client = &kproc->client; 277 struct device *dev = kproc->dev; 278 u32 boot_addr; 279 int ret; 280 281 client->dev = dev; 282 client->tx_done = NULL; 283 client->rx_callback = k3_dsp_rproc_mbox_callback; 284 client->tx_block = false; 285 client->knows_txdone = false; 286 287 kproc->mbox = mbox_request_channel(client, 0); 288 if (IS_ERR(kproc->mbox)) { 289 ret = -EBUSY; 290 dev_err(dev, "mbox_request_channel failed: %ld\n", 291 PTR_ERR(kproc->mbox)); 292 return ret; 293 } 294 295 /* 296 * Ping the remote processor, this is only for sanity-sake for now; 297 * there is no functional effect whatsoever. 298 * 299 * Note that the reply will _not_ arrive immediately: this message 300 * will wait in the mailbox fifo until the remote processor is booted. 301 */ 302 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 303 if (ret < 0) { 304 dev_err(dev, "mbox_send_message failed: %d\n", ret); 305 goto put_mbox; 306 } 307 308 boot_addr = rproc->bootaddr; 309 if (boot_addr & (kproc->data->boot_align_addr - 1)) { 310 dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n", 311 boot_addr, kproc->data->boot_align_addr); 312 ret = -EINVAL; 313 goto put_mbox; 314 } 315 316 dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr); 317 ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0); 318 if (ret) 319 goto put_mbox; 320 321 ret = k3_dsp_rproc_release(kproc); 322 if (ret) 323 goto put_mbox; 324 325 return 0; 326 327 put_mbox: 328 mbox_free_channel(kproc->mbox); 329 return ret; 330 } 331 332 /* 333 * Stop the DSP remote processor. 334 * 335 * This function puts the DSP processor into reset, and finishes processing 336 * of any pending messages. 337 */ 338 static int k3_dsp_rproc_stop(struct rproc *rproc) 339 { 340 struct k3_dsp_rproc *kproc = rproc->priv; 341 342 mbox_free_channel(kproc->mbox); 343 344 k3_dsp_rproc_reset(kproc); 345 346 return 0; 347 } 348 349 /* 350 * Custom function to translate a DSP device address (internal RAMs only) to a 351 * kernel virtual address. The DSPs can access their RAMs at either an internal 352 * address visible only from a DSP, or at the SoC-level bus address. Both these 353 * addresses need to be looked through for translation. The translated addresses 354 * can be used either by the remoteproc core for loading (when using kernel 355 * remoteproc loader), or by any rpmsg bus drivers. 356 */ 357 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 358 { 359 struct k3_dsp_rproc *kproc = rproc->priv; 360 void __iomem *va = NULL; 361 phys_addr_t bus_addr; 362 u32 dev_addr, offset; 363 size_t size; 364 int i; 365 366 if (len == 0) 367 return NULL; 368 369 for (i = 0; i < kproc->num_mems; i++) { 370 bus_addr = kproc->mem[i].bus_addr; 371 dev_addr = kproc->mem[i].dev_addr; 372 size = kproc->mem[i].size; 373 374 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { 375 /* handle DSP-view addresses */ 376 if (da >= dev_addr && 377 ((da + len) <= (dev_addr + size))) { 378 offset = da - dev_addr; 379 va = kproc->mem[i].cpu_addr + offset; 380 return (__force void *)va; 381 } 382 } else { 383 /* handle SoC-view addresses */ 384 if (da >= bus_addr && 385 (da + len) <= (bus_addr + size)) { 386 offset = da - bus_addr; 387 va = kproc->mem[i].cpu_addr + offset; 388 return (__force void *)va; 389 } 390 } 391 } 392 393 /* handle static DDR reserved memory regions */ 394 for (i = 0; i < kproc->num_rmems; i++) { 395 dev_addr = kproc->rmem[i].dev_addr; 396 size = kproc->rmem[i].size; 397 398 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 399 offset = da - dev_addr; 400 va = kproc->rmem[i].cpu_addr + offset; 401 return (__force void *)va; 402 } 403 } 404 405 return NULL; 406 } 407 408 static const struct rproc_ops k3_dsp_rproc_ops = { 409 .start = k3_dsp_rproc_start, 410 .stop = k3_dsp_rproc_stop, 411 .kick = k3_dsp_rproc_kick, 412 .da_to_va = k3_dsp_rproc_da_to_va, 413 }; 414 415 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev, 416 struct k3_dsp_rproc *kproc) 417 { 418 const struct k3_dsp_dev_data *data = kproc->data; 419 struct device *dev = &pdev->dev; 420 struct resource *res; 421 int num_mems = 0; 422 int i; 423 424 num_mems = kproc->data->num_mems; 425 kproc->mem = devm_kcalloc(kproc->dev, num_mems, 426 sizeof(*kproc->mem), GFP_KERNEL); 427 if (!kproc->mem) 428 return -ENOMEM; 429 430 for (i = 0; i < num_mems; i++) { 431 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 432 data->mems[i].name); 433 if (!res) { 434 dev_err(dev, "found no memory resource for %s\n", 435 data->mems[i].name); 436 return -EINVAL; 437 } 438 if (!devm_request_mem_region(dev, res->start, 439 resource_size(res), 440 dev_name(dev))) { 441 dev_err(dev, "could not request %s region for resource\n", 442 data->mems[i].name); 443 return -EBUSY; 444 } 445 446 kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, 447 resource_size(res)); 448 if (!kproc->mem[i].cpu_addr) { 449 dev_err(dev, "failed to map %s memory\n", 450 data->mems[i].name); 451 return -ENOMEM; 452 } 453 kproc->mem[i].bus_addr = res->start; 454 kproc->mem[i].dev_addr = data->mems[i].dev_addr; 455 kproc->mem[i].size = resource_size(res); 456 457 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", 458 data->mems[i].name, &kproc->mem[i].bus_addr, 459 kproc->mem[i].size, kproc->mem[i].cpu_addr, 460 kproc->mem[i].dev_addr); 461 } 462 kproc->num_mems = num_mems; 463 464 return 0; 465 } 466 467 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc) 468 { 469 struct device *dev = kproc->dev; 470 struct device_node *np = dev->of_node; 471 struct device_node *rmem_np; 472 struct reserved_mem *rmem; 473 int num_rmems; 474 int ret, i; 475 476 num_rmems = of_property_count_elems_of_size(np, "memory-region", 477 sizeof(phandle)); 478 if (num_rmems <= 0) { 479 dev_err(dev, "device does not reserved memory regions, ret = %d\n", 480 num_rmems); 481 return -EINVAL; 482 } 483 if (num_rmems < 2) { 484 dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n", 485 num_rmems); 486 return -EINVAL; 487 } 488 489 /* use reserved memory region 0 for vring DMA allocations */ 490 ret = of_reserved_mem_device_init_by_idx(dev, np, 0); 491 if (ret) { 492 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", 493 ret); 494 return ret; 495 } 496 497 num_rmems--; 498 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); 499 if (!kproc->rmem) { 500 ret = -ENOMEM; 501 goto release_rmem; 502 } 503 504 /* use remaining reserved memory regions for static carveouts */ 505 for (i = 0; i < num_rmems; i++) { 506 rmem_np = of_parse_phandle(np, "memory-region", i + 1); 507 if (!rmem_np) { 508 ret = -EINVAL; 509 goto unmap_rmem; 510 } 511 512 rmem = of_reserved_mem_lookup(rmem_np); 513 if (!rmem) { 514 of_node_put(rmem_np); 515 ret = -EINVAL; 516 goto unmap_rmem; 517 } 518 of_node_put(rmem_np); 519 520 kproc->rmem[i].bus_addr = rmem->base; 521 /* 64-bit address regions currently not supported */ 522 kproc->rmem[i].dev_addr = (u32)rmem->base; 523 kproc->rmem[i].size = rmem->size; 524 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); 525 if (!kproc->rmem[i].cpu_addr) { 526 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", 527 i + 1, &rmem->base, &rmem->size); 528 ret = -ENOMEM; 529 goto unmap_rmem; 530 } 531 532 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 533 i + 1, &kproc->rmem[i].bus_addr, 534 kproc->rmem[i].size, kproc->rmem[i].cpu_addr, 535 kproc->rmem[i].dev_addr); 536 } 537 kproc->num_rmems = num_rmems; 538 539 return 0; 540 541 unmap_rmem: 542 for (i--; i >= 0; i--) 543 iounmap(kproc->rmem[i].cpu_addr); 544 kfree(kproc->rmem); 545 release_rmem: 546 of_reserved_mem_device_release(kproc->dev); 547 return ret; 548 } 549 550 static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc) 551 { 552 int i; 553 554 for (i = 0; i < kproc->num_rmems; i++) 555 iounmap(kproc->rmem[i].cpu_addr); 556 kfree(kproc->rmem); 557 558 of_reserved_mem_device_release(kproc->dev); 559 } 560 561 static 562 struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev, 563 const struct ti_sci_handle *sci) 564 { 565 struct ti_sci_proc *tsp; 566 u32 temp[2]; 567 int ret; 568 569 ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", 570 temp, 2); 571 if (ret < 0) 572 return ERR_PTR(ret); 573 574 tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); 575 if (!tsp) 576 return ERR_PTR(-ENOMEM); 577 578 tsp->dev = dev; 579 tsp->sci = sci; 580 tsp->ops = &sci->ops.proc_ops; 581 tsp->proc_id = temp[0]; 582 tsp->host_id = temp[1]; 583 584 return tsp; 585 } 586 587 static int k3_dsp_rproc_probe(struct platform_device *pdev) 588 { 589 struct device *dev = &pdev->dev; 590 struct device_node *np = dev->of_node; 591 const struct k3_dsp_dev_data *data; 592 struct k3_dsp_rproc *kproc; 593 struct rproc *rproc; 594 const char *fw_name; 595 int ret = 0; 596 int ret1; 597 598 data = of_device_get_match_data(dev); 599 if (!data) 600 return -ENODEV; 601 602 ret = rproc_of_parse_firmware(dev, 0, &fw_name); 603 if (ret) { 604 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 605 ret); 606 return ret; 607 } 608 609 rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name, 610 sizeof(*kproc)); 611 if (!rproc) 612 return -ENOMEM; 613 614 rproc->has_iommu = false; 615 rproc->recovery_disabled = true; 616 if (data->uses_lreset) { 617 rproc->ops->prepare = k3_dsp_rproc_prepare; 618 rproc->ops->unprepare = k3_dsp_rproc_unprepare; 619 } 620 kproc = rproc->priv; 621 kproc->rproc = rproc; 622 kproc->dev = dev; 623 kproc->data = data; 624 625 kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); 626 if (IS_ERR(kproc->ti_sci)) { 627 ret = PTR_ERR(kproc->ti_sci); 628 if (ret != -EPROBE_DEFER) { 629 dev_err(dev, "failed to get ti-sci handle, ret = %d\n", 630 ret); 631 } 632 kproc->ti_sci = NULL; 633 goto free_rproc; 634 } 635 636 ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); 637 if (ret) { 638 dev_err(dev, "missing 'ti,sci-dev-id' property\n"); 639 goto put_sci; 640 } 641 642 kproc->reset = devm_reset_control_get_exclusive(dev, NULL); 643 if (IS_ERR(kproc->reset)) { 644 ret = PTR_ERR(kproc->reset); 645 dev_err(dev, "failed to get reset, status = %d\n", ret); 646 goto put_sci; 647 } 648 649 kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci); 650 if (IS_ERR(kproc->tsp)) { 651 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", 652 ret); 653 ret = PTR_ERR(kproc->tsp); 654 goto put_sci; 655 } 656 657 ret = ti_sci_proc_request(kproc->tsp); 658 if (ret < 0) { 659 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); 660 goto free_tsp; 661 } 662 663 ret = k3_dsp_rproc_of_get_memories(pdev, kproc); 664 if (ret) 665 goto release_tsp; 666 667 ret = k3_dsp_reserved_mem_init(kproc); 668 if (ret) { 669 dev_err(dev, "reserved memory init failed, ret = %d\n", ret); 670 goto release_tsp; 671 } 672 673 /* 674 * ensure the DSP local reset is asserted to ensure the DSP doesn't 675 * execute bogus code in .prepare() when the module reset is released. 676 */ 677 if (data->uses_lreset) { 678 ret = reset_control_status(kproc->reset); 679 if (ret < 0) { 680 dev_err(dev, "failed to get reset status, status = %d\n", 681 ret); 682 goto release_mem; 683 } else if (ret == 0) { 684 dev_warn(dev, "local reset is deasserted for device\n"); 685 k3_dsp_rproc_reset(kproc); 686 } 687 } 688 689 ret = rproc_add(rproc); 690 if (ret) { 691 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", 692 ret); 693 goto release_mem; 694 } 695 696 platform_set_drvdata(pdev, kproc); 697 698 return 0; 699 700 release_mem: 701 k3_dsp_reserved_mem_exit(kproc); 702 release_tsp: 703 ret1 = ti_sci_proc_release(kproc->tsp); 704 if (ret1) 705 dev_err(dev, "failed to release proc, ret = %d\n", ret1); 706 free_tsp: 707 kfree(kproc->tsp); 708 put_sci: 709 ret1 = ti_sci_put_handle(kproc->ti_sci); 710 if (ret1) 711 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); 712 free_rproc: 713 rproc_free(rproc); 714 return ret; 715 } 716 717 static int k3_dsp_rproc_remove(struct platform_device *pdev) 718 { 719 struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev); 720 struct device *dev = &pdev->dev; 721 int ret; 722 723 rproc_del(kproc->rproc); 724 725 ret = ti_sci_proc_release(kproc->tsp); 726 if (ret) 727 dev_err(dev, "failed to release proc, ret = %d\n", ret); 728 729 kfree(kproc->tsp); 730 731 ret = ti_sci_put_handle(kproc->ti_sci); 732 if (ret) 733 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); 734 735 k3_dsp_reserved_mem_exit(kproc); 736 rproc_free(kproc->rproc); 737 738 return 0; 739 } 740 741 static const struct k3_dsp_mem_data c66_mems[] = { 742 { .name = "l2sram", .dev_addr = 0x800000 }, 743 { .name = "l1pram", .dev_addr = 0xe00000 }, 744 { .name = "l1dram", .dev_addr = 0xf00000 }, 745 }; 746 747 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */ 748 static const struct k3_dsp_mem_data c71_mems[] = { 749 { .name = "l2sram", .dev_addr = 0x800000 }, 750 { .name = "l1dram", .dev_addr = 0xe00000 }, 751 }; 752 753 static const struct k3_dsp_dev_data c66_data = { 754 .mems = c66_mems, 755 .num_mems = ARRAY_SIZE(c66_mems), 756 .boot_align_addr = SZ_1K, 757 .uses_lreset = true, 758 }; 759 760 static const struct k3_dsp_dev_data c71_data = { 761 .mems = c71_mems, 762 .num_mems = ARRAY_SIZE(c71_mems), 763 .boot_align_addr = SZ_2M, 764 .uses_lreset = false, 765 }; 766 767 static const struct of_device_id k3_dsp_of_match[] = { 768 { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, }, 769 { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, }, 770 { /* sentinel */ }, 771 }; 772 MODULE_DEVICE_TABLE(of, k3_dsp_of_match); 773 774 static struct platform_driver k3_dsp_rproc_driver = { 775 .probe = k3_dsp_rproc_probe, 776 .remove = k3_dsp_rproc_remove, 777 .driver = { 778 .name = "k3-dsp-rproc", 779 .of_match_table = k3_dsp_of_match, 780 }, 781 }; 782 783 module_platform_driver(k3_dsp_rproc_driver); 784 785 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 786 MODULE_LICENSE("GPL v2"); 787 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver"); 788