1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI K3 DSP Remote Processor(s) driver 4 * 5 * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ 6 * Suman Anna <s-anna@ti.com> 7 */ 8 9 #include <linux/io.h> 10 #include <linux/mailbox_client.h> 11 #include <linux/module.h> 12 #include <linux/of.h> 13 #include <linux/of_reserved_mem.h> 14 #include <linux/omap-mailbox.h> 15 #include <linux/platform_device.h> 16 #include <linux/remoteproc.h> 17 #include <linux/reset.h> 18 #include <linux/slab.h> 19 20 #include "omap_remoteproc.h" 21 #include "remoteproc_internal.h" 22 #include "ti_sci_proc.h" 23 24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) 25 26 /** 27 * struct k3_dsp_mem - internal memory structure 28 * @cpu_addr: MPU virtual address of the memory region 29 * @bus_addr: Bus address used to access the memory region 30 * @dev_addr: Device address of the memory region from DSP view 31 * @size: Size of the memory region 32 */ 33 struct k3_dsp_mem { 34 void __iomem *cpu_addr; 35 phys_addr_t bus_addr; 36 u32 dev_addr; 37 size_t size; 38 }; 39 40 /** 41 * struct k3_dsp_mem_data - memory definitions for a DSP 42 * @name: name for this memory entry 43 * @dev_addr: device address for the memory entry 44 */ 45 struct k3_dsp_mem_data { 46 const char *name; 47 const u32 dev_addr; 48 }; 49 50 /** 51 * struct k3_dsp_dev_data - device data structure for a DSP 52 * @mems: pointer to memory definitions for a DSP 53 * @num_mems: number of memory regions in @mems 54 * @boot_align_addr: boot vector address alignment granularity 55 * @uses_lreset: flag to denote the need for local reset management 56 */ 57 struct k3_dsp_dev_data { 58 const struct k3_dsp_mem_data *mems; 59 u32 num_mems; 60 u32 boot_align_addr; 61 bool uses_lreset; 62 }; 63 64 /** 65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure 66 * @dev: cached device pointer 67 * @rproc: remoteproc device handle 68 * @mem: internal memory regions data 69 * @num_mems: number of internal memory regions 70 * @rmem: reserved memory regions data 71 * @num_rmems: number of reserved memory regions 72 * @reset: reset control handle 73 * @data: pointer to DSP-specific device data 74 * @tsp: TI-SCI processor control handle 75 * @ti_sci: TI-SCI handle 76 * @ti_sci_id: TI-SCI device identifier 77 * @mbox: mailbox channel handle 78 * @client: mailbox client to request the mailbox channel 79 */ 80 struct k3_dsp_rproc { 81 struct device *dev; 82 struct rproc *rproc; 83 struct k3_dsp_mem *mem; 84 int num_mems; 85 struct k3_dsp_mem *rmem; 86 int num_rmems; 87 struct reset_control *reset; 88 const struct k3_dsp_dev_data *data; 89 struct ti_sci_proc *tsp; 90 const struct ti_sci_handle *ti_sci; 91 u32 ti_sci_id; 92 struct mbox_chan *mbox; 93 struct mbox_client client; 94 }; 95 96 /** 97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler 98 * @client: mailbox client pointer used for requesting the mailbox channel 99 * @data: mailbox payload 100 * 101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox 102 * message is received. Usually, the mailbox payload simply contains 103 * the index of the virtqueue that is kicked by the remote processor, 104 * and we let remoteproc core handle it. 105 * 106 * In addition to virtqueue indices, we also have some out-of-band values 107 * that indicate different events. Those values are deliberately very 108 * large so they don't coincide with virtqueue indices. 109 */ 110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data) 111 { 112 struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc, 113 client); 114 struct device *dev = kproc->rproc->dev.parent; 115 const char *name = kproc->rproc->name; 116 u32 msg = omap_mbox_message(data); 117 118 dev_dbg(dev, "mbox msg: 0x%x\n", msg); 119 120 switch (msg) { 121 case RP_MBOX_CRASH: 122 /* 123 * remoteproc detected an exception, but error recovery is not 124 * supported. So, just log this for now 125 */ 126 dev_err(dev, "K3 DSP rproc %s crashed\n", name); 127 break; 128 case RP_MBOX_ECHO_REPLY: 129 dev_info(dev, "received echo reply from %s\n", name); 130 break; 131 default: 132 /* silently handle all other valid messages */ 133 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 134 return; 135 if (msg > kproc->rproc->max_notifyid) { 136 dev_dbg(dev, "dropping unknown message 0x%x", msg); 137 return; 138 } 139 /* msg contains the index of the triggered vring */ 140 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) 141 dev_dbg(dev, "no message was found in vqid %d\n", msg); 142 } 143 } 144 145 /* 146 * Kick the remote processor to notify about pending unprocessed messages. 147 * The vqid usage is not used and is inconsequential, as the kick is performed 148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register), 149 * the remote processor is expected to process both its Tx and Rx virtqueues. 150 */ 151 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid) 152 { 153 struct k3_dsp_rproc *kproc = rproc->priv; 154 struct device *dev = rproc->dev.parent; 155 mbox_msg_t msg = (mbox_msg_t)vqid; 156 int ret; 157 158 /* send the index of the triggered virtqueue in the mailbox payload */ 159 ret = mbox_send_message(kproc->mbox, (void *)msg); 160 if (ret < 0) 161 dev_err(dev, "failed to send mailbox message, status = %d\n", 162 ret); 163 } 164 165 /* Put the DSP processor into reset */ 166 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc) 167 { 168 struct device *dev = kproc->dev; 169 int ret; 170 171 ret = reset_control_assert(kproc->reset); 172 if (ret) { 173 dev_err(dev, "local-reset assert failed, ret = %d\n", ret); 174 return ret; 175 } 176 177 if (kproc->data->uses_lreset) 178 return ret; 179 180 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 181 kproc->ti_sci_id); 182 if (ret) { 183 dev_err(dev, "module-reset assert failed, ret = %d\n", ret); 184 if (reset_control_deassert(kproc->reset)) 185 dev_warn(dev, "local-reset deassert back failed\n"); 186 } 187 188 return ret; 189 } 190 191 /* Release the DSP processor from reset */ 192 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc) 193 { 194 struct device *dev = kproc->dev; 195 int ret; 196 197 if (kproc->data->uses_lreset) 198 goto lreset; 199 200 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, 201 kproc->ti_sci_id); 202 if (ret) { 203 dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); 204 return ret; 205 } 206 207 lreset: 208 ret = reset_control_deassert(kproc->reset); 209 if (ret) { 210 dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); 211 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 212 kproc->ti_sci_id)) 213 dev_warn(dev, "module-reset assert back failed\n"); 214 } 215 216 return ret; 217 } 218 219 static int k3_dsp_rproc_request_mbox(struct rproc *rproc) 220 { 221 struct k3_dsp_rproc *kproc = rproc->priv; 222 struct mbox_client *client = &kproc->client; 223 struct device *dev = kproc->dev; 224 int ret; 225 226 client->dev = dev; 227 client->tx_done = NULL; 228 client->rx_callback = k3_dsp_rproc_mbox_callback; 229 client->tx_block = false; 230 client->knows_txdone = false; 231 232 kproc->mbox = mbox_request_channel(client, 0); 233 if (IS_ERR(kproc->mbox)) { 234 ret = -EBUSY; 235 dev_err(dev, "mbox_request_channel failed: %ld\n", 236 PTR_ERR(kproc->mbox)); 237 return ret; 238 } 239 240 /* 241 * Ping the remote processor, this is only for sanity-sake for now; 242 * there is no functional effect whatsoever. 243 * 244 * Note that the reply will _not_ arrive immediately: this message 245 * will wait in the mailbox fifo until the remote processor is booted. 246 */ 247 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 248 if (ret < 0) { 249 dev_err(dev, "mbox_send_message failed: %d\n", ret); 250 mbox_free_channel(kproc->mbox); 251 return ret; 252 } 253 254 return 0; 255 } 256 /* 257 * The C66x DSP cores have a local reset that affects only the CPU, and a 258 * generic module reset that powers on the device and allows the DSP internal 259 * memories to be accessed while the local reset is asserted. This function is 260 * used to release the global reset on C66x DSPs to allow loading into the DSP 261 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any 262 * firmware loading, and is followed by the .start() ops after loading to 263 * actually let the C66x DSP cores run. This callback is invoked only in 264 * remoteproc mode. 265 */ 266 static int k3_dsp_rproc_prepare(struct rproc *rproc) 267 { 268 struct k3_dsp_rproc *kproc = rproc->priv; 269 struct device *dev = kproc->dev; 270 int ret; 271 272 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, 273 kproc->ti_sci_id); 274 if (ret) 275 dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", 276 ret); 277 278 return ret; 279 } 280 281 /* 282 * This function implements the .unprepare() ops and performs the complimentary 283 * operations to that of the .prepare() ops. The function is used to assert the 284 * global reset on applicable C66x cores. This completes the second portion of 285 * powering down the C66x DSP cores. The cores themselves are only halted in the 286 * .stop() callback through the local reset, and the .unprepare() ops is invoked 287 * by the remoteproc core after the remoteproc is stopped to balance the global 288 * reset. This callback is invoked only in remoteproc mode. 289 */ 290 static int k3_dsp_rproc_unprepare(struct rproc *rproc) 291 { 292 struct k3_dsp_rproc *kproc = rproc->priv; 293 struct device *dev = kproc->dev; 294 int ret; 295 296 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 297 kproc->ti_sci_id); 298 if (ret) 299 dev_err(dev, "module-reset assert failed, ret = %d\n", ret); 300 301 return ret; 302 } 303 304 /* 305 * Power up the DSP remote processor. 306 * 307 * This function will be invoked only after the firmware for this rproc 308 * was loaded, parsed successfully, and all of its resource requirements 309 * were met. This callback is invoked only in remoteproc mode. 310 */ 311 static int k3_dsp_rproc_start(struct rproc *rproc) 312 { 313 struct k3_dsp_rproc *kproc = rproc->priv; 314 struct device *dev = kproc->dev; 315 u32 boot_addr; 316 int ret; 317 318 ret = k3_dsp_rproc_request_mbox(rproc); 319 if (ret) 320 return ret; 321 322 boot_addr = rproc->bootaddr; 323 if (boot_addr & (kproc->data->boot_align_addr - 1)) { 324 dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n", 325 boot_addr, kproc->data->boot_align_addr); 326 ret = -EINVAL; 327 goto put_mbox; 328 } 329 330 dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr); 331 ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0); 332 if (ret) 333 goto put_mbox; 334 335 ret = k3_dsp_rproc_release(kproc); 336 if (ret) 337 goto put_mbox; 338 339 return 0; 340 341 put_mbox: 342 mbox_free_channel(kproc->mbox); 343 return ret; 344 } 345 346 /* 347 * Stop the DSP remote processor. 348 * 349 * This function puts the DSP processor into reset, and finishes processing 350 * of any pending messages. This callback is invoked only in remoteproc mode. 351 */ 352 static int k3_dsp_rproc_stop(struct rproc *rproc) 353 { 354 struct k3_dsp_rproc *kproc = rproc->priv; 355 356 mbox_free_channel(kproc->mbox); 357 358 k3_dsp_rproc_reset(kproc); 359 360 return 0; 361 } 362 363 /* 364 * Attach to a running DSP remote processor (IPC-only mode) 365 * 366 * This rproc attach callback only needs to request the mailbox, the remote 367 * processor is already booted, so there is no need to issue any TI-SCI 368 * commands to boot the DSP core. This callback is invoked only in IPC-only 369 * mode. 370 */ 371 static int k3_dsp_rproc_attach(struct rproc *rproc) 372 { 373 struct k3_dsp_rproc *kproc = rproc->priv; 374 struct device *dev = kproc->dev; 375 int ret; 376 377 ret = k3_dsp_rproc_request_mbox(rproc); 378 if (ret) 379 return ret; 380 381 dev_info(dev, "DSP initialized in IPC-only mode\n"); 382 return 0; 383 } 384 385 /* 386 * Detach from a running DSP remote processor (IPC-only mode) 387 * 388 * This rproc detach callback performs the opposite operation to attach callback 389 * and only needs to release the mailbox, the DSP core is not stopped and will 390 * be left to continue to run its booted firmware. This callback is invoked only 391 * in IPC-only mode. 392 */ 393 static int k3_dsp_rproc_detach(struct rproc *rproc) 394 { 395 struct k3_dsp_rproc *kproc = rproc->priv; 396 struct device *dev = kproc->dev; 397 398 mbox_free_channel(kproc->mbox); 399 dev_info(dev, "DSP deinitialized in IPC-only mode\n"); 400 return 0; 401 } 402 403 /* 404 * This function implements the .get_loaded_rsc_table() callback and is used 405 * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP 406 * firmwares follow a design-by-contract approach and are expected to have the 407 * resource table at the base of the DDR region reserved for firmware usage. 408 * This provides flexibility for the remote processor to be booted by different 409 * bootloaders that may or may not have the ability to publish the resource table 410 * address and size through a DT property. This callback is invoked only in 411 * IPC-only mode. 412 */ 413 static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc, 414 size_t *rsc_table_sz) 415 { 416 struct k3_dsp_rproc *kproc = rproc->priv; 417 struct device *dev = kproc->dev; 418 419 if (!kproc->rmem[0].cpu_addr) { 420 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); 421 return ERR_PTR(-ENOMEM); 422 } 423 424 /* 425 * NOTE: The resource table size is currently hard-coded to a maximum 426 * of 256 bytes. The most common resource table usage for K3 firmwares 427 * is to only have the vdev resource entry and an optional trace entry. 428 * The exact size could be computed based on resource table address, but 429 * the hard-coded value suffices to support the IPC-only mode. 430 */ 431 *rsc_table_sz = 256; 432 return (struct resource_table *)kproc->rmem[0].cpu_addr; 433 } 434 435 /* 436 * Custom function to translate a DSP device address (internal RAMs only) to a 437 * kernel virtual address. The DSPs can access their RAMs at either an internal 438 * address visible only from a DSP, or at the SoC-level bus address. Both these 439 * addresses need to be looked through for translation. The translated addresses 440 * can be used either by the remoteproc core for loading (when using kernel 441 * remoteproc loader), or by any rpmsg bus drivers. 442 */ 443 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 444 { 445 struct k3_dsp_rproc *kproc = rproc->priv; 446 void __iomem *va = NULL; 447 phys_addr_t bus_addr; 448 u32 dev_addr, offset; 449 size_t size; 450 int i; 451 452 if (len == 0) 453 return NULL; 454 455 for (i = 0; i < kproc->num_mems; i++) { 456 bus_addr = kproc->mem[i].bus_addr; 457 dev_addr = kproc->mem[i].dev_addr; 458 size = kproc->mem[i].size; 459 460 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { 461 /* handle DSP-view addresses */ 462 if (da >= dev_addr && 463 ((da + len) <= (dev_addr + size))) { 464 offset = da - dev_addr; 465 va = kproc->mem[i].cpu_addr + offset; 466 return (__force void *)va; 467 } 468 } else { 469 /* handle SoC-view addresses */ 470 if (da >= bus_addr && 471 (da + len) <= (bus_addr + size)) { 472 offset = da - bus_addr; 473 va = kproc->mem[i].cpu_addr + offset; 474 return (__force void *)va; 475 } 476 } 477 } 478 479 /* handle static DDR reserved memory regions */ 480 for (i = 0; i < kproc->num_rmems; i++) { 481 dev_addr = kproc->rmem[i].dev_addr; 482 size = kproc->rmem[i].size; 483 484 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 485 offset = da - dev_addr; 486 va = kproc->rmem[i].cpu_addr + offset; 487 return (__force void *)va; 488 } 489 } 490 491 return NULL; 492 } 493 494 static const struct rproc_ops k3_dsp_rproc_ops = { 495 .start = k3_dsp_rproc_start, 496 .stop = k3_dsp_rproc_stop, 497 .kick = k3_dsp_rproc_kick, 498 .da_to_va = k3_dsp_rproc_da_to_va, 499 }; 500 501 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev, 502 struct k3_dsp_rproc *kproc) 503 { 504 const struct k3_dsp_dev_data *data = kproc->data; 505 struct device *dev = &pdev->dev; 506 struct resource *res; 507 int num_mems = 0; 508 int i; 509 510 num_mems = kproc->data->num_mems; 511 kproc->mem = devm_kcalloc(kproc->dev, num_mems, 512 sizeof(*kproc->mem), GFP_KERNEL); 513 if (!kproc->mem) 514 return -ENOMEM; 515 516 for (i = 0; i < num_mems; i++) { 517 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 518 data->mems[i].name); 519 if (!res) { 520 dev_err(dev, "found no memory resource for %s\n", 521 data->mems[i].name); 522 return -EINVAL; 523 } 524 if (!devm_request_mem_region(dev, res->start, 525 resource_size(res), 526 dev_name(dev))) { 527 dev_err(dev, "could not request %s region for resource\n", 528 data->mems[i].name); 529 return -EBUSY; 530 } 531 532 kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, 533 resource_size(res)); 534 if (!kproc->mem[i].cpu_addr) { 535 dev_err(dev, "failed to map %s memory\n", 536 data->mems[i].name); 537 return -ENOMEM; 538 } 539 kproc->mem[i].bus_addr = res->start; 540 kproc->mem[i].dev_addr = data->mems[i].dev_addr; 541 kproc->mem[i].size = resource_size(res); 542 543 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", 544 data->mems[i].name, &kproc->mem[i].bus_addr, 545 kproc->mem[i].size, kproc->mem[i].cpu_addr, 546 kproc->mem[i].dev_addr); 547 } 548 kproc->num_mems = num_mems; 549 550 return 0; 551 } 552 553 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc) 554 { 555 struct device *dev = kproc->dev; 556 struct device_node *np = dev->of_node; 557 struct device_node *rmem_np; 558 struct reserved_mem *rmem; 559 int num_rmems; 560 int ret, i; 561 562 num_rmems = of_property_count_elems_of_size(np, "memory-region", 563 sizeof(phandle)); 564 if (num_rmems <= 0) { 565 dev_err(dev, "device does not reserved memory regions, ret = %d\n", 566 num_rmems); 567 return -EINVAL; 568 } 569 if (num_rmems < 2) { 570 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", 571 num_rmems); 572 return -EINVAL; 573 } 574 575 /* use reserved memory region 0 for vring DMA allocations */ 576 ret = of_reserved_mem_device_init_by_idx(dev, np, 0); 577 if (ret) { 578 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", 579 ret); 580 return ret; 581 } 582 583 num_rmems--; 584 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); 585 if (!kproc->rmem) { 586 ret = -ENOMEM; 587 goto release_rmem; 588 } 589 590 /* use remaining reserved memory regions for static carveouts */ 591 for (i = 0; i < num_rmems; i++) { 592 rmem_np = of_parse_phandle(np, "memory-region", i + 1); 593 if (!rmem_np) { 594 ret = -EINVAL; 595 goto unmap_rmem; 596 } 597 598 rmem = of_reserved_mem_lookup(rmem_np); 599 if (!rmem) { 600 of_node_put(rmem_np); 601 ret = -EINVAL; 602 goto unmap_rmem; 603 } 604 of_node_put(rmem_np); 605 606 kproc->rmem[i].bus_addr = rmem->base; 607 /* 64-bit address regions currently not supported */ 608 kproc->rmem[i].dev_addr = (u32)rmem->base; 609 kproc->rmem[i].size = rmem->size; 610 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); 611 if (!kproc->rmem[i].cpu_addr) { 612 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", 613 i + 1, &rmem->base, &rmem->size); 614 ret = -ENOMEM; 615 goto unmap_rmem; 616 } 617 618 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 619 i + 1, &kproc->rmem[i].bus_addr, 620 kproc->rmem[i].size, kproc->rmem[i].cpu_addr, 621 kproc->rmem[i].dev_addr); 622 } 623 kproc->num_rmems = num_rmems; 624 625 return 0; 626 627 unmap_rmem: 628 for (i--; i >= 0; i--) 629 iounmap(kproc->rmem[i].cpu_addr); 630 kfree(kproc->rmem); 631 release_rmem: 632 of_reserved_mem_device_release(kproc->dev); 633 return ret; 634 } 635 636 static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc) 637 { 638 int i; 639 640 for (i = 0; i < kproc->num_rmems; i++) 641 iounmap(kproc->rmem[i].cpu_addr); 642 kfree(kproc->rmem); 643 644 of_reserved_mem_device_release(kproc->dev); 645 } 646 647 static 648 struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev, 649 const struct ti_sci_handle *sci) 650 { 651 struct ti_sci_proc *tsp; 652 u32 temp[2]; 653 int ret; 654 655 ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", 656 temp, 2); 657 if (ret < 0) 658 return ERR_PTR(ret); 659 660 tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); 661 if (!tsp) 662 return ERR_PTR(-ENOMEM); 663 664 tsp->dev = dev; 665 tsp->sci = sci; 666 tsp->ops = &sci->ops.proc_ops; 667 tsp->proc_id = temp[0]; 668 tsp->host_id = temp[1]; 669 670 return tsp; 671 } 672 673 static int k3_dsp_rproc_probe(struct platform_device *pdev) 674 { 675 struct device *dev = &pdev->dev; 676 struct device_node *np = dev->of_node; 677 const struct k3_dsp_dev_data *data; 678 struct k3_dsp_rproc *kproc; 679 struct rproc *rproc; 680 const char *fw_name; 681 bool p_state = false; 682 int ret = 0; 683 int ret1; 684 685 data = of_device_get_match_data(dev); 686 if (!data) 687 return -ENODEV; 688 689 ret = rproc_of_parse_firmware(dev, 0, &fw_name); 690 if (ret) { 691 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 692 ret); 693 return ret; 694 } 695 696 rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name, 697 sizeof(*kproc)); 698 if (!rproc) 699 return -ENOMEM; 700 701 rproc->has_iommu = false; 702 rproc->recovery_disabled = true; 703 if (data->uses_lreset) { 704 rproc->ops->prepare = k3_dsp_rproc_prepare; 705 rproc->ops->unprepare = k3_dsp_rproc_unprepare; 706 } 707 kproc = rproc->priv; 708 kproc->rproc = rproc; 709 kproc->dev = dev; 710 kproc->data = data; 711 712 kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); 713 if (IS_ERR(kproc->ti_sci)) { 714 ret = PTR_ERR(kproc->ti_sci); 715 if (ret != -EPROBE_DEFER) { 716 dev_err(dev, "failed to get ti-sci handle, ret = %d\n", 717 ret); 718 } 719 kproc->ti_sci = NULL; 720 goto free_rproc; 721 } 722 723 ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); 724 if (ret) { 725 dev_err(dev, "missing 'ti,sci-dev-id' property\n"); 726 goto put_sci; 727 } 728 729 kproc->reset = devm_reset_control_get_exclusive(dev, NULL); 730 if (IS_ERR(kproc->reset)) { 731 ret = PTR_ERR(kproc->reset); 732 dev_err(dev, "failed to get reset, status = %d\n", ret); 733 goto put_sci; 734 } 735 736 kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci); 737 if (IS_ERR(kproc->tsp)) { 738 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", 739 ret); 740 ret = PTR_ERR(kproc->tsp); 741 goto put_sci; 742 } 743 744 ret = ti_sci_proc_request(kproc->tsp); 745 if (ret < 0) { 746 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); 747 goto free_tsp; 748 } 749 750 ret = k3_dsp_rproc_of_get_memories(pdev, kproc); 751 if (ret) 752 goto release_tsp; 753 754 ret = k3_dsp_reserved_mem_init(kproc); 755 if (ret) { 756 dev_err(dev, "reserved memory init failed, ret = %d\n", ret); 757 goto release_tsp; 758 } 759 760 ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, 761 NULL, &p_state); 762 if (ret) { 763 dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", 764 ret); 765 goto release_mem; 766 } 767 768 /* configure J721E devices for either remoteproc or IPC-only mode */ 769 if (p_state) { 770 dev_info(dev, "configured DSP for IPC-only mode\n"); 771 rproc->state = RPROC_DETACHED; 772 /* override rproc ops with only required IPC-only mode ops */ 773 rproc->ops->prepare = NULL; 774 rproc->ops->unprepare = NULL; 775 rproc->ops->start = NULL; 776 rproc->ops->stop = NULL; 777 rproc->ops->attach = k3_dsp_rproc_attach; 778 rproc->ops->detach = k3_dsp_rproc_detach; 779 rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table; 780 } else { 781 dev_info(dev, "configured DSP for remoteproc mode\n"); 782 /* 783 * ensure the DSP local reset is asserted to ensure the DSP 784 * doesn't execute bogus code in .prepare() when the module 785 * reset is released. 786 */ 787 if (data->uses_lreset) { 788 ret = reset_control_status(kproc->reset); 789 if (ret < 0) { 790 dev_err(dev, "failed to get reset status, status = %d\n", 791 ret); 792 goto release_mem; 793 } else if (ret == 0) { 794 dev_warn(dev, "local reset is deasserted for device\n"); 795 k3_dsp_rproc_reset(kproc); 796 } 797 } 798 } 799 800 ret = rproc_add(rproc); 801 if (ret) { 802 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", 803 ret); 804 goto release_mem; 805 } 806 807 platform_set_drvdata(pdev, kproc); 808 809 return 0; 810 811 release_mem: 812 k3_dsp_reserved_mem_exit(kproc); 813 release_tsp: 814 ret1 = ti_sci_proc_release(kproc->tsp); 815 if (ret1) 816 dev_err(dev, "failed to release proc, ret = %d\n", ret1); 817 free_tsp: 818 kfree(kproc->tsp); 819 put_sci: 820 ret1 = ti_sci_put_handle(kproc->ti_sci); 821 if (ret1) 822 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); 823 free_rproc: 824 rproc_free(rproc); 825 return ret; 826 } 827 828 static int k3_dsp_rproc_remove(struct platform_device *pdev) 829 { 830 struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev); 831 struct rproc *rproc = kproc->rproc; 832 struct device *dev = &pdev->dev; 833 int ret; 834 835 if (rproc->state == RPROC_ATTACHED) { 836 ret = rproc_detach(rproc); 837 if (ret) { 838 dev_err(dev, "failed to detach proc, ret = %d\n", ret); 839 return ret; 840 } 841 } 842 843 rproc_del(kproc->rproc); 844 845 ret = ti_sci_proc_release(kproc->tsp); 846 if (ret) 847 dev_err(dev, "failed to release proc, ret = %d\n", ret); 848 849 kfree(kproc->tsp); 850 851 ret = ti_sci_put_handle(kproc->ti_sci); 852 if (ret) 853 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); 854 855 k3_dsp_reserved_mem_exit(kproc); 856 rproc_free(kproc->rproc); 857 858 return 0; 859 } 860 861 static const struct k3_dsp_mem_data c66_mems[] = { 862 { .name = "l2sram", .dev_addr = 0x800000 }, 863 { .name = "l1pram", .dev_addr = 0xe00000 }, 864 { .name = "l1dram", .dev_addr = 0xf00000 }, 865 }; 866 867 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */ 868 static const struct k3_dsp_mem_data c71_mems[] = { 869 { .name = "l2sram", .dev_addr = 0x800000 }, 870 { .name = "l1dram", .dev_addr = 0xe00000 }, 871 }; 872 873 static const struct k3_dsp_mem_data c7xv_mems[] = { 874 { .name = "l2sram", .dev_addr = 0x800000 }, 875 }; 876 877 static const struct k3_dsp_dev_data c66_data = { 878 .mems = c66_mems, 879 .num_mems = ARRAY_SIZE(c66_mems), 880 .boot_align_addr = SZ_1K, 881 .uses_lreset = true, 882 }; 883 884 static const struct k3_dsp_dev_data c71_data = { 885 .mems = c71_mems, 886 .num_mems = ARRAY_SIZE(c71_mems), 887 .boot_align_addr = SZ_2M, 888 .uses_lreset = false, 889 }; 890 891 static const struct k3_dsp_dev_data c7xv_data = { 892 .mems = c7xv_mems, 893 .num_mems = ARRAY_SIZE(c7xv_mems), 894 .boot_align_addr = SZ_2M, 895 .uses_lreset = false, 896 }; 897 898 static const struct of_device_id k3_dsp_of_match[] = { 899 { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, }, 900 { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, }, 901 { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, }, 902 { .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, }, 903 { /* sentinel */ }, 904 }; 905 MODULE_DEVICE_TABLE(of, k3_dsp_of_match); 906 907 static struct platform_driver k3_dsp_rproc_driver = { 908 .probe = k3_dsp_rproc_probe, 909 .remove = k3_dsp_rproc_remove, 910 .driver = { 911 .name = "k3-dsp-rproc", 912 .of_match_table = k3_dsp_of_match, 913 }, 914 }; 915 916 module_platform_driver(k3_dsp_rproc_driver); 917 918 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 919 MODULE_LICENSE("GPL v2"); 920 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver"); 921