xref: /openbmc/linux/drivers/remoteproc/remoteproc_core.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44 
45 #include "remoteproc_internal.h"
46 
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 				struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57 
58 static const char * const rproc_crash_names[] = {
59 	[RPROC_MMUFAULT]	= "mmufault",
60 };
61 
62 /* translate rproc_crash_type to string */
63 static const char *rproc_crash_to_string(enum rproc_crash_type type)
64 {
65 	if (type < ARRAY_SIZE(rproc_crash_names))
66 		return rproc_crash_names[type];
67 	return "unknown";
68 }
69 
70 /*
71  * This is the IOMMU fault handler we register with the IOMMU API
72  * (when relevant; not all remote processors access memory through
73  * an IOMMU).
74  *
75  * IOMMU core will invoke this handler whenever the remote processor
76  * will try to access an unmapped device address.
77  */
78 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
79 		unsigned long iova, int flags, void *token)
80 {
81 	struct rproc *rproc = token;
82 
83 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
84 
85 	rproc_report_crash(rproc, RPROC_MMUFAULT);
86 
87 	/*
88 	 * Let the iommu core know we're not really handling this fault;
89 	 * we just used it as a recovery trigger.
90 	 */
91 	return -ENOSYS;
92 }
93 
94 static int rproc_enable_iommu(struct rproc *rproc)
95 {
96 	struct iommu_domain *domain;
97 	struct device *dev = rproc->dev.parent;
98 	int ret;
99 
100 	if (!rproc->has_iommu) {
101 		dev_dbg(dev, "iommu not present\n");
102 		return 0;
103 	}
104 
105 	domain = iommu_domain_alloc(dev->bus);
106 	if (!domain) {
107 		dev_err(dev, "can't alloc iommu domain\n");
108 		return -ENOMEM;
109 	}
110 
111 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
112 
113 	ret = iommu_attach_device(domain, dev);
114 	if (ret) {
115 		dev_err(dev, "can't attach iommu device: %d\n", ret);
116 		goto free_domain;
117 	}
118 
119 	rproc->domain = domain;
120 
121 	return 0;
122 
123 free_domain:
124 	iommu_domain_free(domain);
125 	return ret;
126 }
127 
128 static void rproc_disable_iommu(struct rproc *rproc)
129 {
130 	struct iommu_domain *domain = rproc->domain;
131 	struct device *dev = rproc->dev.parent;
132 
133 	if (!domain)
134 		return;
135 
136 	iommu_detach_device(domain, dev);
137 	iommu_domain_free(domain);
138 }
139 
140 /**
141  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
142  * @rproc: handle of a remote processor
143  * @da: remoteproc device address to translate
144  * @len: length of the memory region @da is pointing to
145  *
146  * Some remote processors will ask us to allocate them physically contiguous
147  * memory regions (which we call "carveouts"), and map them to specific
148  * device addresses (which are hardcoded in the firmware). They may also have
149  * dedicated memory regions internal to the processors, and use them either
150  * exclusively or alongside carveouts.
151  *
152  * They may then ask us to copy objects into specific device addresses (e.g.
153  * code/data sections) or expose us certain symbols in other device address
154  * (e.g. their trace buffer).
155  *
156  * This function is a helper function with which we can go over the allocated
157  * carveouts and translate specific device addresses to kernel virtual addresses
158  * so we can access the referenced memory. This function also allows to perform
159  * translations on the internal remoteproc memory regions through a platform
160  * implementation specific da_to_va ops, if present.
161  *
162  * The function returns a valid kernel address on success or NULL on failure.
163  *
164  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165  * but only on kernel direct mapped RAM memory. Instead, we're just using
166  * here the output of the DMA API for the carveouts, which should be more
167  * correct.
168  */
169 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
170 {
171 	struct rproc_mem_entry *carveout;
172 	void *ptr = NULL;
173 
174 	if (rproc->ops->da_to_va) {
175 		ptr = rproc->ops->da_to_va(rproc, da, len);
176 		if (ptr)
177 			goto out;
178 	}
179 
180 	list_for_each_entry(carveout, &rproc->carveouts, node) {
181 		int offset = da - carveout->da;
182 
183 		/* try next carveout if da is too small */
184 		if (offset < 0)
185 			continue;
186 
187 		/* try next carveout if da is too large */
188 		if (offset + len > carveout->len)
189 			continue;
190 
191 		ptr = carveout->va + offset;
192 
193 		break;
194 	}
195 
196 out:
197 	return ptr;
198 }
199 EXPORT_SYMBOL(rproc_da_to_va);
200 
201 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
202 {
203 	struct rproc *rproc = rvdev->rproc;
204 	struct device *dev = &rproc->dev;
205 	struct rproc_vring *rvring = &rvdev->vring[i];
206 	struct fw_rsc_vdev *rsc;
207 	dma_addr_t dma;
208 	void *va;
209 	int ret, size, notifyid;
210 
211 	/* actual size of vring (in bytes) */
212 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
213 
214 	/*
215 	 * Allocate non-cacheable memory for the vring. In the future
216 	 * this call will also configure the IOMMU for us
217 	 */
218 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
219 	if (!va) {
220 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
221 		return -EINVAL;
222 	}
223 
224 	/*
225 	 * Assign an rproc-wide unique index for this vring
226 	 * TODO: assign a notifyid for rvdev updates as well
227 	 * TODO: support predefined notifyids (via resource table)
228 	 */
229 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
230 	if (ret < 0) {
231 		dev_err(dev, "idr_alloc failed: %d\n", ret);
232 		dma_free_coherent(dev->parent, size, va, dma);
233 		return ret;
234 	}
235 	notifyid = ret;
236 
237 	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
238 				(unsigned long long)dma, size, notifyid);
239 
240 	rvring->va = va;
241 	rvring->dma = dma;
242 	rvring->notifyid = notifyid;
243 
244 	/*
245 	 * Let the rproc know the notifyid and da of this vring.
246 	 * Not all platforms use dma_alloc_coherent to automatically
247 	 * set up the iommu. In this case the device address (da) will
248 	 * hold the physical address and not the device address.
249 	 */
250 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
251 	rsc->vring[i].da = dma;
252 	rsc->vring[i].notifyid = notifyid;
253 	return 0;
254 }
255 
256 static int
257 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
258 {
259 	struct rproc *rproc = rvdev->rproc;
260 	struct device *dev = &rproc->dev;
261 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
262 	struct rproc_vring *rvring = &rvdev->vring[i];
263 
264 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
265 				i, vring->da, vring->num, vring->align);
266 
267 	/* make sure reserved bytes are zeroes */
268 	if (vring->reserved) {
269 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
270 		return -EINVAL;
271 	}
272 
273 	/* verify queue size and vring alignment are sane */
274 	if (!vring->num || !vring->align) {
275 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
276 						vring->num, vring->align);
277 		return -EINVAL;
278 	}
279 
280 	rvring->len = vring->num;
281 	rvring->align = vring->align;
282 	rvring->rvdev = rvdev;
283 
284 	return 0;
285 }
286 
287 void rproc_free_vring(struct rproc_vring *rvring)
288 {
289 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
290 	struct rproc *rproc = rvring->rvdev->rproc;
291 	int idx = rvring->rvdev->vring - rvring;
292 	struct fw_rsc_vdev *rsc;
293 
294 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295 	idr_remove(&rproc->notifyids, rvring->notifyid);
296 
297 	/* reset resource entry info */
298 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
299 	rsc->vring[idx].da = 0;
300 	rsc->vring[idx].notifyid = -1;
301 }
302 
303 /**
304  * rproc_handle_vdev() - handle a vdev fw resource
305  * @rproc: the remote processor
306  * @rsc: the vring resource descriptor
307  * @avail: size of available data (for sanity checking the image)
308  *
309  * This resource entry requests the host to statically register a virtio
310  * device (vdev), and setup everything needed to support it. It contains
311  * everything needed to make it possible: the virtio device id, virtio
312  * device features, vrings information, virtio config space, etc...
313  *
314  * Before registering the vdev, the vrings are allocated from non-cacheable
315  * physically contiguous memory. Currently we only support two vrings per
316  * remote processor (temporary limitation). We might also want to consider
317  * doing the vring allocation only later when ->find_vqs() is invoked, and
318  * then release them upon ->del_vqs().
319  *
320  * Note: @da is currently not really handled correctly: we dynamically
321  * allocate it using the DMA API, ignoring requested hard coded addresses,
322  * and we don't take care of any required IOMMU programming. This is all
323  * going to be taken care of when the generic iommu-based DMA API will be
324  * merged. Meanwhile, statically-addressed iommu-based firmware images should
325  * use RSC_DEVMEM resource entries to map their required @da to the physical
326  * address of their base CMA region (ouch, hacky!).
327  *
328  * Returns 0 on success, or an appropriate error code otherwise
329  */
330 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
331 							int offset, int avail)
332 {
333 	struct device *dev = &rproc->dev;
334 	struct rproc_vdev *rvdev;
335 	int i, ret;
336 
337 	/* make sure resource isn't truncated */
338 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
339 			+ rsc->config_len > avail) {
340 		dev_err(dev, "vdev rsc is truncated\n");
341 		return -EINVAL;
342 	}
343 
344 	/* make sure reserved bytes are zeroes */
345 	if (rsc->reserved[0] || rsc->reserved[1]) {
346 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
347 		return -EINVAL;
348 	}
349 
350 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
351 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
352 
353 	/* we currently support only two vrings per rvdev */
354 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
355 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
356 		return -EINVAL;
357 	}
358 
359 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
360 	if (!rvdev)
361 		return -ENOMEM;
362 
363 	rvdev->rproc = rproc;
364 
365 	/* parse the vrings */
366 	for (i = 0; i < rsc->num_of_vrings; i++) {
367 		ret = rproc_parse_vring(rvdev, rsc, i);
368 		if (ret)
369 			goto free_rvdev;
370 	}
371 
372 	/* remember the resource offset*/
373 	rvdev->rsc_offset = offset;
374 
375 	list_add_tail(&rvdev->node, &rproc->rvdevs);
376 
377 	/* it is now safe to add the virtio device */
378 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
379 	if (ret)
380 		goto remove_rvdev;
381 
382 	return 0;
383 
384 remove_rvdev:
385 	list_del(&rvdev->node);
386 free_rvdev:
387 	kfree(rvdev);
388 	return ret;
389 }
390 
391 /**
392  * rproc_handle_trace() - handle a shared trace buffer resource
393  * @rproc: the remote processor
394  * @rsc: the trace resource descriptor
395  * @avail: size of available data (for sanity checking the image)
396  *
397  * In case the remote processor dumps trace logs into memory,
398  * export it via debugfs.
399  *
400  * Currently, the 'da' member of @rsc should contain the device address
401  * where the remote processor is dumping the traces. Later we could also
402  * support dynamically allocating this address using the generic
403  * DMA API (but currently there isn't a use case for that).
404  *
405  * Returns 0 on success, or an appropriate error code otherwise
406  */
407 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
408 							int offset, int avail)
409 {
410 	struct rproc_mem_entry *trace;
411 	struct device *dev = &rproc->dev;
412 	void *ptr;
413 	char name[15];
414 
415 	if (sizeof(*rsc) > avail) {
416 		dev_err(dev, "trace rsc is truncated\n");
417 		return -EINVAL;
418 	}
419 
420 	/* make sure reserved bytes are zeroes */
421 	if (rsc->reserved) {
422 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
423 		return -EINVAL;
424 	}
425 
426 	/* what's the kernel address of this resource ? */
427 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
428 	if (!ptr) {
429 		dev_err(dev, "erroneous trace resource entry\n");
430 		return -EINVAL;
431 	}
432 
433 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
434 	if (!trace)
435 		return -ENOMEM;
436 
437 	/* set the trace buffer dma properties */
438 	trace->len = rsc->len;
439 	trace->va = ptr;
440 
441 	/* make sure snprintf always null terminates, even if truncating */
442 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
443 
444 	/* create the debugfs entry */
445 	trace->priv = rproc_create_trace_file(name, rproc, trace);
446 	if (!trace->priv) {
447 		trace->va = NULL;
448 		kfree(trace);
449 		return -EINVAL;
450 	}
451 
452 	list_add_tail(&trace->node, &rproc->traces);
453 
454 	rproc->num_traces++;
455 
456 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
457 						rsc->da, rsc->len);
458 
459 	return 0;
460 }
461 
462 /**
463  * rproc_handle_devmem() - handle devmem resource entry
464  * @rproc: remote processor handle
465  * @rsc: the devmem resource entry
466  * @avail: size of available data (for sanity checking the image)
467  *
468  * Remote processors commonly need to access certain on-chip peripherals.
469  *
470  * Some of these remote processors access memory via an iommu device,
471  * and might require us to configure their iommu before they can access
472  * the on-chip peripherals they need.
473  *
474  * This resource entry is a request to map such a peripheral device.
475  *
476  * These devmem entries will contain the physical address of the device in
477  * the 'pa' member. If a specific device address is expected, then 'da' will
478  * contain it (currently this is the only use case supported). 'len' will
479  * contain the size of the physical region we need to map.
480  *
481  * Currently we just "trust" those devmem entries to contain valid physical
482  * addresses, but this is going to change: we want the implementations to
483  * tell us ranges of physical addresses the firmware is allowed to request,
484  * and not allow firmwares to request access to physical addresses that
485  * are outside those ranges.
486  */
487 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
488 							int offset, int avail)
489 {
490 	struct rproc_mem_entry *mapping;
491 	struct device *dev = &rproc->dev;
492 	int ret;
493 
494 	/* no point in handling this resource without a valid iommu domain */
495 	if (!rproc->domain)
496 		return -EINVAL;
497 
498 	if (sizeof(*rsc) > avail) {
499 		dev_err(dev, "devmem rsc is truncated\n");
500 		return -EINVAL;
501 	}
502 
503 	/* make sure reserved bytes are zeroes */
504 	if (rsc->reserved) {
505 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
506 		return -EINVAL;
507 	}
508 
509 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
510 	if (!mapping)
511 		return -ENOMEM;
512 
513 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
514 	if (ret) {
515 		dev_err(dev, "failed to map devmem: %d\n", ret);
516 		goto out;
517 	}
518 
519 	/*
520 	 * We'll need this info later when we'll want to unmap everything
521 	 * (e.g. on shutdown).
522 	 *
523 	 * We can't trust the remote processor not to change the resource
524 	 * table, so we must maintain this info independently.
525 	 */
526 	mapping->da = rsc->da;
527 	mapping->len = rsc->len;
528 	list_add_tail(&mapping->node, &rproc->mappings);
529 
530 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
531 					rsc->pa, rsc->da, rsc->len);
532 
533 	return 0;
534 
535 out:
536 	kfree(mapping);
537 	return ret;
538 }
539 
540 /**
541  * rproc_handle_carveout() - handle phys contig memory allocation requests
542  * @rproc: rproc handle
543  * @rsc: the resource entry
544  * @avail: size of available data (for image validation)
545  *
546  * This function will handle firmware requests for allocation of physically
547  * contiguous memory regions.
548  *
549  * These request entries should come first in the firmware's resource table,
550  * as other firmware entries might request placing other data objects inside
551  * these memory regions (e.g. data/code segments, trace resource entries, ...).
552  *
553  * Allocating memory this way helps utilizing the reserved physical memory
554  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
555  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
556  * pressure is important; it may have a substantial impact on performance.
557  */
558 static int rproc_handle_carveout(struct rproc *rproc,
559 						struct fw_rsc_carveout *rsc,
560 						int offset, int avail)
561 
562 {
563 	struct rproc_mem_entry *carveout, *mapping;
564 	struct device *dev = &rproc->dev;
565 	dma_addr_t dma;
566 	void *va;
567 	int ret;
568 
569 	if (sizeof(*rsc) > avail) {
570 		dev_err(dev, "carveout rsc is truncated\n");
571 		return -EINVAL;
572 	}
573 
574 	/* make sure reserved bytes are zeroes */
575 	if (rsc->reserved) {
576 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
577 		return -EINVAL;
578 	}
579 
580 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
581 			rsc->da, rsc->pa, rsc->len, rsc->flags);
582 
583 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
584 	if (!carveout)
585 		return -ENOMEM;
586 
587 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
588 	if (!va) {
589 		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
590 		ret = -ENOMEM;
591 		goto free_carv;
592 	}
593 
594 	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
595 					(unsigned long long)dma, rsc->len);
596 
597 	/*
598 	 * Ok, this is non-standard.
599 	 *
600 	 * Sometimes we can't rely on the generic iommu-based DMA API
601 	 * to dynamically allocate the device address and then set the IOMMU
602 	 * tables accordingly, because some remote processors might
603 	 * _require_ us to use hard coded device addresses that their
604 	 * firmware was compiled with.
605 	 *
606 	 * In this case, we must use the IOMMU API directly and map
607 	 * the memory to the device address as expected by the remote
608 	 * processor.
609 	 *
610 	 * Obviously such remote processor devices should not be configured
611 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
612 	 * physical address in this case.
613 	 */
614 	if (rproc->domain) {
615 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
616 		if (!mapping) {
617 			dev_err(dev, "kzalloc mapping failed\n");
618 			ret = -ENOMEM;
619 			goto dma_free;
620 		}
621 
622 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
623 								rsc->flags);
624 		if (ret) {
625 			dev_err(dev, "iommu_map failed: %d\n", ret);
626 			goto free_mapping;
627 		}
628 
629 		/*
630 		 * We'll need this info later when we'll want to unmap
631 		 * everything (e.g. on shutdown).
632 		 *
633 		 * We can't trust the remote processor not to change the
634 		 * resource table, so we must maintain this info independently.
635 		 */
636 		mapping->da = rsc->da;
637 		mapping->len = rsc->len;
638 		list_add_tail(&mapping->node, &rproc->mappings);
639 
640 		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
641 					rsc->da, (unsigned long long)dma);
642 	}
643 
644 	/*
645 	 * Some remote processors might need to know the pa
646 	 * even though they are behind an IOMMU. E.g., OMAP4's
647 	 * remote M3 processor needs this so it can control
648 	 * on-chip hardware accelerators that are not behind
649 	 * the IOMMU, and therefor must know the pa.
650 	 *
651 	 * Generally we don't want to expose physical addresses
652 	 * if we don't have to (remote processors are generally
653 	 * _not_ trusted), so we might want to do this only for
654 	 * remote processor that _must_ have this (e.g. OMAP4's
655 	 * dual M3 subsystem).
656 	 *
657 	 * Non-IOMMU processors might also want to have this info.
658 	 * In this case, the device address and the physical address
659 	 * are the same.
660 	 */
661 	rsc->pa = dma;
662 
663 	carveout->va = va;
664 	carveout->len = rsc->len;
665 	carveout->dma = dma;
666 	carveout->da = rsc->da;
667 
668 	list_add_tail(&carveout->node, &rproc->carveouts);
669 
670 	return 0;
671 
672 free_mapping:
673 	kfree(mapping);
674 dma_free:
675 	dma_free_coherent(dev->parent, rsc->len, va, dma);
676 free_carv:
677 	kfree(carveout);
678 	return ret;
679 }
680 
681 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
682 			      int offset, int avail)
683 {
684 	/* Summarize the number of notification IDs */
685 	rproc->max_notifyid += rsc->num_of_vrings;
686 
687 	return 0;
688 }
689 
690 /*
691  * A lookup table for resource handlers. The indices are defined in
692  * enum fw_resource_type.
693  */
694 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
695 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
696 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
697 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
698 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
699 };
700 
701 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
702 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
703 };
704 
705 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
706 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
707 };
708 
709 /* handle firmware resource entries before booting the remote processor */
710 static int rproc_handle_resources(struct rproc *rproc, int len,
711 				  rproc_handle_resource_t handlers[RSC_LAST])
712 {
713 	struct device *dev = &rproc->dev;
714 	rproc_handle_resource_t handler;
715 	int ret = 0, i;
716 
717 	for (i = 0; i < rproc->table_ptr->num; i++) {
718 		int offset = rproc->table_ptr->offset[i];
719 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
720 		int avail = len - offset - sizeof(*hdr);
721 		void *rsc = (void *)hdr + sizeof(*hdr);
722 
723 		/* make sure table isn't truncated */
724 		if (avail < 0) {
725 			dev_err(dev, "rsc table is truncated\n");
726 			return -EINVAL;
727 		}
728 
729 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
730 
731 		if (hdr->type >= RSC_LAST) {
732 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
733 			continue;
734 		}
735 
736 		handler = handlers[hdr->type];
737 		if (!handler)
738 			continue;
739 
740 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
741 		if (ret)
742 			break;
743 	}
744 
745 	return ret;
746 }
747 
748 /**
749  * rproc_resource_cleanup() - clean up and free all acquired resources
750  * @rproc: rproc handle
751  *
752  * This function will free all resources acquired for @rproc, and it
753  * is called whenever @rproc either shuts down or fails to boot.
754  */
755 static void rproc_resource_cleanup(struct rproc *rproc)
756 {
757 	struct rproc_mem_entry *entry, *tmp;
758 	struct device *dev = &rproc->dev;
759 
760 	/* clean up debugfs trace entries */
761 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
762 		rproc_remove_trace_file(entry->priv);
763 		rproc->num_traces--;
764 		list_del(&entry->node);
765 		kfree(entry);
766 	}
767 
768 	/* clean up iommu mapping entries */
769 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
770 		size_t unmapped;
771 
772 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
773 		if (unmapped != entry->len) {
774 			/* nothing much to do besides complaining */
775 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
776 								unmapped);
777 		}
778 
779 		list_del(&entry->node);
780 		kfree(entry);
781 	}
782 
783 	/* clean up carveout allocations */
784 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
785 		dma_free_coherent(dev->parent, entry->len, entry->va,
786 				  entry->dma);
787 		list_del(&entry->node);
788 		kfree(entry);
789 	}
790 }
791 
792 /*
793  * take a firmware and boot a remote processor with it.
794  */
795 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
796 {
797 	struct device *dev = &rproc->dev;
798 	const char *name = rproc->firmware;
799 	struct resource_table *table, *loaded_table;
800 	int ret, tablesz;
801 
802 	if (!rproc->table_ptr)
803 		return -ENOMEM;
804 
805 	ret = rproc_fw_sanity_check(rproc, fw);
806 	if (ret)
807 		return ret;
808 
809 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
810 
811 	/*
812 	 * if enabling an IOMMU isn't relevant for this rproc, this is
813 	 * just a nop
814 	 */
815 	ret = rproc_enable_iommu(rproc);
816 	if (ret) {
817 		dev_err(dev, "can't enable iommu: %d\n", ret);
818 		return ret;
819 	}
820 
821 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
822 	ret = -EINVAL;
823 
824 	/* look for the resource table */
825 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
826 	if (!table)
827 		goto clean_up;
828 
829 	/* Verify that resource table in loaded fw is unchanged */
830 	if (rproc->table_csum != crc32(0, table, tablesz)) {
831 		dev_err(dev, "resource checksum failed, fw changed?\n");
832 		goto clean_up;
833 	}
834 
835 	/* handle fw resources which are required to boot rproc */
836 	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
837 	if (ret) {
838 		dev_err(dev, "Failed to process resources: %d\n", ret);
839 		goto clean_up;
840 	}
841 
842 	/* load the ELF segments to memory */
843 	ret = rproc_load_segments(rproc, fw);
844 	if (ret) {
845 		dev_err(dev, "Failed to load program segments: %d\n", ret);
846 		goto clean_up;
847 	}
848 
849 	/*
850 	 * The starting device has been given the rproc->cached_table as the
851 	 * resource table. The address of the vring along with the other
852 	 * allocated resources (carveouts etc) is stored in cached_table.
853 	 * In order to pass this information to the remote device we must
854 	 * copy this information to device memory.
855 	 */
856 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
857 	if (!loaded_table) {
858 		ret = -EINVAL;
859 		goto clean_up;
860 	}
861 
862 	memcpy(loaded_table, rproc->cached_table, tablesz);
863 
864 	/* power up the remote processor */
865 	ret = rproc->ops->start(rproc);
866 	if (ret) {
867 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
868 		goto clean_up;
869 	}
870 
871 	/*
872 	 * Update table_ptr so that all subsequent vring allocations and
873 	 * virtio fields manipulation update the actual loaded resource table
874 	 * in device memory.
875 	 */
876 	rproc->table_ptr = loaded_table;
877 
878 	rproc->state = RPROC_RUNNING;
879 
880 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
881 
882 	return 0;
883 
884 clean_up:
885 	rproc_resource_cleanup(rproc);
886 	rproc_disable_iommu(rproc);
887 	return ret;
888 }
889 
890 /*
891  * take a firmware and look for virtio devices to register.
892  *
893  * Note: this function is called asynchronously upon registration of the
894  * remote processor (so we must wait until it completes before we try
895  * to unregister the device. one other option is just to use kref here,
896  * that might be cleaner).
897  */
898 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
899 {
900 	struct rproc *rproc = context;
901 	struct resource_table *table;
902 	int ret, tablesz;
903 
904 	if (rproc_fw_sanity_check(rproc, fw) < 0)
905 		goto out;
906 
907 	/* look for the resource table */
908 	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
909 	if (!table)
910 		goto out;
911 
912 	rproc->table_csum = crc32(0, table, tablesz);
913 
914 	/*
915 	 * Create a copy of the resource table. When a virtio device starts
916 	 * and calls vring_new_virtqueue() the address of the allocated vring
917 	 * will be stored in the cached_table. Before the device is started,
918 	 * cached_table will be copied into devic memory.
919 	 */
920 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
921 	if (!rproc->cached_table)
922 		goto out;
923 
924 	rproc->table_ptr = rproc->cached_table;
925 
926 	/* count the number of notify-ids */
927 	rproc->max_notifyid = -1;
928 	ret = rproc_handle_resources(rproc, tablesz,
929 				     rproc_count_vrings_handler);
930 	if (ret)
931 		goto out;
932 
933 	/* look for virtio devices and register them */
934 	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
935 
936 out:
937 	release_firmware(fw);
938 	/* allow rproc_del() contexts, if any, to proceed */
939 	complete_all(&rproc->firmware_loading_complete);
940 }
941 
942 static int rproc_add_virtio_devices(struct rproc *rproc)
943 {
944 	int ret;
945 
946 	/* rproc_del() calls must wait until async loader completes */
947 	init_completion(&rproc->firmware_loading_complete);
948 
949 	/*
950 	 * We must retrieve early virtio configuration info from
951 	 * the firmware (e.g. whether to register a virtio device,
952 	 * what virtio features does it support, ...).
953 	 *
954 	 * We're initiating an asynchronous firmware loading, so we can
955 	 * be built-in kernel code, without hanging the boot process.
956 	 */
957 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
958 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
959 				      rproc, rproc_fw_config_virtio);
960 	if (ret < 0) {
961 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
962 		complete_all(&rproc->firmware_loading_complete);
963 	}
964 
965 	return ret;
966 }
967 
968 /**
969  * rproc_trigger_recovery() - recover a remoteproc
970  * @rproc: the remote processor
971  *
972  * The recovery is done by reseting all the virtio devices, that way all the
973  * rpmsg drivers will be reseted along with the remote processor making the
974  * remoteproc functional again.
975  *
976  * This function can sleep, so it cannot be called from atomic context.
977  */
978 int rproc_trigger_recovery(struct rproc *rproc)
979 {
980 	struct rproc_vdev *rvdev, *rvtmp;
981 
982 	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
983 
984 	init_completion(&rproc->crash_comp);
985 
986 	/* clean up remote vdev entries */
987 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
988 		rproc_remove_virtio_dev(rvdev);
989 
990 	/* wait until there is no more rproc users */
991 	wait_for_completion(&rproc->crash_comp);
992 
993 	/* Free the copy of the resource table */
994 	kfree(rproc->cached_table);
995 
996 	return rproc_add_virtio_devices(rproc);
997 }
998 
999 /**
1000  * rproc_crash_handler_work() - handle a crash
1001  *
1002  * This function needs to handle everything related to a crash, like cpu
1003  * registers and stack dump, information to help to debug the fatal error, etc.
1004  */
1005 static void rproc_crash_handler_work(struct work_struct *work)
1006 {
1007 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1008 	struct device *dev = &rproc->dev;
1009 
1010 	dev_dbg(dev, "enter %s\n", __func__);
1011 
1012 	mutex_lock(&rproc->lock);
1013 
1014 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1015 		/* handle only the first crash detected */
1016 		mutex_unlock(&rproc->lock);
1017 		return;
1018 	}
1019 
1020 	rproc->state = RPROC_CRASHED;
1021 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1022 		rproc->name);
1023 
1024 	mutex_unlock(&rproc->lock);
1025 
1026 	if (!rproc->recovery_disabled)
1027 		rproc_trigger_recovery(rproc);
1028 }
1029 
1030 /**
1031  * rproc_boot() - boot a remote processor
1032  * @rproc: handle of a remote processor
1033  *
1034  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1035  *
1036  * If the remote processor is already powered on, this function immediately
1037  * returns (successfully).
1038  *
1039  * Returns 0 on success, and an appropriate error value otherwise.
1040  */
1041 int rproc_boot(struct rproc *rproc)
1042 {
1043 	const struct firmware *firmware_p;
1044 	struct device *dev;
1045 	int ret;
1046 
1047 	if (!rproc) {
1048 		pr_err("invalid rproc handle\n");
1049 		return -EINVAL;
1050 	}
1051 
1052 	dev = &rproc->dev;
1053 
1054 	ret = mutex_lock_interruptible(&rproc->lock);
1055 	if (ret) {
1056 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1057 		return ret;
1058 	}
1059 
1060 	/* loading a firmware is required */
1061 	if (!rproc->firmware) {
1062 		dev_err(dev, "%s: no firmware to load\n", __func__);
1063 		ret = -EINVAL;
1064 		goto unlock_mutex;
1065 	}
1066 
1067 	/* prevent underlying implementation from being removed */
1068 	if (!try_module_get(dev->parent->driver->owner)) {
1069 		dev_err(dev, "%s: can't get owner\n", __func__);
1070 		ret = -EINVAL;
1071 		goto unlock_mutex;
1072 	}
1073 
1074 	/* skip the boot process if rproc is already powered up */
1075 	if (atomic_inc_return(&rproc->power) > 1) {
1076 		ret = 0;
1077 		goto unlock_mutex;
1078 	}
1079 
1080 	dev_info(dev, "powering up %s\n", rproc->name);
1081 
1082 	/* load firmware */
1083 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1084 	if (ret < 0) {
1085 		dev_err(dev, "request_firmware failed: %d\n", ret);
1086 		goto downref_rproc;
1087 	}
1088 
1089 	ret = rproc_fw_boot(rproc, firmware_p);
1090 
1091 	release_firmware(firmware_p);
1092 
1093 downref_rproc:
1094 	if (ret) {
1095 		module_put(dev->parent->driver->owner);
1096 		atomic_dec(&rproc->power);
1097 	}
1098 unlock_mutex:
1099 	mutex_unlock(&rproc->lock);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(rproc_boot);
1103 
1104 /**
1105  * rproc_shutdown() - power off the remote processor
1106  * @rproc: the remote processor
1107  *
1108  * Power off a remote processor (previously booted with rproc_boot()).
1109  *
1110  * In case @rproc is still being used by an additional user(s), then
1111  * this function will just decrement the power refcount and exit,
1112  * without really powering off the device.
1113  *
1114  * Every call to rproc_boot() must (eventually) be accompanied by a call
1115  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1116  *
1117  * Notes:
1118  * - we're not decrementing the rproc's refcount, only the power refcount.
1119  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1120  *   returns, and users can still use it with a subsequent rproc_boot(), if
1121  *   needed.
1122  */
1123 void rproc_shutdown(struct rproc *rproc)
1124 {
1125 	struct device *dev = &rproc->dev;
1126 	int ret;
1127 
1128 	ret = mutex_lock_interruptible(&rproc->lock);
1129 	if (ret) {
1130 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1131 		return;
1132 	}
1133 
1134 	/* if the remote proc is still needed, bail out */
1135 	if (!atomic_dec_and_test(&rproc->power))
1136 		goto out;
1137 
1138 	/* power off the remote processor */
1139 	ret = rproc->ops->stop(rproc);
1140 	if (ret) {
1141 		atomic_inc(&rproc->power);
1142 		dev_err(dev, "can't stop rproc: %d\n", ret);
1143 		goto out;
1144 	}
1145 
1146 	/* clean up all acquired resources */
1147 	rproc_resource_cleanup(rproc);
1148 
1149 	rproc_disable_iommu(rproc);
1150 
1151 	/* Give the next start a clean resource table */
1152 	rproc->table_ptr = rproc->cached_table;
1153 
1154 	/* if in crash state, unlock crash handler */
1155 	if (rproc->state == RPROC_CRASHED)
1156 		complete_all(&rproc->crash_comp);
1157 
1158 	rproc->state = RPROC_OFFLINE;
1159 
1160 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1161 
1162 out:
1163 	mutex_unlock(&rproc->lock);
1164 	if (!ret)
1165 		module_put(dev->parent->driver->owner);
1166 }
1167 EXPORT_SYMBOL(rproc_shutdown);
1168 
1169 /**
1170  * rproc_get_by_phandle() - find a remote processor by phandle
1171  * @phandle: phandle to the rproc
1172  *
1173  * Finds an rproc handle using the remote processor's phandle, and then
1174  * return a handle to the rproc.
1175  *
1176  * This function increments the remote processor's refcount, so always
1177  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1178  *
1179  * Returns the rproc handle on success, and NULL on failure.
1180  */
1181 #ifdef CONFIG_OF
1182 struct rproc *rproc_get_by_phandle(phandle phandle)
1183 {
1184 	struct rproc *rproc = NULL, *r;
1185 	struct device_node *np;
1186 
1187 	np = of_find_node_by_phandle(phandle);
1188 	if (!np)
1189 		return NULL;
1190 
1191 	mutex_lock(&rproc_list_mutex);
1192 	list_for_each_entry(r, &rproc_list, node) {
1193 		if (r->dev.parent && r->dev.parent->of_node == np) {
1194 			rproc = r;
1195 			get_device(&rproc->dev);
1196 			break;
1197 		}
1198 	}
1199 	mutex_unlock(&rproc_list_mutex);
1200 
1201 	of_node_put(np);
1202 
1203 	return rproc;
1204 }
1205 #else
1206 struct rproc *rproc_get_by_phandle(phandle phandle)
1207 {
1208 	return NULL;
1209 }
1210 #endif
1211 EXPORT_SYMBOL(rproc_get_by_phandle);
1212 
1213 /**
1214  * rproc_add() - register a remote processor
1215  * @rproc: the remote processor handle to register
1216  *
1217  * Registers @rproc with the remoteproc framework, after it has been
1218  * allocated with rproc_alloc().
1219  *
1220  * This is called by the platform-specific rproc implementation, whenever
1221  * a new remote processor device is probed.
1222  *
1223  * Returns 0 on success and an appropriate error code otherwise.
1224  *
1225  * Note: this function initiates an asynchronous firmware loading
1226  * context, which will look for virtio devices supported by the rproc's
1227  * firmware.
1228  *
1229  * If found, those virtio devices will be created and added, so as a result
1230  * of registering this remote processor, additional virtio drivers might be
1231  * probed.
1232  */
1233 int rproc_add(struct rproc *rproc)
1234 {
1235 	struct device *dev = &rproc->dev;
1236 	int ret;
1237 
1238 	ret = device_add(dev);
1239 	if (ret < 0)
1240 		return ret;
1241 
1242 	/* expose to rproc_get_by_phandle users */
1243 	mutex_lock(&rproc_list_mutex);
1244 	list_add(&rproc->node, &rproc_list);
1245 	mutex_unlock(&rproc_list_mutex);
1246 
1247 	dev_info(dev, "%s is available\n", rproc->name);
1248 
1249 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1250 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1251 
1252 	/* create debugfs entries */
1253 	rproc_create_debug_dir(rproc);
1254 
1255 	return rproc_add_virtio_devices(rproc);
1256 }
1257 EXPORT_SYMBOL(rproc_add);
1258 
1259 /**
1260  * rproc_type_release() - release a remote processor instance
1261  * @dev: the rproc's device
1262  *
1263  * This function should _never_ be called directly.
1264  *
1265  * It will be called by the driver core when no one holds a valid pointer
1266  * to @dev anymore.
1267  */
1268 static void rproc_type_release(struct device *dev)
1269 {
1270 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1271 
1272 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1273 
1274 	rproc_delete_debug_dir(rproc);
1275 
1276 	idr_destroy(&rproc->notifyids);
1277 
1278 	if (rproc->index >= 0)
1279 		ida_simple_remove(&rproc_dev_index, rproc->index);
1280 
1281 	kfree(rproc);
1282 }
1283 
1284 static struct device_type rproc_type = {
1285 	.name		= "remoteproc",
1286 	.release	= rproc_type_release,
1287 };
1288 
1289 /**
1290  * rproc_alloc() - allocate a remote processor handle
1291  * @dev: the underlying device
1292  * @name: name of this remote processor
1293  * @ops: platform-specific handlers (mainly start/stop)
1294  * @firmware: name of firmware file to load, can be NULL
1295  * @len: length of private data needed by the rproc driver (in bytes)
1296  *
1297  * Allocates a new remote processor handle, but does not register
1298  * it yet. if @firmware is NULL, a default name is used.
1299  *
1300  * This function should be used by rproc implementations during initialization
1301  * of the remote processor.
1302  *
1303  * After creating an rproc handle using this function, and when ready,
1304  * implementations should then call rproc_add() to complete
1305  * the registration of the remote processor.
1306  *
1307  * On success the new rproc is returned, and on failure, NULL.
1308  *
1309  * Note: _never_ directly deallocate @rproc, even if it was not registered
1310  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1311  */
1312 struct rproc *rproc_alloc(struct device *dev, const char *name,
1313 				const struct rproc_ops *ops,
1314 				const char *firmware, int len)
1315 {
1316 	struct rproc *rproc;
1317 	char *p, *template = "rproc-%s-fw";
1318 	int name_len = 0;
1319 
1320 	if (!dev || !name || !ops)
1321 		return NULL;
1322 
1323 	if (!firmware)
1324 		/*
1325 		 * Make room for default firmware name (minus %s plus '\0').
1326 		 * If the caller didn't pass in a firmware name then
1327 		 * construct a default name.  We're already glomming 'len'
1328 		 * bytes onto the end of the struct rproc allocation, so do
1329 		 * a few more for the default firmware name (but only if
1330 		 * the caller doesn't pass one).
1331 		 */
1332 		name_len = strlen(name) + strlen(template) - 2 + 1;
1333 
1334 	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1335 	if (!rproc)
1336 		return NULL;
1337 
1338 	if (!firmware) {
1339 		p = (char *)rproc + sizeof(struct rproc) + len;
1340 		snprintf(p, name_len, template, name);
1341 	} else {
1342 		p = (char *)firmware;
1343 	}
1344 
1345 	rproc->firmware = p;
1346 	rproc->name = name;
1347 	rproc->ops = ops;
1348 	rproc->priv = &rproc[1];
1349 
1350 	device_initialize(&rproc->dev);
1351 	rproc->dev.parent = dev;
1352 	rproc->dev.type = &rproc_type;
1353 
1354 	/* Assign a unique device index and name */
1355 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1356 	if (rproc->index < 0) {
1357 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1358 		put_device(&rproc->dev);
1359 		return NULL;
1360 	}
1361 
1362 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1363 
1364 	atomic_set(&rproc->power, 0);
1365 
1366 	/* Set ELF as the default fw_ops handler */
1367 	rproc->fw_ops = &rproc_elf_fw_ops;
1368 
1369 	mutex_init(&rproc->lock);
1370 
1371 	idr_init(&rproc->notifyids);
1372 
1373 	INIT_LIST_HEAD(&rproc->carveouts);
1374 	INIT_LIST_HEAD(&rproc->mappings);
1375 	INIT_LIST_HEAD(&rproc->traces);
1376 	INIT_LIST_HEAD(&rproc->rvdevs);
1377 
1378 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1379 	init_completion(&rproc->crash_comp);
1380 
1381 	rproc->state = RPROC_OFFLINE;
1382 
1383 	return rproc;
1384 }
1385 EXPORT_SYMBOL(rproc_alloc);
1386 
1387 /**
1388  * rproc_put() - unroll rproc_alloc()
1389  * @rproc: the remote processor handle
1390  *
1391  * This function decrements the rproc dev refcount.
1392  *
1393  * If no one holds any reference to rproc anymore, then its refcount would
1394  * now drop to zero, and it would be freed.
1395  */
1396 void rproc_put(struct rproc *rproc)
1397 {
1398 	put_device(&rproc->dev);
1399 }
1400 EXPORT_SYMBOL(rproc_put);
1401 
1402 /**
1403  * rproc_del() - unregister a remote processor
1404  * @rproc: rproc handle to unregister
1405  *
1406  * This function should be called when the platform specific rproc
1407  * implementation decides to remove the rproc device. it should
1408  * _only_ be called if a previous invocation of rproc_add()
1409  * has completed successfully.
1410  *
1411  * After rproc_del() returns, @rproc isn't freed yet, because
1412  * of the outstanding reference created by rproc_alloc. To decrement that
1413  * one last refcount, one still needs to call rproc_put().
1414  *
1415  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1416  */
1417 int rproc_del(struct rproc *rproc)
1418 {
1419 	struct rproc_vdev *rvdev, *tmp;
1420 
1421 	if (!rproc)
1422 		return -EINVAL;
1423 
1424 	/* if rproc is just being registered, wait */
1425 	wait_for_completion(&rproc->firmware_loading_complete);
1426 
1427 	/* clean up remote vdev entries */
1428 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1429 		rproc_remove_virtio_dev(rvdev);
1430 
1431 	/* Free the copy of the resource table */
1432 	kfree(rproc->cached_table);
1433 
1434 	/* the rproc is downref'ed as soon as it's removed from the klist */
1435 	mutex_lock(&rproc_list_mutex);
1436 	list_del(&rproc->node);
1437 	mutex_unlock(&rproc_list_mutex);
1438 
1439 	device_del(&rproc->dev);
1440 
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL(rproc_del);
1444 
1445 /**
1446  * rproc_report_crash() - rproc crash reporter function
1447  * @rproc: remote processor
1448  * @type: crash type
1449  *
1450  * This function must be called every time a crash is detected by the low-level
1451  * drivers implementing a specific remoteproc. This should not be called from a
1452  * non-remoteproc driver.
1453  *
1454  * This function can be called from atomic/interrupt context.
1455  */
1456 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1457 {
1458 	if (!rproc) {
1459 		pr_err("NULL rproc pointer\n");
1460 		return;
1461 	}
1462 
1463 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1464 		rproc->name, rproc_crash_to_string(type));
1465 
1466 	/* create a new task to handle the error */
1467 	schedule_work(&rproc->crash_handler);
1468 }
1469 EXPORT_SYMBOL(rproc_report_crash);
1470 
1471 static int __init remoteproc_init(void)
1472 {
1473 	rproc_init_debugfs();
1474 
1475 	return 0;
1476 }
1477 module_init(remoteproc_init);
1478 
1479 static void __exit remoteproc_exit(void)
1480 {
1481 	rproc_exit_debugfs();
1482 }
1483 module_exit(remoteproc_exit);
1484 
1485 MODULE_LICENSE("GPL v2");
1486 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1487