1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/remoteproc.h> 37 #include <linux/iommu.h> 38 #include <linux/idr.h> 39 #include <linux/elf.h> 40 #include <linux/crc32.h> 41 #include <linux/virtio_ids.h> 42 #include <linux/virtio_ring.h> 43 #include <asm/byteorder.h> 44 45 #include "remoteproc_internal.h" 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 51 struct resource_table *table, int len); 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 /* Unique indices for remoteproc devices */ 56 static DEFINE_IDA(rproc_dev_index); 57 58 static const char * const rproc_crash_names[] = { 59 [RPROC_MMUFAULT] = "mmufault", 60 }; 61 62 /* translate rproc_crash_type to string */ 63 static const char *rproc_crash_to_string(enum rproc_crash_type type) 64 { 65 if (type < ARRAY_SIZE(rproc_crash_names)) 66 return rproc_crash_names[type]; 67 return "unknown"; 68 } 69 70 /* 71 * This is the IOMMU fault handler we register with the IOMMU API 72 * (when relevant; not all remote processors access memory through 73 * an IOMMU). 74 * 75 * IOMMU core will invoke this handler whenever the remote processor 76 * will try to access an unmapped device address. 77 */ 78 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 79 unsigned long iova, int flags, void *token) 80 { 81 struct rproc *rproc = token; 82 83 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 84 85 rproc_report_crash(rproc, RPROC_MMUFAULT); 86 87 /* 88 * Let the iommu core know we're not really handling this fault; 89 * we just used it as a recovery trigger. 90 */ 91 return -ENOSYS; 92 } 93 94 static int rproc_enable_iommu(struct rproc *rproc) 95 { 96 struct iommu_domain *domain; 97 struct device *dev = rproc->dev.parent; 98 int ret; 99 100 if (!rproc->has_iommu) { 101 dev_dbg(dev, "iommu not present\n"); 102 return 0; 103 } 104 105 domain = iommu_domain_alloc(dev->bus); 106 if (!domain) { 107 dev_err(dev, "can't alloc iommu domain\n"); 108 return -ENOMEM; 109 } 110 111 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 112 113 ret = iommu_attach_device(domain, dev); 114 if (ret) { 115 dev_err(dev, "can't attach iommu device: %d\n", ret); 116 goto free_domain; 117 } 118 119 rproc->domain = domain; 120 121 return 0; 122 123 free_domain: 124 iommu_domain_free(domain); 125 return ret; 126 } 127 128 static void rproc_disable_iommu(struct rproc *rproc) 129 { 130 struct iommu_domain *domain = rproc->domain; 131 struct device *dev = rproc->dev.parent; 132 133 if (!domain) 134 return; 135 136 iommu_detach_device(domain, dev); 137 iommu_domain_free(domain); 138 } 139 140 /** 141 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 142 * @rproc: handle of a remote processor 143 * @da: remoteproc device address to translate 144 * @len: length of the memory region @da is pointing to 145 * 146 * Some remote processors will ask us to allocate them physically contiguous 147 * memory regions (which we call "carveouts"), and map them to specific 148 * device addresses (which are hardcoded in the firmware). They may also have 149 * dedicated memory regions internal to the processors, and use them either 150 * exclusively or alongside carveouts. 151 * 152 * They may then ask us to copy objects into specific device addresses (e.g. 153 * code/data sections) or expose us certain symbols in other device address 154 * (e.g. their trace buffer). 155 * 156 * This function is a helper function with which we can go over the allocated 157 * carveouts and translate specific device addresses to kernel virtual addresses 158 * so we can access the referenced memory. This function also allows to perform 159 * translations on the internal remoteproc memory regions through a platform 160 * implementation specific da_to_va ops, if present. 161 * 162 * The function returns a valid kernel address on success or NULL on failure. 163 * 164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 165 * but only on kernel direct mapped RAM memory. Instead, we're just using 166 * here the output of the DMA API for the carveouts, which should be more 167 * correct. 168 */ 169 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 170 { 171 struct rproc_mem_entry *carveout; 172 void *ptr = NULL; 173 174 if (rproc->ops->da_to_va) { 175 ptr = rproc->ops->da_to_va(rproc, da, len); 176 if (ptr) 177 goto out; 178 } 179 180 list_for_each_entry(carveout, &rproc->carveouts, node) { 181 int offset = da - carveout->da; 182 183 /* try next carveout if da is too small */ 184 if (offset < 0) 185 continue; 186 187 /* try next carveout if da is too large */ 188 if (offset + len > carveout->len) 189 continue; 190 191 ptr = carveout->va + offset; 192 193 break; 194 } 195 196 out: 197 return ptr; 198 } 199 EXPORT_SYMBOL(rproc_da_to_va); 200 201 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 202 { 203 struct rproc *rproc = rvdev->rproc; 204 struct device *dev = &rproc->dev; 205 struct rproc_vring *rvring = &rvdev->vring[i]; 206 struct fw_rsc_vdev *rsc; 207 dma_addr_t dma; 208 void *va; 209 int ret, size, notifyid; 210 211 /* actual size of vring (in bytes) */ 212 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 213 214 /* 215 * Allocate non-cacheable memory for the vring. In the future 216 * this call will also configure the IOMMU for us 217 */ 218 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); 219 if (!va) { 220 dev_err(dev->parent, "dma_alloc_coherent failed\n"); 221 return -EINVAL; 222 } 223 224 /* 225 * Assign an rproc-wide unique index for this vring 226 * TODO: assign a notifyid for rvdev updates as well 227 * TODO: support predefined notifyids (via resource table) 228 */ 229 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 230 if (ret < 0) { 231 dev_err(dev, "idr_alloc failed: %d\n", ret); 232 dma_free_coherent(dev->parent, size, va, dma); 233 return ret; 234 } 235 notifyid = ret; 236 237 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va, 238 (unsigned long long)dma, size, notifyid); 239 240 rvring->va = va; 241 rvring->dma = dma; 242 rvring->notifyid = notifyid; 243 244 /* 245 * Let the rproc know the notifyid and da of this vring. 246 * Not all platforms use dma_alloc_coherent to automatically 247 * set up the iommu. In this case the device address (da) will 248 * hold the physical address and not the device address. 249 */ 250 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 251 rsc->vring[i].da = dma; 252 rsc->vring[i].notifyid = notifyid; 253 return 0; 254 } 255 256 static int 257 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 258 { 259 struct rproc *rproc = rvdev->rproc; 260 struct device *dev = &rproc->dev; 261 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 262 struct rproc_vring *rvring = &rvdev->vring[i]; 263 264 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n", 265 i, vring->da, vring->num, vring->align); 266 267 /* make sure reserved bytes are zeroes */ 268 if (vring->reserved) { 269 dev_err(dev, "vring rsc has non zero reserved bytes\n"); 270 return -EINVAL; 271 } 272 273 /* verify queue size and vring alignment are sane */ 274 if (!vring->num || !vring->align) { 275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 276 vring->num, vring->align); 277 return -EINVAL; 278 } 279 280 rvring->len = vring->num; 281 rvring->align = vring->align; 282 rvring->rvdev = rvdev; 283 284 return 0; 285 } 286 287 void rproc_free_vring(struct rproc_vring *rvring) 288 { 289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 290 struct rproc *rproc = rvring->rvdev->rproc; 291 int idx = rvring->rvdev->vring - rvring; 292 struct fw_rsc_vdev *rsc; 293 294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); 295 idr_remove(&rproc->notifyids, rvring->notifyid); 296 297 /* reset resource entry info */ 298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 299 rsc->vring[idx].da = 0; 300 rsc->vring[idx].notifyid = -1; 301 } 302 303 /** 304 * rproc_handle_vdev() - handle a vdev fw resource 305 * @rproc: the remote processor 306 * @rsc: the vring resource descriptor 307 * @avail: size of available data (for sanity checking the image) 308 * 309 * This resource entry requests the host to statically register a virtio 310 * device (vdev), and setup everything needed to support it. It contains 311 * everything needed to make it possible: the virtio device id, virtio 312 * device features, vrings information, virtio config space, etc... 313 * 314 * Before registering the vdev, the vrings are allocated from non-cacheable 315 * physically contiguous memory. Currently we only support two vrings per 316 * remote processor (temporary limitation). We might also want to consider 317 * doing the vring allocation only later when ->find_vqs() is invoked, and 318 * then release them upon ->del_vqs(). 319 * 320 * Note: @da is currently not really handled correctly: we dynamically 321 * allocate it using the DMA API, ignoring requested hard coded addresses, 322 * and we don't take care of any required IOMMU programming. This is all 323 * going to be taken care of when the generic iommu-based DMA API will be 324 * merged. Meanwhile, statically-addressed iommu-based firmware images should 325 * use RSC_DEVMEM resource entries to map their required @da to the physical 326 * address of their base CMA region (ouch, hacky!). 327 * 328 * Returns 0 on success, or an appropriate error code otherwise 329 */ 330 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 331 int offset, int avail) 332 { 333 struct device *dev = &rproc->dev; 334 struct rproc_vdev *rvdev; 335 int i, ret; 336 337 /* make sure resource isn't truncated */ 338 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 339 + rsc->config_len > avail) { 340 dev_err(dev, "vdev rsc is truncated\n"); 341 return -EINVAL; 342 } 343 344 /* make sure reserved bytes are zeroes */ 345 if (rsc->reserved[0] || rsc->reserved[1]) { 346 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 347 return -EINVAL; 348 } 349 350 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n", 351 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 352 353 /* we currently support only two vrings per rvdev */ 354 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 355 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 356 return -EINVAL; 357 } 358 359 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL); 360 if (!rvdev) 361 return -ENOMEM; 362 363 rvdev->rproc = rproc; 364 365 /* parse the vrings */ 366 for (i = 0; i < rsc->num_of_vrings; i++) { 367 ret = rproc_parse_vring(rvdev, rsc, i); 368 if (ret) 369 goto free_rvdev; 370 } 371 372 /* remember the resource offset*/ 373 rvdev->rsc_offset = offset; 374 375 list_add_tail(&rvdev->node, &rproc->rvdevs); 376 377 /* it is now safe to add the virtio device */ 378 ret = rproc_add_virtio_dev(rvdev, rsc->id); 379 if (ret) 380 goto remove_rvdev; 381 382 return 0; 383 384 remove_rvdev: 385 list_del(&rvdev->node); 386 free_rvdev: 387 kfree(rvdev); 388 return ret; 389 } 390 391 /** 392 * rproc_handle_trace() - handle a shared trace buffer resource 393 * @rproc: the remote processor 394 * @rsc: the trace resource descriptor 395 * @avail: size of available data (for sanity checking the image) 396 * 397 * In case the remote processor dumps trace logs into memory, 398 * export it via debugfs. 399 * 400 * Currently, the 'da' member of @rsc should contain the device address 401 * where the remote processor is dumping the traces. Later we could also 402 * support dynamically allocating this address using the generic 403 * DMA API (but currently there isn't a use case for that). 404 * 405 * Returns 0 on success, or an appropriate error code otherwise 406 */ 407 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 408 int offset, int avail) 409 { 410 struct rproc_mem_entry *trace; 411 struct device *dev = &rproc->dev; 412 void *ptr; 413 char name[15]; 414 415 if (sizeof(*rsc) > avail) { 416 dev_err(dev, "trace rsc is truncated\n"); 417 return -EINVAL; 418 } 419 420 /* make sure reserved bytes are zeroes */ 421 if (rsc->reserved) { 422 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 423 return -EINVAL; 424 } 425 426 /* what's the kernel address of this resource ? */ 427 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 428 if (!ptr) { 429 dev_err(dev, "erroneous trace resource entry\n"); 430 return -EINVAL; 431 } 432 433 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 434 if (!trace) 435 return -ENOMEM; 436 437 /* set the trace buffer dma properties */ 438 trace->len = rsc->len; 439 trace->va = ptr; 440 441 /* make sure snprintf always null terminates, even if truncating */ 442 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 443 444 /* create the debugfs entry */ 445 trace->priv = rproc_create_trace_file(name, rproc, trace); 446 if (!trace->priv) { 447 trace->va = NULL; 448 kfree(trace); 449 return -EINVAL; 450 } 451 452 list_add_tail(&trace->node, &rproc->traces); 453 454 rproc->num_traces++; 455 456 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr, 457 rsc->da, rsc->len); 458 459 return 0; 460 } 461 462 /** 463 * rproc_handle_devmem() - handle devmem resource entry 464 * @rproc: remote processor handle 465 * @rsc: the devmem resource entry 466 * @avail: size of available data (for sanity checking the image) 467 * 468 * Remote processors commonly need to access certain on-chip peripherals. 469 * 470 * Some of these remote processors access memory via an iommu device, 471 * and might require us to configure their iommu before they can access 472 * the on-chip peripherals they need. 473 * 474 * This resource entry is a request to map such a peripheral device. 475 * 476 * These devmem entries will contain the physical address of the device in 477 * the 'pa' member. If a specific device address is expected, then 'da' will 478 * contain it (currently this is the only use case supported). 'len' will 479 * contain the size of the physical region we need to map. 480 * 481 * Currently we just "trust" those devmem entries to contain valid physical 482 * addresses, but this is going to change: we want the implementations to 483 * tell us ranges of physical addresses the firmware is allowed to request, 484 * and not allow firmwares to request access to physical addresses that 485 * are outside those ranges. 486 */ 487 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 488 int offset, int avail) 489 { 490 struct rproc_mem_entry *mapping; 491 struct device *dev = &rproc->dev; 492 int ret; 493 494 /* no point in handling this resource without a valid iommu domain */ 495 if (!rproc->domain) 496 return -EINVAL; 497 498 if (sizeof(*rsc) > avail) { 499 dev_err(dev, "devmem rsc is truncated\n"); 500 return -EINVAL; 501 } 502 503 /* make sure reserved bytes are zeroes */ 504 if (rsc->reserved) { 505 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 506 return -EINVAL; 507 } 508 509 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 510 if (!mapping) 511 return -ENOMEM; 512 513 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 514 if (ret) { 515 dev_err(dev, "failed to map devmem: %d\n", ret); 516 goto out; 517 } 518 519 /* 520 * We'll need this info later when we'll want to unmap everything 521 * (e.g. on shutdown). 522 * 523 * We can't trust the remote processor not to change the resource 524 * table, so we must maintain this info independently. 525 */ 526 mapping->da = rsc->da; 527 mapping->len = rsc->len; 528 list_add_tail(&mapping->node, &rproc->mappings); 529 530 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 531 rsc->pa, rsc->da, rsc->len); 532 533 return 0; 534 535 out: 536 kfree(mapping); 537 return ret; 538 } 539 540 /** 541 * rproc_handle_carveout() - handle phys contig memory allocation requests 542 * @rproc: rproc handle 543 * @rsc: the resource entry 544 * @avail: size of available data (for image validation) 545 * 546 * This function will handle firmware requests for allocation of physically 547 * contiguous memory regions. 548 * 549 * These request entries should come first in the firmware's resource table, 550 * as other firmware entries might request placing other data objects inside 551 * these memory regions (e.g. data/code segments, trace resource entries, ...). 552 * 553 * Allocating memory this way helps utilizing the reserved physical memory 554 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 555 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 556 * pressure is important; it may have a substantial impact on performance. 557 */ 558 static int rproc_handle_carveout(struct rproc *rproc, 559 struct fw_rsc_carveout *rsc, 560 int offset, int avail) 561 562 { 563 struct rproc_mem_entry *carveout, *mapping; 564 struct device *dev = &rproc->dev; 565 dma_addr_t dma; 566 void *va; 567 int ret; 568 569 if (sizeof(*rsc) > avail) { 570 dev_err(dev, "carveout rsc is truncated\n"); 571 return -EINVAL; 572 } 573 574 /* make sure reserved bytes are zeroes */ 575 if (rsc->reserved) { 576 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 577 return -EINVAL; 578 } 579 580 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n", 581 rsc->da, rsc->pa, rsc->len, rsc->flags); 582 583 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); 584 if (!carveout) 585 return -ENOMEM; 586 587 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); 588 if (!va) { 589 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len); 590 ret = -ENOMEM; 591 goto free_carv; 592 } 593 594 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va, 595 (unsigned long long)dma, rsc->len); 596 597 /* 598 * Ok, this is non-standard. 599 * 600 * Sometimes we can't rely on the generic iommu-based DMA API 601 * to dynamically allocate the device address and then set the IOMMU 602 * tables accordingly, because some remote processors might 603 * _require_ us to use hard coded device addresses that their 604 * firmware was compiled with. 605 * 606 * In this case, we must use the IOMMU API directly and map 607 * the memory to the device address as expected by the remote 608 * processor. 609 * 610 * Obviously such remote processor devices should not be configured 611 * to use the iommu-based DMA API: we expect 'dma' to contain the 612 * physical address in this case. 613 */ 614 if (rproc->domain) { 615 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 616 if (!mapping) { 617 dev_err(dev, "kzalloc mapping failed\n"); 618 ret = -ENOMEM; 619 goto dma_free; 620 } 621 622 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, 623 rsc->flags); 624 if (ret) { 625 dev_err(dev, "iommu_map failed: %d\n", ret); 626 goto free_mapping; 627 } 628 629 /* 630 * We'll need this info later when we'll want to unmap 631 * everything (e.g. on shutdown). 632 * 633 * We can't trust the remote processor not to change the 634 * resource table, so we must maintain this info independently. 635 */ 636 mapping->da = rsc->da; 637 mapping->len = rsc->len; 638 list_add_tail(&mapping->node, &rproc->mappings); 639 640 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n", 641 rsc->da, (unsigned long long)dma); 642 } 643 644 /* 645 * Some remote processors might need to know the pa 646 * even though they are behind an IOMMU. E.g., OMAP4's 647 * remote M3 processor needs this so it can control 648 * on-chip hardware accelerators that are not behind 649 * the IOMMU, and therefor must know the pa. 650 * 651 * Generally we don't want to expose physical addresses 652 * if we don't have to (remote processors are generally 653 * _not_ trusted), so we might want to do this only for 654 * remote processor that _must_ have this (e.g. OMAP4's 655 * dual M3 subsystem). 656 * 657 * Non-IOMMU processors might also want to have this info. 658 * In this case, the device address and the physical address 659 * are the same. 660 */ 661 rsc->pa = dma; 662 663 carveout->va = va; 664 carveout->len = rsc->len; 665 carveout->dma = dma; 666 carveout->da = rsc->da; 667 668 list_add_tail(&carveout->node, &rproc->carveouts); 669 670 return 0; 671 672 free_mapping: 673 kfree(mapping); 674 dma_free: 675 dma_free_coherent(dev->parent, rsc->len, va, dma); 676 free_carv: 677 kfree(carveout); 678 return ret; 679 } 680 681 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc, 682 int offset, int avail) 683 { 684 /* Summarize the number of notification IDs */ 685 rproc->max_notifyid += rsc->num_of_vrings; 686 687 return 0; 688 } 689 690 /* 691 * A lookup table for resource handlers. The indices are defined in 692 * enum fw_resource_type. 693 */ 694 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 695 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 696 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 697 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 698 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */ 699 }; 700 701 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = { 702 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 703 }; 704 705 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = { 706 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings, 707 }; 708 709 /* handle firmware resource entries before booting the remote processor */ 710 static int rproc_handle_resources(struct rproc *rproc, int len, 711 rproc_handle_resource_t handlers[RSC_LAST]) 712 { 713 struct device *dev = &rproc->dev; 714 rproc_handle_resource_t handler; 715 int ret = 0, i; 716 717 for (i = 0; i < rproc->table_ptr->num; i++) { 718 int offset = rproc->table_ptr->offset[i]; 719 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 720 int avail = len - offset - sizeof(*hdr); 721 void *rsc = (void *)hdr + sizeof(*hdr); 722 723 /* make sure table isn't truncated */ 724 if (avail < 0) { 725 dev_err(dev, "rsc table is truncated\n"); 726 return -EINVAL; 727 } 728 729 dev_dbg(dev, "rsc: type %d\n", hdr->type); 730 731 if (hdr->type >= RSC_LAST) { 732 dev_warn(dev, "unsupported resource %d\n", hdr->type); 733 continue; 734 } 735 736 handler = handlers[hdr->type]; 737 if (!handler) 738 continue; 739 740 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 741 if (ret) 742 break; 743 } 744 745 return ret; 746 } 747 748 /** 749 * rproc_resource_cleanup() - clean up and free all acquired resources 750 * @rproc: rproc handle 751 * 752 * This function will free all resources acquired for @rproc, and it 753 * is called whenever @rproc either shuts down or fails to boot. 754 */ 755 static void rproc_resource_cleanup(struct rproc *rproc) 756 { 757 struct rproc_mem_entry *entry, *tmp; 758 struct device *dev = &rproc->dev; 759 760 /* clean up debugfs trace entries */ 761 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 762 rproc_remove_trace_file(entry->priv); 763 rproc->num_traces--; 764 list_del(&entry->node); 765 kfree(entry); 766 } 767 768 /* clean up iommu mapping entries */ 769 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 770 size_t unmapped; 771 772 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 773 if (unmapped != entry->len) { 774 /* nothing much to do besides complaining */ 775 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 776 unmapped); 777 } 778 779 list_del(&entry->node); 780 kfree(entry); 781 } 782 783 /* clean up carveout allocations */ 784 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 785 dma_free_coherent(dev->parent, entry->len, entry->va, 786 entry->dma); 787 list_del(&entry->node); 788 kfree(entry); 789 } 790 } 791 792 /* 793 * take a firmware and boot a remote processor with it. 794 */ 795 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 796 { 797 struct device *dev = &rproc->dev; 798 const char *name = rproc->firmware; 799 struct resource_table *table, *loaded_table; 800 int ret, tablesz; 801 802 if (!rproc->table_ptr) 803 return -ENOMEM; 804 805 ret = rproc_fw_sanity_check(rproc, fw); 806 if (ret) 807 return ret; 808 809 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 810 811 /* 812 * if enabling an IOMMU isn't relevant for this rproc, this is 813 * just a nop 814 */ 815 ret = rproc_enable_iommu(rproc); 816 if (ret) { 817 dev_err(dev, "can't enable iommu: %d\n", ret); 818 return ret; 819 } 820 821 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 822 ret = -EINVAL; 823 824 /* look for the resource table */ 825 table = rproc_find_rsc_table(rproc, fw, &tablesz); 826 if (!table) 827 goto clean_up; 828 829 /* Verify that resource table in loaded fw is unchanged */ 830 if (rproc->table_csum != crc32(0, table, tablesz)) { 831 dev_err(dev, "resource checksum failed, fw changed?\n"); 832 goto clean_up; 833 } 834 835 /* handle fw resources which are required to boot rproc */ 836 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers); 837 if (ret) { 838 dev_err(dev, "Failed to process resources: %d\n", ret); 839 goto clean_up; 840 } 841 842 /* load the ELF segments to memory */ 843 ret = rproc_load_segments(rproc, fw); 844 if (ret) { 845 dev_err(dev, "Failed to load program segments: %d\n", ret); 846 goto clean_up; 847 } 848 849 /* 850 * The starting device has been given the rproc->cached_table as the 851 * resource table. The address of the vring along with the other 852 * allocated resources (carveouts etc) is stored in cached_table. 853 * In order to pass this information to the remote device we must 854 * copy this information to device memory. 855 */ 856 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 857 if (!loaded_table) { 858 ret = -EINVAL; 859 goto clean_up; 860 } 861 862 memcpy(loaded_table, rproc->cached_table, tablesz); 863 864 /* power up the remote processor */ 865 ret = rproc->ops->start(rproc); 866 if (ret) { 867 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 868 goto clean_up; 869 } 870 871 /* 872 * Update table_ptr so that all subsequent vring allocations and 873 * virtio fields manipulation update the actual loaded resource table 874 * in device memory. 875 */ 876 rproc->table_ptr = loaded_table; 877 878 rproc->state = RPROC_RUNNING; 879 880 dev_info(dev, "remote processor %s is now up\n", rproc->name); 881 882 return 0; 883 884 clean_up: 885 rproc_resource_cleanup(rproc); 886 rproc_disable_iommu(rproc); 887 return ret; 888 } 889 890 /* 891 * take a firmware and look for virtio devices to register. 892 * 893 * Note: this function is called asynchronously upon registration of the 894 * remote processor (so we must wait until it completes before we try 895 * to unregister the device. one other option is just to use kref here, 896 * that might be cleaner). 897 */ 898 static void rproc_fw_config_virtio(const struct firmware *fw, void *context) 899 { 900 struct rproc *rproc = context; 901 struct resource_table *table; 902 int ret, tablesz; 903 904 if (rproc_fw_sanity_check(rproc, fw) < 0) 905 goto out; 906 907 /* look for the resource table */ 908 table = rproc_find_rsc_table(rproc, fw, &tablesz); 909 if (!table) 910 goto out; 911 912 rproc->table_csum = crc32(0, table, tablesz); 913 914 /* 915 * Create a copy of the resource table. When a virtio device starts 916 * and calls vring_new_virtqueue() the address of the allocated vring 917 * will be stored in the cached_table. Before the device is started, 918 * cached_table will be copied into devic memory. 919 */ 920 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); 921 if (!rproc->cached_table) 922 goto out; 923 924 rproc->table_ptr = rproc->cached_table; 925 926 /* count the number of notify-ids */ 927 rproc->max_notifyid = -1; 928 ret = rproc_handle_resources(rproc, tablesz, 929 rproc_count_vrings_handler); 930 if (ret) 931 goto out; 932 933 /* look for virtio devices and register them */ 934 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler); 935 936 out: 937 release_firmware(fw); 938 /* allow rproc_del() contexts, if any, to proceed */ 939 complete_all(&rproc->firmware_loading_complete); 940 } 941 942 static int rproc_add_virtio_devices(struct rproc *rproc) 943 { 944 int ret; 945 946 /* rproc_del() calls must wait until async loader completes */ 947 init_completion(&rproc->firmware_loading_complete); 948 949 /* 950 * We must retrieve early virtio configuration info from 951 * the firmware (e.g. whether to register a virtio device, 952 * what virtio features does it support, ...). 953 * 954 * We're initiating an asynchronous firmware loading, so we can 955 * be built-in kernel code, without hanging the boot process. 956 */ 957 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 958 rproc->firmware, &rproc->dev, GFP_KERNEL, 959 rproc, rproc_fw_config_virtio); 960 if (ret < 0) { 961 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 962 complete_all(&rproc->firmware_loading_complete); 963 } 964 965 return ret; 966 } 967 968 /** 969 * rproc_trigger_recovery() - recover a remoteproc 970 * @rproc: the remote processor 971 * 972 * The recovery is done by reseting all the virtio devices, that way all the 973 * rpmsg drivers will be reseted along with the remote processor making the 974 * remoteproc functional again. 975 * 976 * This function can sleep, so it cannot be called from atomic context. 977 */ 978 int rproc_trigger_recovery(struct rproc *rproc) 979 { 980 struct rproc_vdev *rvdev, *rvtmp; 981 982 dev_err(&rproc->dev, "recovering %s\n", rproc->name); 983 984 init_completion(&rproc->crash_comp); 985 986 /* clean up remote vdev entries */ 987 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 988 rproc_remove_virtio_dev(rvdev); 989 990 /* wait until there is no more rproc users */ 991 wait_for_completion(&rproc->crash_comp); 992 993 /* Free the copy of the resource table */ 994 kfree(rproc->cached_table); 995 996 return rproc_add_virtio_devices(rproc); 997 } 998 999 /** 1000 * rproc_crash_handler_work() - handle a crash 1001 * 1002 * This function needs to handle everything related to a crash, like cpu 1003 * registers and stack dump, information to help to debug the fatal error, etc. 1004 */ 1005 static void rproc_crash_handler_work(struct work_struct *work) 1006 { 1007 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1008 struct device *dev = &rproc->dev; 1009 1010 dev_dbg(dev, "enter %s\n", __func__); 1011 1012 mutex_lock(&rproc->lock); 1013 1014 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1015 /* handle only the first crash detected */ 1016 mutex_unlock(&rproc->lock); 1017 return; 1018 } 1019 1020 rproc->state = RPROC_CRASHED; 1021 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1022 rproc->name); 1023 1024 mutex_unlock(&rproc->lock); 1025 1026 if (!rproc->recovery_disabled) 1027 rproc_trigger_recovery(rproc); 1028 } 1029 1030 /** 1031 * rproc_boot() - boot a remote processor 1032 * @rproc: handle of a remote processor 1033 * 1034 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1035 * 1036 * If the remote processor is already powered on, this function immediately 1037 * returns (successfully). 1038 * 1039 * Returns 0 on success, and an appropriate error value otherwise. 1040 */ 1041 int rproc_boot(struct rproc *rproc) 1042 { 1043 const struct firmware *firmware_p; 1044 struct device *dev; 1045 int ret; 1046 1047 if (!rproc) { 1048 pr_err("invalid rproc handle\n"); 1049 return -EINVAL; 1050 } 1051 1052 dev = &rproc->dev; 1053 1054 ret = mutex_lock_interruptible(&rproc->lock); 1055 if (ret) { 1056 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1057 return ret; 1058 } 1059 1060 /* loading a firmware is required */ 1061 if (!rproc->firmware) { 1062 dev_err(dev, "%s: no firmware to load\n", __func__); 1063 ret = -EINVAL; 1064 goto unlock_mutex; 1065 } 1066 1067 /* prevent underlying implementation from being removed */ 1068 if (!try_module_get(dev->parent->driver->owner)) { 1069 dev_err(dev, "%s: can't get owner\n", __func__); 1070 ret = -EINVAL; 1071 goto unlock_mutex; 1072 } 1073 1074 /* skip the boot process if rproc is already powered up */ 1075 if (atomic_inc_return(&rproc->power) > 1) { 1076 ret = 0; 1077 goto unlock_mutex; 1078 } 1079 1080 dev_info(dev, "powering up %s\n", rproc->name); 1081 1082 /* load firmware */ 1083 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1084 if (ret < 0) { 1085 dev_err(dev, "request_firmware failed: %d\n", ret); 1086 goto downref_rproc; 1087 } 1088 1089 ret = rproc_fw_boot(rproc, firmware_p); 1090 1091 release_firmware(firmware_p); 1092 1093 downref_rproc: 1094 if (ret) { 1095 module_put(dev->parent->driver->owner); 1096 atomic_dec(&rproc->power); 1097 } 1098 unlock_mutex: 1099 mutex_unlock(&rproc->lock); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(rproc_boot); 1103 1104 /** 1105 * rproc_shutdown() - power off the remote processor 1106 * @rproc: the remote processor 1107 * 1108 * Power off a remote processor (previously booted with rproc_boot()). 1109 * 1110 * In case @rproc is still being used by an additional user(s), then 1111 * this function will just decrement the power refcount and exit, 1112 * without really powering off the device. 1113 * 1114 * Every call to rproc_boot() must (eventually) be accompanied by a call 1115 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1116 * 1117 * Notes: 1118 * - we're not decrementing the rproc's refcount, only the power refcount. 1119 * which means that the @rproc handle stays valid even after rproc_shutdown() 1120 * returns, and users can still use it with a subsequent rproc_boot(), if 1121 * needed. 1122 */ 1123 void rproc_shutdown(struct rproc *rproc) 1124 { 1125 struct device *dev = &rproc->dev; 1126 int ret; 1127 1128 ret = mutex_lock_interruptible(&rproc->lock); 1129 if (ret) { 1130 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1131 return; 1132 } 1133 1134 /* if the remote proc is still needed, bail out */ 1135 if (!atomic_dec_and_test(&rproc->power)) 1136 goto out; 1137 1138 /* power off the remote processor */ 1139 ret = rproc->ops->stop(rproc); 1140 if (ret) { 1141 atomic_inc(&rproc->power); 1142 dev_err(dev, "can't stop rproc: %d\n", ret); 1143 goto out; 1144 } 1145 1146 /* clean up all acquired resources */ 1147 rproc_resource_cleanup(rproc); 1148 1149 rproc_disable_iommu(rproc); 1150 1151 /* Give the next start a clean resource table */ 1152 rproc->table_ptr = rproc->cached_table; 1153 1154 /* if in crash state, unlock crash handler */ 1155 if (rproc->state == RPROC_CRASHED) 1156 complete_all(&rproc->crash_comp); 1157 1158 rproc->state = RPROC_OFFLINE; 1159 1160 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1161 1162 out: 1163 mutex_unlock(&rproc->lock); 1164 if (!ret) 1165 module_put(dev->parent->driver->owner); 1166 } 1167 EXPORT_SYMBOL(rproc_shutdown); 1168 1169 /** 1170 * rproc_get_by_phandle() - find a remote processor by phandle 1171 * @phandle: phandle to the rproc 1172 * 1173 * Finds an rproc handle using the remote processor's phandle, and then 1174 * return a handle to the rproc. 1175 * 1176 * This function increments the remote processor's refcount, so always 1177 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1178 * 1179 * Returns the rproc handle on success, and NULL on failure. 1180 */ 1181 #ifdef CONFIG_OF 1182 struct rproc *rproc_get_by_phandle(phandle phandle) 1183 { 1184 struct rproc *rproc = NULL, *r; 1185 struct device_node *np; 1186 1187 np = of_find_node_by_phandle(phandle); 1188 if (!np) 1189 return NULL; 1190 1191 mutex_lock(&rproc_list_mutex); 1192 list_for_each_entry(r, &rproc_list, node) { 1193 if (r->dev.parent && r->dev.parent->of_node == np) { 1194 rproc = r; 1195 get_device(&rproc->dev); 1196 break; 1197 } 1198 } 1199 mutex_unlock(&rproc_list_mutex); 1200 1201 of_node_put(np); 1202 1203 return rproc; 1204 } 1205 #else 1206 struct rproc *rproc_get_by_phandle(phandle phandle) 1207 { 1208 return NULL; 1209 } 1210 #endif 1211 EXPORT_SYMBOL(rproc_get_by_phandle); 1212 1213 /** 1214 * rproc_add() - register a remote processor 1215 * @rproc: the remote processor handle to register 1216 * 1217 * Registers @rproc with the remoteproc framework, after it has been 1218 * allocated with rproc_alloc(). 1219 * 1220 * This is called by the platform-specific rproc implementation, whenever 1221 * a new remote processor device is probed. 1222 * 1223 * Returns 0 on success and an appropriate error code otherwise. 1224 * 1225 * Note: this function initiates an asynchronous firmware loading 1226 * context, which will look for virtio devices supported by the rproc's 1227 * firmware. 1228 * 1229 * If found, those virtio devices will be created and added, so as a result 1230 * of registering this remote processor, additional virtio drivers might be 1231 * probed. 1232 */ 1233 int rproc_add(struct rproc *rproc) 1234 { 1235 struct device *dev = &rproc->dev; 1236 int ret; 1237 1238 ret = device_add(dev); 1239 if (ret < 0) 1240 return ret; 1241 1242 /* expose to rproc_get_by_phandle users */ 1243 mutex_lock(&rproc_list_mutex); 1244 list_add(&rproc->node, &rproc_list); 1245 mutex_unlock(&rproc_list_mutex); 1246 1247 dev_info(dev, "%s is available\n", rproc->name); 1248 1249 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n"); 1250 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n"); 1251 1252 /* create debugfs entries */ 1253 rproc_create_debug_dir(rproc); 1254 1255 return rproc_add_virtio_devices(rproc); 1256 } 1257 EXPORT_SYMBOL(rproc_add); 1258 1259 /** 1260 * rproc_type_release() - release a remote processor instance 1261 * @dev: the rproc's device 1262 * 1263 * This function should _never_ be called directly. 1264 * 1265 * It will be called by the driver core when no one holds a valid pointer 1266 * to @dev anymore. 1267 */ 1268 static void rproc_type_release(struct device *dev) 1269 { 1270 struct rproc *rproc = container_of(dev, struct rproc, dev); 1271 1272 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1273 1274 rproc_delete_debug_dir(rproc); 1275 1276 idr_destroy(&rproc->notifyids); 1277 1278 if (rproc->index >= 0) 1279 ida_simple_remove(&rproc_dev_index, rproc->index); 1280 1281 kfree(rproc); 1282 } 1283 1284 static struct device_type rproc_type = { 1285 .name = "remoteproc", 1286 .release = rproc_type_release, 1287 }; 1288 1289 /** 1290 * rproc_alloc() - allocate a remote processor handle 1291 * @dev: the underlying device 1292 * @name: name of this remote processor 1293 * @ops: platform-specific handlers (mainly start/stop) 1294 * @firmware: name of firmware file to load, can be NULL 1295 * @len: length of private data needed by the rproc driver (in bytes) 1296 * 1297 * Allocates a new remote processor handle, but does not register 1298 * it yet. if @firmware is NULL, a default name is used. 1299 * 1300 * This function should be used by rproc implementations during initialization 1301 * of the remote processor. 1302 * 1303 * After creating an rproc handle using this function, and when ready, 1304 * implementations should then call rproc_add() to complete 1305 * the registration of the remote processor. 1306 * 1307 * On success the new rproc is returned, and on failure, NULL. 1308 * 1309 * Note: _never_ directly deallocate @rproc, even if it was not registered 1310 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put(). 1311 */ 1312 struct rproc *rproc_alloc(struct device *dev, const char *name, 1313 const struct rproc_ops *ops, 1314 const char *firmware, int len) 1315 { 1316 struct rproc *rproc; 1317 char *p, *template = "rproc-%s-fw"; 1318 int name_len = 0; 1319 1320 if (!dev || !name || !ops) 1321 return NULL; 1322 1323 if (!firmware) 1324 /* 1325 * Make room for default firmware name (minus %s plus '\0'). 1326 * If the caller didn't pass in a firmware name then 1327 * construct a default name. We're already glomming 'len' 1328 * bytes onto the end of the struct rproc allocation, so do 1329 * a few more for the default firmware name (but only if 1330 * the caller doesn't pass one). 1331 */ 1332 name_len = strlen(name) + strlen(template) - 2 + 1; 1333 1334 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL); 1335 if (!rproc) 1336 return NULL; 1337 1338 if (!firmware) { 1339 p = (char *)rproc + sizeof(struct rproc) + len; 1340 snprintf(p, name_len, template, name); 1341 } else { 1342 p = (char *)firmware; 1343 } 1344 1345 rproc->firmware = p; 1346 rproc->name = name; 1347 rproc->ops = ops; 1348 rproc->priv = &rproc[1]; 1349 1350 device_initialize(&rproc->dev); 1351 rproc->dev.parent = dev; 1352 rproc->dev.type = &rproc_type; 1353 1354 /* Assign a unique device index and name */ 1355 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1356 if (rproc->index < 0) { 1357 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1358 put_device(&rproc->dev); 1359 return NULL; 1360 } 1361 1362 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1363 1364 atomic_set(&rproc->power, 0); 1365 1366 /* Set ELF as the default fw_ops handler */ 1367 rproc->fw_ops = &rproc_elf_fw_ops; 1368 1369 mutex_init(&rproc->lock); 1370 1371 idr_init(&rproc->notifyids); 1372 1373 INIT_LIST_HEAD(&rproc->carveouts); 1374 INIT_LIST_HEAD(&rproc->mappings); 1375 INIT_LIST_HEAD(&rproc->traces); 1376 INIT_LIST_HEAD(&rproc->rvdevs); 1377 1378 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 1379 init_completion(&rproc->crash_comp); 1380 1381 rproc->state = RPROC_OFFLINE; 1382 1383 return rproc; 1384 } 1385 EXPORT_SYMBOL(rproc_alloc); 1386 1387 /** 1388 * rproc_put() - unroll rproc_alloc() 1389 * @rproc: the remote processor handle 1390 * 1391 * This function decrements the rproc dev refcount. 1392 * 1393 * If no one holds any reference to rproc anymore, then its refcount would 1394 * now drop to zero, and it would be freed. 1395 */ 1396 void rproc_put(struct rproc *rproc) 1397 { 1398 put_device(&rproc->dev); 1399 } 1400 EXPORT_SYMBOL(rproc_put); 1401 1402 /** 1403 * rproc_del() - unregister a remote processor 1404 * @rproc: rproc handle to unregister 1405 * 1406 * This function should be called when the platform specific rproc 1407 * implementation decides to remove the rproc device. it should 1408 * _only_ be called if a previous invocation of rproc_add() 1409 * has completed successfully. 1410 * 1411 * After rproc_del() returns, @rproc isn't freed yet, because 1412 * of the outstanding reference created by rproc_alloc. To decrement that 1413 * one last refcount, one still needs to call rproc_put(). 1414 * 1415 * Returns 0 on success and -EINVAL if @rproc isn't valid. 1416 */ 1417 int rproc_del(struct rproc *rproc) 1418 { 1419 struct rproc_vdev *rvdev, *tmp; 1420 1421 if (!rproc) 1422 return -EINVAL; 1423 1424 /* if rproc is just being registered, wait */ 1425 wait_for_completion(&rproc->firmware_loading_complete); 1426 1427 /* clean up remote vdev entries */ 1428 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node) 1429 rproc_remove_virtio_dev(rvdev); 1430 1431 /* Free the copy of the resource table */ 1432 kfree(rproc->cached_table); 1433 1434 /* the rproc is downref'ed as soon as it's removed from the klist */ 1435 mutex_lock(&rproc_list_mutex); 1436 list_del(&rproc->node); 1437 mutex_unlock(&rproc_list_mutex); 1438 1439 device_del(&rproc->dev); 1440 1441 return 0; 1442 } 1443 EXPORT_SYMBOL(rproc_del); 1444 1445 /** 1446 * rproc_report_crash() - rproc crash reporter function 1447 * @rproc: remote processor 1448 * @type: crash type 1449 * 1450 * This function must be called every time a crash is detected by the low-level 1451 * drivers implementing a specific remoteproc. This should not be called from a 1452 * non-remoteproc driver. 1453 * 1454 * This function can be called from atomic/interrupt context. 1455 */ 1456 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 1457 { 1458 if (!rproc) { 1459 pr_err("NULL rproc pointer\n"); 1460 return; 1461 } 1462 1463 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 1464 rproc->name, rproc_crash_to_string(type)); 1465 1466 /* create a new task to handle the error */ 1467 schedule_work(&rproc->crash_handler); 1468 } 1469 EXPORT_SYMBOL(rproc_report_crash); 1470 1471 static int __init remoteproc_init(void) 1472 { 1473 rproc_init_debugfs(); 1474 1475 return 0; 1476 } 1477 module_init(remoteproc_init); 1478 1479 static void __exit remoteproc_exit(void) 1480 { 1481 rproc_exit_debugfs(); 1482 } 1483 module_exit(remoteproc_exit); 1484 1485 MODULE_LICENSE("GPL v2"); 1486 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 1487