1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/slab.h> 25 #include <linux/mutex.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/string.h> 29 #include <linux/debugfs.h> 30 #include <linux/rculist.h> 31 #include <linux/remoteproc.h> 32 #include <linux/iommu.h> 33 #include <linux/idr.h> 34 #include <linux/elf.h> 35 #include <linux/crc32.h> 36 #include <linux/of_reserved_mem.h> 37 #include <linux/virtio_ids.h> 38 #include <linux/virtio_ring.h> 39 #include <asm/byteorder.h> 40 #include <linux/platform_device.h> 41 42 #include "remoteproc_internal.h" 43 44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 45 46 static DEFINE_MUTEX(rproc_list_mutex); 47 static LIST_HEAD(rproc_list); 48 static struct notifier_block rproc_panic_nb; 49 50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 51 void *, int offset, int avail); 52 53 static int rproc_alloc_carveout(struct rproc *rproc, 54 struct rproc_mem_entry *mem); 55 static int rproc_release_carveout(struct rproc *rproc, 56 struct rproc_mem_entry *mem); 57 58 /* Unique indices for remoteproc devices */ 59 static DEFINE_IDA(rproc_dev_index); 60 static struct workqueue_struct *rproc_recovery_wq; 61 62 static const char * const rproc_crash_names[] = { 63 [RPROC_MMUFAULT] = "mmufault", 64 [RPROC_WATCHDOG] = "watchdog", 65 [RPROC_FATAL_ERROR] = "fatal error", 66 }; 67 68 /* translate rproc_crash_type to string */ 69 static const char *rproc_crash_to_string(enum rproc_crash_type type) 70 { 71 if (type < ARRAY_SIZE(rproc_crash_names)) 72 return rproc_crash_names[type]; 73 return "unknown"; 74 } 75 76 /* 77 * This is the IOMMU fault handler we register with the IOMMU API 78 * (when relevant; not all remote processors access memory through 79 * an IOMMU). 80 * 81 * IOMMU core will invoke this handler whenever the remote processor 82 * will try to access an unmapped device address. 83 */ 84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 85 unsigned long iova, int flags, void *token) 86 { 87 struct rproc *rproc = token; 88 89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 90 91 rproc_report_crash(rproc, RPROC_MMUFAULT); 92 93 /* 94 * Let the iommu core know we're not really handling this fault; 95 * we just used it as a recovery trigger. 96 */ 97 return -ENOSYS; 98 } 99 100 static int rproc_enable_iommu(struct rproc *rproc) 101 { 102 struct iommu_domain *domain; 103 struct device *dev = rproc->dev.parent; 104 int ret; 105 106 if (!rproc->has_iommu) { 107 dev_dbg(dev, "iommu not present\n"); 108 return 0; 109 } 110 111 domain = iommu_domain_alloc(dev->bus); 112 if (!domain) { 113 dev_err(dev, "can't alloc iommu domain\n"); 114 return -ENOMEM; 115 } 116 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 118 119 ret = iommu_attach_device(domain, dev); 120 if (ret) { 121 dev_err(dev, "can't attach iommu device: %d\n", ret); 122 goto free_domain; 123 } 124 125 rproc->domain = domain; 126 127 return 0; 128 129 free_domain: 130 iommu_domain_free(domain); 131 return ret; 132 } 133 134 static void rproc_disable_iommu(struct rproc *rproc) 135 { 136 struct iommu_domain *domain = rproc->domain; 137 struct device *dev = rproc->dev.parent; 138 139 if (!domain) 140 return; 141 142 iommu_detach_device(domain, dev); 143 iommu_domain_free(domain); 144 } 145 146 phys_addr_t rproc_va_to_pa(void *cpu_addr) 147 { 148 /* 149 * Return physical address according to virtual address location 150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 151 * - in kernel: if region allocated in generic dma memory pool 152 */ 153 if (is_vmalloc_addr(cpu_addr)) { 154 return page_to_phys(vmalloc_to_page(cpu_addr)) + 155 offset_in_page(cpu_addr); 156 } 157 158 WARN_ON(!virt_addr_valid(cpu_addr)); 159 return virt_to_phys(cpu_addr); 160 } 161 EXPORT_SYMBOL(rproc_va_to_pa); 162 163 /** 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 165 * @rproc: handle of a remote processor 166 * @da: remoteproc device address to translate 167 * @len: length of the memory region @da is pointing to 168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory 169 * 170 * Some remote processors will ask us to allocate them physically contiguous 171 * memory regions (which we call "carveouts"), and map them to specific 172 * device addresses (which are hardcoded in the firmware). They may also have 173 * dedicated memory regions internal to the processors, and use them either 174 * exclusively or alongside carveouts. 175 * 176 * They may then ask us to copy objects into specific device addresses (e.g. 177 * code/data sections) or expose us certain symbols in other device address 178 * (e.g. their trace buffer). 179 * 180 * This function is a helper function with which we can go over the allocated 181 * carveouts and translate specific device addresses to kernel virtual addresses 182 * so we can access the referenced memory. This function also allows to perform 183 * translations on the internal remoteproc memory regions through a platform 184 * implementation specific da_to_va ops, if present. 185 * 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 187 * but only on kernel direct mapped RAM memory. Instead, we're just using 188 * here the output of the DMA API for the carveouts, which should be more 189 * correct. 190 * 191 * Return: a valid kernel address on success or NULL on failure 192 */ 193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 194 { 195 struct rproc_mem_entry *carveout; 196 void *ptr = NULL; 197 198 if (rproc->ops->da_to_va) { 199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 200 if (ptr) 201 goto out; 202 } 203 204 list_for_each_entry(carveout, &rproc->carveouts, node) { 205 int offset = da - carveout->da; 206 207 /* Verify that carveout is allocated */ 208 if (!carveout->va) 209 continue; 210 211 /* try next carveout if da is too small */ 212 if (offset < 0) 213 continue; 214 215 /* try next carveout if da is too large */ 216 if (offset + len > carveout->len) 217 continue; 218 219 ptr = carveout->va + offset; 220 221 if (is_iomem) 222 *is_iomem = carveout->is_iomem; 223 224 break; 225 } 226 227 out: 228 return ptr; 229 } 230 EXPORT_SYMBOL(rproc_da_to_va); 231 232 /** 233 * rproc_find_carveout_by_name() - lookup the carveout region by a name 234 * @rproc: handle of a remote processor 235 * @name: carveout name to find (format string) 236 * @...: optional parameters matching @name string 237 * 238 * Platform driver has the capability to register some pre-allacoted carveout 239 * (physically contiguous memory regions) before rproc firmware loading and 240 * associated resource table analysis. These regions may be dedicated memory 241 * regions internal to the coprocessor or specified DDR region with specific 242 * attributes 243 * 244 * This function is a helper function with which we can go over the 245 * allocated carveouts and return associated region characteristics like 246 * coprocessor address, length or processor virtual address. 247 * 248 * Return: a valid pointer on carveout entry on success or NULL on failure. 249 */ 250 __printf(2, 3) 251 struct rproc_mem_entry * 252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 253 { 254 va_list args; 255 char _name[32]; 256 struct rproc_mem_entry *carveout, *mem = NULL; 257 258 if (!name) 259 return NULL; 260 261 va_start(args, name); 262 vsnprintf(_name, sizeof(_name), name, args); 263 va_end(args); 264 265 list_for_each_entry(carveout, &rproc->carveouts, node) { 266 /* Compare carveout and requested names */ 267 if (!strcmp(carveout->name, _name)) { 268 mem = carveout; 269 break; 270 } 271 } 272 273 return mem; 274 } 275 276 /** 277 * rproc_check_carveout_da() - Check specified carveout da configuration 278 * @rproc: handle of a remote processor 279 * @mem: pointer on carveout to check 280 * @da: area device address 281 * @len: associated area size 282 * 283 * This function is a helper function to verify requested device area (couple 284 * da, len) is part of specified carveout. 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 286 * checked. 287 * 288 * Return: 0 if carveout matches request else error 289 */ 290 static int rproc_check_carveout_da(struct rproc *rproc, 291 struct rproc_mem_entry *mem, u32 da, u32 len) 292 { 293 struct device *dev = &rproc->dev; 294 int delta; 295 296 /* Check requested resource length */ 297 if (len > mem->len) { 298 dev_err(dev, "Registered carveout doesn't fit len request\n"); 299 return -EINVAL; 300 } 301 302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 303 /* Address doesn't match registered carveout configuration */ 304 return -EINVAL; 305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 306 delta = da - mem->da; 307 308 /* Check requested resource belongs to registered carveout */ 309 if (delta < 0) { 310 dev_err(dev, 311 "Registered carveout doesn't fit da request\n"); 312 return -EINVAL; 313 } 314 315 if (delta + len > mem->len) { 316 dev_err(dev, 317 "Registered carveout doesn't fit len request\n"); 318 return -EINVAL; 319 } 320 } 321 322 return 0; 323 } 324 325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 326 { 327 struct rproc *rproc = rvdev->rproc; 328 struct device *dev = &rproc->dev; 329 struct rproc_vring *rvring = &rvdev->vring[i]; 330 struct fw_rsc_vdev *rsc; 331 int ret, notifyid; 332 struct rproc_mem_entry *mem; 333 size_t size; 334 335 /* actual size of vring (in bytes) */ 336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); 337 338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 339 340 /* Search for pre-registered carveout */ 341 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 342 i); 343 if (mem) { 344 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 345 return -ENOMEM; 346 } else { 347 /* Register carveout in list */ 348 mem = rproc_mem_entry_init(dev, NULL, 0, 349 size, rsc->vring[i].da, 350 rproc_alloc_carveout, 351 rproc_release_carveout, 352 "vdev%dvring%d", 353 rvdev->index, i); 354 if (!mem) { 355 dev_err(dev, "Can't allocate memory entry structure\n"); 356 return -ENOMEM; 357 } 358 359 rproc_add_carveout(rproc, mem); 360 } 361 362 /* 363 * Assign an rproc-wide unique index for this vring 364 * TODO: assign a notifyid for rvdev updates as well 365 * TODO: support predefined notifyids (via resource table) 366 */ 367 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 368 if (ret < 0) { 369 dev_err(dev, "idr_alloc failed: %d\n", ret); 370 return ret; 371 } 372 notifyid = ret; 373 374 /* Potentially bump max_notifyid */ 375 if (notifyid > rproc->max_notifyid) 376 rproc->max_notifyid = notifyid; 377 378 rvring->notifyid = notifyid; 379 380 /* Let the rproc know the notifyid of this vring.*/ 381 rsc->vring[i].notifyid = notifyid; 382 return 0; 383 } 384 385 int 386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 387 { 388 struct rproc *rproc = rvdev->rproc; 389 struct device *dev = &rproc->dev; 390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 391 struct rproc_vring *rvring = &rvdev->vring[i]; 392 393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 394 i, vring->da, vring->num, vring->align); 395 396 /* verify queue size and vring alignment are sane */ 397 if (!vring->num || !vring->align) { 398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 399 vring->num, vring->align); 400 return -EINVAL; 401 } 402 403 rvring->num = vring->num; 404 rvring->align = vring->align; 405 rvring->rvdev = rvdev; 406 407 return 0; 408 } 409 410 void rproc_free_vring(struct rproc_vring *rvring) 411 { 412 struct rproc *rproc = rvring->rvdev->rproc; 413 int idx = rvring - rvring->rvdev->vring; 414 struct fw_rsc_vdev *rsc; 415 416 idr_remove(&rproc->notifyids, rvring->notifyid); 417 418 /* 419 * At this point rproc_stop() has been called and the installed resource 420 * table in the remote processor memory may no longer be accessible. As 421 * such and as per rproc_stop(), rproc->table_ptr points to the cached 422 * resource table (rproc->cached_table). The cached resource table is 423 * only available when a remote processor has been booted by the 424 * remoteproc core, otherwise it is NULL. 425 * 426 * Based on the above, reset the virtio device section in the cached 427 * resource table only if there is one to work with. 428 */ 429 if (rproc->table_ptr) { 430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 431 rsc->vring[idx].da = 0; 432 rsc->vring[idx].notifyid = -1; 433 } 434 } 435 436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) 437 { 438 if (rvdev && rproc) 439 list_add_tail(&rvdev->node, &rproc->rvdevs); 440 } 441 442 void rproc_remove_rvdev(struct rproc_vdev *rvdev) 443 { 444 if (rvdev) 445 list_del(&rvdev->node); 446 } 447 /** 448 * rproc_handle_vdev() - handle a vdev fw resource 449 * @rproc: the remote processor 450 * @ptr: the vring resource descriptor 451 * @offset: offset of the resource entry 452 * @avail: size of available data (for sanity checking the image) 453 * 454 * This resource entry requests the host to statically register a virtio 455 * device (vdev), and setup everything needed to support it. It contains 456 * everything needed to make it possible: the virtio device id, virtio 457 * device features, vrings information, virtio config space, etc... 458 * 459 * Before registering the vdev, the vrings are allocated from non-cacheable 460 * physically contiguous memory. Currently we only support two vrings per 461 * remote processor (temporary limitation). We might also want to consider 462 * doing the vring allocation only later when ->find_vqs() is invoked, and 463 * then release them upon ->del_vqs(). 464 * 465 * Note: @da is currently not really handled correctly: we dynamically 466 * allocate it using the DMA API, ignoring requested hard coded addresses, 467 * and we don't take care of any required IOMMU programming. This is all 468 * going to be taken care of when the generic iommu-based DMA API will be 469 * merged. Meanwhile, statically-addressed iommu-based firmware images should 470 * use RSC_DEVMEM resource entries to map their required @da to the physical 471 * address of their base CMA region (ouch, hacky!). 472 * 473 * Return: 0 on success, or an appropriate error code otherwise 474 */ 475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 476 int offset, int avail) 477 { 478 struct fw_rsc_vdev *rsc = ptr; 479 struct device *dev = &rproc->dev; 480 struct rproc_vdev *rvdev; 481 size_t rsc_size; 482 struct rproc_vdev_data rvdev_data; 483 struct platform_device *pdev; 484 485 /* make sure resource isn't truncated */ 486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); 487 if (size_add(rsc_size, rsc->config_len) > avail) { 488 dev_err(dev, "vdev rsc is truncated\n"); 489 return -EINVAL; 490 } 491 492 /* make sure reserved bytes are zeroes */ 493 if (rsc->reserved[0] || rsc->reserved[1]) { 494 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 495 return -EINVAL; 496 } 497 498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 500 501 /* we currently support only two vrings per rvdev */ 502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 504 return -EINVAL; 505 } 506 507 rvdev_data.id = rsc->id; 508 rvdev_data.index = rproc->nb_vdev++; 509 rvdev_data.rsc_offset = offset; 510 rvdev_data.rsc = rsc; 511 512 /* 513 * When there is more than one remote processor, rproc->nb_vdev number is 514 * same for each separate instances of "rproc". If rvdev_data.index is used 515 * as device id, then we get duplication in sysfs, so need to use 516 * PLATFORM_DEVID_AUTO to auto select device id. 517 */ 518 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data, 519 sizeof(rvdev_data)); 520 if (IS_ERR(pdev)) { 521 dev_err(dev, "failed to create rproc-virtio device\n"); 522 return PTR_ERR(pdev); 523 } 524 525 return 0; 526 } 527 528 /** 529 * rproc_handle_trace() - handle a shared trace buffer resource 530 * @rproc: the remote processor 531 * @ptr: the trace resource descriptor 532 * @offset: offset of the resource entry 533 * @avail: size of available data (for sanity checking the image) 534 * 535 * In case the remote processor dumps trace logs into memory, 536 * export it via debugfs. 537 * 538 * Currently, the 'da' member of @rsc should contain the device address 539 * where the remote processor is dumping the traces. Later we could also 540 * support dynamically allocating this address using the generic 541 * DMA API (but currently there isn't a use case for that). 542 * 543 * Return: 0 on success, or an appropriate error code otherwise 544 */ 545 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 546 int offset, int avail) 547 { 548 struct fw_rsc_trace *rsc = ptr; 549 struct rproc_debug_trace *trace; 550 struct device *dev = &rproc->dev; 551 char name[15]; 552 553 if (sizeof(*rsc) > avail) { 554 dev_err(dev, "trace rsc is truncated\n"); 555 return -EINVAL; 556 } 557 558 /* make sure reserved bytes are zeroes */ 559 if (rsc->reserved) { 560 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 561 return -EINVAL; 562 } 563 564 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 565 if (!trace) 566 return -ENOMEM; 567 568 /* set the trace buffer dma properties */ 569 trace->trace_mem.len = rsc->len; 570 trace->trace_mem.da = rsc->da; 571 572 /* set pointer on rproc device */ 573 trace->rproc = rproc; 574 575 /* make sure snprintf always null terminates, even if truncating */ 576 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 577 578 /* create the debugfs entry */ 579 trace->tfile = rproc_create_trace_file(name, rproc, trace); 580 581 list_add_tail(&trace->node, &rproc->traces); 582 583 rproc->num_traces++; 584 585 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 586 name, rsc->da, rsc->len); 587 588 return 0; 589 } 590 591 /** 592 * rproc_handle_devmem() - handle devmem resource entry 593 * @rproc: remote processor handle 594 * @ptr: the devmem resource entry 595 * @offset: offset of the resource entry 596 * @avail: size of available data (for sanity checking the image) 597 * 598 * Remote processors commonly need to access certain on-chip peripherals. 599 * 600 * Some of these remote processors access memory via an iommu device, 601 * and might require us to configure their iommu before they can access 602 * the on-chip peripherals they need. 603 * 604 * This resource entry is a request to map such a peripheral device. 605 * 606 * These devmem entries will contain the physical address of the device in 607 * the 'pa' member. If a specific device address is expected, then 'da' will 608 * contain it (currently this is the only use case supported). 'len' will 609 * contain the size of the physical region we need to map. 610 * 611 * Currently we just "trust" those devmem entries to contain valid physical 612 * addresses, but this is going to change: we want the implementations to 613 * tell us ranges of physical addresses the firmware is allowed to request, 614 * and not allow firmwares to request access to physical addresses that 615 * are outside those ranges. 616 * 617 * Return: 0 on success, or an appropriate error code otherwise 618 */ 619 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 620 int offset, int avail) 621 { 622 struct fw_rsc_devmem *rsc = ptr; 623 struct rproc_mem_entry *mapping; 624 struct device *dev = &rproc->dev; 625 int ret; 626 627 /* no point in handling this resource without a valid iommu domain */ 628 if (!rproc->domain) 629 return -EINVAL; 630 631 if (sizeof(*rsc) > avail) { 632 dev_err(dev, "devmem rsc is truncated\n"); 633 return -EINVAL; 634 } 635 636 /* make sure reserved bytes are zeroes */ 637 if (rsc->reserved) { 638 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 639 return -EINVAL; 640 } 641 642 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 643 if (!mapping) 644 return -ENOMEM; 645 646 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 647 if (ret) { 648 dev_err(dev, "failed to map devmem: %d\n", ret); 649 goto out; 650 } 651 652 /* 653 * We'll need this info later when we'll want to unmap everything 654 * (e.g. on shutdown). 655 * 656 * We can't trust the remote processor not to change the resource 657 * table, so we must maintain this info independently. 658 */ 659 mapping->da = rsc->da; 660 mapping->len = rsc->len; 661 list_add_tail(&mapping->node, &rproc->mappings); 662 663 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 664 rsc->pa, rsc->da, rsc->len); 665 666 return 0; 667 668 out: 669 kfree(mapping); 670 return ret; 671 } 672 673 /** 674 * rproc_alloc_carveout() - allocated specified carveout 675 * @rproc: rproc handle 676 * @mem: the memory entry to allocate 677 * 678 * This function allocate specified memory entry @mem using 679 * dma_alloc_coherent() as default allocator 680 * 681 * Return: 0 on success, or an appropriate error code otherwise 682 */ 683 static int rproc_alloc_carveout(struct rproc *rproc, 684 struct rproc_mem_entry *mem) 685 { 686 struct rproc_mem_entry *mapping = NULL; 687 struct device *dev = &rproc->dev; 688 dma_addr_t dma; 689 void *va; 690 int ret; 691 692 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 693 if (!va) { 694 dev_err(dev->parent, 695 "failed to allocate dma memory: len 0x%zx\n", 696 mem->len); 697 return -ENOMEM; 698 } 699 700 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 701 va, &dma, mem->len); 702 703 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 704 /* 705 * Check requested da is equal to dma address 706 * and print a warn message in case of missalignment. 707 * Don't stop rproc_start sequence as coprocessor may 708 * build pa to da translation on its side. 709 */ 710 if (mem->da != (u32)dma) 711 dev_warn(dev->parent, 712 "Allocated carveout doesn't fit device address request\n"); 713 } 714 715 /* 716 * Ok, this is non-standard. 717 * 718 * Sometimes we can't rely on the generic iommu-based DMA API 719 * to dynamically allocate the device address and then set the IOMMU 720 * tables accordingly, because some remote processors might 721 * _require_ us to use hard coded device addresses that their 722 * firmware was compiled with. 723 * 724 * In this case, we must use the IOMMU API directly and map 725 * the memory to the device address as expected by the remote 726 * processor. 727 * 728 * Obviously such remote processor devices should not be configured 729 * to use the iommu-based DMA API: we expect 'dma' to contain the 730 * physical address in this case. 731 */ 732 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 733 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 734 if (!mapping) { 735 ret = -ENOMEM; 736 goto dma_free; 737 } 738 739 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 740 mem->flags); 741 if (ret) { 742 dev_err(dev, "iommu_map failed: %d\n", ret); 743 goto free_mapping; 744 } 745 746 /* 747 * We'll need this info later when we'll want to unmap 748 * everything (e.g. on shutdown). 749 * 750 * We can't trust the remote processor not to change the 751 * resource table, so we must maintain this info independently. 752 */ 753 mapping->da = mem->da; 754 mapping->len = mem->len; 755 list_add_tail(&mapping->node, &rproc->mappings); 756 757 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 758 mem->da, &dma); 759 } 760 761 if (mem->da == FW_RSC_ADDR_ANY) { 762 /* Update device address as undefined by requester */ 763 if ((u64)dma & HIGH_BITS_MASK) 764 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 765 766 mem->da = (u32)dma; 767 } 768 769 mem->dma = dma; 770 mem->va = va; 771 772 return 0; 773 774 free_mapping: 775 kfree(mapping); 776 dma_free: 777 dma_free_coherent(dev->parent, mem->len, va, dma); 778 return ret; 779 } 780 781 /** 782 * rproc_release_carveout() - release acquired carveout 783 * @rproc: rproc handle 784 * @mem: the memory entry to release 785 * 786 * This function releases specified memory entry @mem allocated via 787 * rproc_alloc_carveout() function by @rproc. 788 * 789 * Return: 0 on success, or an appropriate error code otherwise 790 */ 791 static int rproc_release_carveout(struct rproc *rproc, 792 struct rproc_mem_entry *mem) 793 { 794 struct device *dev = &rproc->dev; 795 796 /* clean up carveout allocations */ 797 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 798 return 0; 799 } 800 801 /** 802 * rproc_handle_carveout() - handle phys contig memory allocation requests 803 * @rproc: rproc handle 804 * @ptr: the resource entry 805 * @offset: offset of the resource entry 806 * @avail: size of available data (for image validation) 807 * 808 * This function will handle firmware requests for allocation of physically 809 * contiguous memory regions. 810 * 811 * These request entries should come first in the firmware's resource table, 812 * as other firmware entries might request placing other data objects inside 813 * these memory regions (e.g. data/code segments, trace resource entries, ...). 814 * 815 * Allocating memory this way helps utilizing the reserved physical memory 816 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 817 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 818 * pressure is important; it may have a substantial impact on performance. 819 * 820 * Return: 0 on success, or an appropriate error code otherwise 821 */ 822 static int rproc_handle_carveout(struct rproc *rproc, 823 void *ptr, int offset, int avail) 824 { 825 struct fw_rsc_carveout *rsc = ptr; 826 struct rproc_mem_entry *carveout; 827 struct device *dev = &rproc->dev; 828 829 if (sizeof(*rsc) > avail) { 830 dev_err(dev, "carveout rsc is truncated\n"); 831 return -EINVAL; 832 } 833 834 /* make sure reserved bytes are zeroes */ 835 if (rsc->reserved) { 836 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 837 return -EINVAL; 838 } 839 840 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 841 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 842 843 /* 844 * Check carveout rsc already part of a registered carveout, 845 * Search by name, then check the da and length 846 */ 847 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 848 849 if (carveout) { 850 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 851 dev_err(dev, 852 "Carveout already associated to resource table\n"); 853 return -ENOMEM; 854 } 855 856 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 857 return -ENOMEM; 858 859 /* Update memory carveout with resource table info */ 860 carveout->rsc_offset = offset; 861 carveout->flags = rsc->flags; 862 863 return 0; 864 } 865 866 /* Register carveout in list */ 867 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 868 rproc_alloc_carveout, 869 rproc_release_carveout, rsc->name); 870 if (!carveout) { 871 dev_err(dev, "Can't allocate memory entry structure\n"); 872 return -ENOMEM; 873 } 874 875 carveout->flags = rsc->flags; 876 carveout->rsc_offset = offset; 877 rproc_add_carveout(rproc, carveout); 878 879 return 0; 880 } 881 882 /** 883 * rproc_add_carveout() - register an allocated carveout region 884 * @rproc: rproc handle 885 * @mem: memory entry to register 886 * 887 * This function registers specified memory entry in @rproc carveouts list. 888 * Specified carveout should have been allocated before registering. 889 */ 890 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 891 { 892 list_add_tail(&mem->node, &rproc->carveouts); 893 } 894 EXPORT_SYMBOL(rproc_add_carveout); 895 896 /** 897 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 898 * @dev: pointer on device struct 899 * @va: virtual address 900 * @dma: dma address 901 * @len: memory carveout length 902 * @da: device address 903 * @alloc: memory carveout allocation function 904 * @release: memory carveout release function 905 * @name: carveout name 906 * 907 * This function allocates a rproc_mem_entry struct and fill it with parameters 908 * provided by client. 909 * 910 * Return: a valid pointer on success, or NULL on failure 911 */ 912 __printf(8, 9) 913 struct rproc_mem_entry * 914 rproc_mem_entry_init(struct device *dev, 915 void *va, dma_addr_t dma, size_t len, u32 da, 916 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 917 int (*release)(struct rproc *, struct rproc_mem_entry *), 918 const char *name, ...) 919 { 920 struct rproc_mem_entry *mem; 921 va_list args; 922 923 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 924 if (!mem) 925 return mem; 926 927 mem->va = va; 928 mem->dma = dma; 929 mem->da = da; 930 mem->len = len; 931 mem->alloc = alloc; 932 mem->release = release; 933 mem->rsc_offset = FW_RSC_ADDR_ANY; 934 mem->of_resm_idx = -1; 935 936 va_start(args, name); 937 vsnprintf(mem->name, sizeof(mem->name), name, args); 938 va_end(args); 939 940 return mem; 941 } 942 EXPORT_SYMBOL(rproc_mem_entry_init); 943 944 /** 945 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 946 * from a reserved memory phandle 947 * @dev: pointer on device struct 948 * @of_resm_idx: reserved memory phandle index in "memory-region" 949 * @len: memory carveout length 950 * @da: device address 951 * @name: carveout name 952 * 953 * This function allocates a rproc_mem_entry struct and fill it with parameters 954 * provided by client. 955 * 956 * Return: a valid pointer on success, or NULL on failure 957 */ 958 __printf(5, 6) 959 struct rproc_mem_entry * 960 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 961 u32 da, const char *name, ...) 962 { 963 struct rproc_mem_entry *mem; 964 va_list args; 965 966 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 967 if (!mem) 968 return mem; 969 970 mem->da = da; 971 mem->len = len; 972 mem->rsc_offset = FW_RSC_ADDR_ANY; 973 mem->of_resm_idx = of_resm_idx; 974 975 va_start(args, name); 976 vsnprintf(mem->name, sizeof(mem->name), name, args); 977 va_end(args); 978 979 return mem; 980 } 981 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 982 983 /** 984 * rproc_of_parse_firmware() - parse and return the firmware-name 985 * @dev: pointer on device struct representing a rproc 986 * @index: index to use for the firmware-name retrieval 987 * @fw_name: pointer to a character string, in which the firmware 988 * name is returned on success and unmodified otherwise. 989 * 990 * This is an OF helper function that parses a device's DT node for 991 * the "firmware-name" property and returns the firmware name pointer 992 * in @fw_name on success. 993 * 994 * Return: 0 on success, or an appropriate failure. 995 */ 996 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 997 { 998 int ret; 999 1000 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1001 index, fw_name); 1002 return ret ? ret : 0; 1003 } 1004 EXPORT_SYMBOL(rproc_of_parse_firmware); 1005 1006 /* 1007 * A lookup table for resource handlers. The indices are defined in 1008 * enum fw_resource_type. 1009 */ 1010 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1011 [RSC_CARVEOUT] = rproc_handle_carveout, 1012 [RSC_DEVMEM] = rproc_handle_devmem, 1013 [RSC_TRACE] = rproc_handle_trace, 1014 [RSC_VDEV] = rproc_handle_vdev, 1015 }; 1016 1017 /* handle firmware resource entries before booting the remote processor */ 1018 static int rproc_handle_resources(struct rproc *rproc, 1019 rproc_handle_resource_t handlers[RSC_LAST]) 1020 { 1021 struct device *dev = &rproc->dev; 1022 rproc_handle_resource_t handler; 1023 int ret = 0, i; 1024 1025 if (!rproc->table_ptr) 1026 return 0; 1027 1028 for (i = 0; i < rproc->table_ptr->num; i++) { 1029 int offset = rproc->table_ptr->offset[i]; 1030 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1031 int avail = rproc->table_sz - offset - sizeof(*hdr); 1032 void *rsc = (void *)hdr + sizeof(*hdr); 1033 1034 /* make sure table isn't truncated */ 1035 if (avail < 0) { 1036 dev_err(dev, "rsc table is truncated\n"); 1037 return -EINVAL; 1038 } 1039 1040 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1041 1042 if (hdr->type >= RSC_VENDOR_START && 1043 hdr->type <= RSC_VENDOR_END) { 1044 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1045 offset + sizeof(*hdr), avail); 1046 if (ret == RSC_HANDLED) 1047 continue; 1048 else if (ret < 0) 1049 break; 1050 1051 dev_warn(dev, "unsupported vendor resource %d\n", 1052 hdr->type); 1053 continue; 1054 } 1055 1056 if (hdr->type >= RSC_LAST) { 1057 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1058 continue; 1059 } 1060 1061 handler = handlers[hdr->type]; 1062 if (!handler) 1063 continue; 1064 1065 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1066 if (ret) 1067 break; 1068 } 1069 1070 return ret; 1071 } 1072 1073 static int rproc_prepare_subdevices(struct rproc *rproc) 1074 { 1075 struct rproc_subdev *subdev; 1076 int ret; 1077 1078 list_for_each_entry(subdev, &rproc->subdevs, node) { 1079 if (subdev->prepare) { 1080 ret = subdev->prepare(subdev); 1081 if (ret) 1082 goto unroll_preparation; 1083 } 1084 } 1085 1086 return 0; 1087 1088 unroll_preparation: 1089 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1090 if (subdev->unprepare) 1091 subdev->unprepare(subdev); 1092 } 1093 1094 return ret; 1095 } 1096 1097 static int rproc_start_subdevices(struct rproc *rproc) 1098 { 1099 struct rproc_subdev *subdev; 1100 int ret; 1101 1102 list_for_each_entry(subdev, &rproc->subdevs, node) { 1103 if (subdev->start) { 1104 ret = subdev->start(subdev); 1105 if (ret) 1106 goto unroll_registration; 1107 } 1108 } 1109 1110 return 0; 1111 1112 unroll_registration: 1113 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1114 if (subdev->stop) 1115 subdev->stop(subdev, true); 1116 } 1117 1118 return ret; 1119 } 1120 1121 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1122 { 1123 struct rproc_subdev *subdev; 1124 1125 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1126 if (subdev->stop) 1127 subdev->stop(subdev, crashed); 1128 } 1129 } 1130 1131 static void rproc_unprepare_subdevices(struct rproc *rproc) 1132 { 1133 struct rproc_subdev *subdev; 1134 1135 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1136 if (subdev->unprepare) 1137 subdev->unprepare(subdev); 1138 } 1139 } 1140 1141 /** 1142 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1143 * in the list 1144 * @rproc: the remote processor handle 1145 * 1146 * This function parses registered carveout list, performs allocation 1147 * if alloc() ops registered and updates resource table information 1148 * if rsc_offset set. 1149 * 1150 * Return: 0 on success 1151 */ 1152 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1153 { 1154 struct rproc_mem_entry *entry, *tmp; 1155 struct fw_rsc_carveout *rsc; 1156 struct device *dev = &rproc->dev; 1157 u64 pa; 1158 int ret; 1159 1160 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1161 if (entry->alloc) { 1162 ret = entry->alloc(rproc, entry); 1163 if (ret) { 1164 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1165 entry->name, ret); 1166 return -ENOMEM; 1167 } 1168 } 1169 1170 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1171 /* update resource table */ 1172 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1173 1174 /* 1175 * Some remote processors might need to know the pa 1176 * even though they are behind an IOMMU. E.g., OMAP4's 1177 * remote M3 processor needs this so it can control 1178 * on-chip hardware accelerators that are not behind 1179 * the IOMMU, and therefor must know the pa. 1180 * 1181 * Generally we don't want to expose physical addresses 1182 * if we don't have to (remote processors are generally 1183 * _not_ trusted), so we might want to do this only for 1184 * remote processor that _must_ have this (e.g. OMAP4's 1185 * dual M3 subsystem). 1186 * 1187 * Non-IOMMU processors might also want to have this info. 1188 * In this case, the device address and the physical address 1189 * are the same. 1190 */ 1191 1192 /* Use va if defined else dma to generate pa */ 1193 if (entry->va) 1194 pa = (u64)rproc_va_to_pa(entry->va); 1195 else 1196 pa = (u64)entry->dma; 1197 1198 if (((u64)pa) & HIGH_BITS_MASK) 1199 dev_warn(dev, 1200 "Physical address cast in 32bit to fit resource table format\n"); 1201 1202 rsc->pa = (u32)pa; 1203 rsc->da = entry->da; 1204 rsc->len = entry->len; 1205 } 1206 } 1207 1208 return 0; 1209 } 1210 1211 1212 /** 1213 * rproc_resource_cleanup() - clean up and free all acquired resources 1214 * @rproc: rproc handle 1215 * 1216 * This function will free all resources acquired for @rproc, and it 1217 * is called whenever @rproc either shuts down or fails to boot. 1218 */ 1219 void rproc_resource_cleanup(struct rproc *rproc) 1220 { 1221 struct rproc_mem_entry *entry, *tmp; 1222 struct rproc_debug_trace *trace, *ttmp; 1223 struct rproc_vdev *rvdev, *rvtmp; 1224 struct device *dev = &rproc->dev; 1225 1226 /* clean up debugfs trace entries */ 1227 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1228 rproc_remove_trace_file(trace->tfile); 1229 rproc->num_traces--; 1230 list_del(&trace->node); 1231 kfree(trace); 1232 } 1233 1234 /* clean up iommu mapping entries */ 1235 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1236 size_t unmapped; 1237 1238 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1239 if (unmapped != entry->len) { 1240 /* nothing much to do besides complaining */ 1241 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1242 unmapped); 1243 } 1244 1245 list_del(&entry->node); 1246 kfree(entry); 1247 } 1248 1249 /* clean up carveout allocations */ 1250 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1251 if (entry->release) 1252 entry->release(rproc, entry); 1253 list_del(&entry->node); 1254 kfree(entry); 1255 } 1256 1257 /* clean up remote vdev entries */ 1258 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1259 platform_device_unregister(rvdev->pdev); 1260 1261 rproc_coredump_cleanup(rproc); 1262 } 1263 EXPORT_SYMBOL(rproc_resource_cleanup); 1264 1265 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1266 { 1267 struct resource_table *loaded_table; 1268 struct device *dev = &rproc->dev; 1269 int ret; 1270 1271 /* load the ELF segments to memory */ 1272 ret = rproc_load_segments(rproc, fw); 1273 if (ret) { 1274 dev_err(dev, "Failed to load program segments: %d\n", ret); 1275 return ret; 1276 } 1277 1278 /* 1279 * The starting device has been given the rproc->cached_table as the 1280 * resource table. The address of the vring along with the other 1281 * allocated resources (carveouts etc) is stored in cached_table. 1282 * In order to pass this information to the remote device we must copy 1283 * this information to device memory. We also update the table_ptr so 1284 * that any subsequent changes will be applied to the loaded version. 1285 */ 1286 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1287 if (loaded_table) { 1288 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1289 rproc->table_ptr = loaded_table; 1290 } 1291 1292 ret = rproc_prepare_subdevices(rproc); 1293 if (ret) { 1294 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1295 rproc->name, ret); 1296 goto reset_table_ptr; 1297 } 1298 1299 /* power up the remote processor */ 1300 ret = rproc->ops->start(rproc); 1301 if (ret) { 1302 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1303 goto unprepare_subdevices; 1304 } 1305 1306 /* Start any subdevices for the remote processor */ 1307 ret = rproc_start_subdevices(rproc); 1308 if (ret) { 1309 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1310 rproc->name, ret); 1311 goto stop_rproc; 1312 } 1313 1314 rproc->state = RPROC_RUNNING; 1315 1316 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1317 1318 return 0; 1319 1320 stop_rproc: 1321 rproc->ops->stop(rproc); 1322 unprepare_subdevices: 1323 rproc_unprepare_subdevices(rproc); 1324 reset_table_ptr: 1325 rproc->table_ptr = rproc->cached_table; 1326 1327 return ret; 1328 } 1329 1330 static int __rproc_attach(struct rproc *rproc) 1331 { 1332 struct device *dev = &rproc->dev; 1333 int ret; 1334 1335 ret = rproc_prepare_subdevices(rproc); 1336 if (ret) { 1337 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1338 rproc->name, ret); 1339 goto out; 1340 } 1341 1342 /* Attach to the remote processor */ 1343 ret = rproc_attach_device(rproc); 1344 if (ret) { 1345 dev_err(dev, "can't attach to rproc %s: %d\n", 1346 rproc->name, ret); 1347 goto unprepare_subdevices; 1348 } 1349 1350 /* Start any subdevices for the remote processor */ 1351 ret = rproc_start_subdevices(rproc); 1352 if (ret) { 1353 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1354 rproc->name, ret); 1355 goto stop_rproc; 1356 } 1357 1358 rproc->state = RPROC_ATTACHED; 1359 1360 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1361 1362 return 0; 1363 1364 stop_rproc: 1365 rproc->ops->stop(rproc); 1366 unprepare_subdevices: 1367 rproc_unprepare_subdevices(rproc); 1368 out: 1369 return ret; 1370 } 1371 1372 /* 1373 * take a firmware and boot a remote processor with it. 1374 */ 1375 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1376 { 1377 struct device *dev = &rproc->dev; 1378 const char *name = rproc->firmware; 1379 int ret; 1380 1381 ret = rproc_fw_sanity_check(rproc, fw); 1382 if (ret) 1383 return ret; 1384 1385 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1386 1387 /* 1388 * if enabling an IOMMU isn't relevant for this rproc, this is 1389 * just a nop 1390 */ 1391 ret = rproc_enable_iommu(rproc); 1392 if (ret) { 1393 dev_err(dev, "can't enable iommu: %d\n", ret); 1394 return ret; 1395 } 1396 1397 /* Prepare rproc for firmware loading if needed */ 1398 ret = rproc_prepare_device(rproc); 1399 if (ret) { 1400 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1401 goto disable_iommu; 1402 } 1403 1404 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1405 1406 /* Load resource table, core dump segment list etc from the firmware */ 1407 ret = rproc_parse_fw(rproc, fw); 1408 if (ret) 1409 goto unprepare_rproc; 1410 1411 /* reset max_notifyid */ 1412 rproc->max_notifyid = -1; 1413 1414 /* reset handled vdev */ 1415 rproc->nb_vdev = 0; 1416 1417 /* handle fw resources which are required to boot rproc */ 1418 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1419 if (ret) { 1420 dev_err(dev, "Failed to process resources: %d\n", ret); 1421 goto clean_up_resources; 1422 } 1423 1424 /* Allocate carveout resources associated to rproc */ 1425 ret = rproc_alloc_registered_carveouts(rproc); 1426 if (ret) { 1427 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1428 ret); 1429 goto clean_up_resources; 1430 } 1431 1432 ret = rproc_start(rproc, fw); 1433 if (ret) 1434 goto clean_up_resources; 1435 1436 return 0; 1437 1438 clean_up_resources: 1439 rproc_resource_cleanup(rproc); 1440 kfree(rproc->cached_table); 1441 rproc->cached_table = NULL; 1442 rproc->table_ptr = NULL; 1443 unprepare_rproc: 1444 /* release HW resources if needed */ 1445 rproc_unprepare_device(rproc); 1446 disable_iommu: 1447 rproc_disable_iommu(rproc); 1448 return ret; 1449 } 1450 1451 static int rproc_set_rsc_table(struct rproc *rproc) 1452 { 1453 struct resource_table *table_ptr; 1454 struct device *dev = &rproc->dev; 1455 size_t table_sz; 1456 int ret; 1457 1458 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1459 if (!table_ptr) { 1460 /* Not having a resource table is acceptable */ 1461 return 0; 1462 } 1463 1464 if (IS_ERR(table_ptr)) { 1465 ret = PTR_ERR(table_ptr); 1466 dev_err(dev, "can't load resource table: %d\n", ret); 1467 return ret; 1468 } 1469 1470 /* 1471 * If it is possible to detach the remote processor, keep an untouched 1472 * copy of the resource table. That way we can start fresh again when 1473 * the remote processor is re-attached, that is: 1474 * 1475 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1476 * 1477 * Free'd in rproc_reset_rsc_table_on_detach() and 1478 * rproc_reset_rsc_table_on_stop(). 1479 */ 1480 if (rproc->ops->detach) { 1481 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1482 if (!rproc->clean_table) 1483 return -ENOMEM; 1484 } else { 1485 rproc->clean_table = NULL; 1486 } 1487 1488 rproc->cached_table = NULL; 1489 rproc->table_ptr = table_ptr; 1490 rproc->table_sz = table_sz; 1491 1492 return 0; 1493 } 1494 1495 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1496 { 1497 struct resource_table *table_ptr; 1498 1499 /* A resource table was never retrieved, nothing to do here */ 1500 if (!rproc->table_ptr) 1501 return 0; 1502 1503 /* 1504 * If we made it to this point a clean_table _must_ have been 1505 * allocated in rproc_set_rsc_table(). If one isn't present 1506 * something went really wrong and we must complain. 1507 */ 1508 if (WARN_ON(!rproc->clean_table)) 1509 return -EINVAL; 1510 1511 /* Remember where the external entity installed the resource table */ 1512 table_ptr = rproc->table_ptr; 1513 1514 /* 1515 * If we made it here the remote processor was started by another 1516 * entity and a cache table doesn't exist. As such make a copy of 1517 * the resource table currently used by the remote processor and 1518 * use that for the rest of the shutdown process. The memory 1519 * allocated here is free'd in rproc_detach(). 1520 */ 1521 rproc->cached_table = kmemdup(rproc->table_ptr, 1522 rproc->table_sz, GFP_KERNEL); 1523 if (!rproc->cached_table) 1524 return -ENOMEM; 1525 1526 /* 1527 * Use a copy of the resource table for the remainder of the 1528 * shutdown process. 1529 */ 1530 rproc->table_ptr = rproc->cached_table; 1531 1532 /* 1533 * Reset the memory area where the firmware loaded the resource table 1534 * to its original value. That way when we re-attach the remote 1535 * processor the resource table is clean and ready to be used again. 1536 */ 1537 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1538 1539 /* 1540 * The clean resource table is no longer needed. Allocated in 1541 * rproc_set_rsc_table(). 1542 */ 1543 kfree(rproc->clean_table); 1544 1545 return 0; 1546 } 1547 1548 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1549 { 1550 /* A resource table was never retrieved, nothing to do here */ 1551 if (!rproc->table_ptr) 1552 return 0; 1553 1554 /* 1555 * If a cache table exists the remote processor was started by 1556 * the remoteproc core. That cache table should be used for 1557 * the rest of the shutdown process. 1558 */ 1559 if (rproc->cached_table) 1560 goto out; 1561 1562 /* 1563 * If we made it here the remote processor was started by another 1564 * entity and a cache table doesn't exist. As such make a copy of 1565 * the resource table currently used by the remote processor and 1566 * use that for the rest of the shutdown process. The memory 1567 * allocated here is free'd in rproc_shutdown(). 1568 */ 1569 rproc->cached_table = kmemdup(rproc->table_ptr, 1570 rproc->table_sz, GFP_KERNEL); 1571 if (!rproc->cached_table) 1572 return -ENOMEM; 1573 1574 /* 1575 * Since the remote processor is being switched off the clean table 1576 * won't be needed. Allocated in rproc_set_rsc_table(). 1577 */ 1578 kfree(rproc->clean_table); 1579 1580 out: 1581 /* 1582 * Use a copy of the resource table for the remainder of the 1583 * shutdown process. 1584 */ 1585 rproc->table_ptr = rproc->cached_table; 1586 return 0; 1587 } 1588 1589 /* 1590 * Attach to remote processor - similar to rproc_fw_boot() but without 1591 * the steps that deal with the firmware image. 1592 */ 1593 static int rproc_attach(struct rproc *rproc) 1594 { 1595 struct device *dev = &rproc->dev; 1596 int ret; 1597 1598 /* 1599 * if enabling an IOMMU isn't relevant for this rproc, this is 1600 * just a nop 1601 */ 1602 ret = rproc_enable_iommu(rproc); 1603 if (ret) { 1604 dev_err(dev, "can't enable iommu: %d\n", ret); 1605 return ret; 1606 } 1607 1608 /* Do anything that is needed to boot the remote processor */ 1609 ret = rproc_prepare_device(rproc); 1610 if (ret) { 1611 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1612 goto disable_iommu; 1613 } 1614 1615 ret = rproc_set_rsc_table(rproc); 1616 if (ret) { 1617 dev_err(dev, "can't load resource table: %d\n", ret); 1618 goto unprepare_device; 1619 } 1620 1621 /* reset max_notifyid */ 1622 rproc->max_notifyid = -1; 1623 1624 /* reset handled vdev */ 1625 rproc->nb_vdev = 0; 1626 1627 /* 1628 * Handle firmware resources required to attach to a remote processor. 1629 * Because we are attaching rather than booting the remote processor, 1630 * we expect the platform driver to properly set rproc->table_ptr. 1631 */ 1632 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1633 if (ret) { 1634 dev_err(dev, "Failed to process resources: %d\n", ret); 1635 goto unprepare_device; 1636 } 1637 1638 /* Allocate carveout resources associated to rproc */ 1639 ret = rproc_alloc_registered_carveouts(rproc); 1640 if (ret) { 1641 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1642 ret); 1643 goto clean_up_resources; 1644 } 1645 1646 ret = __rproc_attach(rproc); 1647 if (ret) 1648 goto clean_up_resources; 1649 1650 return 0; 1651 1652 clean_up_resources: 1653 rproc_resource_cleanup(rproc); 1654 unprepare_device: 1655 /* release HW resources if needed */ 1656 rproc_unprepare_device(rproc); 1657 disable_iommu: 1658 rproc_disable_iommu(rproc); 1659 return ret; 1660 } 1661 1662 /* 1663 * take a firmware and boot it up. 1664 * 1665 * Note: this function is called asynchronously upon registration of the 1666 * remote processor (so we must wait until it completes before we try 1667 * to unregister the device. one other option is just to use kref here, 1668 * that might be cleaner). 1669 */ 1670 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1671 { 1672 struct rproc *rproc = context; 1673 1674 rproc_boot(rproc); 1675 1676 release_firmware(fw); 1677 } 1678 1679 static int rproc_trigger_auto_boot(struct rproc *rproc) 1680 { 1681 int ret; 1682 1683 /* 1684 * Since the remote processor is in a detached state, it has already 1685 * been booted by another entity. As such there is no point in waiting 1686 * for a firmware image to be loaded, we can simply initiate the process 1687 * of attaching to it immediately. 1688 */ 1689 if (rproc->state == RPROC_DETACHED) 1690 return rproc_boot(rproc); 1691 1692 /* 1693 * We're initiating an asynchronous firmware loading, so we can 1694 * be built-in kernel code, without hanging the boot process. 1695 */ 1696 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 1697 rproc->firmware, &rproc->dev, GFP_KERNEL, 1698 rproc, rproc_auto_boot_callback); 1699 if (ret < 0) 1700 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1701 1702 return ret; 1703 } 1704 1705 static int rproc_stop(struct rproc *rproc, bool crashed) 1706 { 1707 struct device *dev = &rproc->dev; 1708 int ret; 1709 1710 /* No need to continue if a stop() operation has not been provided */ 1711 if (!rproc->ops->stop) 1712 return -EINVAL; 1713 1714 /* Stop any subdevices for the remote processor */ 1715 rproc_stop_subdevices(rproc, crashed); 1716 1717 /* the installed resource table is no longer accessible */ 1718 ret = rproc_reset_rsc_table_on_stop(rproc); 1719 if (ret) { 1720 dev_err(dev, "can't reset resource table: %d\n", ret); 1721 return ret; 1722 } 1723 1724 1725 /* power off the remote processor */ 1726 ret = rproc->ops->stop(rproc); 1727 if (ret) { 1728 dev_err(dev, "can't stop rproc: %d\n", ret); 1729 return ret; 1730 } 1731 1732 rproc_unprepare_subdevices(rproc); 1733 1734 rproc->state = RPROC_OFFLINE; 1735 1736 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * __rproc_detach(): Does the opposite of __rproc_attach() 1743 */ 1744 static int __rproc_detach(struct rproc *rproc) 1745 { 1746 struct device *dev = &rproc->dev; 1747 int ret; 1748 1749 /* No need to continue if a detach() operation has not been provided */ 1750 if (!rproc->ops->detach) 1751 return -EINVAL; 1752 1753 /* Stop any subdevices for the remote processor */ 1754 rproc_stop_subdevices(rproc, false); 1755 1756 /* the installed resource table is no longer accessible */ 1757 ret = rproc_reset_rsc_table_on_detach(rproc); 1758 if (ret) { 1759 dev_err(dev, "can't reset resource table: %d\n", ret); 1760 return ret; 1761 } 1762 1763 /* Tell the remote processor the core isn't available anymore */ 1764 ret = rproc->ops->detach(rproc); 1765 if (ret) { 1766 dev_err(dev, "can't detach from rproc: %d\n", ret); 1767 return ret; 1768 } 1769 1770 rproc_unprepare_subdevices(rproc); 1771 1772 rproc->state = RPROC_DETACHED; 1773 1774 dev_info(dev, "detached remote processor %s\n", rproc->name); 1775 1776 return 0; 1777 } 1778 1779 static int rproc_attach_recovery(struct rproc *rproc) 1780 { 1781 int ret; 1782 1783 ret = __rproc_detach(rproc); 1784 if (ret) 1785 return ret; 1786 1787 return __rproc_attach(rproc); 1788 } 1789 1790 static int rproc_boot_recovery(struct rproc *rproc) 1791 { 1792 const struct firmware *firmware_p; 1793 struct device *dev = &rproc->dev; 1794 int ret; 1795 1796 ret = rproc_stop(rproc, true); 1797 if (ret) 1798 return ret; 1799 1800 /* generate coredump */ 1801 rproc->ops->coredump(rproc); 1802 1803 /* load firmware */ 1804 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1805 if (ret < 0) { 1806 dev_err(dev, "request_firmware failed: %d\n", ret); 1807 return ret; 1808 } 1809 1810 /* boot the remote processor up again */ 1811 ret = rproc_start(rproc, firmware_p); 1812 1813 release_firmware(firmware_p); 1814 1815 return ret; 1816 } 1817 1818 /** 1819 * rproc_trigger_recovery() - recover a remoteproc 1820 * @rproc: the remote processor 1821 * 1822 * The recovery is done by resetting all the virtio devices, that way all the 1823 * rpmsg drivers will be reseted along with the remote processor making the 1824 * remoteproc functional again. 1825 * 1826 * This function can sleep, so it cannot be called from atomic context. 1827 * 1828 * Return: 0 on success or a negative value upon failure 1829 */ 1830 int rproc_trigger_recovery(struct rproc *rproc) 1831 { 1832 struct device *dev = &rproc->dev; 1833 int ret; 1834 1835 ret = mutex_lock_interruptible(&rproc->lock); 1836 if (ret) 1837 return ret; 1838 1839 /* State could have changed before we got the mutex */ 1840 if (rproc->state != RPROC_CRASHED) 1841 goto unlock_mutex; 1842 1843 dev_err(dev, "recovering %s\n", rproc->name); 1844 1845 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) 1846 ret = rproc_attach_recovery(rproc); 1847 else 1848 ret = rproc_boot_recovery(rproc); 1849 1850 unlock_mutex: 1851 mutex_unlock(&rproc->lock); 1852 return ret; 1853 } 1854 1855 /** 1856 * rproc_crash_handler_work() - handle a crash 1857 * @work: work treating the crash 1858 * 1859 * This function needs to handle everything related to a crash, like cpu 1860 * registers and stack dump, information to help to debug the fatal error, etc. 1861 */ 1862 static void rproc_crash_handler_work(struct work_struct *work) 1863 { 1864 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1865 struct device *dev = &rproc->dev; 1866 1867 dev_dbg(dev, "enter %s\n", __func__); 1868 1869 mutex_lock(&rproc->lock); 1870 1871 if (rproc->state == RPROC_CRASHED) { 1872 /* handle only the first crash detected */ 1873 mutex_unlock(&rproc->lock); 1874 return; 1875 } 1876 1877 if (rproc->state == RPROC_OFFLINE) { 1878 /* Don't recover if the remote processor was stopped */ 1879 mutex_unlock(&rproc->lock); 1880 goto out; 1881 } 1882 1883 rproc->state = RPROC_CRASHED; 1884 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1885 rproc->name); 1886 1887 mutex_unlock(&rproc->lock); 1888 1889 if (!rproc->recovery_disabled) 1890 rproc_trigger_recovery(rproc); 1891 1892 out: 1893 pm_relax(rproc->dev.parent); 1894 } 1895 1896 /** 1897 * rproc_boot() - boot a remote processor 1898 * @rproc: handle of a remote processor 1899 * 1900 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1901 * 1902 * If the remote processor is already powered on, this function immediately 1903 * returns (successfully). 1904 * 1905 * Return: 0 on success, and an appropriate error value otherwise 1906 */ 1907 int rproc_boot(struct rproc *rproc) 1908 { 1909 const struct firmware *firmware_p; 1910 struct device *dev; 1911 int ret; 1912 1913 if (!rproc) { 1914 pr_err("invalid rproc handle\n"); 1915 return -EINVAL; 1916 } 1917 1918 dev = &rproc->dev; 1919 1920 ret = mutex_lock_interruptible(&rproc->lock); 1921 if (ret) { 1922 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1923 return ret; 1924 } 1925 1926 if (rproc->state == RPROC_DELETED) { 1927 ret = -ENODEV; 1928 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1929 goto unlock_mutex; 1930 } 1931 1932 /* skip the boot or attach process if rproc is already powered up */ 1933 if (atomic_inc_return(&rproc->power) > 1) { 1934 ret = 0; 1935 goto unlock_mutex; 1936 } 1937 1938 if (rproc->state == RPROC_DETACHED) { 1939 dev_info(dev, "attaching to %s\n", rproc->name); 1940 1941 ret = rproc_attach(rproc); 1942 } else { 1943 dev_info(dev, "powering up %s\n", rproc->name); 1944 1945 /* load firmware */ 1946 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1947 if (ret < 0) { 1948 dev_err(dev, "request_firmware failed: %d\n", ret); 1949 goto downref_rproc; 1950 } 1951 1952 ret = rproc_fw_boot(rproc, firmware_p); 1953 1954 release_firmware(firmware_p); 1955 } 1956 1957 downref_rproc: 1958 if (ret) 1959 atomic_dec(&rproc->power); 1960 unlock_mutex: 1961 mutex_unlock(&rproc->lock); 1962 return ret; 1963 } 1964 EXPORT_SYMBOL(rproc_boot); 1965 1966 /** 1967 * rproc_shutdown() - power off the remote processor 1968 * @rproc: the remote processor 1969 * 1970 * Power off a remote processor (previously booted with rproc_boot()). 1971 * 1972 * In case @rproc is still being used by an additional user(s), then 1973 * this function will just decrement the power refcount and exit, 1974 * without really powering off the device. 1975 * 1976 * Every call to rproc_boot() must (eventually) be accompanied by a call 1977 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1978 * 1979 * Notes: 1980 * - we're not decrementing the rproc's refcount, only the power refcount. 1981 * which means that the @rproc handle stays valid even after rproc_shutdown() 1982 * returns, and users can still use it with a subsequent rproc_boot(), if 1983 * needed. 1984 * 1985 * Return: 0 on success, and an appropriate error value otherwise 1986 */ 1987 int rproc_shutdown(struct rproc *rproc) 1988 { 1989 struct device *dev = &rproc->dev; 1990 int ret = 0; 1991 1992 ret = mutex_lock_interruptible(&rproc->lock); 1993 if (ret) { 1994 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1995 return ret; 1996 } 1997 1998 if (rproc->state != RPROC_RUNNING && 1999 rproc->state != RPROC_ATTACHED) { 2000 ret = -EINVAL; 2001 goto out; 2002 } 2003 2004 /* if the remote proc is still needed, bail out */ 2005 if (!atomic_dec_and_test(&rproc->power)) 2006 goto out; 2007 2008 ret = rproc_stop(rproc, false); 2009 if (ret) { 2010 atomic_inc(&rproc->power); 2011 goto out; 2012 } 2013 2014 /* clean up all acquired resources */ 2015 rproc_resource_cleanup(rproc); 2016 2017 /* release HW resources if needed */ 2018 rproc_unprepare_device(rproc); 2019 2020 rproc_disable_iommu(rproc); 2021 2022 /* Free the copy of the resource table */ 2023 kfree(rproc->cached_table); 2024 rproc->cached_table = NULL; 2025 rproc->table_ptr = NULL; 2026 out: 2027 mutex_unlock(&rproc->lock); 2028 return ret; 2029 } 2030 EXPORT_SYMBOL(rproc_shutdown); 2031 2032 /** 2033 * rproc_detach() - Detach the remote processor from the 2034 * remoteproc core 2035 * 2036 * @rproc: the remote processor 2037 * 2038 * Detach a remote processor (previously attached to with rproc_attach()). 2039 * 2040 * In case @rproc is still being used by an additional user(s), then 2041 * this function will just decrement the power refcount and exit, 2042 * without disconnecting the device. 2043 * 2044 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2045 * processor know that services provided by the application processor are 2046 * no longer available. From there it should be possible to remove the 2047 * platform driver and even power cycle the application processor (if the HW 2048 * supports it) without needing to switch off the remote processor. 2049 * 2050 * Return: 0 on success, and an appropriate error value otherwise 2051 */ 2052 int rproc_detach(struct rproc *rproc) 2053 { 2054 struct device *dev = &rproc->dev; 2055 int ret; 2056 2057 ret = mutex_lock_interruptible(&rproc->lock); 2058 if (ret) { 2059 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2060 return ret; 2061 } 2062 2063 if (rproc->state != RPROC_ATTACHED) { 2064 ret = -EINVAL; 2065 goto out; 2066 } 2067 2068 /* if the remote proc is still needed, bail out */ 2069 if (!atomic_dec_and_test(&rproc->power)) { 2070 ret = 0; 2071 goto out; 2072 } 2073 2074 ret = __rproc_detach(rproc); 2075 if (ret) { 2076 atomic_inc(&rproc->power); 2077 goto out; 2078 } 2079 2080 /* clean up all acquired resources */ 2081 rproc_resource_cleanup(rproc); 2082 2083 /* release HW resources if needed */ 2084 rproc_unprepare_device(rproc); 2085 2086 rproc_disable_iommu(rproc); 2087 2088 /* Free the copy of the resource table */ 2089 kfree(rproc->cached_table); 2090 rproc->cached_table = NULL; 2091 rproc->table_ptr = NULL; 2092 out: 2093 mutex_unlock(&rproc->lock); 2094 return ret; 2095 } 2096 EXPORT_SYMBOL(rproc_detach); 2097 2098 /** 2099 * rproc_get_by_phandle() - find a remote processor by phandle 2100 * @phandle: phandle to the rproc 2101 * 2102 * Finds an rproc handle using the remote processor's phandle, and then 2103 * return a handle to the rproc. 2104 * 2105 * This function increments the remote processor's refcount, so always 2106 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2107 * 2108 * Return: rproc handle on success, and NULL on failure 2109 */ 2110 #ifdef CONFIG_OF 2111 struct rproc *rproc_get_by_phandle(phandle phandle) 2112 { 2113 struct rproc *rproc = NULL, *r; 2114 struct device_node *np; 2115 2116 np = of_find_node_by_phandle(phandle); 2117 if (!np) 2118 return NULL; 2119 2120 rcu_read_lock(); 2121 list_for_each_entry_rcu(r, &rproc_list, node) { 2122 if (r->dev.parent && device_match_of_node(r->dev.parent, np)) { 2123 /* prevent underlying implementation from being removed */ 2124 if (!try_module_get(r->dev.parent->driver->owner)) { 2125 dev_err(&r->dev, "can't get owner\n"); 2126 break; 2127 } 2128 2129 rproc = r; 2130 get_device(&rproc->dev); 2131 break; 2132 } 2133 } 2134 rcu_read_unlock(); 2135 2136 of_node_put(np); 2137 2138 return rproc; 2139 } 2140 #else 2141 struct rproc *rproc_get_by_phandle(phandle phandle) 2142 { 2143 return NULL; 2144 } 2145 #endif 2146 EXPORT_SYMBOL(rproc_get_by_phandle); 2147 2148 /** 2149 * rproc_set_firmware() - assign a new firmware 2150 * @rproc: rproc handle to which the new firmware is being assigned 2151 * @fw_name: new firmware name to be assigned 2152 * 2153 * This function allows remoteproc drivers or clients to configure a custom 2154 * firmware name that is different from the default name used during remoteproc 2155 * registration. The function does not trigger a remote processor boot, 2156 * only sets the firmware name used for a subsequent boot. This function 2157 * should also be called only when the remote processor is offline. 2158 * 2159 * This allows either the userspace to configure a different name through 2160 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2161 * a specific firmware when it is controlling the boot and shutdown of the 2162 * remote processor. 2163 * 2164 * Return: 0 on success or a negative value upon failure 2165 */ 2166 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2167 { 2168 struct device *dev; 2169 int ret, len; 2170 char *p; 2171 2172 if (!rproc || !fw_name) 2173 return -EINVAL; 2174 2175 dev = rproc->dev.parent; 2176 2177 ret = mutex_lock_interruptible(&rproc->lock); 2178 if (ret) { 2179 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2180 return -EINVAL; 2181 } 2182 2183 if (rproc->state != RPROC_OFFLINE) { 2184 dev_err(dev, "can't change firmware while running\n"); 2185 ret = -EBUSY; 2186 goto out; 2187 } 2188 2189 len = strcspn(fw_name, "\n"); 2190 if (!len) { 2191 dev_err(dev, "can't provide empty string for firmware name\n"); 2192 ret = -EINVAL; 2193 goto out; 2194 } 2195 2196 p = kstrndup(fw_name, len, GFP_KERNEL); 2197 if (!p) { 2198 ret = -ENOMEM; 2199 goto out; 2200 } 2201 2202 kfree_const(rproc->firmware); 2203 rproc->firmware = p; 2204 2205 out: 2206 mutex_unlock(&rproc->lock); 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(rproc_set_firmware); 2210 2211 static int rproc_validate(struct rproc *rproc) 2212 { 2213 switch (rproc->state) { 2214 case RPROC_OFFLINE: 2215 /* 2216 * An offline processor without a start() 2217 * function makes no sense. 2218 */ 2219 if (!rproc->ops->start) 2220 return -EINVAL; 2221 break; 2222 case RPROC_DETACHED: 2223 /* 2224 * A remote processor in a detached state without an 2225 * attach() function makes not sense. 2226 */ 2227 if (!rproc->ops->attach) 2228 return -EINVAL; 2229 /* 2230 * When attaching to a remote processor the device memory 2231 * is already available and as such there is no need to have a 2232 * cached table. 2233 */ 2234 if (rproc->cached_table) 2235 return -EINVAL; 2236 break; 2237 default: 2238 /* 2239 * When adding a remote processor, the state of the device 2240 * can be offline or detached, nothing else. 2241 */ 2242 return -EINVAL; 2243 } 2244 2245 return 0; 2246 } 2247 2248 /** 2249 * rproc_add() - register a remote processor 2250 * @rproc: the remote processor handle to register 2251 * 2252 * Registers @rproc with the remoteproc framework, after it has been 2253 * allocated with rproc_alloc(). 2254 * 2255 * This is called by the platform-specific rproc implementation, whenever 2256 * a new remote processor device is probed. 2257 * 2258 * Note: this function initiates an asynchronous firmware loading 2259 * context, which will look for virtio devices supported by the rproc's 2260 * firmware. 2261 * 2262 * If found, those virtio devices will be created and added, so as a result 2263 * of registering this remote processor, additional virtio drivers might be 2264 * probed. 2265 * 2266 * Return: 0 on success and an appropriate error code otherwise 2267 */ 2268 int rproc_add(struct rproc *rproc) 2269 { 2270 struct device *dev = &rproc->dev; 2271 int ret; 2272 2273 ret = rproc_validate(rproc); 2274 if (ret < 0) 2275 return ret; 2276 2277 /* add char device for this remoteproc */ 2278 ret = rproc_char_device_add(rproc); 2279 if (ret < 0) 2280 return ret; 2281 2282 ret = device_add(dev); 2283 if (ret < 0) { 2284 put_device(dev); 2285 goto rproc_remove_cdev; 2286 } 2287 2288 dev_info(dev, "%s is available\n", rproc->name); 2289 2290 /* create debugfs entries */ 2291 rproc_create_debug_dir(rproc); 2292 2293 /* if rproc is marked always-on, request it to boot */ 2294 if (rproc->auto_boot) { 2295 ret = rproc_trigger_auto_boot(rproc); 2296 if (ret < 0) 2297 goto rproc_remove_dev; 2298 } 2299 2300 /* expose to rproc_get_by_phandle users */ 2301 mutex_lock(&rproc_list_mutex); 2302 list_add_rcu(&rproc->node, &rproc_list); 2303 mutex_unlock(&rproc_list_mutex); 2304 2305 return 0; 2306 2307 rproc_remove_dev: 2308 rproc_delete_debug_dir(rproc); 2309 device_del(dev); 2310 rproc_remove_cdev: 2311 rproc_char_device_remove(rproc); 2312 return ret; 2313 } 2314 EXPORT_SYMBOL(rproc_add); 2315 2316 static void devm_rproc_remove(void *rproc) 2317 { 2318 rproc_del(rproc); 2319 } 2320 2321 /** 2322 * devm_rproc_add() - resource managed rproc_add() 2323 * @dev: the underlying device 2324 * @rproc: the remote processor handle to register 2325 * 2326 * This function performs like rproc_add() but the registered rproc device will 2327 * automatically be removed on driver detach. 2328 * 2329 * Return: 0 on success, negative errno on failure 2330 */ 2331 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2332 { 2333 int err; 2334 2335 err = rproc_add(rproc); 2336 if (err) 2337 return err; 2338 2339 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2340 } 2341 EXPORT_SYMBOL(devm_rproc_add); 2342 2343 /** 2344 * rproc_type_release() - release a remote processor instance 2345 * @dev: the rproc's device 2346 * 2347 * This function should _never_ be called directly. 2348 * 2349 * It will be called by the driver core when no one holds a valid pointer 2350 * to @dev anymore. 2351 */ 2352 static void rproc_type_release(struct device *dev) 2353 { 2354 struct rproc *rproc = container_of(dev, struct rproc, dev); 2355 2356 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2357 2358 idr_destroy(&rproc->notifyids); 2359 2360 if (rproc->index >= 0) 2361 ida_free(&rproc_dev_index, rproc->index); 2362 2363 kfree_const(rproc->firmware); 2364 kfree_const(rproc->name); 2365 kfree(rproc->ops); 2366 kfree(rproc); 2367 } 2368 2369 static const struct device_type rproc_type = { 2370 .name = "remoteproc", 2371 .release = rproc_type_release, 2372 }; 2373 2374 static int rproc_alloc_firmware(struct rproc *rproc, 2375 const char *name, const char *firmware) 2376 { 2377 const char *p; 2378 2379 /* 2380 * Allocate a firmware name if the caller gave us one to work 2381 * with. Otherwise construct a new one using a default pattern. 2382 */ 2383 if (firmware) 2384 p = kstrdup_const(firmware, GFP_KERNEL); 2385 else 2386 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2387 2388 if (!p) 2389 return -ENOMEM; 2390 2391 rproc->firmware = p; 2392 2393 return 0; 2394 } 2395 2396 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2397 { 2398 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2399 if (!rproc->ops) 2400 return -ENOMEM; 2401 2402 /* Default to rproc_coredump if no coredump function is specified */ 2403 if (!rproc->ops->coredump) 2404 rproc->ops->coredump = rproc_coredump; 2405 2406 if (rproc->ops->load) 2407 return 0; 2408 2409 /* Default to ELF loader if no load function is specified */ 2410 rproc->ops->load = rproc_elf_load_segments; 2411 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2412 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2413 rproc->ops->sanity_check = rproc_elf_sanity_check; 2414 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2415 2416 return 0; 2417 } 2418 2419 /** 2420 * rproc_alloc() - allocate a remote processor handle 2421 * @dev: the underlying device 2422 * @name: name of this remote processor 2423 * @ops: platform-specific handlers (mainly start/stop) 2424 * @firmware: name of firmware file to load, can be NULL 2425 * @len: length of private data needed by the rproc driver (in bytes) 2426 * 2427 * Allocates a new remote processor handle, but does not register 2428 * it yet. if @firmware is NULL, a default name is used. 2429 * 2430 * This function should be used by rproc implementations during initialization 2431 * of the remote processor. 2432 * 2433 * After creating an rproc handle using this function, and when ready, 2434 * implementations should then call rproc_add() to complete 2435 * the registration of the remote processor. 2436 * 2437 * Note: _never_ directly deallocate @rproc, even if it was not registered 2438 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2439 * 2440 * Return: new rproc pointer on success, and NULL on failure 2441 */ 2442 struct rproc *rproc_alloc(struct device *dev, const char *name, 2443 const struct rproc_ops *ops, 2444 const char *firmware, int len) 2445 { 2446 struct rproc *rproc; 2447 2448 if (!dev || !name || !ops) 2449 return NULL; 2450 2451 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2452 if (!rproc) 2453 return NULL; 2454 2455 rproc->priv = &rproc[1]; 2456 rproc->auto_boot = true; 2457 rproc->elf_class = ELFCLASSNONE; 2458 rproc->elf_machine = EM_NONE; 2459 2460 device_initialize(&rproc->dev); 2461 rproc->dev.parent = dev; 2462 rproc->dev.type = &rproc_type; 2463 rproc->dev.class = &rproc_class; 2464 rproc->dev.driver_data = rproc; 2465 idr_init(&rproc->notifyids); 2466 2467 rproc->name = kstrdup_const(name, GFP_KERNEL); 2468 if (!rproc->name) 2469 goto put_device; 2470 2471 if (rproc_alloc_firmware(rproc, name, firmware)) 2472 goto put_device; 2473 2474 if (rproc_alloc_ops(rproc, ops)) 2475 goto put_device; 2476 2477 /* Assign a unique device index and name */ 2478 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); 2479 if (rproc->index < 0) { 2480 dev_err(dev, "ida_alloc failed: %d\n", rproc->index); 2481 goto put_device; 2482 } 2483 2484 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2485 2486 atomic_set(&rproc->power, 0); 2487 2488 mutex_init(&rproc->lock); 2489 2490 INIT_LIST_HEAD(&rproc->carveouts); 2491 INIT_LIST_HEAD(&rproc->mappings); 2492 INIT_LIST_HEAD(&rproc->traces); 2493 INIT_LIST_HEAD(&rproc->rvdevs); 2494 INIT_LIST_HEAD(&rproc->subdevs); 2495 INIT_LIST_HEAD(&rproc->dump_segments); 2496 2497 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2498 2499 rproc->state = RPROC_OFFLINE; 2500 2501 return rproc; 2502 2503 put_device: 2504 put_device(&rproc->dev); 2505 return NULL; 2506 } 2507 EXPORT_SYMBOL(rproc_alloc); 2508 2509 /** 2510 * rproc_free() - unroll rproc_alloc() 2511 * @rproc: the remote processor handle 2512 * 2513 * This function decrements the rproc dev refcount. 2514 * 2515 * If no one holds any reference to rproc anymore, then its refcount would 2516 * now drop to zero, and it would be freed. 2517 */ 2518 void rproc_free(struct rproc *rproc) 2519 { 2520 put_device(&rproc->dev); 2521 } 2522 EXPORT_SYMBOL(rproc_free); 2523 2524 /** 2525 * rproc_put() - release rproc reference 2526 * @rproc: the remote processor handle 2527 * 2528 * This function decrements the rproc dev refcount. 2529 * 2530 * If no one holds any reference to rproc anymore, then its refcount would 2531 * now drop to zero, and it would be freed. 2532 */ 2533 void rproc_put(struct rproc *rproc) 2534 { 2535 module_put(rproc->dev.parent->driver->owner); 2536 put_device(&rproc->dev); 2537 } 2538 EXPORT_SYMBOL(rproc_put); 2539 2540 /** 2541 * rproc_del() - unregister a remote processor 2542 * @rproc: rproc handle to unregister 2543 * 2544 * This function should be called when the platform specific rproc 2545 * implementation decides to remove the rproc device. it should 2546 * _only_ be called if a previous invocation of rproc_add() 2547 * has completed successfully. 2548 * 2549 * After rproc_del() returns, @rproc isn't freed yet, because 2550 * of the outstanding reference created by rproc_alloc. To decrement that 2551 * one last refcount, one still needs to call rproc_free(). 2552 * 2553 * Return: 0 on success and -EINVAL if @rproc isn't valid 2554 */ 2555 int rproc_del(struct rproc *rproc) 2556 { 2557 if (!rproc) 2558 return -EINVAL; 2559 2560 /* TODO: make sure this works with rproc->power > 1 */ 2561 rproc_shutdown(rproc); 2562 2563 mutex_lock(&rproc->lock); 2564 rproc->state = RPROC_DELETED; 2565 mutex_unlock(&rproc->lock); 2566 2567 rproc_delete_debug_dir(rproc); 2568 2569 /* the rproc is downref'ed as soon as it's removed from the klist */ 2570 mutex_lock(&rproc_list_mutex); 2571 list_del_rcu(&rproc->node); 2572 mutex_unlock(&rproc_list_mutex); 2573 2574 /* Ensure that no readers of rproc_list are still active */ 2575 synchronize_rcu(); 2576 2577 device_del(&rproc->dev); 2578 rproc_char_device_remove(rproc); 2579 2580 return 0; 2581 } 2582 EXPORT_SYMBOL(rproc_del); 2583 2584 static void devm_rproc_free(struct device *dev, void *res) 2585 { 2586 rproc_free(*(struct rproc **)res); 2587 } 2588 2589 /** 2590 * devm_rproc_alloc() - resource managed rproc_alloc() 2591 * @dev: the underlying device 2592 * @name: name of this remote processor 2593 * @ops: platform-specific handlers (mainly start/stop) 2594 * @firmware: name of firmware file to load, can be NULL 2595 * @len: length of private data needed by the rproc driver (in bytes) 2596 * 2597 * This function performs like rproc_alloc() but the acquired rproc device will 2598 * automatically be released on driver detach. 2599 * 2600 * Return: new rproc instance, or NULL on failure 2601 */ 2602 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2603 const struct rproc_ops *ops, 2604 const char *firmware, int len) 2605 { 2606 struct rproc **ptr, *rproc; 2607 2608 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2609 if (!ptr) 2610 return NULL; 2611 2612 rproc = rproc_alloc(dev, name, ops, firmware, len); 2613 if (rproc) { 2614 *ptr = rproc; 2615 devres_add(dev, ptr); 2616 } else { 2617 devres_free(ptr); 2618 } 2619 2620 return rproc; 2621 } 2622 EXPORT_SYMBOL(devm_rproc_alloc); 2623 2624 /** 2625 * rproc_add_subdev() - add a subdevice to a remoteproc 2626 * @rproc: rproc handle to add the subdevice to 2627 * @subdev: subdev handle to register 2628 * 2629 * Caller is responsible for populating optional subdevice function pointers. 2630 */ 2631 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2632 { 2633 list_add_tail(&subdev->node, &rproc->subdevs); 2634 } 2635 EXPORT_SYMBOL(rproc_add_subdev); 2636 2637 /** 2638 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2639 * @rproc: rproc handle to remove the subdevice from 2640 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2641 */ 2642 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2643 { 2644 list_del(&subdev->node); 2645 } 2646 EXPORT_SYMBOL(rproc_remove_subdev); 2647 2648 /** 2649 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2650 * @dev: child device to find ancestor of 2651 * 2652 * Return: the ancestor rproc instance, or NULL if not found 2653 */ 2654 struct rproc *rproc_get_by_child(struct device *dev) 2655 { 2656 for (dev = dev->parent; dev; dev = dev->parent) { 2657 if (dev->type == &rproc_type) 2658 return dev->driver_data; 2659 } 2660 2661 return NULL; 2662 } 2663 EXPORT_SYMBOL(rproc_get_by_child); 2664 2665 /** 2666 * rproc_report_crash() - rproc crash reporter function 2667 * @rproc: remote processor 2668 * @type: crash type 2669 * 2670 * This function must be called every time a crash is detected by the low-level 2671 * drivers implementing a specific remoteproc. This should not be called from a 2672 * non-remoteproc driver. 2673 * 2674 * This function can be called from atomic/interrupt context. 2675 */ 2676 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2677 { 2678 if (!rproc) { 2679 pr_err("NULL rproc pointer\n"); 2680 return; 2681 } 2682 2683 /* Prevent suspend while the remoteproc is being recovered */ 2684 pm_stay_awake(rproc->dev.parent); 2685 2686 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2687 rproc->name, rproc_crash_to_string(type)); 2688 2689 queue_work(rproc_recovery_wq, &rproc->crash_handler); 2690 } 2691 EXPORT_SYMBOL(rproc_report_crash); 2692 2693 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2694 void *ptr) 2695 { 2696 unsigned int longest = 0; 2697 struct rproc *rproc; 2698 unsigned int d; 2699 2700 rcu_read_lock(); 2701 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2702 if (!rproc->ops->panic) 2703 continue; 2704 2705 if (rproc->state != RPROC_RUNNING && 2706 rproc->state != RPROC_ATTACHED) 2707 continue; 2708 2709 d = rproc->ops->panic(rproc); 2710 longest = max(longest, d); 2711 } 2712 rcu_read_unlock(); 2713 2714 /* 2715 * Delay for the longest requested duration before returning. This can 2716 * be used by the remoteproc drivers to give the remote processor time 2717 * to perform any requested operations (such as flush caches), when 2718 * it's not possible to signal the Linux side due to the panic. 2719 */ 2720 mdelay(longest); 2721 2722 return NOTIFY_DONE; 2723 } 2724 2725 static void __init rproc_init_panic(void) 2726 { 2727 rproc_panic_nb.notifier_call = rproc_panic_handler; 2728 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2729 } 2730 2731 static void __exit rproc_exit_panic(void) 2732 { 2733 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2734 } 2735 2736 static int __init remoteproc_init(void) 2737 { 2738 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", 2739 WQ_UNBOUND | WQ_FREEZABLE, 0); 2740 if (!rproc_recovery_wq) { 2741 pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); 2742 return -ENOMEM; 2743 } 2744 2745 rproc_init_sysfs(); 2746 rproc_init_debugfs(); 2747 rproc_init_cdev(); 2748 rproc_init_panic(); 2749 2750 return 0; 2751 } 2752 subsys_initcall(remoteproc_init); 2753 2754 static void __exit remoteproc_exit(void) 2755 { 2756 ida_destroy(&rproc_dev_index); 2757 2758 if (!rproc_recovery_wq) 2759 return; 2760 2761 rproc_exit_panic(); 2762 rproc_exit_debugfs(); 2763 rproc_exit_sysfs(); 2764 destroy_workqueue(rproc_recovery_wq); 2765 } 2766 module_exit(remoteproc_exit); 2767 2768 MODULE_LICENSE("GPL v2"); 2769 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2770