1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/mutex.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */ 27 #include <linux/firmware.h> 28 #include <linux/string.h> 29 #include <linux/debugfs.h> 30 #include <linux/rculist.h> 31 #include <linux/remoteproc.h> 32 #include <linux/iommu.h> 33 #include <linux/idr.h> 34 #include <linux/elf.h> 35 #include <linux/crc32.h> 36 #include <linux/of_reserved_mem.h> 37 #include <linux/virtio_ids.h> 38 #include <linux/virtio_ring.h> 39 #include <asm/byteorder.h> 40 #include <linux/platform_device.h> 41 42 #include "remoteproc_internal.h" 43 44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 45 46 static DEFINE_MUTEX(rproc_list_mutex); 47 static LIST_HEAD(rproc_list); 48 static struct notifier_block rproc_panic_nb; 49 50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 51 void *, int offset, int avail); 52 53 static int rproc_alloc_carveout(struct rproc *rproc, 54 struct rproc_mem_entry *mem); 55 static int rproc_release_carveout(struct rproc *rproc, 56 struct rproc_mem_entry *mem); 57 58 /* Unique indices for remoteproc devices */ 59 static DEFINE_IDA(rproc_dev_index); 60 61 static const char * const rproc_crash_names[] = { 62 [RPROC_MMUFAULT] = "mmufault", 63 [RPROC_WATCHDOG] = "watchdog", 64 [RPROC_FATAL_ERROR] = "fatal error", 65 }; 66 67 /* translate rproc_crash_type to string */ 68 static const char *rproc_crash_to_string(enum rproc_crash_type type) 69 { 70 if (type < ARRAY_SIZE(rproc_crash_names)) 71 return rproc_crash_names[type]; 72 return "unknown"; 73 } 74 75 /* 76 * This is the IOMMU fault handler we register with the IOMMU API 77 * (when relevant; not all remote processors access memory through 78 * an IOMMU). 79 * 80 * IOMMU core will invoke this handler whenever the remote processor 81 * will try to access an unmapped device address. 82 */ 83 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 84 unsigned long iova, int flags, void *token) 85 { 86 struct rproc *rproc = token; 87 88 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 89 90 rproc_report_crash(rproc, RPROC_MMUFAULT); 91 92 /* 93 * Let the iommu core know we're not really handling this fault; 94 * we just used it as a recovery trigger. 95 */ 96 return -ENOSYS; 97 } 98 99 static int rproc_enable_iommu(struct rproc *rproc) 100 { 101 struct iommu_domain *domain; 102 struct device *dev = rproc->dev.parent; 103 int ret; 104 105 if (!rproc->has_iommu) { 106 dev_dbg(dev, "iommu not present\n"); 107 return 0; 108 } 109 110 domain = iommu_domain_alloc(dev->bus); 111 if (!domain) { 112 dev_err(dev, "can't alloc iommu domain\n"); 113 return -ENOMEM; 114 } 115 116 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 117 118 ret = iommu_attach_device(domain, dev); 119 if (ret) { 120 dev_err(dev, "can't attach iommu device: %d\n", ret); 121 goto free_domain; 122 } 123 124 rproc->domain = domain; 125 126 return 0; 127 128 free_domain: 129 iommu_domain_free(domain); 130 return ret; 131 } 132 133 static void rproc_disable_iommu(struct rproc *rproc) 134 { 135 struct iommu_domain *domain = rproc->domain; 136 struct device *dev = rproc->dev.parent; 137 138 if (!domain) 139 return; 140 141 iommu_detach_device(domain, dev); 142 iommu_domain_free(domain); 143 } 144 145 phys_addr_t rproc_va_to_pa(void *cpu_addr) 146 { 147 /* 148 * Return physical address according to virtual address location 149 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 150 * - in kernel: if region allocated in generic dma memory pool 151 */ 152 if (is_vmalloc_addr(cpu_addr)) { 153 return page_to_phys(vmalloc_to_page(cpu_addr)) + 154 offset_in_page(cpu_addr); 155 } 156 157 WARN_ON(!virt_addr_valid(cpu_addr)); 158 return virt_to_phys(cpu_addr); 159 } 160 EXPORT_SYMBOL(rproc_va_to_pa); 161 162 /** 163 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 164 * @rproc: handle of a remote processor 165 * @da: remoteproc device address to translate 166 * @len: length of the memory region @da is pointing to 167 * 168 * Some remote processors will ask us to allocate them physically contiguous 169 * memory regions (which we call "carveouts"), and map them to specific 170 * device addresses (which are hardcoded in the firmware). They may also have 171 * dedicated memory regions internal to the processors, and use them either 172 * exclusively or alongside carveouts. 173 * 174 * They may then ask us to copy objects into specific device addresses (e.g. 175 * code/data sections) or expose us certain symbols in other device address 176 * (e.g. their trace buffer). 177 * 178 * This function is a helper function with which we can go over the allocated 179 * carveouts and translate specific device addresses to kernel virtual addresses 180 * so we can access the referenced memory. This function also allows to perform 181 * translations on the internal remoteproc memory regions through a platform 182 * implementation specific da_to_va ops, if present. 183 * 184 * The function returns a valid kernel address on success or NULL on failure. 185 * 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 187 * but only on kernel direct mapped RAM memory. Instead, we're just using 188 * here the output of the DMA API for the carveouts, which should be more 189 * correct. 190 */ 191 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 192 { 193 struct rproc_mem_entry *carveout; 194 void *ptr = NULL; 195 196 if (rproc->ops->da_to_va) { 197 ptr = rproc->ops->da_to_va(rproc, da, len); 198 if (ptr) 199 goto out; 200 } 201 202 list_for_each_entry(carveout, &rproc->carveouts, node) { 203 int offset = da - carveout->da; 204 205 /* Verify that carveout is allocated */ 206 if (!carveout->va) 207 continue; 208 209 /* try next carveout if da is too small */ 210 if (offset < 0) 211 continue; 212 213 /* try next carveout if da is too large */ 214 if (offset + len > carveout->len) 215 continue; 216 217 ptr = carveout->va + offset; 218 219 break; 220 } 221 222 out: 223 return ptr; 224 } 225 EXPORT_SYMBOL(rproc_da_to_va); 226 227 /** 228 * rproc_find_carveout_by_name() - lookup the carveout region by a name 229 * @rproc: handle of a remote processor 230 * @name: carveout name to find (format string) 231 * @...: optional parameters matching @name string 232 * 233 * Platform driver has the capability to register some pre-allacoted carveout 234 * (physically contiguous memory regions) before rproc firmware loading and 235 * associated resource table analysis. These regions may be dedicated memory 236 * regions internal to the coprocessor or specified DDR region with specific 237 * attributes 238 * 239 * This function is a helper function with which we can go over the 240 * allocated carveouts and return associated region characteristics like 241 * coprocessor address, length or processor virtual address. 242 * 243 * Return: a valid pointer on carveout entry on success or NULL on failure. 244 */ 245 __printf(2, 3) 246 struct rproc_mem_entry * 247 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 248 { 249 va_list args; 250 char _name[32]; 251 struct rproc_mem_entry *carveout, *mem = NULL; 252 253 if (!name) 254 return NULL; 255 256 va_start(args, name); 257 vsnprintf(_name, sizeof(_name), name, args); 258 va_end(args); 259 260 list_for_each_entry(carveout, &rproc->carveouts, node) { 261 /* Compare carveout and requested names */ 262 if (!strcmp(carveout->name, _name)) { 263 mem = carveout; 264 break; 265 } 266 } 267 268 return mem; 269 } 270 271 /** 272 * rproc_check_carveout_da() - Check specified carveout da configuration 273 * @rproc: handle of a remote processor 274 * @mem: pointer on carveout to check 275 * @da: area device address 276 * @len: associated area size 277 * 278 * This function is a helper function to verify requested device area (couple 279 * da, len) is part of specified carveout. 280 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 281 * checked. 282 * 283 * Return: 0 if carveout matches request else error 284 */ 285 static int rproc_check_carveout_da(struct rproc *rproc, 286 struct rproc_mem_entry *mem, u32 da, u32 len) 287 { 288 struct device *dev = &rproc->dev; 289 int delta; 290 291 /* Check requested resource length */ 292 if (len > mem->len) { 293 dev_err(dev, "Registered carveout doesn't fit len request\n"); 294 return -EINVAL; 295 } 296 297 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 298 /* Address doesn't match registered carveout configuration */ 299 return -EINVAL; 300 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 301 delta = da - mem->da; 302 303 /* Check requested resource belongs to registered carveout */ 304 if (delta < 0) { 305 dev_err(dev, 306 "Registered carveout doesn't fit da request\n"); 307 return -EINVAL; 308 } 309 310 if (delta + len > mem->len) { 311 dev_err(dev, 312 "Registered carveout doesn't fit len request\n"); 313 return -EINVAL; 314 } 315 } 316 317 return 0; 318 } 319 320 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 321 { 322 struct rproc *rproc = rvdev->rproc; 323 struct device *dev = &rproc->dev; 324 struct rproc_vring *rvring = &rvdev->vring[i]; 325 struct fw_rsc_vdev *rsc; 326 int ret, notifyid; 327 struct rproc_mem_entry *mem; 328 size_t size; 329 330 /* actual size of vring (in bytes) */ 331 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 332 333 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 334 335 /* Search for pre-registered carveout */ 336 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 337 i); 338 if (mem) { 339 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 340 return -ENOMEM; 341 } else { 342 /* Register carveout in in list */ 343 mem = rproc_mem_entry_init(dev, NULL, 0, 344 size, rsc->vring[i].da, 345 rproc_alloc_carveout, 346 rproc_release_carveout, 347 "vdev%dvring%d", 348 rvdev->index, i); 349 if (!mem) { 350 dev_err(dev, "Can't allocate memory entry structure\n"); 351 return -ENOMEM; 352 } 353 354 rproc_add_carveout(rproc, mem); 355 } 356 357 /* 358 * Assign an rproc-wide unique index for this vring 359 * TODO: assign a notifyid for rvdev updates as well 360 * TODO: support predefined notifyids (via resource table) 361 */ 362 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 363 if (ret < 0) { 364 dev_err(dev, "idr_alloc failed: %d\n", ret); 365 return ret; 366 } 367 notifyid = ret; 368 369 /* Potentially bump max_notifyid */ 370 if (notifyid > rproc->max_notifyid) 371 rproc->max_notifyid = notifyid; 372 373 rvring->notifyid = notifyid; 374 375 /* Let the rproc know the notifyid of this vring.*/ 376 rsc->vring[i].notifyid = notifyid; 377 return 0; 378 } 379 380 static int 381 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 382 { 383 struct rproc *rproc = rvdev->rproc; 384 struct device *dev = &rproc->dev; 385 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 386 struct rproc_vring *rvring = &rvdev->vring[i]; 387 388 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 389 i, vring->da, vring->num, vring->align); 390 391 /* verify queue size and vring alignment are sane */ 392 if (!vring->num || !vring->align) { 393 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 394 vring->num, vring->align); 395 return -EINVAL; 396 } 397 398 rvring->len = vring->num; 399 rvring->align = vring->align; 400 rvring->rvdev = rvdev; 401 402 return 0; 403 } 404 405 void rproc_free_vring(struct rproc_vring *rvring) 406 { 407 struct rproc *rproc = rvring->rvdev->rproc; 408 int idx = rvring - rvring->rvdev->vring; 409 struct fw_rsc_vdev *rsc; 410 411 idr_remove(&rproc->notifyids, rvring->notifyid); 412 413 /* 414 * At this point rproc_stop() has been called and the installed resource 415 * table in the remote processor memory may no longer be accessible. As 416 * such and as per rproc_stop(), rproc->table_ptr points to the cached 417 * resource table (rproc->cached_table). The cached resource table is 418 * only available when a remote processor has been booted by the 419 * remoteproc core, otherwise it is NULL. 420 * 421 * Based on the above, reset the virtio device section in the cached 422 * resource table only if there is one to work with. 423 */ 424 if (rproc->table_ptr) { 425 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 426 rsc->vring[idx].da = 0; 427 rsc->vring[idx].notifyid = -1; 428 } 429 } 430 431 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 432 { 433 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 434 435 return rproc_add_virtio_dev(rvdev, rvdev->id); 436 } 437 438 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 439 { 440 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 441 int ret; 442 443 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 444 if (ret) 445 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 446 } 447 448 /** 449 * rproc_rvdev_release() - release the existence of a rvdev 450 * 451 * @dev: the subdevice's dev 452 */ 453 static void rproc_rvdev_release(struct device *dev) 454 { 455 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 456 457 of_reserved_mem_device_release(dev); 458 459 kfree(rvdev); 460 } 461 462 static int copy_dma_range_map(struct device *to, struct device *from) 463 { 464 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; 465 int num_ranges = 0; 466 467 if (!map) 468 return 0; 469 470 for (r = map; r->size; r++) 471 num_ranges++; 472 473 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), 474 GFP_KERNEL); 475 if (!new_map) 476 return -ENOMEM; 477 to->dma_range_map = new_map; 478 return 0; 479 } 480 481 /** 482 * rproc_handle_vdev() - handle a vdev fw resource 483 * @rproc: the remote processor 484 * @rsc: the vring resource descriptor 485 * @offset: offset of the resource entry 486 * @avail: size of available data (for sanity checking the image) 487 * 488 * This resource entry requests the host to statically register a virtio 489 * device (vdev), and setup everything needed to support it. It contains 490 * everything needed to make it possible: the virtio device id, virtio 491 * device features, vrings information, virtio config space, etc... 492 * 493 * Before registering the vdev, the vrings are allocated from non-cacheable 494 * physically contiguous memory. Currently we only support two vrings per 495 * remote processor (temporary limitation). We might also want to consider 496 * doing the vring allocation only later when ->find_vqs() is invoked, and 497 * then release them upon ->del_vqs(). 498 * 499 * Note: @da is currently not really handled correctly: we dynamically 500 * allocate it using the DMA API, ignoring requested hard coded addresses, 501 * and we don't take care of any required IOMMU programming. This is all 502 * going to be taken care of when the generic iommu-based DMA API will be 503 * merged. Meanwhile, statically-addressed iommu-based firmware images should 504 * use RSC_DEVMEM resource entries to map their required @da to the physical 505 * address of their base CMA region (ouch, hacky!). 506 * 507 * Returns 0 on success, or an appropriate error code otherwise 508 */ 509 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 510 int offset, int avail) 511 { 512 struct device *dev = &rproc->dev; 513 struct rproc_vdev *rvdev; 514 int i, ret; 515 char name[16]; 516 517 /* make sure resource isn't truncated */ 518 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 519 avail) { 520 dev_err(dev, "vdev rsc is truncated\n"); 521 return -EINVAL; 522 } 523 524 /* make sure reserved bytes are zeroes */ 525 if (rsc->reserved[0] || rsc->reserved[1]) { 526 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 527 return -EINVAL; 528 } 529 530 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 531 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 532 533 /* we currently support only two vrings per rvdev */ 534 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 535 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 536 return -EINVAL; 537 } 538 539 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 540 if (!rvdev) 541 return -ENOMEM; 542 543 kref_init(&rvdev->refcount); 544 545 rvdev->id = rsc->id; 546 rvdev->rproc = rproc; 547 rvdev->index = rproc->nb_vdev++; 548 549 /* Initialise vdev subdevice */ 550 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 551 rvdev->dev.parent = &rproc->dev; 552 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); 553 if (ret) 554 return ret; 555 rvdev->dev.release = rproc_rvdev_release; 556 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 557 dev_set_drvdata(&rvdev->dev, rvdev); 558 559 ret = device_register(&rvdev->dev); 560 if (ret) { 561 put_device(&rvdev->dev); 562 return ret; 563 } 564 /* Make device dma capable by inheriting from parent's capabilities */ 565 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 566 567 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 568 dma_get_mask(rproc->dev.parent)); 569 if (ret) { 570 dev_warn(dev, 571 "Failed to set DMA mask %llx. Trying to continue... %x\n", 572 dma_get_mask(rproc->dev.parent), ret); 573 } 574 575 /* parse the vrings */ 576 for (i = 0; i < rsc->num_of_vrings; i++) { 577 ret = rproc_parse_vring(rvdev, rsc, i); 578 if (ret) 579 goto free_rvdev; 580 } 581 582 /* remember the resource offset*/ 583 rvdev->rsc_offset = offset; 584 585 /* allocate the vring resources */ 586 for (i = 0; i < rsc->num_of_vrings; i++) { 587 ret = rproc_alloc_vring(rvdev, i); 588 if (ret) 589 goto unwind_vring_allocations; 590 } 591 592 list_add_tail(&rvdev->node, &rproc->rvdevs); 593 594 rvdev->subdev.start = rproc_vdev_do_start; 595 rvdev->subdev.stop = rproc_vdev_do_stop; 596 597 rproc_add_subdev(rproc, &rvdev->subdev); 598 599 return 0; 600 601 unwind_vring_allocations: 602 for (i--; i >= 0; i--) 603 rproc_free_vring(&rvdev->vring[i]); 604 free_rvdev: 605 device_unregister(&rvdev->dev); 606 return ret; 607 } 608 609 void rproc_vdev_release(struct kref *ref) 610 { 611 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 612 struct rproc_vring *rvring; 613 struct rproc *rproc = rvdev->rproc; 614 int id; 615 616 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 617 rvring = &rvdev->vring[id]; 618 rproc_free_vring(rvring); 619 } 620 621 rproc_remove_subdev(rproc, &rvdev->subdev); 622 list_del(&rvdev->node); 623 device_unregister(&rvdev->dev); 624 } 625 626 /** 627 * rproc_handle_trace() - handle a shared trace buffer resource 628 * @rproc: the remote processor 629 * @rsc: the trace resource descriptor 630 * @offset: offset of the resource entry 631 * @avail: size of available data (for sanity checking the image) 632 * 633 * In case the remote processor dumps trace logs into memory, 634 * export it via debugfs. 635 * 636 * Currently, the 'da' member of @rsc should contain the device address 637 * where the remote processor is dumping the traces. Later we could also 638 * support dynamically allocating this address using the generic 639 * DMA API (but currently there isn't a use case for that). 640 * 641 * Returns 0 on success, or an appropriate error code otherwise 642 */ 643 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 644 int offset, int avail) 645 { 646 struct rproc_debug_trace *trace; 647 struct device *dev = &rproc->dev; 648 char name[15]; 649 650 if (sizeof(*rsc) > avail) { 651 dev_err(dev, "trace rsc is truncated\n"); 652 return -EINVAL; 653 } 654 655 /* make sure reserved bytes are zeroes */ 656 if (rsc->reserved) { 657 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 658 return -EINVAL; 659 } 660 661 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 662 if (!trace) 663 return -ENOMEM; 664 665 /* set the trace buffer dma properties */ 666 trace->trace_mem.len = rsc->len; 667 trace->trace_mem.da = rsc->da; 668 669 /* set pointer on rproc device */ 670 trace->rproc = rproc; 671 672 /* make sure snprintf always null terminates, even if truncating */ 673 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 674 675 /* create the debugfs entry */ 676 trace->tfile = rproc_create_trace_file(name, rproc, trace); 677 if (!trace->tfile) { 678 kfree(trace); 679 return -EINVAL; 680 } 681 682 list_add_tail(&trace->node, &rproc->traces); 683 684 rproc->num_traces++; 685 686 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 687 name, rsc->da, rsc->len); 688 689 return 0; 690 } 691 692 /** 693 * rproc_handle_devmem() - handle devmem resource entry 694 * @rproc: remote processor handle 695 * @rsc: the devmem resource entry 696 * @offset: offset of the resource entry 697 * @avail: size of available data (for sanity checking the image) 698 * 699 * Remote processors commonly need to access certain on-chip peripherals. 700 * 701 * Some of these remote processors access memory via an iommu device, 702 * and might require us to configure their iommu before they can access 703 * the on-chip peripherals they need. 704 * 705 * This resource entry is a request to map such a peripheral device. 706 * 707 * These devmem entries will contain the physical address of the device in 708 * the 'pa' member. If a specific device address is expected, then 'da' will 709 * contain it (currently this is the only use case supported). 'len' will 710 * contain the size of the physical region we need to map. 711 * 712 * Currently we just "trust" those devmem entries to contain valid physical 713 * addresses, but this is going to change: we want the implementations to 714 * tell us ranges of physical addresses the firmware is allowed to request, 715 * and not allow firmwares to request access to physical addresses that 716 * are outside those ranges. 717 */ 718 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 719 int offset, int avail) 720 { 721 struct rproc_mem_entry *mapping; 722 struct device *dev = &rproc->dev; 723 int ret; 724 725 /* no point in handling this resource without a valid iommu domain */ 726 if (!rproc->domain) 727 return -EINVAL; 728 729 if (sizeof(*rsc) > avail) { 730 dev_err(dev, "devmem rsc is truncated\n"); 731 return -EINVAL; 732 } 733 734 /* make sure reserved bytes are zeroes */ 735 if (rsc->reserved) { 736 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 737 return -EINVAL; 738 } 739 740 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 741 if (!mapping) 742 return -ENOMEM; 743 744 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 745 if (ret) { 746 dev_err(dev, "failed to map devmem: %d\n", ret); 747 goto out; 748 } 749 750 /* 751 * We'll need this info later when we'll want to unmap everything 752 * (e.g. on shutdown). 753 * 754 * We can't trust the remote processor not to change the resource 755 * table, so we must maintain this info independently. 756 */ 757 mapping->da = rsc->da; 758 mapping->len = rsc->len; 759 list_add_tail(&mapping->node, &rproc->mappings); 760 761 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 762 rsc->pa, rsc->da, rsc->len); 763 764 return 0; 765 766 out: 767 kfree(mapping); 768 return ret; 769 } 770 771 /** 772 * rproc_alloc_carveout() - allocated specified carveout 773 * @rproc: rproc handle 774 * @mem: the memory entry to allocate 775 * 776 * This function allocate specified memory entry @mem using 777 * dma_alloc_coherent() as default allocator 778 */ 779 static int rproc_alloc_carveout(struct rproc *rproc, 780 struct rproc_mem_entry *mem) 781 { 782 struct rproc_mem_entry *mapping = NULL; 783 struct device *dev = &rproc->dev; 784 dma_addr_t dma; 785 void *va; 786 int ret; 787 788 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 789 if (!va) { 790 dev_err(dev->parent, 791 "failed to allocate dma memory: len 0x%zx\n", 792 mem->len); 793 return -ENOMEM; 794 } 795 796 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 797 va, &dma, mem->len); 798 799 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 800 /* 801 * Check requested da is equal to dma address 802 * and print a warn message in case of missalignment. 803 * Don't stop rproc_start sequence as coprocessor may 804 * build pa to da translation on its side. 805 */ 806 if (mem->da != (u32)dma) 807 dev_warn(dev->parent, 808 "Allocated carveout doesn't fit device address request\n"); 809 } 810 811 /* 812 * Ok, this is non-standard. 813 * 814 * Sometimes we can't rely on the generic iommu-based DMA API 815 * to dynamically allocate the device address and then set the IOMMU 816 * tables accordingly, because some remote processors might 817 * _require_ us to use hard coded device addresses that their 818 * firmware was compiled with. 819 * 820 * In this case, we must use the IOMMU API directly and map 821 * the memory to the device address as expected by the remote 822 * processor. 823 * 824 * Obviously such remote processor devices should not be configured 825 * to use the iommu-based DMA API: we expect 'dma' to contain the 826 * physical address in this case. 827 */ 828 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 829 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 830 if (!mapping) { 831 ret = -ENOMEM; 832 goto dma_free; 833 } 834 835 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 836 mem->flags); 837 if (ret) { 838 dev_err(dev, "iommu_map failed: %d\n", ret); 839 goto free_mapping; 840 } 841 842 /* 843 * We'll need this info later when we'll want to unmap 844 * everything (e.g. on shutdown). 845 * 846 * We can't trust the remote processor not to change the 847 * resource table, so we must maintain this info independently. 848 */ 849 mapping->da = mem->da; 850 mapping->len = mem->len; 851 list_add_tail(&mapping->node, &rproc->mappings); 852 853 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 854 mem->da, &dma); 855 } 856 857 if (mem->da == FW_RSC_ADDR_ANY) { 858 /* Update device address as undefined by requester */ 859 if ((u64)dma & HIGH_BITS_MASK) 860 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 861 862 mem->da = (u32)dma; 863 } 864 865 mem->dma = dma; 866 mem->va = va; 867 868 return 0; 869 870 free_mapping: 871 kfree(mapping); 872 dma_free: 873 dma_free_coherent(dev->parent, mem->len, va, dma); 874 return ret; 875 } 876 877 /** 878 * rproc_release_carveout() - release acquired carveout 879 * @rproc: rproc handle 880 * @mem: the memory entry to release 881 * 882 * This function releases specified memory entry @mem allocated via 883 * rproc_alloc_carveout() function by @rproc. 884 */ 885 static int rproc_release_carveout(struct rproc *rproc, 886 struct rproc_mem_entry *mem) 887 { 888 struct device *dev = &rproc->dev; 889 890 /* clean up carveout allocations */ 891 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 892 return 0; 893 } 894 895 /** 896 * rproc_handle_carveout() - handle phys contig memory allocation requests 897 * @rproc: rproc handle 898 * @rsc: the resource entry 899 * @offset: offset of the resource entry 900 * @avail: size of available data (for image validation) 901 * 902 * This function will handle firmware requests for allocation of physically 903 * contiguous memory regions. 904 * 905 * These request entries should come first in the firmware's resource table, 906 * as other firmware entries might request placing other data objects inside 907 * these memory regions (e.g. data/code segments, trace resource entries, ...). 908 * 909 * Allocating memory this way helps utilizing the reserved physical memory 910 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 911 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 912 * pressure is important; it may have a substantial impact on performance. 913 */ 914 static int rproc_handle_carveout(struct rproc *rproc, 915 struct fw_rsc_carveout *rsc, 916 int offset, int avail) 917 { 918 struct rproc_mem_entry *carveout; 919 struct device *dev = &rproc->dev; 920 921 if (sizeof(*rsc) > avail) { 922 dev_err(dev, "carveout rsc is truncated\n"); 923 return -EINVAL; 924 } 925 926 /* make sure reserved bytes are zeroes */ 927 if (rsc->reserved) { 928 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 929 return -EINVAL; 930 } 931 932 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 933 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 934 935 /* 936 * Check carveout rsc already part of a registered carveout, 937 * Search by name, then check the da and length 938 */ 939 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 940 941 if (carveout) { 942 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 943 dev_err(dev, 944 "Carveout already associated to resource table\n"); 945 return -ENOMEM; 946 } 947 948 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 949 return -ENOMEM; 950 951 /* Update memory carveout with resource table info */ 952 carveout->rsc_offset = offset; 953 carveout->flags = rsc->flags; 954 955 return 0; 956 } 957 958 /* Register carveout in in list */ 959 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 960 rproc_alloc_carveout, 961 rproc_release_carveout, rsc->name); 962 if (!carveout) { 963 dev_err(dev, "Can't allocate memory entry structure\n"); 964 return -ENOMEM; 965 } 966 967 carveout->flags = rsc->flags; 968 carveout->rsc_offset = offset; 969 rproc_add_carveout(rproc, carveout); 970 971 return 0; 972 } 973 974 /** 975 * rproc_add_carveout() - register an allocated carveout region 976 * @rproc: rproc handle 977 * @mem: memory entry to register 978 * 979 * This function registers specified memory entry in @rproc carveouts list. 980 * Specified carveout should have been allocated before registering. 981 */ 982 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 983 { 984 list_add_tail(&mem->node, &rproc->carveouts); 985 } 986 EXPORT_SYMBOL(rproc_add_carveout); 987 988 /** 989 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 990 * @dev: pointer on device struct 991 * @va: virtual address 992 * @dma: dma address 993 * @len: memory carveout length 994 * @da: device address 995 * @alloc: memory carveout allocation function 996 * @release: memory carveout release function 997 * @name: carveout name 998 * 999 * This function allocates a rproc_mem_entry struct and fill it with parameters 1000 * provided by client. 1001 */ 1002 __printf(8, 9) 1003 struct rproc_mem_entry * 1004 rproc_mem_entry_init(struct device *dev, 1005 void *va, dma_addr_t dma, size_t len, u32 da, 1006 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 1007 int (*release)(struct rproc *, struct rproc_mem_entry *), 1008 const char *name, ...) 1009 { 1010 struct rproc_mem_entry *mem; 1011 va_list args; 1012 1013 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1014 if (!mem) 1015 return mem; 1016 1017 mem->va = va; 1018 mem->dma = dma; 1019 mem->da = da; 1020 mem->len = len; 1021 mem->alloc = alloc; 1022 mem->release = release; 1023 mem->rsc_offset = FW_RSC_ADDR_ANY; 1024 mem->of_resm_idx = -1; 1025 1026 va_start(args, name); 1027 vsnprintf(mem->name, sizeof(mem->name), name, args); 1028 va_end(args); 1029 1030 return mem; 1031 } 1032 EXPORT_SYMBOL(rproc_mem_entry_init); 1033 1034 /** 1035 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1036 * from a reserved memory phandle 1037 * @dev: pointer on device struct 1038 * @of_resm_idx: reserved memory phandle index in "memory-region" 1039 * @len: memory carveout length 1040 * @da: device address 1041 * @name: carveout name 1042 * 1043 * This function allocates a rproc_mem_entry struct and fill it with parameters 1044 * provided by client. 1045 */ 1046 __printf(5, 6) 1047 struct rproc_mem_entry * 1048 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1049 u32 da, const char *name, ...) 1050 { 1051 struct rproc_mem_entry *mem; 1052 va_list args; 1053 1054 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1055 if (!mem) 1056 return mem; 1057 1058 mem->da = da; 1059 mem->len = len; 1060 mem->rsc_offset = FW_RSC_ADDR_ANY; 1061 mem->of_resm_idx = of_resm_idx; 1062 1063 va_start(args, name); 1064 vsnprintf(mem->name, sizeof(mem->name), name, args); 1065 va_end(args); 1066 1067 return mem; 1068 } 1069 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1070 1071 /** 1072 * rproc_of_parse_firmware() - parse and return the firmware-name 1073 * @dev: pointer on device struct representing a rproc 1074 * @index: index to use for the firmware-name retrieval 1075 * @fw_name: pointer to a character string, in which the firmware 1076 * name is returned on success and unmodified otherwise. 1077 * 1078 * This is an OF helper function that parses a device's DT node for 1079 * the "firmware-name" property and returns the firmware name pointer 1080 * in @fw_name on success. 1081 * 1082 * Return: 0 on success, or an appropriate failure. 1083 */ 1084 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1085 { 1086 int ret; 1087 1088 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1089 index, fw_name); 1090 return ret ? ret : 0; 1091 } 1092 EXPORT_SYMBOL(rproc_of_parse_firmware); 1093 1094 /* 1095 * A lookup table for resource handlers. The indices are defined in 1096 * enum fw_resource_type. 1097 */ 1098 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1099 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1100 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1101 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1102 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1103 }; 1104 1105 /* handle firmware resource entries before booting the remote processor */ 1106 static int rproc_handle_resources(struct rproc *rproc, 1107 rproc_handle_resource_t handlers[RSC_LAST]) 1108 { 1109 struct device *dev = &rproc->dev; 1110 rproc_handle_resource_t handler; 1111 int ret = 0, i; 1112 1113 if (!rproc->table_ptr) 1114 return 0; 1115 1116 for (i = 0; i < rproc->table_ptr->num; i++) { 1117 int offset = rproc->table_ptr->offset[i]; 1118 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1119 int avail = rproc->table_sz - offset - sizeof(*hdr); 1120 void *rsc = (void *)hdr + sizeof(*hdr); 1121 1122 /* make sure table isn't truncated */ 1123 if (avail < 0) { 1124 dev_err(dev, "rsc table is truncated\n"); 1125 return -EINVAL; 1126 } 1127 1128 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1129 1130 if (hdr->type >= RSC_VENDOR_START && 1131 hdr->type <= RSC_VENDOR_END) { 1132 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1133 offset + sizeof(*hdr), avail); 1134 if (ret == RSC_HANDLED) 1135 continue; 1136 else if (ret < 0) 1137 break; 1138 1139 dev_warn(dev, "unsupported vendor resource %d\n", 1140 hdr->type); 1141 continue; 1142 } 1143 1144 if (hdr->type >= RSC_LAST) { 1145 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1146 continue; 1147 } 1148 1149 handler = handlers[hdr->type]; 1150 if (!handler) 1151 continue; 1152 1153 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1154 if (ret) 1155 break; 1156 } 1157 1158 return ret; 1159 } 1160 1161 static int rproc_prepare_subdevices(struct rproc *rproc) 1162 { 1163 struct rproc_subdev *subdev; 1164 int ret; 1165 1166 list_for_each_entry(subdev, &rproc->subdevs, node) { 1167 if (subdev->prepare) { 1168 ret = subdev->prepare(subdev); 1169 if (ret) 1170 goto unroll_preparation; 1171 } 1172 } 1173 1174 return 0; 1175 1176 unroll_preparation: 1177 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1178 if (subdev->unprepare) 1179 subdev->unprepare(subdev); 1180 } 1181 1182 return ret; 1183 } 1184 1185 static int rproc_start_subdevices(struct rproc *rproc) 1186 { 1187 struct rproc_subdev *subdev; 1188 int ret; 1189 1190 list_for_each_entry(subdev, &rproc->subdevs, node) { 1191 if (subdev->start) { 1192 ret = subdev->start(subdev); 1193 if (ret) 1194 goto unroll_registration; 1195 } 1196 } 1197 1198 return 0; 1199 1200 unroll_registration: 1201 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1202 if (subdev->stop) 1203 subdev->stop(subdev, true); 1204 } 1205 1206 return ret; 1207 } 1208 1209 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1210 { 1211 struct rproc_subdev *subdev; 1212 1213 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1214 if (subdev->stop) 1215 subdev->stop(subdev, crashed); 1216 } 1217 } 1218 1219 static void rproc_unprepare_subdevices(struct rproc *rproc) 1220 { 1221 struct rproc_subdev *subdev; 1222 1223 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1224 if (subdev->unprepare) 1225 subdev->unprepare(subdev); 1226 } 1227 } 1228 1229 /** 1230 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1231 * in the list 1232 * @rproc: the remote processor handle 1233 * 1234 * This function parses registered carveout list, performs allocation 1235 * if alloc() ops registered and updates resource table information 1236 * if rsc_offset set. 1237 * 1238 * Return: 0 on success 1239 */ 1240 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1241 { 1242 struct rproc_mem_entry *entry, *tmp; 1243 struct fw_rsc_carveout *rsc; 1244 struct device *dev = &rproc->dev; 1245 u64 pa; 1246 int ret; 1247 1248 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1249 if (entry->alloc) { 1250 ret = entry->alloc(rproc, entry); 1251 if (ret) { 1252 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1253 entry->name, ret); 1254 return -ENOMEM; 1255 } 1256 } 1257 1258 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1259 /* update resource table */ 1260 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1261 1262 /* 1263 * Some remote processors might need to know the pa 1264 * even though they are behind an IOMMU. E.g., OMAP4's 1265 * remote M3 processor needs this so it can control 1266 * on-chip hardware accelerators that are not behind 1267 * the IOMMU, and therefor must know the pa. 1268 * 1269 * Generally we don't want to expose physical addresses 1270 * if we don't have to (remote processors are generally 1271 * _not_ trusted), so we might want to do this only for 1272 * remote processor that _must_ have this (e.g. OMAP4's 1273 * dual M3 subsystem). 1274 * 1275 * Non-IOMMU processors might also want to have this info. 1276 * In this case, the device address and the physical address 1277 * are the same. 1278 */ 1279 1280 /* Use va if defined else dma to generate pa */ 1281 if (entry->va) 1282 pa = (u64)rproc_va_to_pa(entry->va); 1283 else 1284 pa = (u64)entry->dma; 1285 1286 if (((u64)pa) & HIGH_BITS_MASK) 1287 dev_warn(dev, 1288 "Physical address cast in 32bit to fit resource table format\n"); 1289 1290 rsc->pa = (u32)pa; 1291 rsc->da = entry->da; 1292 rsc->len = entry->len; 1293 } 1294 } 1295 1296 return 0; 1297 } 1298 1299 1300 /** 1301 * rproc_resource_cleanup() - clean up and free all acquired resources 1302 * @rproc: rproc handle 1303 * 1304 * This function will free all resources acquired for @rproc, and it 1305 * is called whenever @rproc either shuts down or fails to boot. 1306 */ 1307 void rproc_resource_cleanup(struct rproc *rproc) 1308 { 1309 struct rproc_mem_entry *entry, *tmp; 1310 struct rproc_debug_trace *trace, *ttmp; 1311 struct rproc_vdev *rvdev, *rvtmp; 1312 struct device *dev = &rproc->dev; 1313 1314 /* clean up debugfs trace entries */ 1315 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1316 rproc_remove_trace_file(trace->tfile); 1317 rproc->num_traces--; 1318 list_del(&trace->node); 1319 kfree(trace); 1320 } 1321 1322 /* clean up iommu mapping entries */ 1323 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1324 size_t unmapped; 1325 1326 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1327 if (unmapped != entry->len) { 1328 /* nothing much to do besides complaining */ 1329 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1330 unmapped); 1331 } 1332 1333 list_del(&entry->node); 1334 kfree(entry); 1335 } 1336 1337 /* clean up carveout allocations */ 1338 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1339 if (entry->release) 1340 entry->release(rproc, entry); 1341 list_del(&entry->node); 1342 kfree(entry); 1343 } 1344 1345 /* clean up remote vdev entries */ 1346 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1347 kref_put(&rvdev->refcount, rproc_vdev_release); 1348 1349 rproc_coredump_cleanup(rproc); 1350 } 1351 EXPORT_SYMBOL(rproc_resource_cleanup); 1352 1353 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1354 { 1355 struct resource_table *loaded_table; 1356 struct device *dev = &rproc->dev; 1357 int ret; 1358 1359 /* load the ELF segments to memory */ 1360 ret = rproc_load_segments(rproc, fw); 1361 if (ret) { 1362 dev_err(dev, "Failed to load program segments: %d\n", ret); 1363 return ret; 1364 } 1365 1366 /* 1367 * The starting device has been given the rproc->cached_table as the 1368 * resource table. The address of the vring along with the other 1369 * allocated resources (carveouts etc) is stored in cached_table. 1370 * In order to pass this information to the remote device we must copy 1371 * this information to device memory. We also update the table_ptr so 1372 * that any subsequent changes will be applied to the loaded version. 1373 */ 1374 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1375 if (loaded_table) { 1376 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1377 rproc->table_ptr = loaded_table; 1378 } 1379 1380 ret = rproc_prepare_subdevices(rproc); 1381 if (ret) { 1382 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1383 rproc->name, ret); 1384 goto reset_table_ptr; 1385 } 1386 1387 /* power up the remote processor */ 1388 ret = rproc->ops->start(rproc); 1389 if (ret) { 1390 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1391 goto unprepare_subdevices; 1392 } 1393 1394 /* Start any subdevices for the remote processor */ 1395 ret = rproc_start_subdevices(rproc); 1396 if (ret) { 1397 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1398 rproc->name, ret); 1399 goto stop_rproc; 1400 } 1401 1402 rproc->state = RPROC_RUNNING; 1403 1404 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1405 1406 return 0; 1407 1408 stop_rproc: 1409 rproc->ops->stop(rproc); 1410 unprepare_subdevices: 1411 rproc_unprepare_subdevices(rproc); 1412 reset_table_ptr: 1413 rproc->table_ptr = rproc->cached_table; 1414 1415 return ret; 1416 } 1417 1418 static int rproc_attach(struct rproc *rproc) 1419 { 1420 struct device *dev = &rproc->dev; 1421 int ret; 1422 1423 ret = rproc_prepare_subdevices(rproc); 1424 if (ret) { 1425 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1426 rproc->name, ret); 1427 goto out; 1428 } 1429 1430 /* Attach to the remote processor */ 1431 ret = rproc_attach_device(rproc); 1432 if (ret) { 1433 dev_err(dev, "can't attach to rproc %s: %d\n", 1434 rproc->name, ret); 1435 goto unprepare_subdevices; 1436 } 1437 1438 /* Start any subdevices for the remote processor */ 1439 ret = rproc_start_subdevices(rproc); 1440 if (ret) { 1441 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1442 rproc->name, ret); 1443 goto stop_rproc; 1444 } 1445 1446 rproc->state = RPROC_RUNNING; 1447 1448 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1449 1450 return 0; 1451 1452 stop_rproc: 1453 rproc->ops->stop(rproc); 1454 unprepare_subdevices: 1455 rproc_unprepare_subdevices(rproc); 1456 out: 1457 return ret; 1458 } 1459 1460 /* 1461 * take a firmware and boot a remote processor with it. 1462 */ 1463 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1464 { 1465 struct device *dev = &rproc->dev; 1466 const char *name = rproc->firmware; 1467 int ret; 1468 1469 ret = rproc_fw_sanity_check(rproc, fw); 1470 if (ret) 1471 return ret; 1472 1473 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1474 1475 /* 1476 * if enabling an IOMMU isn't relevant for this rproc, this is 1477 * just a nop 1478 */ 1479 ret = rproc_enable_iommu(rproc); 1480 if (ret) { 1481 dev_err(dev, "can't enable iommu: %d\n", ret); 1482 return ret; 1483 } 1484 1485 /* Prepare rproc for firmware loading if needed */ 1486 ret = rproc_prepare_device(rproc); 1487 if (ret) { 1488 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1489 goto disable_iommu; 1490 } 1491 1492 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1493 1494 /* Load resource table, core dump segment list etc from the firmware */ 1495 ret = rproc_parse_fw(rproc, fw); 1496 if (ret) 1497 goto unprepare_rproc; 1498 1499 /* reset max_notifyid */ 1500 rproc->max_notifyid = -1; 1501 1502 /* reset handled vdev */ 1503 rproc->nb_vdev = 0; 1504 1505 /* handle fw resources which are required to boot rproc */ 1506 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1507 if (ret) { 1508 dev_err(dev, "Failed to process resources: %d\n", ret); 1509 goto clean_up_resources; 1510 } 1511 1512 /* Allocate carveout resources associated to rproc */ 1513 ret = rproc_alloc_registered_carveouts(rproc); 1514 if (ret) { 1515 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1516 ret); 1517 goto clean_up_resources; 1518 } 1519 1520 ret = rproc_start(rproc, fw); 1521 if (ret) 1522 goto clean_up_resources; 1523 1524 return 0; 1525 1526 clean_up_resources: 1527 rproc_resource_cleanup(rproc); 1528 kfree(rproc->cached_table); 1529 rproc->cached_table = NULL; 1530 rproc->table_ptr = NULL; 1531 unprepare_rproc: 1532 /* release HW resources if needed */ 1533 rproc_unprepare_device(rproc); 1534 disable_iommu: 1535 rproc_disable_iommu(rproc); 1536 return ret; 1537 } 1538 1539 /* 1540 * Attach to remote processor - similar to rproc_fw_boot() but without 1541 * the steps that deal with the firmware image. 1542 */ 1543 static int rproc_actuate(struct rproc *rproc) 1544 { 1545 struct device *dev = &rproc->dev; 1546 int ret; 1547 1548 /* 1549 * if enabling an IOMMU isn't relevant for this rproc, this is 1550 * just a nop 1551 */ 1552 ret = rproc_enable_iommu(rproc); 1553 if (ret) { 1554 dev_err(dev, "can't enable iommu: %d\n", ret); 1555 return ret; 1556 } 1557 1558 /* reset max_notifyid */ 1559 rproc->max_notifyid = -1; 1560 1561 /* reset handled vdev */ 1562 rproc->nb_vdev = 0; 1563 1564 /* 1565 * Handle firmware resources required to attach to a remote processor. 1566 * Because we are attaching rather than booting the remote processor, 1567 * we expect the platform driver to properly set rproc->table_ptr. 1568 */ 1569 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1570 if (ret) { 1571 dev_err(dev, "Failed to process resources: %d\n", ret); 1572 goto disable_iommu; 1573 } 1574 1575 /* Allocate carveout resources associated to rproc */ 1576 ret = rproc_alloc_registered_carveouts(rproc); 1577 if (ret) { 1578 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1579 ret); 1580 goto clean_up_resources; 1581 } 1582 1583 ret = rproc_attach(rproc); 1584 if (ret) 1585 goto clean_up_resources; 1586 1587 return 0; 1588 1589 clean_up_resources: 1590 rproc_resource_cleanup(rproc); 1591 disable_iommu: 1592 rproc_disable_iommu(rproc); 1593 return ret; 1594 } 1595 1596 /* 1597 * take a firmware and boot it up. 1598 * 1599 * Note: this function is called asynchronously upon registration of the 1600 * remote processor (so we must wait until it completes before we try 1601 * to unregister the device. one other option is just to use kref here, 1602 * that might be cleaner). 1603 */ 1604 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1605 { 1606 struct rproc *rproc = context; 1607 1608 rproc_boot(rproc); 1609 1610 release_firmware(fw); 1611 } 1612 1613 static int rproc_trigger_auto_boot(struct rproc *rproc) 1614 { 1615 int ret; 1616 1617 /* 1618 * Since the remote processor is in a detached state, it has already 1619 * been booted by another entity. As such there is no point in waiting 1620 * for a firmware image to be loaded, we can simply initiate the process 1621 * of attaching to it immediately. 1622 */ 1623 if (rproc->state == RPROC_DETACHED) 1624 return rproc_boot(rproc); 1625 1626 /* 1627 * We're initiating an asynchronous firmware loading, so we can 1628 * be built-in kernel code, without hanging the boot process. 1629 */ 1630 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1631 rproc->firmware, &rproc->dev, GFP_KERNEL, 1632 rproc, rproc_auto_boot_callback); 1633 if (ret < 0) 1634 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1635 1636 return ret; 1637 } 1638 1639 static int rproc_stop(struct rproc *rproc, bool crashed) 1640 { 1641 struct device *dev = &rproc->dev; 1642 int ret; 1643 1644 /* Stop any subdevices for the remote processor */ 1645 rproc_stop_subdevices(rproc, crashed); 1646 1647 /* the installed resource table is no longer accessible */ 1648 rproc->table_ptr = rproc->cached_table; 1649 1650 /* power off the remote processor */ 1651 ret = rproc->ops->stop(rproc); 1652 if (ret) { 1653 dev_err(dev, "can't stop rproc: %d\n", ret); 1654 return ret; 1655 } 1656 1657 rproc_unprepare_subdevices(rproc); 1658 1659 rproc->state = RPROC_OFFLINE; 1660 1661 /* 1662 * The remote processor has been stopped and is now offline, which means 1663 * that the next time it is brought back online the remoteproc core will 1664 * be responsible to load its firmware. As such it is no longer 1665 * autonomous. 1666 */ 1667 rproc->autonomous = false; 1668 1669 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1670 1671 return 0; 1672 } 1673 1674 1675 /** 1676 * rproc_trigger_recovery() - recover a remoteproc 1677 * @rproc: the remote processor 1678 * 1679 * The recovery is done by resetting all the virtio devices, that way all the 1680 * rpmsg drivers will be reseted along with the remote processor making the 1681 * remoteproc functional again. 1682 * 1683 * This function can sleep, so it cannot be called from atomic context. 1684 */ 1685 int rproc_trigger_recovery(struct rproc *rproc) 1686 { 1687 const struct firmware *firmware_p; 1688 struct device *dev = &rproc->dev; 1689 int ret; 1690 1691 ret = mutex_lock_interruptible(&rproc->lock); 1692 if (ret) 1693 return ret; 1694 1695 /* State could have changed before we got the mutex */ 1696 if (rproc->state != RPROC_CRASHED) 1697 goto unlock_mutex; 1698 1699 dev_err(dev, "recovering %s\n", rproc->name); 1700 1701 ret = rproc_stop(rproc, true); 1702 if (ret) 1703 goto unlock_mutex; 1704 1705 /* generate coredump */ 1706 rproc_coredump(rproc); 1707 1708 /* load firmware */ 1709 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1710 if (ret < 0) { 1711 dev_err(dev, "request_firmware failed: %d\n", ret); 1712 goto unlock_mutex; 1713 } 1714 1715 /* boot the remote processor up again */ 1716 ret = rproc_start(rproc, firmware_p); 1717 1718 release_firmware(firmware_p); 1719 1720 unlock_mutex: 1721 mutex_unlock(&rproc->lock); 1722 return ret; 1723 } 1724 1725 /** 1726 * rproc_crash_handler_work() - handle a crash 1727 * @work: work treating the crash 1728 * 1729 * This function needs to handle everything related to a crash, like cpu 1730 * registers and stack dump, information to help to debug the fatal error, etc. 1731 */ 1732 static void rproc_crash_handler_work(struct work_struct *work) 1733 { 1734 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1735 struct device *dev = &rproc->dev; 1736 1737 dev_dbg(dev, "enter %s\n", __func__); 1738 1739 mutex_lock(&rproc->lock); 1740 1741 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1742 /* handle only the first crash detected */ 1743 mutex_unlock(&rproc->lock); 1744 return; 1745 } 1746 1747 rproc->state = RPROC_CRASHED; 1748 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1749 rproc->name); 1750 1751 mutex_unlock(&rproc->lock); 1752 1753 if (!rproc->recovery_disabled) 1754 rproc_trigger_recovery(rproc); 1755 1756 pm_relax(rproc->dev.parent); 1757 } 1758 1759 /** 1760 * rproc_boot() - boot a remote processor 1761 * @rproc: handle of a remote processor 1762 * 1763 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1764 * 1765 * If the remote processor is already powered on, this function immediately 1766 * returns (successfully). 1767 * 1768 * Returns 0 on success, and an appropriate error value otherwise. 1769 */ 1770 int rproc_boot(struct rproc *rproc) 1771 { 1772 const struct firmware *firmware_p; 1773 struct device *dev; 1774 int ret; 1775 1776 if (!rproc) { 1777 pr_err("invalid rproc handle\n"); 1778 return -EINVAL; 1779 } 1780 1781 dev = &rproc->dev; 1782 1783 ret = mutex_lock_interruptible(&rproc->lock); 1784 if (ret) { 1785 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1786 return ret; 1787 } 1788 1789 if (rproc->state == RPROC_DELETED) { 1790 ret = -ENODEV; 1791 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1792 goto unlock_mutex; 1793 } 1794 1795 /* skip the boot or attach process if rproc is already powered up */ 1796 if (atomic_inc_return(&rproc->power) > 1) { 1797 ret = 0; 1798 goto unlock_mutex; 1799 } 1800 1801 if (rproc->state == RPROC_DETACHED) { 1802 dev_info(dev, "attaching to %s\n", rproc->name); 1803 1804 ret = rproc_actuate(rproc); 1805 } else { 1806 dev_info(dev, "powering up %s\n", rproc->name); 1807 1808 /* load firmware */ 1809 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1810 if (ret < 0) { 1811 dev_err(dev, "request_firmware failed: %d\n", ret); 1812 goto downref_rproc; 1813 } 1814 1815 ret = rproc_fw_boot(rproc, firmware_p); 1816 1817 release_firmware(firmware_p); 1818 } 1819 1820 downref_rproc: 1821 if (ret) 1822 atomic_dec(&rproc->power); 1823 unlock_mutex: 1824 mutex_unlock(&rproc->lock); 1825 return ret; 1826 } 1827 EXPORT_SYMBOL(rproc_boot); 1828 1829 /** 1830 * rproc_shutdown() - power off the remote processor 1831 * @rproc: the remote processor 1832 * 1833 * Power off a remote processor (previously booted with rproc_boot()). 1834 * 1835 * In case @rproc is still being used by an additional user(s), then 1836 * this function will just decrement the power refcount and exit, 1837 * without really powering off the device. 1838 * 1839 * Every call to rproc_boot() must (eventually) be accompanied by a call 1840 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1841 * 1842 * Notes: 1843 * - we're not decrementing the rproc's refcount, only the power refcount. 1844 * which means that the @rproc handle stays valid even after rproc_shutdown() 1845 * returns, and users can still use it with a subsequent rproc_boot(), if 1846 * needed. 1847 */ 1848 void rproc_shutdown(struct rproc *rproc) 1849 { 1850 struct device *dev = &rproc->dev; 1851 int ret; 1852 1853 ret = mutex_lock_interruptible(&rproc->lock); 1854 if (ret) { 1855 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1856 return; 1857 } 1858 1859 /* if the remote proc is still needed, bail out */ 1860 if (!atomic_dec_and_test(&rproc->power)) 1861 goto out; 1862 1863 ret = rproc_stop(rproc, false); 1864 if (ret) { 1865 atomic_inc(&rproc->power); 1866 goto out; 1867 } 1868 1869 /* clean up all acquired resources */ 1870 rproc_resource_cleanup(rproc); 1871 1872 /* release HW resources if needed */ 1873 rproc_unprepare_device(rproc); 1874 1875 rproc_disable_iommu(rproc); 1876 1877 /* Free the copy of the resource table */ 1878 kfree(rproc->cached_table); 1879 rproc->cached_table = NULL; 1880 rproc->table_ptr = NULL; 1881 out: 1882 mutex_unlock(&rproc->lock); 1883 } 1884 EXPORT_SYMBOL(rproc_shutdown); 1885 1886 /** 1887 * rproc_get_by_phandle() - find a remote processor by phandle 1888 * @phandle: phandle to the rproc 1889 * 1890 * Finds an rproc handle using the remote processor's phandle, and then 1891 * return a handle to the rproc. 1892 * 1893 * This function increments the remote processor's refcount, so always 1894 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1895 * 1896 * Returns the rproc handle on success, and NULL on failure. 1897 */ 1898 #ifdef CONFIG_OF 1899 struct rproc *rproc_get_by_phandle(phandle phandle) 1900 { 1901 struct rproc *rproc = NULL, *r; 1902 struct device_node *np; 1903 1904 np = of_find_node_by_phandle(phandle); 1905 if (!np) 1906 return NULL; 1907 1908 rcu_read_lock(); 1909 list_for_each_entry_rcu(r, &rproc_list, node) { 1910 if (r->dev.parent && r->dev.parent->of_node == np) { 1911 /* prevent underlying implementation from being removed */ 1912 if (!try_module_get(r->dev.parent->driver->owner)) { 1913 dev_err(&r->dev, "can't get owner\n"); 1914 break; 1915 } 1916 1917 rproc = r; 1918 get_device(&rproc->dev); 1919 break; 1920 } 1921 } 1922 rcu_read_unlock(); 1923 1924 of_node_put(np); 1925 1926 return rproc; 1927 } 1928 #else 1929 struct rproc *rproc_get_by_phandle(phandle phandle) 1930 { 1931 return NULL; 1932 } 1933 #endif 1934 EXPORT_SYMBOL(rproc_get_by_phandle); 1935 1936 static int rproc_validate(struct rproc *rproc) 1937 { 1938 switch (rproc->state) { 1939 case RPROC_OFFLINE: 1940 /* 1941 * An offline processor without a start() 1942 * function makes no sense. 1943 */ 1944 if (!rproc->ops->start) 1945 return -EINVAL; 1946 break; 1947 case RPROC_DETACHED: 1948 /* 1949 * A remote processor in a detached state without an 1950 * attach() function makes not sense. 1951 */ 1952 if (!rproc->ops->attach) 1953 return -EINVAL; 1954 /* 1955 * When attaching to a remote processor the device memory 1956 * is already available and as such there is no need to have a 1957 * cached table. 1958 */ 1959 if (rproc->cached_table) 1960 return -EINVAL; 1961 break; 1962 default: 1963 /* 1964 * When adding a remote processor, the state of the device 1965 * can be offline or detached, nothing else. 1966 */ 1967 return -EINVAL; 1968 } 1969 1970 return 0; 1971 } 1972 1973 /** 1974 * rproc_add() - register a remote processor 1975 * @rproc: the remote processor handle to register 1976 * 1977 * Registers @rproc with the remoteproc framework, after it has been 1978 * allocated with rproc_alloc(). 1979 * 1980 * This is called by the platform-specific rproc implementation, whenever 1981 * a new remote processor device is probed. 1982 * 1983 * Returns 0 on success and an appropriate error code otherwise. 1984 * 1985 * Note: this function initiates an asynchronous firmware loading 1986 * context, which will look for virtio devices supported by the rproc's 1987 * firmware. 1988 * 1989 * If found, those virtio devices will be created and added, so as a result 1990 * of registering this remote processor, additional virtio drivers might be 1991 * probed. 1992 */ 1993 int rproc_add(struct rproc *rproc) 1994 { 1995 struct device *dev = &rproc->dev; 1996 int ret; 1997 1998 ret = device_add(dev); 1999 if (ret < 0) 2000 return ret; 2001 2002 ret = rproc_validate(rproc); 2003 if (ret < 0) 2004 return ret; 2005 2006 dev_info(dev, "%s is available\n", rproc->name); 2007 2008 /* create debugfs entries */ 2009 rproc_create_debug_dir(rproc); 2010 2011 /* add char device for this remoteproc */ 2012 ret = rproc_char_device_add(rproc); 2013 if (ret < 0) 2014 return ret; 2015 2016 /* 2017 * Remind ourselves the remote processor has been attached to rather 2018 * than booted by the remoteproc core. This is important because the 2019 * RPROC_DETACHED state will be lost as soon as the remote processor 2020 * has been attached to. Used in firmware_show() and reset in 2021 * rproc_stop(). 2022 */ 2023 if (rproc->state == RPROC_DETACHED) 2024 rproc->autonomous = true; 2025 2026 /* if rproc is marked always-on, request it to boot */ 2027 if (rproc->auto_boot) { 2028 ret = rproc_trigger_auto_boot(rproc); 2029 if (ret < 0) 2030 return ret; 2031 } 2032 2033 /* expose to rproc_get_by_phandle users */ 2034 mutex_lock(&rproc_list_mutex); 2035 list_add_rcu(&rproc->node, &rproc_list); 2036 mutex_unlock(&rproc_list_mutex); 2037 2038 return 0; 2039 } 2040 EXPORT_SYMBOL(rproc_add); 2041 2042 static void devm_rproc_remove(void *rproc) 2043 { 2044 rproc_del(rproc); 2045 } 2046 2047 /** 2048 * devm_rproc_add() - resource managed rproc_add() 2049 * @dev: the underlying device 2050 * @rproc: the remote processor handle to register 2051 * 2052 * This function performs like rproc_add() but the registered rproc device will 2053 * automatically be removed on driver detach. 2054 * 2055 * Returns: 0 on success, negative errno on failure 2056 */ 2057 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2058 { 2059 int err; 2060 2061 err = rproc_add(rproc); 2062 if (err) 2063 return err; 2064 2065 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2066 } 2067 EXPORT_SYMBOL(devm_rproc_add); 2068 2069 /** 2070 * rproc_type_release() - release a remote processor instance 2071 * @dev: the rproc's device 2072 * 2073 * This function should _never_ be called directly. 2074 * 2075 * It will be called by the driver core when no one holds a valid pointer 2076 * to @dev anymore. 2077 */ 2078 static void rproc_type_release(struct device *dev) 2079 { 2080 struct rproc *rproc = container_of(dev, struct rproc, dev); 2081 2082 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2083 2084 idr_destroy(&rproc->notifyids); 2085 2086 if (rproc->index >= 0) 2087 ida_simple_remove(&rproc_dev_index, rproc->index); 2088 2089 kfree_const(rproc->firmware); 2090 kfree_const(rproc->name); 2091 kfree(rproc->ops); 2092 kfree(rproc); 2093 } 2094 2095 static const struct device_type rproc_type = { 2096 .name = "remoteproc", 2097 .release = rproc_type_release, 2098 }; 2099 2100 static int rproc_alloc_firmware(struct rproc *rproc, 2101 const char *name, const char *firmware) 2102 { 2103 const char *p; 2104 2105 /* 2106 * Allocate a firmware name if the caller gave us one to work 2107 * with. Otherwise construct a new one using a default pattern. 2108 */ 2109 if (firmware) 2110 p = kstrdup_const(firmware, GFP_KERNEL); 2111 else 2112 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2113 2114 if (!p) 2115 return -ENOMEM; 2116 2117 rproc->firmware = p; 2118 2119 return 0; 2120 } 2121 2122 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2123 { 2124 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2125 if (!rproc->ops) 2126 return -ENOMEM; 2127 2128 if (rproc->ops->load) 2129 return 0; 2130 2131 /* Default to ELF loader if no load function is specified */ 2132 rproc->ops->load = rproc_elf_load_segments; 2133 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2134 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2135 rproc->ops->sanity_check = rproc_elf_sanity_check; 2136 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2137 2138 return 0; 2139 } 2140 2141 /** 2142 * rproc_alloc() - allocate a remote processor handle 2143 * @dev: the underlying device 2144 * @name: name of this remote processor 2145 * @ops: platform-specific handlers (mainly start/stop) 2146 * @firmware: name of firmware file to load, can be NULL 2147 * @len: length of private data needed by the rproc driver (in bytes) 2148 * 2149 * Allocates a new remote processor handle, but does not register 2150 * it yet. if @firmware is NULL, a default name is used. 2151 * 2152 * This function should be used by rproc implementations during initialization 2153 * of the remote processor. 2154 * 2155 * After creating an rproc handle using this function, and when ready, 2156 * implementations should then call rproc_add() to complete 2157 * the registration of the remote processor. 2158 * 2159 * On success the new rproc is returned, and on failure, NULL. 2160 * 2161 * Note: _never_ directly deallocate @rproc, even if it was not registered 2162 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2163 */ 2164 struct rproc *rproc_alloc(struct device *dev, const char *name, 2165 const struct rproc_ops *ops, 2166 const char *firmware, int len) 2167 { 2168 struct rproc *rproc; 2169 2170 if (!dev || !name || !ops) 2171 return NULL; 2172 2173 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2174 if (!rproc) 2175 return NULL; 2176 2177 rproc->priv = &rproc[1]; 2178 rproc->auto_boot = true; 2179 rproc->elf_class = ELFCLASSNONE; 2180 rproc->elf_machine = EM_NONE; 2181 2182 device_initialize(&rproc->dev); 2183 rproc->dev.parent = dev; 2184 rproc->dev.type = &rproc_type; 2185 rproc->dev.class = &rproc_class; 2186 rproc->dev.driver_data = rproc; 2187 idr_init(&rproc->notifyids); 2188 2189 rproc->name = kstrdup_const(name, GFP_KERNEL); 2190 if (!rproc->name) 2191 goto put_device; 2192 2193 if (rproc_alloc_firmware(rproc, name, firmware)) 2194 goto put_device; 2195 2196 if (rproc_alloc_ops(rproc, ops)) 2197 goto put_device; 2198 2199 /* Assign a unique device index and name */ 2200 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2201 if (rproc->index < 0) { 2202 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2203 goto put_device; 2204 } 2205 2206 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2207 2208 atomic_set(&rproc->power, 0); 2209 2210 mutex_init(&rproc->lock); 2211 2212 INIT_LIST_HEAD(&rproc->carveouts); 2213 INIT_LIST_HEAD(&rproc->mappings); 2214 INIT_LIST_HEAD(&rproc->traces); 2215 INIT_LIST_HEAD(&rproc->rvdevs); 2216 INIT_LIST_HEAD(&rproc->subdevs); 2217 INIT_LIST_HEAD(&rproc->dump_segments); 2218 2219 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2220 2221 rproc->state = RPROC_OFFLINE; 2222 2223 return rproc; 2224 2225 put_device: 2226 put_device(&rproc->dev); 2227 return NULL; 2228 } 2229 EXPORT_SYMBOL(rproc_alloc); 2230 2231 /** 2232 * rproc_free() - unroll rproc_alloc() 2233 * @rproc: the remote processor handle 2234 * 2235 * This function decrements the rproc dev refcount. 2236 * 2237 * If no one holds any reference to rproc anymore, then its refcount would 2238 * now drop to zero, and it would be freed. 2239 */ 2240 void rproc_free(struct rproc *rproc) 2241 { 2242 put_device(&rproc->dev); 2243 } 2244 EXPORT_SYMBOL(rproc_free); 2245 2246 /** 2247 * rproc_put() - release rproc reference 2248 * @rproc: the remote processor handle 2249 * 2250 * This function decrements the rproc dev refcount. 2251 * 2252 * If no one holds any reference to rproc anymore, then its refcount would 2253 * now drop to zero, and it would be freed. 2254 */ 2255 void rproc_put(struct rproc *rproc) 2256 { 2257 module_put(rproc->dev.parent->driver->owner); 2258 put_device(&rproc->dev); 2259 } 2260 EXPORT_SYMBOL(rproc_put); 2261 2262 /** 2263 * rproc_del() - unregister a remote processor 2264 * @rproc: rproc handle to unregister 2265 * 2266 * This function should be called when the platform specific rproc 2267 * implementation decides to remove the rproc device. it should 2268 * _only_ be called if a previous invocation of rproc_add() 2269 * has completed successfully. 2270 * 2271 * After rproc_del() returns, @rproc isn't freed yet, because 2272 * of the outstanding reference created by rproc_alloc. To decrement that 2273 * one last refcount, one still needs to call rproc_free(). 2274 * 2275 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2276 */ 2277 int rproc_del(struct rproc *rproc) 2278 { 2279 if (!rproc) 2280 return -EINVAL; 2281 2282 /* if rproc is marked always-on, rproc_add() booted it */ 2283 /* TODO: make sure this works with rproc->power > 1 */ 2284 if (rproc->auto_boot) 2285 rproc_shutdown(rproc); 2286 2287 mutex_lock(&rproc->lock); 2288 rproc->state = RPROC_DELETED; 2289 mutex_unlock(&rproc->lock); 2290 2291 rproc_delete_debug_dir(rproc); 2292 rproc_char_device_remove(rproc); 2293 2294 /* the rproc is downref'ed as soon as it's removed from the klist */ 2295 mutex_lock(&rproc_list_mutex); 2296 list_del_rcu(&rproc->node); 2297 mutex_unlock(&rproc_list_mutex); 2298 2299 /* Ensure that no readers of rproc_list are still active */ 2300 synchronize_rcu(); 2301 2302 device_del(&rproc->dev); 2303 2304 return 0; 2305 } 2306 EXPORT_SYMBOL(rproc_del); 2307 2308 static void devm_rproc_free(struct device *dev, void *res) 2309 { 2310 rproc_free(*(struct rproc **)res); 2311 } 2312 2313 /** 2314 * devm_rproc_alloc() - resource managed rproc_alloc() 2315 * @dev: the underlying device 2316 * @name: name of this remote processor 2317 * @ops: platform-specific handlers (mainly start/stop) 2318 * @firmware: name of firmware file to load, can be NULL 2319 * @len: length of private data needed by the rproc driver (in bytes) 2320 * 2321 * This function performs like rproc_alloc() but the acquired rproc device will 2322 * automatically be released on driver detach. 2323 * 2324 * Returns: new rproc instance, or NULL on failure 2325 */ 2326 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2327 const struct rproc_ops *ops, 2328 const char *firmware, int len) 2329 { 2330 struct rproc **ptr, *rproc; 2331 2332 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2333 if (!ptr) 2334 return NULL; 2335 2336 rproc = rproc_alloc(dev, name, ops, firmware, len); 2337 if (rproc) { 2338 *ptr = rproc; 2339 devres_add(dev, ptr); 2340 } else { 2341 devres_free(ptr); 2342 } 2343 2344 return rproc; 2345 } 2346 EXPORT_SYMBOL(devm_rproc_alloc); 2347 2348 /** 2349 * rproc_add_subdev() - add a subdevice to a remoteproc 2350 * @rproc: rproc handle to add the subdevice to 2351 * @subdev: subdev handle to register 2352 * 2353 * Caller is responsible for populating optional subdevice function pointers. 2354 */ 2355 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2356 { 2357 list_add_tail(&subdev->node, &rproc->subdevs); 2358 } 2359 EXPORT_SYMBOL(rproc_add_subdev); 2360 2361 /** 2362 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2363 * @rproc: rproc handle to remove the subdevice from 2364 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2365 */ 2366 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2367 { 2368 list_del(&subdev->node); 2369 } 2370 EXPORT_SYMBOL(rproc_remove_subdev); 2371 2372 /** 2373 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2374 * @dev: child device to find ancestor of 2375 * 2376 * Returns the ancestor rproc instance, or NULL if not found. 2377 */ 2378 struct rproc *rproc_get_by_child(struct device *dev) 2379 { 2380 for (dev = dev->parent; dev; dev = dev->parent) { 2381 if (dev->type == &rproc_type) 2382 return dev->driver_data; 2383 } 2384 2385 return NULL; 2386 } 2387 EXPORT_SYMBOL(rproc_get_by_child); 2388 2389 /** 2390 * rproc_report_crash() - rproc crash reporter function 2391 * @rproc: remote processor 2392 * @type: crash type 2393 * 2394 * This function must be called every time a crash is detected by the low-level 2395 * drivers implementing a specific remoteproc. This should not be called from a 2396 * non-remoteproc driver. 2397 * 2398 * This function can be called from atomic/interrupt context. 2399 */ 2400 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2401 { 2402 if (!rproc) { 2403 pr_err("NULL rproc pointer\n"); 2404 return; 2405 } 2406 2407 /* Prevent suspend while the remoteproc is being recovered */ 2408 pm_stay_awake(rproc->dev.parent); 2409 2410 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2411 rproc->name, rproc_crash_to_string(type)); 2412 2413 /* create a new task to handle the error */ 2414 schedule_work(&rproc->crash_handler); 2415 } 2416 EXPORT_SYMBOL(rproc_report_crash); 2417 2418 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2419 void *ptr) 2420 { 2421 unsigned int longest = 0; 2422 struct rproc *rproc; 2423 unsigned int d; 2424 2425 rcu_read_lock(); 2426 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2427 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING) 2428 continue; 2429 2430 d = rproc->ops->panic(rproc); 2431 longest = max(longest, d); 2432 } 2433 rcu_read_unlock(); 2434 2435 /* 2436 * Delay for the longest requested duration before returning. This can 2437 * be used by the remoteproc drivers to give the remote processor time 2438 * to perform any requested operations (such as flush caches), when 2439 * it's not possible to signal the Linux side due to the panic. 2440 */ 2441 mdelay(longest); 2442 2443 return NOTIFY_DONE; 2444 } 2445 2446 static void __init rproc_init_panic(void) 2447 { 2448 rproc_panic_nb.notifier_call = rproc_panic_handler; 2449 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2450 } 2451 2452 static void __exit rproc_exit_panic(void) 2453 { 2454 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2455 } 2456 2457 static int __init remoteproc_init(void) 2458 { 2459 rproc_init_sysfs(); 2460 rproc_init_debugfs(); 2461 rproc_init_cdev(); 2462 rproc_init_panic(); 2463 2464 return 0; 2465 } 2466 subsys_initcall(remoteproc_init); 2467 2468 static void __exit remoteproc_exit(void) 2469 { 2470 ida_destroy(&rproc_dev_index); 2471 2472 rproc_exit_panic(); 2473 rproc_exit_debugfs(); 2474 rproc_exit_sysfs(); 2475 } 2476 module_exit(remoteproc_exit); 2477 2478 MODULE_LICENSE("GPL v2"); 2479 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2480