1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44 
45 #include "remoteproc_internal.h"
46 
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48 				struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 				 void *, int offset, int avail);
51 
52 /* Unique indices for remoteproc devices */
53 static DEFINE_IDA(rproc_dev_index);
54 
55 static const char * const rproc_crash_names[] = {
56 	[RPROC_MMUFAULT]	= "mmufault",
57 };
58 
59 /* translate rproc_crash_type to string */
60 static const char *rproc_crash_to_string(enum rproc_crash_type type)
61 {
62 	if (type < ARRAY_SIZE(rproc_crash_names))
63 		return rproc_crash_names[type];
64 	return "unknown";
65 }
66 
67 /*
68  * This is the IOMMU fault handler we register with the IOMMU API
69  * (when relevant; not all remote processors access memory through
70  * an IOMMU).
71  *
72  * IOMMU core will invoke this handler whenever the remote processor
73  * will try to access an unmapped device address.
74  */
75 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
76 		unsigned long iova, int flags, void *token)
77 {
78 	struct rproc *rproc = token;
79 
80 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
81 
82 	rproc_report_crash(rproc, RPROC_MMUFAULT);
83 
84 	/*
85 	 * Let the iommu core know we're not really handling this fault;
86 	 * we just used it as a recovery trigger.
87 	 */
88 	return -ENOSYS;
89 }
90 
91 static int rproc_enable_iommu(struct rproc *rproc)
92 {
93 	struct iommu_domain *domain;
94 	struct device *dev = rproc->dev.parent;
95 	int ret;
96 
97 	if (!rproc->has_iommu) {
98 		dev_dbg(dev, "iommu not present\n");
99 		return 0;
100 	}
101 
102 	domain = iommu_domain_alloc(dev->bus);
103 	if (!domain) {
104 		dev_err(dev, "can't alloc iommu domain\n");
105 		return -ENOMEM;
106 	}
107 
108 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
109 
110 	ret = iommu_attach_device(domain, dev);
111 	if (ret) {
112 		dev_err(dev, "can't attach iommu device: %d\n", ret);
113 		goto free_domain;
114 	}
115 
116 	rproc->domain = domain;
117 
118 	return 0;
119 
120 free_domain:
121 	iommu_domain_free(domain);
122 	return ret;
123 }
124 
125 static void rproc_disable_iommu(struct rproc *rproc)
126 {
127 	struct iommu_domain *domain = rproc->domain;
128 	struct device *dev = rproc->dev.parent;
129 
130 	if (!domain)
131 		return;
132 
133 	iommu_detach_device(domain, dev);
134 	iommu_domain_free(domain);
135 
136 	return;
137 }
138 
139 /*
140  * Some remote processors will ask us to allocate them physically contiguous
141  * memory regions (which we call "carveouts"), and map them to specific
142  * device addresses (which are hardcoded in the firmware).
143  *
144  * They may then ask us to copy objects into specific device addresses (e.g.
145  * code/data sections) or expose us certain symbols in other device address
146  * (e.g. their trace buffer).
147  *
148  * This function is an internal helper with which we can go over the allocated
149  * carveouts and translate specific device address to kernel virtual addresses
150  * so we can access the referenced memory.
151  *
152  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
153  * but only on kernel direct mapped RAM memory. Instead, we're just using
154  * here the output of the DMA API, which should be more correct.
155  */
156 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
157 {
158 	struct rproc_mem_entry *carveout;
159 	void *ptr = NULL;
160 
161 	list_for_each_entry(carveout, &rproc->carveouts, node) {
162 		int offset = da - carveout->da;
163 
164 		/* try next carveout if da is too small */
165 		if (offset < 0)
166 			continue;
167 
168 		/* try next carveout if da is too large */
169 		if (offset + len > carveout->len)
170 			continue;
171 
172 		ptr = carveout->va + offset;
173 
174 		break;
175 	}
176 
177 	return ptr;
178 }
179 EXPORT_SYMBOL(rproc_da_to_va);
180 
181 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
182 {
183 	struct rproc *rproc = rvdev->rproc;
184 	struct device *dev = &rproc->dev;
185 	struct rproc_vring *rvring = &rvdev->vring[i];
186 	struct fw_rsc_vdev *rsc;
187 	dma_addr_t dma;
188 	void *va;
189 	int ret, size, notifyid;
190 
191 	/* actual size of vring (in bytes) */
192 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
193 
194 	/*
195 	 * Allocate non-cacheable memory for the vring. In the future
196 	 * this call will also configure the IOMMU for us
197 	 */
198 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
199 	if (!va) {
200 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
201 		return -EINVAL;
202 	}
203 
204 	/*
205 	 * Assign an rproc-wide unique index for this vring
206 	 * TODO: assign a notifyid for rvdev updates as well
207 	 * TODO: support predefined notifyids (via resource table)
208 	 */
209 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
210 	if (ret < 0) {
211 		dev_err(dev, "idr_alloc failed: %d\n", ret);
212 		dma_free_coherent(dev->parent, size, va, dma);
213 		return ret;
214 	}
215 	notifyid = ret;
216 
217 	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
218 				(unsigned long long)dma, size, notifyid);
219 
220 	rvring->va = va;
221 	rvring->dma = dma;
222 	rvring->notifyid = notifyid;
223 
224 	/*
225 	 * Let the rproc know the notifyid and da of this vring.
226 	 * Not all platforms use dma_alloc_coherent to automatically
227 	 * set up the iommu. In this case the device address (da) will
228 	 * hold the physical address and not the device address.
229 	 */
230 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
231 	rsc->vring[i].da = dma;
232 	rsc->vring[i].notifyid = notifyid;
233 	return 0;
234 }
235 
236 static int
237 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
238 {
239 	struct rproc *rproc = rvdev->rproc;
240 	struct device *dev = &rproc->dev;
241 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
242 	struct rproc_vring *rvring = &rvdev->vring[i];
243 
244 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
245 				i, vring->da, vring->num, vring->align);
246 
247 	/* make sure reserved bytes are zeroes */
248 	if (vring->reserved) {
249 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
250 		return -EINVAL;
251 	}
252 
253 	/* verify queue size and vring alignment are sane */
254 	if (!vring->num || !vring->align) {
255 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
256 						vring->num, vring->align);
257 		return -EINVAL;
258 	}
259 
260 	rvring->len = vring->num;
261 	rvring->align = vring->align;
262 	rvring->rvdev = rvdev;
263 
264 	return 0;
265 }
266 
267 void rproc_free_vring(struct rproc_vring *rvring)
268 {
269 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
270 	struct rproc *rproc = rvring->rvdev->rproc;
271 	int idx = rvring->rvdev->vring - rvring;
272 	struct fw_rsc_vdev *rsc;
273 
274 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
275 	idr_remove(&rproc->notifyids, rvring->notifyid);
276 
277 	/* reset resource entry info */
278 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
279 	rsc->vring[idx].da = 0;
280 	rsc->vring[idx].notifyid = -1;
281 }
282 
283 /**
284  * rproc_handle_vdev() - handle a vdev fw resource
285  * @rproc: the remote processor
286  * @rsc: the vring resource descriptor
287  * @avail: size of available data (for sanity checking the image)
288  *
289  * This resource entry requests the host to statically register a virtio
290  * device (vdev), and setup everything needed to support it. It contains
291  * everything needed to make it possible: the virtio device id, virtio
292  * device features, vrings information, virtio config space, etc...
293  *
294  * Before registering the vdev, the vrings are allocated from non-cacheable
295  * physically contiguous memory. Currently we only support two vrings per
296  * remote processor (temporary limitation). We might also want to consider
297  * doing the vring allocation only later when ->find_vqs() is invoked, and
298  * then release them upon ->del_vqs().
299  *
300  * Note: @da is currently not really handled correctly: we dynamically
301  * allocate it using the DMA API, ignoring requested hard coded addresses,
302  * and we don't take care of any required IOMMU programming. This is all
303  * going to be taken care of when the generic iommu-based DMA API will be
304  * merged. Meanwhile, statically-addressed iommu-based firmware images should
305  * use RSC_DEVMEM resource entries to map their required @da to the physical
306  * address of their base CMA region (ouch, hacky!).
307  *
308  * Returns 0 on success, or an appropriate error code otherwise
309  */
310 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
311 							int offset, int avail)
312 {
313 	struct device *dev = &rproc->dev;
314 	struct rproc_vdev *rvdev;
315 	int i, ret;
316 
317 	/* make sure resource isn't truncated */
318 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
319 			+ rsc->config_len > avail) {
320 		dev_err(dev, "vdev rsc is truncated\n");
321 		return -EINVAL;
322 	}
323 
324 	/* make sure reserved bytes are zeroes */
325 	if (rsc->reserved[0] || rsc->reserved[1]) {
326 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
327 		return -EINVAL;
328 	}
329 
330 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
331 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
332 
333 	/* we currently support only two vrings per rvdev */
334 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
335 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
336 		return -EINVAL;
337 	}
338 
339 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
340 	if (!rvdev)
341 		return -ENOMEM;
342 
343 	rvdev->rproc = rproc;
344 
345 	/* parse the vrings */
346 	for (i = 0; i < rsc->num_of_vrings; i++) {
347 		ret = rproc_parse_vring(rvdev, rsc, i);
348 		if (ret)
349 			goto free_rvdev;
350 	}
351 
352 	/* remember the resource offset*/
353 	rvdev->rsc_offset = offset;
354 
355 	list_add_tail(&rvdev->node, &rproc->rvdevs);
356 
357 	/* it is now safe to add the virtio device */
358 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
359 	if (ret)
360 		goto remove_rvdev;
361 
362 	return 0;
363 
364 remove_rvdev:
365 	list_del(&rvdev->node);
366 free_rvdev:
367 	kfree(rvdev);
368 	return ret;
369 }
370 
371 /**
372  * rproc_handle_trace() - handle a shared trace buffer resource
373  * @rproc: the remote processor
374  * @rsc: the trace resource descriptor
375  * @avail: size of available data (for sanity checking the image)
376  *
377  * In case the remote processor dumps trace logs into memory,
378  * export it via debugfs.
379  *
380  * Currently, the 'da' member of @rsc should contain the device address
381  * where the remote processor is dumping the traces. Later we could also
382  * support dynamically allocating this address using the generic
383  * DMA API (but currently there isn't a use case for that).
384  *
385  * Returns 0 on success, or an appropriate error code otherwise
386  */
387 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
388 							int offset, int avail)
389 {
390 	struct rproc_mem_entry *trace;
391 	struct device *dev = &rproc->dev;
392 	void *ptr;
393 	char name[15];
394 
395 	if (sizeof(*rsc) > avail) {
396 		dev_err(dev, "trace rsc is truncated\n");
397 		return -EINVAL;
398 	}
399 
400 	/* make sure reserved bytes are zeroes */
401 	if (rsc->reserved) {
402 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
403 		return -EINVAL;
404 	}
405 
406 	/* what's the kernel address of this resource ? */
407 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
408 	if (!ptr) {
409 		dev_err(dev, "erroneous trace resource entry\n");
410 		return -EINVAL;
411 	}
412 
413 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
414 	if (!trace) {
415 		dev_err(dev, "kzalloc trace failed\n");
416 		return -ENOMEM;
417 	}
418 
419 	/* set the trace buffer dma properties */
420 	trace->len = rsc->len;
421 	trace->va = ptr;
422 
423 	/* make sure snprintf always null terminates, even if truncating */
424 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
425 
426 	/* create the debugfs entry */
427 	trace->priv = rproc_create_trace_file(name, rproc, trace);
428 	if (!trace->priv) {
429 		trace->va = NULL;
430 		kfree(trace);
431 		return -EINVAL;
432 	}
433 
434 	list_add_tail(&trace->node, &rproc->traces);
435 
436 	rproc->num_traces++;
437 
438 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
439 						rsc->da, rsc->len);
440 
441 	return 0;
442 }
443 
444 /**
445  * rproc_handle_devmem() - handle devmem resource entry
446  * @rproc: remote processor handle
447  * @rsc: the devmem resource entry
448  * @avail: size of available data (for sanity checking the image)
449  *
450  * Remote processors commonly need to access certain on-chip peripherals.
451  *
452  * Some of these remote processors access memory via an iommu device,
453  * and might require us to configure their iommu before they can access
454  * the on-chip peripherals they need.
455  *
456  * This resource entry is a request to map such a peripheral device.
457  *
458  * These devmem entries will contain the physical address of the device in
459  * the 'pa' member. If a specific device address is expected, then 'da' will
460  * contain it (currently this is the only use case supported). 'len' will
461  * contain the size of the physical region we need to map.
462  *
463  * Currently we just "trust" those devmem entries to contain valid physical
464  * addresses, but this is going to change: we want the implementations to
465  * tell us ranges of physical addresses the firmware is allowed to request,
466  * and not allow firmwares to request access to physical addresses that
467  * are outside those ranges.
468  */
469 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
470 							int offset, int avail)
471 {
472 	struct rproc_mem_entry *mapping;
473 	struct device *dev = &rproc->dev;
474 	int ret;
475 
476 	/* no point in handling this resource without a valid iommu domain */
477 	if (!rproc->domain)
478 		return -EINVAL;
479 
480 	if (sizeof(*rsc) > avail) {
481 		dev_err(dev, "devmem rsc is truncated\n");
482 		return -EINVAL;
483 	}
484 
485 	/* make sure reserved bytes are zeroes */
486 	if (rsc->reserved) {
487 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
488 		return -EINVAL;
489 	}
490 
491 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
492 	if (!mapping) {
493 		dev_err(dev, "kzalloc mapping failed\n");
494 		return -ENOMEM;
495 	}
496 
497 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
498 	if (ret) {
499 		dev_err(dev, "failed to map devmem: %d\n", ret);
500 		goto out;
501 	}
502 
503 	/*
504 	 * We'll need this info later when we'll want to unmap everything
505 	 * (e.g. on shutdown).
506 	 *
507 	 * We can't trust the remote processor not to change the resource
508 	 * table, so we must maintain this info independently.
509 	 */
510 	mapping->da = rsc->da;
511 	mapping->len = rsc->len;
512 	list_add_tail(&mapping->node, &rproc->mappings);
513 
514 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
515 					rsc->pa, rsc->da, rsc->len);
516 
517 	return 0;
518 
519 out:
520 	kfree(mapping);
521 	return ret;
522 }
523 
524 /**
525  * rproc_handle_carveout() - handle phys contig memory allocation requests
526  * @rproc: rproc handle
527  * @rsc: the resource entry
528  * @avail: size of available data (for image validation)
529  *
530  * This function will handle firmware requests for allocation of physically
531  * contiguous memory regions.
532  *
533  * These request entries should come first in the firmware's resource table,
534  * as other firmware entries might request placing other data objects inside
535  * these memory regions (e.g. data/code segments, trace resource entries, ...).
536  *
537  * Allocating memory this way helps utilizing the reserved physical memory
538  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
539  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
540  * pressure is important; it may have a substantial impact on performance.
541  */
542 static int rproc_handle_carveout(struct rproc *rproc,
543 						struct fw_rsc_carveout *rsc,
544 						int offset, int avail)
545 
546 {
547 	struct rproc_mem_entry *carveout, *mapping;
548 	struct device *dev = &rproc->dev;
549 	dma_addr_t dma;
550 	void *va;
551 	int ret;
552 
553 	if (sizeof(*rsc) > avail) {
554 		dev_err(dev, "carveout rsc is truncated\n");
555 		return -EINVAL;
556 	}
557 
558 	/* make sure reserved bytes are zeroes */
559 	if (rsc->reserved) {
560 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
561 		return -EINVAL;
562 	}
563 
564 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
565 			rsc->da, rsc->pa, rsc->len, rsc->flags);
566 
567 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
568 	if (!carveout) {
569 		dev_err(dev, "kzalloc carveout failed\n");
570 		return -ENOMEM;
571 	}
572 
573 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
574 	if (!va) {
575 		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
576 		ret = -ENOMEM;
577 		goto free_carv;
578 	}
579 
580 	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
581 					(unsigned long long)dma, rsc->len);
582 
583 	/*
584 	 * Ok, this is non-standard.
585 	 *
586 	 * Sometimes we can't rely on the generic iommu-based DMA API
587 	 * to dynamically allocate the device address and then set the IOMMU
588 	 * tables accordingly, because some remote processors might
589 	 * _require_ us to use hard coded device addresses that their
590 	 * firmware was compiled with.
591 	 *
592 	 * In this case, we must use the IOMMU API directly and map
593 	 * the memory to the device address as expected by the remote
594 	 * processor.
595 	 *
596 	 * Obviously such remote processor devices should not be configured
597 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
598 	 * physical address in this case.
599 	 */
600 	if (rproc->domain) {
601 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
602 		if (!mapping) {
603 			dev_err(dev, "kzalloc mapping failed\n");
604 			ret = -ENOMEM;
605 			goto dma_free;
606 		}
607 
608 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
609 								rsc->flags);
610 		if (ret) {
611 			dev_err(dev, "iommu_map failed: %d\n", ret);
612 			goto free_mapping;
613 		}
614 
615 		/*
616 		 * We'll need this info later when we'll want to unmap
617 		 * everything (e.g. on shutdown).
618 		 *
619 		 * We can't trust the remote processor not to change the
620 		 * resource table, so we must maintain this info independently.
621 		 */
622 		mapping->da = rsc->da;
623 		mapping->len = rsc->len;
624 		list_add_tail(&mapping->node, &rproc->mappings);
625 
626 		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
627 					rsc->da, (unsigned long long)dma);
628 	}
629 
630 	/*
631 	 * Some remote processors might need to know the pa
632 	 * even though they are behind an IOMMU. E.g., OMAP4's
633 	 * remote M3 processor needs this so it can control
634 	 * on-chip hardware accelerators that are not behind
635 	 * the IOMMU, and therefor must know the pa.
636 	 *
637 	 * Generally we don't want to expose physical addresses
638 	 * if we don't have to (remote processors are generally
639 	 * _not_ trusted), so we might want to do this only for
640 	 * remote processor that _must_ have this (e.g. OMAP4's
641 	 * dual M3 subsystem).
642 	 *
643 	 * Non-IOMMU processors might also want to have this info.
644 	 * In this case, the device address and the physical address
645 	 * are the same.
646 	 */
647 	rsc->pa = dma;
648 
649 	carveout->va = va;
650 	carveout->len = rsc->len;
651 	carveout->dma = dma;
652 	carveout->da = rsc->da;
653 
654 	list_add_tail(&carveout->node, &rproc->carveouts);
655 
656 	return 0;
657 
658 free_mapping:
659 	kfree(mapping);
660 dma_free:
661 	dma_free_coherent(dev->parent, rsc->len, va, dma);
662 free_carv:
663 	kfree(carveout);
664 	return ret;
665 }
666 
667 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
668 			      int offset, int avail)
669 {
670 	/* Summarize the number of notification IDs */
671 	rproc->max_notifyid += rsc->num_of_vrings;
672 
673 	return 0;
674 }
675 
676 /*
677  * A lookup table for resource handlers. The indices are defined in
678  * enum fw_resource_type.
679  */
680 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
681 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
682 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
683 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
684 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
685 };
686 
687 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
688 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
689 };
690 
691 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
692 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
693 };
694 
695 /* handle firmware resource entries before booting the remote processor */
696 static int rproc_handle_resources(struct rproc *rproc, int len,
697 				  rproc_handle_resource_t handlers[RSC_LAST])
698 {
699 	struct device *dev = &rproc->dev;
700 	rproc_handle_resource_t handler;
701 	int ret = 0, i;
702 
703 	for (i = 0; i < rproc->table_ptr->num; i++) {
704 		int offset = rproc->table_ptr->offset[i];
705 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
706 		int avail = len - offset - sizeof(*hdr);
707 		void *rsc = (void *)hdr + sizeof(*hdr);
708 
709 		/* make sure table isn't truncated */
710 		if (avail < 0) {
711 			dev_err(dev, "rsc table is truncated\n");
712 			return -EINVAL;
713 		}
714 
715 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
716 
717 		if (hdr->type >= RSC_LAST) {
718 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
719 			continue;
720 		}
721 
722 		handler = handlers[hdr->type];
723 		if (!handler)
724 			continue;
725 
726 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
727 		if (ret)
728 			break;
729 	}
730 
731 	return ret;
732 }
733 
734 /**
735  * rproc_resource_cleanup() - clean up and free all acquired resources
736  * @rproc: rproc handle
737  *
738  * This function will free all resources acquired for @rproc, and it
739  * is called whenever @rproc either shuts down or fails to boot.
740  */
741 static void rproc_resource_cleanup(struct rproc *rproc)
742 {
743 	struct rproc_mem_entry *entry, *tmp;
744 	struct device *dev = &rproc->dev;
745 
746 	/* clean up debugfs trace entries */
747 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
748 		rproc_remove_trace_file(entry->priv);
749 		rproc->num_traces--;
750 		list_del(&entry->node);
751 		kfree(entry);
752 	}
753 
754 	/* clean up iommu mapping entries */
755 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
756 		size_t unmapped;
757 
758 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
759 		if (unmapped != entry->len) {
760 			/* nothing much to do besides complaining */
761 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
762 								unmapped);
763 		}
764 
765 		list_del(&entry->node);
766 		kfree(entry);
767 	}
768 
769 	/* clean up carveout allocations */
770 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
771 		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
772 		list_del(&entry->node);
773 		kfree(entry);
774 	}
775 }
776 
777 /*
778  * take a firmware and boot a remote processor with it.
779  */
780 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
781 {
782 	struct device *dev = &rproc->dev;
783 	const char *name = rproc->firmware;
784 	struct resource_table *table, *loaded_table;
785 	int ret, tablesz;
786 
787 	if (!rproc->table_ptr)
788 		return -ENOMEM;
789 
790 	ret = rproc_fw_sanity_check(rproc, fw);
791 	if (ret)
792 		return ret;
793 
794 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
795 
796 	/*
797 	 * if enabling an IOMMU isn't relevant for this rproc, this is
798 	 * just a nop
799 	 */
800 	ret = rproc_enable_iommu(rproc);
801 	if (ret) {
802 		dev_err(dev, "can't enable iommu: %d\n", ret);
803 		return ret;
804 	}
805 
806 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
807 	ret = -EINVAL;
808 
809 	/* look for the resource table */
810 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
811 	if (!table) {
812 		goto clean_up;
813 	}
814 
815 	/* Verify that resource table in loaded fw is unchanged */
816 	if (rproc->table_csum != crc32(0, table, tablesz)) {
817 		dev_err(dev, "resource checksum failed, fw changed?\n");
818 		goto clean_up;
819 	}
820 
821 	/* handle fw resources which are required to boot rproc */
822 	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
823 	if (ret) {
824 		dev_err(dev, "Failed to process resources: %d\n", ret);
825 		goto clean_up;
826 	}
827 
828 	/* load the ELF segments to memory */
829 	ret = rproc_load_segments(rproc, fw);
830 	if (ret) {
831 		dev_err(dev, "Failed to load program segments: %d\n", ret);
832 		goto clean_up;
833 	}
834 
835 	/*
836 	 * The starting device has been given the rproc->cached_table as the
837 	 * resource table. The address of the vring along with the other
838 	 * allocated resources (carveouts etc) is stored in cached_table.
839 	 * In order to pass this information to the remote device we must
840 	 * copy this information to device memory.
841 	 */
842 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
843 	if (!loaded_table) {
844 		ret = -EINVAL;
845 		goto clean_up;
846 	}
847 
848 	memcpy(loaded_table, rproc->cached_table, tablesz);
849 
850 	/* power up the remote processor */
851 	ret = rproc->ops->start(rproc);
852 	if (ret) {
853 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
854 		goto clean_up;
855 	}
856 
857 	/*
858 	 * Update table_ptr so that all subsequent vring allocations and
859 	 * virtio fields manipulation update the actual loaded resource table
860 	 * in device memory.
861 	 */
862 	rproc->table_ptr = loaded_table;
863 
864 	rproc->state = RPROC_RUNNING;
865 
866 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
867 
868 	return 0;
869 
870 clean_up:
871 	rproc_resource_cleanup(rproc);
872 	rproc_disable_iommu(rproc);
873 	return ret;
874 }
875 
876 /*
877  * take a firmware and look for virtio devices to register.
878  *
879  * Note: this function is called asynchronously upon registration of the
880  * remote processor (so we must wait until it completes before we try
881  * to unregister the device. one other option is just to use kref here,
882  * that might be cleaner).
883  */
884 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
885 {
886 	struct rproc *rproc = context;
887 	struct resource_table *table;
888 	int ret, tablesz;
889 
890 	if (rproc_fw_sanity_check(rproc, fw) < 0)
891 		goto out;
892 
893 	/* look for the resource table */
894 	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
895 	if (!table)
896 		goto out;
897 
898 	rproc->table_csum = crc32(0, table, tablesz);
899 
900 	/*
901 	 * Create a copy of the resource table. When a virtio device starts
902 	 * and calls vring_new_virtqueue() the address of the allocated vring
903 	 * will be stored in the cached_table. Before the device is started,
904 	 * cached_table will be copied into devic memory.
905 	 */
906 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
907 	if (!rproc->cached_table)
908 		goto out;
909 
910 	rproc->table_ptr = rproc->cached_table;
911 
912 	/* count the number of notify-ids */
913 	rproc->max_notifyid = -1;
914 	ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
915 	if (ret)
916 		goto out;
917 
918 	/* look for virtio devices and register them */
919 	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
920 
921 out:
922 	release_firmware(fw);
923 	/* allow rproc_del() contexts, if any, to proceed */
924 	complete_all(&rproc->firmware_loading_complete);
925 }
926 
927 static int rproc_add_virtio_devices(struct rproc *rproc)
928 {
929 	int ret;
930 
931 	/* rproc_del() calls must wait until async loader completes */
932 	init_completion(&rproc->firmware_loading_complete);
933 
934 	/*
935 	 * We must retrieve early virtio configuration info from
936 	 * the firmware (e.g. whether to register a virtio device,
937 	 * what virtio features does it support, ...).
938 	 *
939 	 * We're initiating an asynchronous firmware loading, so we can
940 	 * be built-in kernel code, without hanging the boot process.
941 	 */
942 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
943 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
944 				      rproc, rproc_fw_config_virtio);
945 	if (ret < 0) {
946 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
947 		complete_all(&rproc->firmware_loading_complete);
948 	}
949 
950 	return ret;
951 }
952 
953 /**
954  * rproc_trigger_recovery() - recover a remoteproc
955  * @rproc: the remote processor
956  *
957  * The recovery is done by reseting all the virtio devices, that way all the
958  * rpmsg drivers will be reseted along with the remote processor making the
959  * remoteproc functional again.
960  *
961  * This function can sleep, so it cannot be called from atomic context.
962  */
963 int rproc_trigger_recovery(struct rproc *rproc)
964 {
965 	struct rproc_vdev *rvdev, *rvtmp;
966 
967 	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
968 
969 	init_completion(&rproc->crash_comp);
970 
971 	/* clean up remote vdev entries */
972 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
973 		rproc_remove_virtio_dev(rvdev);
974 
975 	/* wait until there is no more rproc users */
976 	wait_for_completion(&rproc->crash_comp);
977 
978 	/* Free the copy of the resource table */
979 	kfree(rproc->cached_table);
980 
981 	return rproc_add_virtio_devices(rproc);
982 }
983 
984 /**
985  * rproc_crash_handler_work() - handle a crash
986  *
987  * This function needs to handle everything related to a crash, like cpu
988  * registers and stack dump, information to help to debug the fatal error, etc.
989  */
990 static void rproc_crash_handler_work(struct work_struct *work)
991 {
992 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
993 	struct device *dev = &rproc->dev;
994 
995 	dev_dbg(dev, "enter %s\n", __func__);
996 
997 	mutex_lock(&rproc->lock);
998 
999 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1000 		/* handle only the first crash detected */
1001 		mutex_unlock(&rproc->lock);
1002 		return;
1003 	}
1004 
1005 	rproc->state = RPROC_CRASHED;
1006 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1007 		rproc->name);
1008 
1009 	mutex_unlock(&rproc->lock);
1010 
1011 	if (!rproc->recovery_disabled)
1012 		rproc_trigger_recovery(rproc);
1013 }
1014 
1015 /**
1016  * rproc_boot() - boot a remote processor
1017  * @rproc: handle of a remote processor
1018  *
1019  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1020  *
1021  * If the remote processor is already powered on, this function immediately
1022  * returns (successfully).
1023  *
1024  * Returns 0 on success, and an appropriate error value otherwise.
1025  */
1026 int rproc_boot(struct rproc *rproc)
1027 {
1028 	const struct firmware *firmware_p;
1029 	struct device *dev;
1030 	int ret;
1031 
1032 	if (!rproc) {
1033 		pr_err("invalid rproc handle\n");
1034 		return -EINVAL;
1035 	}
1036 
1037 	dev = &rproc->dev;
1038 
1039 	ret = mutex_lock_interruptible(&rproc->lock);
1040 	if (ret) {
1041 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1042 		return ret;
1043 	}
1044 
1045 	/* loading a firmware is required */
1046 	if (!rproc->firmware) {
1047 		dev_err(dev, "%s: no firmware to load\n", __func__);
1048 		ret = -EINVAL;
1049 		goto unlock_mutex;
1050 	}
1051 
1052 	/* prevent underlying implementation from being removed */
1053 	if (!try_module_get(dev->parent->driver->owner)) {
1054 		dev_err(dev, "%s: can't get owner\n", __func__);
1055 		ret = -EINVAL;
1056 		goto unlock_mutex;
1057 	}
1058 
1059 	/* skip the boot process if rproc is already powered up */
1060 	if (atomic_inc_return(&rproc->power) > 1) {
1061 		ret = 0;
1062 		goto unlock_mutex;
1063 	}
1064 
1065 	dev_info(dev, "powering up %s\n", rproc->name);
1066 
1067 	/* load firmware */
1068 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1069 	if (ret < 0) {
1070 		dev_err(dev, "request_firmware failed: %d\n", ret);
1071 		goto downref_rproc;
1072 	}
1073 
1074 	ret = rproc_fw_boot(rproc, firmware_p);
1075 
1076 	release_firmware(firmware_p);
1077 
1078 downref_rproc:
1079 	if (ret) {
1080 		module_put(dev->parent->driver->owner);
1081 		atomic_dec(&rproc->power);
1082 	}
1083 unlock_mutex:
1084 	mutex_unlock(&rproc->lock);
1085 	return ret;
1086 }
1087 EXPORT_SYMBOL(rproc_boot);
1088 
1089 /**
1090  * rproc_shutdown() - power off the remote processor
1091  * @rproc: the remote processor
1092  *
1093  * Power off a remote processor (previously booted with rproc_boot()).
1094  *
1095  * In case @rproc is still being used by an additional user(s), then
1096  * this function will just decrement the power refcount and exit,
1097  * without really powering off the device.
1098  *
1099  * Every call to rproc_boot() must (eventually) be accompanied by a call
1100  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1101  *
1102  * Notes:
1103  * - we're not decrementing the rproc's refcount, only the power refcount.
1104  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1105  *   returns, and users can still use it with a subsequent rproc_boot(), if
1106  *   needed.
1107  */
1108 void rproc_shutdown(struct rproc *rproc)
1109 {
1110 	struct device *dev = &rproc->dev;
1111 	int ret;
1112 
1113 	ret = mutex_lock_interruptible(&rproc->lock);
1114 	if (ret) {
1115 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1116 		return;
1117 	}
1118 
1119 	/* if the remote proc is still needed, bail out */
1120 	if (!atomic_dec_and_test(&rproc->power))
1121 		goto out;
1122 
1123 	/* power off the remote processor */
1124 	ret = rproc->ops->stop(rproc);
1125 	if (ret) {
1126 		atomic_inc(&rproc->power);
1127 		dev_err(dev, "can't stop rproc: %d\n", ret);
1128 		goto out;
1129 	}
1130 
1131 	/* clean up all acquired resources */
1132 	rproc_resource_cleanup(rproc);
1133 
1134 	rproc_disable_iommu(rproc);
1135 
1136 	/* Give the next start a clean resource table */
1137 	rproc->table_ptr = rproc->cached_table;
1138 
1139 	/* if in crash state, unlock crash handler */
1140 	if (rproc->state == RPROC_CRASHED)
1141 		complete_all(&rproc->crash_comp);
1142 
1143 	rproc->state = RPROC_OFFLINE;
1144 
1145 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1146 
1147 out:
1148 	mutex_unlock(&rproc->lock);
1149 	if (!ret)
1150 		module_put(dev->parent->driver->owner);
1151 }
1152 EXPORT_SYMBOL(rproc_shutdown);
1153 
1154 /**
1155  * rproc_add() - register a remote processor
1156  * @rproc: the remote processor handle to register
1157  *
1158  * Registers @rproc with the remoteproc framework, after it has been
1159  * allocated with rproc_alloc().
1160  *
1161  * This is called by the platform-specific rproc implementation, whenever
1162  * a new remote processor device is probed.
1163  *
1164  * Returns 0 on success and an appropriate error code otherwise.
1165  *
1166  * Note: this function initiates an asynchronous firmware loading
1167  * context, which will look for virtio devices supported by the rproc's
1168  * firmware.
1169  *
1170  * If found, those virtio devices will be created and added, so as a result
1171  * of registering this remote processor, additional virtio drivers might be
1172  * probed.
1173  */
1174 int rproc_add(struct rproc *rproc)
1175 {
1176 	struct device *dev = &rproc->dev;
1177 	int ret;
1178 
1179 	ret = device_add(dev);
1180 	if (ret < 0)
1181 		return ret;
1182 
1183 	dev_info(dev, "%s is available\n", rproc->name);
1184 
1185 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1186 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1187 
1188 	/* create debugfs entries */
1189 	rproc_create_debug_dir(rproc);
1190 
1191 	return rproc_add_virtio_devices(rproc);
1192 }
1193 EXPORT_SYMBOL(rproc_add);
1194 
1195 /**
1196  * rproc_type_release() - release a remote processor instance
1197  * @dev: the rproc's device
1198  *
1199  * This function should _never_ be called directly.
1200  *
1201  * It will be called by the driver core when no one holds a valid pointer
1202  * to @dev anymore.
1203  */
1204 static void rproc_type_release(struct device *dev)
1205 {
1206 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1207 
1208 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1209 
1210 	rproc_delete_debug_dir(rproc);
1211 
1212 	idr_destroy(&rproc->notifyids);
1213 
1214 	if (rproc->index >= 0)
1215 		ida_simple_remove(&rproc_dev_index, rproc->index);
1216 
1217 	kfree(rproc);
1218 }
1219 
1220 static struct device_type rproc_type = {
1221 	.name		= "remoteproc",
1222 	.release	= rproc_type_release,
1223 };
1224 
1225 /**
1226  * rproc_alloc() - allocate a remote processor handle
1227  * @dev: the underlying device
1228  * @name: name of this remote processor
1229  * @ops: platform-specific handlers (mainly start/stop)
1230  * @firmware: name of firmware file to load, can be NULL
1231  * @len: length of private data needed by the rproc driver (in bytes)
1232  *
1233  * Allocates a new remote processor handle, but does not register
1234  * it yet. if @firmware is NULL, a default name is used.
1235  *
1236  * This function should be used by rproc implementations during initialization
1237  * of the remote processor.
1238  *
1239  * After creating an rproc handle using this function, and when ready,
1240  * implementations should then call rproc_add() to complete
1241  * the registration of the remote processor.
1242  *
1243  * On success the new rproc is returned, and on failure, NULL.
1244  *
1245  * Note: _never_ directly deallocate @rproc, even if it was not registered
1246  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1247  */
1248 struct rproc *rproc_alloc(struct device *dev, const char *name,
1249 				const struct rproc_ops *ops,
1250 				const char *firmware, int len)
1251 {
1252 	struct rproc *rproc;
1253 	char *p, *template = "rproc-%s-fw";
1254 	int name_len = 0;
1255 
1256 	if (!dev || !name || !ops)
1257 		return NULL;
1258 
1259 	if (!firmware)
1260 		/*
1261 		 * Make room for default firmware name (minus %s plus '\0').
1262 		 * If the caller didn't pass in a firmware name then
1263 		 * construct a default name.  We're already glomming 'len'
1264 		 * bytes onto the end of the struct rproc allocation, so do
1265 		 * a few more for the default firmware name (but only if
1266 		 * the caller doesn't pass one).
1267 		 */
1268 		name_len = strlen(name) + strlen(template) - 2 + 1;
1269 
1270 	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1271 	if (!rproc) {
1272 		dev_err(dev, "%s: kzalloc failed\n", __func__);
1273 		return NULL;
1274 	}
1275 
1276 	if (!firmware) {
1277 		p = (char *)rproc + sizeof(struct rproc) + len;
1278 		snprintf(p, name_len, template, name);
1279 	} else {
1280 		p = (char *)firmware;
1281 	}
1282 
1283 	rproc->firmware = p;
1284 	rproc->name = name;
1285 	rproc->ops = ops;
1286 	rproc->priv = &rproc[1];
1287 
1288 	device_initialize(&rproc->dev);
1289 	rproc->dev.parent = dev;
1290 	rproc->dev.type = &rproc_type;
1291 
1292 	/* Assign a unique device index and name */
1293 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1294 	if (rproc->index < 0) {
1295 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1296 		put_device(&rproc->dev);
1297 		return NULL;
1298 	}
1299 
1300 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1301 
1302 	atomic_set(&rproc->power, 0);
1303 
1304 	/* Set ELF as the default fw_ops handler */
1305 	rproc->fw_ops = &rproc_elf_fw_ops;
1306 
1307 	mutex_init(&rproc->lock);
1308 
1309 	idr_init(&rproc->notifyids);
1310 
1311 	INIT_LIST_HEAD(&rproc->carveouts);
1312 	INIT_LIST_HEAD(&rproc->mappings);
1313 	INIT_LIST_HEAD(&rproc->traces);
1314 	INIT_LIST_HEAD(&rproc->rvdevs);
1315 
1316 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1317 	init_completion(&rproc->crash_comp);
1318 
1319 	rproc->state = RPROC_OFFLINE;
1320 
1321 	return rproc;
1322 }
1323 EXPORT_SYMBOL(rproc_alloc);
1324 
1325 /**
1326  * rproc_put() - unroll rproc_alloc()
1327  * @rproc: the remote processor handle
1328  *
1329  * This function decrements the rproc dev refcount.
1330  *
1331  * If no one holds any reference to rproc anymore, then its refcount would
1332  * now drop to zero, and it would be freed.
1333  */
1334 void rproc_put(struct rproc *rproc)
1335 {
1336 	put_device(&rproc->dev);
1337 }
1338 EXPORT_SYMBOL(rproc_put);
1339 
1340 /**
1341  * rproc_del() - unregister a remote processor
1342  * @rproc: rproc handle to unregister
1343  *
1344  * This function should be called when the platform specific rproc
1345  * implementation decides to remove the rproc device. it should
1346  * _only_ be called if a previous invocation of rproc_add()
1347  * has completed successfully.
1348  *
1349  * After rproc_del() returns, @rproc isn't freed yet, because
1350  * of the outstanding reference created by rproc_alloc. To decrement that
1351  * one last refcount, one still needs to call rproc_put().
1352  *
1353  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1354  */
1355 int rproc_del(struct rproc *rproc)
1356 {
1357 	struct rproc_vdev *rvdev, *tmp;
1358 
1359 	if (!rproc)
1360 		return -EINVAL;
1361 
1362 	/* if rproc is just being registered, wait */
1363 	wait_for_completion(&rproc->firmware_loading_complete);
1364 
1365 	/* clean up remote vdev entries */
1366 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1367 		rproc_remove_virtio_dev(rvdev);
1368 
1369 	/* Free the copy of the resource table */
1370 	kfree(rproc->cached_table);
1371 
1372 	device_del(&rproc->dev);
1373 
1374 	return 0;
1375 }
1376 EXPORT_SYMBOL(rproc_del);
1377 
1378 /**
1379  * rproc_report_crash() - rproc crash reporter function
1380  * @rproc: remote processor
1381  * @type: crash type
1382  *
1383  * This function must be called every time a crash is detected by the low-level
1384  * drivers implementing a specific remoteproc. This should not be called from a
1385  * non-remoteproc driver.
1386  *
1387  * This function can be called from atomic/interrupt context.
1388  */
1389 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1390 {
1391 	if (!rproc) {
1392 		pr_err("NULL rproc pointer\n");
1393 		return;
1394 	}
1395 
1396 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1397 		rproc->name, rproc_crash_to_string(type));
1398 
1399 	/* create a new task to handle the error */
1400 	schedule_work(&rproc->crash_handler);
1401 }
1402 EXPORT_SYMBOL(rproc_report_crash);
1403 
1404 static int __init remoteproc_init(void)
1405 {
1406 	rproc_init_debugfs();
1407 
1408 	return 0;
1409 }
1410 module_init(remoteproc_init);
1411 
1412 static void __exit remoteproc_exit(void)
1413 {
1414 	rproc_exit_debugfs();
1415 }
1416 module_exit(remoteproc_exit);
1417 
1418 MODULE_LICENSE("GPL v2");
1419 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1420