1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/slab.h> 25 #include <linux/mutex.h> 26 #include <linux/dma-map-ops.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */ 29 #include <linux/firmware.h> 30 #include <linux/string.h> 31 #include <linux/debugfs.h> 32 #include <linux/rculist.h> 33 #include <linux/remoteproc.h> 34 #include <linux/iommu.h> 35 #include <linux/idr.h> 36 #include <linux/elf.h> 37 #include <linux/crc32.h> 38 #include <linux/of_reserved_mem.h> 39 #include <linux/virtio_ids.h> 40 #include <linux/virtio_ring.h> 41 #include <asm/byteorder.h> 42 #include <linux/platform_device.h> 43 44 #include "remoteproc_internal.h" 45 46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 47 48 static DEFINE_MUTEX(rproc_list_mutex); 49 static LIST_HEAD(rproc_list); 50 static struct notifier_block rproc_panic_nb; 51 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 static int rproc_alloc_carveout(struct rproc *rproc, 56 struct rproc_mem_entry *mem); 57 static int rproc_release_carveout(struct rproc *rproc, 58 struct rproc_mem_entry *mem); 59 60 /* Unique indices for remoteproc devices */ 61 static DEFINE_IDA(rproc_dev_index); 62 63 static const char * const rproc_crash_names[] = { 64 [RPROC_MMUFAULT] = "mmufault", 65 [RPROC_WATCHDOG] = "watchdog", 66 [RPROC_FATAL_ERROR] = "fatal error", 67 }; 68 69 /* translate rproc_crash_type to string */ 70 static const char *rproc_crash_to_string(enum rproc_crash_type type) 71 { 72 if (type < ARRAY_SIZE(rproc_crash_names)) 73 return rproc_crash_names[type]; 74 return "unknown"; 75 } 76 77 /* 78 * This is the IOMMU fault handler we register with the IOMMU API 79 * (when relevant; not all remote processors access memory through 80 * an IOMMU). 81 * 82 * IOMMU core will invoke this handler whenever the remote processor 83 * will try to access an unmapped device address. 84 */ 85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 86 unsigned long iova, int flags, void *token) 87 { 88 struct rproc *rproc = token; 89 90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 91 92 rproc_report_crash(rproc, RPROC_MMUFAULT); 93 94 /* 95 * Let the iommu core know we're not really handling this fault; 96 * we just used it as a recovery trigger. 97 */ 98 return -ENOSYS; 99 } 100 101 static int rproc_enable_iommu(struct rproc *rproc) 102 { 103 struct iommu_domain *domain; 104 struct device *dev = rproc->dev.parent; 105 int ret; 106 107 if (!rproc->has_iommu) { 108 dev_dbg(dev, "iommu not present\n"); 109 return 0; 110 } 111 112 domain = iommu_domain_alloc(dev->bus); 113 if (!domain) { 114 dev_err(dev, "can't alloc iommu domain\n"); 115 return -ENOMEM; 116 } 117 118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 119 120 ret = iommu_attach_device(domain, dev); 121 if (ret) { 122 dev_err(dev, "can't attach iommu device: %d\n", ret); 123 goto free_domain; 124 } 125 126 rproc->domain = domain; 127 128 return 0; 129 130 free_domain: 131 iommu_domain_free(domain); 132 return ret; 133 } 134 135 static void rproc_disable_iommu(struct rproc *rproc) 136 { 137 struct iommu_domain *domain = rproc->domain; 138 struct device *dev = rproc->dev.parent; 139 140 if (!domain) 141 return; 142 143 iommu_detach_device(domain, dev); 144 iommu_domain_free(domain); 145 } 146 147 phys_addr_t rproc_va_to_pa(void *cpu_addr) 148 { 149 /* 150 * Return physical address according to virtual address location 151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 152 * - in kernel: if region allocated in generic dma memory pool 153 */ 154 if (is_vmalloc_addr(cpu_addr)) { 155 return page_to_phys(vmalloc_to_page(cpu_addr)) + 156 offset_in_page(cpu_addr); 157 } 158 159 WARN_ON(!virt_addr_valid(cpu_addr)); 160 return virt_to_phys(cpu_addr); 161 } 162 EXPORT_SYMBOL(rproc_va_to_pa); 163 164 /** 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 166 * @rproc: handle of a remote processor 167 * @da: remoteproc device address to translate 168 * @len: length of the memory region @da is pointing to 169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory 170 * 171 * Some remote processors will ask us to allocate them physically contiguous 172 * memory regions (which we call "carveouts"), and map them to specific 173 * device addresses (which are hardcoded in the firmware). They may also have 174 * dedicated memory regions internal to the processors, and use them either 175 * exclusively or alongside carveouts. 176 * 177 * They may then ask us to copy objects into specific device addresses (e.g. 178 * code/data sections) or expose us certain symbols in other device address 179 * (e.g. their trace buffer). 180 * 181 * This function is a helper function with which we can go over the allocated 182 * carveouts and translate specific device addresses to kernel virtual addresses 183 * so we can access the referenced memory. This function also allows to perform 184 * translations on the internal remoteproc memory regions through a platform 185 * implementation specific da_to_va ops, if present. 186 * 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 188 * but only on kernel direct mapped RAM memory. Instead, we're just using 189 * here the output of the DMA API for the carveouts, which should be more 190 * correct. 191 * 192 * Return: a valid kernel address on success or NULL on failure 193 */ 194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 195 { 196 struct rproc_mem_entry *carveout; 197 void *ptr = NULL; 198 199 if (rproc->ops->da_to_va) { 200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 201 if (ptr) 202 goto out; 203 } 204 205 list_for_each_entry(carveout, &rproc->carveouts, node) { 206 int offset = da - carveout->da; 207 208 /* Verify that carveout is allocated */ 209 if (!carveout->va) 210 continue; 211 212 /* try next carveout if da is too small */ 213 if (offset < 0) 214 continue; 215 216 /* try next carveout if da is too large */ 217 if (offset + len > carveout->len) 218 continue; 219 220 ptr = carveout->va + offset; 221 222 if (is_iomem) 223 *is_iomem = carveout->is_iomem; 224 225 break; 226 } 227 228 out: 229 return ptr; 230 } 231 EXPORT_SYMBOL(rproc_da_to_va); 232 233 /** 234 * rproc_find_carveout_by_name() - lookup the carveout region by a name 235 * @rproc: handle of a remote processor 236 * @name: carveout name to find (format string) 237 * @...: optional parameters matching @name string 238 * 239 * Platform driver has the capability to register some pre-allacoted carveout 240 * (physically contiguous memory regions) before rproc firmware loading and 241 * associated resource table analysis. These regions may be dedicated memory 242 * regions internal to the coprocessor or specified DDR region with specific 243 * attributes 244 * 245 * This function is a helper function with which we can go over the 246 * allocated carveouts and return associated region characteristics like 247 * coprocessor address, length or processor virtual address. 248 * 249 * Return: a valid pointer on carveout entry on success or NULL on failure. 250 */ 251 __printf(2, 3) 252 struct rproc_mem_entry * 253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 254 { 255 va_list args; 256 char _name[32]; 257 struct rproc_mem_entry *carveout, *mem = NULL; 258 259 if (!name) 260 return NULL; 261 262 va_start(args, name); 263 vsnprintf(_name, sizeof(_name), name, args); 264 va_end(args); 265 266 list_for_each_entry(carveout, &rproc->carveouts, node) { 267 /* Compare carveout and requested names */ 268 if (!strcmp(carveout->name, _name)) { 269 mem = carveout; 270 break; 271 } 272 } 273 274 return mem; 275 } 276 277 /** 278 * rproc_check_carveout_da() - Check specified carveout da configuration 279 * @rproc: handle of a remote processor 280 * @mem: pointer on carveout to check 281 * @da: area device address 282 * @len: associated area size 283 * 284 * This function is a helper function to verify requested device area (couple 285 * da, len) is part of specified carveout. 286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 287 * checked. 288 * 289 * Return: 0 if carveout matches request else error 290 */ 291 static int rproc_check_carveout_da(struct rproc *rproc, 292 struct rproc_mem_entry *mem, u32 da, u32 len) 293 { 294 struct device *dev = &rproc->dev; 295 int delta; 296 297 /* Check requested resource length */ 298 if (len > mem->len) { 299 dev_err(dev, "Registered carveout doesn't fit len request\n"); 300 return -EINVAL; 301 } 302 303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 304 /* Address doesn't match registered carveout configuration */ 305 return -EINVAL; 306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 307 delta = da - mem->da; 308 309 /* Check requested resource belongs to registered carveout */ 310 if (delta < 0) { 311 dev_err(dev, 312 "Registered carveout doesn't fit da request\n"); 313 return -EINVAL; 314 } 315 316 if (delta + len > mem->len) { 317 dev_err(dev, 318 "Registered carveout doesn't fit len request\n"); 319 return -EINVAL; 320 } 321 } 322 323 return 0; 324 } 325 326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 327 { 328 struct rproc *rproc = rvdev->rproc; 329 struct device *dev = &rproc->dev; 330 struct rproc_vring *rvring = &rvdev->vring[i]; 331 struct fw_rsc_vdev *rsc; 332 int ret, notifyid; 333 struct rproc_mem_entry *mem; 334 size_t size; 335 336 /* actual size of vring (in bytes) */ 337 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 338 339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 340 341 /* Search for pre-registered carveout */ 342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 343 i); 344 if (mem) { 345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 346 return -ENOMEM; 347 } else { 348 /* Register carveout in in list */ 349 mem = rproc_mem_entry_init(dev, NULL, 0, 350 size, rsc->vring[i].da, 351 rproc_alloc_carveout, 352 rproc_release_carveout, 353 "vdev%dvring%d", 354 rvdev->index, i); 355 if (!mem) { 356 dev_err(dev, "Can't allocate memory entry structure\n"); 357 return -ENOMEM; 358 } 359 360 rproc_add_carveout(rproc, mem); 361 } 362 363 /* 364 * Assign an rproc-wide unique index for this vring 365 * TODO: assign a notifyid for rvdev updates as well 366 * TODO: support predefined notifyids (via resource table) 367 */ 368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 369 if (ret < 0) { 370 dev_err(dev, "idr_alloc failed: %d\n", ret); 371 return ret; 372 } 373 notifyid = ret; 374 375 /* Potentially bump max_notifyid */ 376 if (notifyid > rproc->max_notifyid) 377 rproc->max_notifyid = notifyid; 378 379 rvring->notifyid = notifyid; 380 381 /* Let the rproc know the notifyid of this vring.*/ 382 rsc->vring[i].notifyid = notifyid; 383 return 0; 384 } 385 386 static int 387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 388 { 389 struct rproc *rproc = rvdev->rproc; 390 struct device *dev = &rproc->dev; 391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 392 struct rproc_vring *rvring = &rvdev->vring[i]; 393 394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 395 i, vring->da, vring->num, vring->align); 396 397 /* verify queue size and vring alignment are sane */ 398 if (!vring->num || !vring->align) { 399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 400 vring->num, vring->align); 401 return -EINVAL; 402 } 403 404 rvring->len = vring->num; 405 rvring->align = vring->align; 406 rvring->rvdev = rvdev; 407 408 return 0; 409 } 410 411 void rproc_free_vring(struct rproc_vring *rvring) 412 { 413 struct rproc *rproc = rvring->rvdev->rproc; 414 int idx = rvring - rvring->rvdev->vring; 415 struct fw_rsc_vdev *rsc; 416 417 idr_remove(&rproc->notifyids, rvring->notifyid); 418 419 /* 420 * At this point rproc_stop() has been called and the installed resource 421 * table in the remote processor memory may no longer be accessible. As 422 * such and as per rproc_stop(), rproc->table_ptr points to the cached 423 * resource table (rproc->cached_table). The cached resource table is 424 * only available when a remote processor has been booted by the 425 * remoteproc core, otherwise it is NULL. 426 * 427 * Based on the above, reset the virtio device section in the cached 428 * resource table only if there is one to work with. 429 */ 430 if (rproc->table_ptr) { 431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 432 rsc->vring[idx].da = 0; 433 rsc->vring[idx].notifyid = -1; 434 } 435 } 436 437 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 438 { 439 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 440 441 return rproc_add_virtio_dev(rvdev, rvdev->id); 442 } 443 444 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 445 { 446 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 447 int ret; 448 449 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 450 if (ret) 451 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 452 } 453 454 /** 455 * rproc_rvdev_release() - release the existence of a rvdev 456 * 457 * @dev: the subdevice's dev 458 */ 459 static void rproc_rvdev_release(struct device *dev) 460 { 461 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 462 463 of_reserved_mem_device_release(dev); 464 465 kfree(rvdev); 466 } 467 468 static int copy_dma_range_map(struct device *to, struct device *from) 469 { 470 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; 471 int num_ranges = 0; 472 473 if (!map) 474 return 0; 475 476 for (r = map; r->size; r++) 477 num_ranges++; 478 479 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), 480 GFP_KERNEL); 481 if (!new_map) 482 return -ENOMEM; 483 to->dma_range_map = new_map; 484 return 0; 485 } 486 487 /** 488 * rproc_handle_vdev() - handle a vdev fw resource 489 * @rproc: the remote processor 490 * @ptr: the vring resource descriptor 491 * @offset: offset of the resource entry 492 * @avail: size of available data (for sanity checking the image) 493 * 494 * This resource entry requests the host to statically register a virtio 495 * device (vdev), and setup everything needed to support it. It contains 496 * everything needed to make it possible: the virtio device id, virtio 497 * device features, vrings information, virtio config space, etc... 498 * 499 * Before registering the vdev, the vrings are allocated from non-cacheable 500 * physically contiguous memory. Currently we only support two vrings per 501 * remote processor (temporary limitation). We might also want to consider 502 * doing the vring allocation only later when ->find_vqs() is invoked, and 503 * then release them upon ->del_vqs(). 504 * 505 * Note: @da is currently not really handled correctly: we dynamically 506 * allocate it using the DMA API, ignoring requested hard coded addresses, 507 * and we don't take care of any required IOMMU programming. This is all 508 * going to be taken care of when the generic iommu-based DMA API will be 509 * merged. Meanwhile, statically-addressed iommu-based firmware images should 510 * use RSC_DEVMEM resource entries to map their required @da to the physical 511 * address of their base CMA region (ouch, hacky!). 512 * 513 * Return: 0 on success, or an appropriate error code otherwise 514 */ 515 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 516 int offset, int avail) 517 { 518 struct fw_rsc_vdev *rsc = ptr; 519 struct device *dev = &rproc->dev; 520 struct rproc_vdev *rvdev; 521 int i, ret; 522 char name[16]; 523 524 /* make sure resource isn't truncated */ 525 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 526 avail) { 527 dev_err(dev, "vdev rsc is truncated\n"); 528 return -EINVAL; 529 } 530 531 /* make sure reserved bytes are zeroes */ 532 if (rsc->reserved[0] || rsc->reserved[1]) { 533 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 534 return -EINVAL; 535 } 536 537 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 538 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 539 540 /* we currently support only two vrings per rvdev */ 541 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 542 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 543 return -EINVAL; 544 } 545 546 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 547 if (!rvdev) 548 return -ENOMEM; 549 550 kref_init(&rvdev->refcount); 551 552 rvdev->id = rsc->id; 553 rvdev->rproc = rproc; 554 rvdev->index = rproc->nb_vdev++; 555 556 /* Initialise vdev subdevice */ 557 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 558 rvdev->dev.parent = &rproc->dev; 559 rvdev->dev.release = rproc_rvdev_release; 560 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 561 dev_set_drvdata(&rvdev->dev, rvdev); 562 563 ret = device_register(&rvdev->dev); 564 if (ret) { 565 put_device(&rvdev->dev); 566 return ret; 567 } 568 569 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); 570 if (ret) 571 goto free_rvdev; 572 573 /* Make device dma capable by inheriting from parent's capabilities */ 574 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 575 576 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 577 dma_get_mask(rproc->dev.parent)); 578 if (ret) { 579 dev_warn(dev, 580 "Failed to set DMA mask %llx. Trying to continue... (%pe)\n", 581 dma_get_mask(rproc->dev.parent), ERR_PTR(ret)); 582 } 583 584 /* parse the vrings */ 585 for (i = 0; i < rsc->num_of_vrings; i++) { 586 ret = rproc_parse_vring(rvdev, rsc, i); 587 if (ret) 588 goto free_rvdev; 589 } 590 591 /* remember the resource offset*/ 592 rvdev->rsc_offset = offset; 593 594 /* allocate the vring resources */ 595 for (i = 0; i < rsc->num_of_vrings; i++) { 596 ret = rproc_alloc_vring(rvdev, i); 597 if (ret) 598 goto unwind_vring_allocations; 599 } 600 601 list_add_tail(&rvdev->node, &rproc->rvdevs); 602 603 rvdev->subdev.start = rproc_vdev_do_start; 604 rvdev->subdev.stop = rproc_vdev_do_stop; 605 606 rproc_add_subdev(rproc, &rvdev->subdev); 607 608 return 0; 609 610 unwind_vring_allocations: 611 for (i--; i >= 0; i--) 612 rproc_free_vring(&rvdev->vring[i]); 613 free_rvdev: 614 device_unregister(&rvdev->dev); 615 return ret; 616 } 617 618 void rproc_vdev_release(struct kref *ref) 619 { 620 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 621 struct rproc_vring *rvring; 622 struct rproc *rproc = rvdev->rproc; 623 int id; 624 625 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 626 rvring = &rvdev->vring[id]; 627 rproc_free_vring(rvring); 628 } 629 630 rproc_remove_subdev(rproc, &rvdev->subdev); 631 list_del(&rvdev->node); 632 device_unregister(&rvdev->dev); 633 } 634 635 /** 636 * rproc_handle_trace() - handle a shared trace buffer resource 637 * @rproc: the remote processor 638 * @ptr: the trace resource descriptor 639 * @offset: offset of the resource entry 640 * @avail: size of available data (for sanity checking the image) 641 * 642 * In case the remote processor dumps trace logs into memory, 643 * export it via debugfs. 644 * 645 * Currently, the 'da' member of @rsc should contain the device address 646 * where the remote processor is dumping the traces. Later we could also 647 * support dynamically allocating this address using the generic 648 * DMA API (but currently there isn't a use case for that). 649 * 650 * Return: 0 on success, or an appropriate error code otherwise 651 */ 652 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 653 int offset, int avail) 654 { 655 struct fw_rsc_trace *rsc = ptr; 656 struct rproc_debug_trace *trace; 657 struct device *dev = &rproc->dev; 658 char name[15]; 659 660 if (sizeof(*rsc) > avail) { 661 dev_err(dev, "trace rsc is truncated\n"); 662 return -EINVAL; 663 } 664 665 /* make sure reserved bytes are zeroes */ 666 if (rsc->reserved) { 667 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 668 return -EINVAL; 669 } 670 671 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 672 if (!trace) 673 return -ENOMEM; 674 675 /* set the trace buffer dma properties */ 676 trace->trace_mem.len = rsc->len; 677 trace->trace_mem.da = rsc->da; 678 679 /* set pointer on rproc device */ 680 trace->rproc = rproc; 681 682 /* make sure snprintf always null terminates, even if truncating */ 683 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 684 685 /* create the debugfs entry */ 686 trace->tfile = rproc_create_trace_file(name, rproc, trace); 687 688 list_add_tail(&trace->node, &rproc->traces); 689 690 rproc->num_traces++; 691 692 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 693 name, rsc->da, rsc->len); 694 695 return 0; 696 } 697 698 /** 699 * rproc_handle_devmem() - handle devmem resource entry 700 * @rproc: remote processor handle 701 * @ptr: the devmem resource entry 702 * @offset: offset of the resource entry 703 * @avail: size of available data (for sanity checking the image) 704 * 705 * Remote processors commonly need to access certain on-chip peripherals. 706 * 707 * Some of these remote processors access memory via an iommu device, 708 * and might require us to configure their iommu before they can access 709 * the on-chip peripherals they need. 710 * 711 * This resource entry is a request to map such a peripheral device. 712 * 713 * These devmem entries will contain the physical address of the device in 714 * the 'pa' member. If a specific device address is expected, then 'da' will 715 * contain it (currently this is the only use case supported). 'len' will 716 * contain the size of the physical region we need to map. 717 * 718 * Currently we just "trust" those devmem entries to contain valid physical 719 * addresses, but this is going to change: we want the implementations to 720 * tell us ranges of physical addresses the firmware is allowed to request, 721 * and not allow firmwares to request access to physical addresses that 722 * are outside those ranges. 723 * 724 * Return: 0 on success, or an appropriate error code otherwise 725 */ 726 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 727 int offset, int avail) 728 { 729 struct fw_rsc_devmem *rsc = ptr; 730 struct rproc_mem_entry *mapping; 731 struct device *dev = &rproc->dev; 732 int ret; 733 734 /* no point in handling this resource without a valid iommu domain */ 735 if (!rproc->domain) 736 return -EINVAL; 737 738 if (sizeof(*rsc) > avail) { 739 dev_err(dev, "devmem rsc is truncated\n"); 740 return -EINVAL; 741 } 742 743 /* make sure reserved bytes are zeroes */ 744 if (rsc->reserved) { 745 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 746 return -EINVAL; 747 } 748 749 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 750 if (!mapping) 751 return -ENOMEM; 752 753 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 754 if (ret) { 755 dev_err(dev, "failed to map devmem: %d\n", ret); 756 goto out; 757 } 758 759 /* 760 * We'll need this info later when we'll want to unmap everything 761 * (e.g. on shutdown). 762 * 763 * We can't trust the remote processor not to change the resource 764 * table, so we must maintain this info independently. 765 */ 766 mapping->da = rsc->da; 767 mapping->len = rsc->len; 768 list_add_tail(&mapping->node, &rproc->mappings); 769 770 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 771 rsc->pa, rsc->da, rsc->len); 772 773 return 0; 774 775 out: 776 kfree(mapping); 777 return ret; 778 } 779 780 /** 781 * rproc_alloc_carveout() - allocated specified carveout 782 * @rproc: rproc handle 783 * @mem: the memory entry to allocate 784 * 785 * This function allocate specified memory entry @mem using 786 * dma_alloc_coherent() as default allocator 787 * 788 * Return: 0 on success, or an appropriate error code otherwise 789 */ 790 static int rproc_alloc_carveout(struct rproc *rproc, 791 struct rproc_mem_entry *mem) 792 { 793 struct rproc_mem_entry *mapping = NULL; 794 struct device *dev = &rproc->dev; 795 dma_addr_t dma; 796 void *va; 797 int ret; 798 799 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 800 if (!va) { 801 dev_err(dev->parent, 802 "failed to allocate dma memory: len 0x%zx\n", 803 mem->len); 804 return -ENOMEM; 805 } 806 807 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 808 va, &dma, mem->len); 809 810 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 811 /* 812 * Check requested da is equal to dma address 813 * and print a warn message in case of missalignment. 814 * Don't stop rproc_start sequence as coprocessor may 815 * build pa to da translation on its side. 816 */ 817 if (mem->da != (u32)dma) 818 dev_warn(dev->parent, 819 "Allocated carveout doesn't fit device address request\n"); 820 } 821 822 /* 823 * Ok, this is non-standard. 824 * 825 * Sometimes we can't rely on the generic iommu-based DMA API 826 * to dynamically allocate the device address and then set the IOMMU 827 * tables accordingly, because some remote processors might 828 * _require_ us to use hard coded device addresses that their 829 * firmware was compiled with. 830 * 831 * In this case, we must use the IOMMU API directly and map 832 * the memory to the device address as expected by the remote 833 * processor. 834 * 835 * Obviously such remote processor devices should not be configured 836 * to use the iommu-based DMA API: we expect 'dma' to contain the 837 * physical address in this case. 838 */ 839 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 840 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 841 if (!mapping) { 842 ret = -ENOMEM; 843 goto dma_free; 844 } 845 846 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 847 mem->flags); 848 if (ret) { 849 dev_err(dev, "iommu_map failed: %d\n", ret); 850 goto free_mapping; 851 } 852 853 /* 854 * We'll need this info later when we'll want to unmap 855 * everything (e.g. on shutdown). 856 * 857 * We can't trust the remote processor not to change the 858 * resource table, so we must maintain this info independently. 859 */ 860 mapping->da = mem->da; 861 mapping->len = mem->len; 862 list_add_tail(&mapping->node, &rproc->mappings); 863 864 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 865 mem->da, &dma); 866 } 867 868 if (mem->da == FW_RSC_ADDR_ANY) { 869 /* Update device address as undefined by requester */ 870 if ((u64)dma & HIGH_BITS_MASK) 871 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 872 873 mem->da = (u32)dma; 874 } 875 876 mem->dma = dma; 877 mem->va = va; 878 879 return 0; 880 881 free_mapping: 882 kfree(mapping); 883 dma_free: 884 dma_free_coherent(dev->parent, mem->len, va, dma); 885 return ret; 886 } 887 888 /** 889 * rproc_release_carveout() - release acquired carveout 890 * @rproc: rproc handle 891 * @mem: the memory entry to release 892 * 893 * This function releases specified memory entry @mem allocated via 894 * rproc_alloc_carveout() function by @rproc. 895 * 896 * Return: 0 on success, or an appropriate error code otherwise 897 */ 898 static int rproc_release_carveout(struct rproc *rproc, 899 struct rproc_mem_entry *mem) 900 { 901 struct device *dev = &rproc->dev; 902 903 /* clean up carveout allocations */ 904 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 905 return 0; 906 } 907 908 /** 909 * rproc_handle_carveout() - handle phys contig memory allocation requests 910 * @rproc: rproc handle 911 * @ptr: the resource entry 912 * @offset: offset of the resource entry 913 * @avail: size of available data (for image validation) 914 * 915 * This function will handle firmware requests for allocation of physically 916 * contiguous memory regions. 917 * 918 * These request entries should come first in the firmware's resource table, 919 * as other firmware entries might request placing other data objects inside 920 * these memory regions (e.g. data/code segments, trace resource entries, ...). 921 * 922 * Allocating memory this way helps utilizing the reserved physical memory 923 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 924 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 925 * pressure is important; it may have a substantial impact on performance. 926 * 927 * Return: 0 on success, or an appropriate error code otherwise 928 */ 929 static int rproc_handle_carveout(struct rproc *rproc, 930 void *ptr, int offset, int avail) 931 { 932 struct fw_rsc_carveout *rsc = ptr; 933 struct rproc_mem_entry *carveout; 934 struct device *dev = &rproc->dev; 935 936 if (sizeof(*rsc) > avail) { 937 dev_err(dev, "carveout rsc is truncated\n"); 938 return -EINVAL; 939 } 940 941 /* make sure reserved bytes are zeroes */ 942 if (rsc->reserved) { 943 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 944 return -EINVAL; 945 } 946 947 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 948 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 949 950 /* 951 * Check carveout rsc already part of a registered carveout, 952 * Search by name, then check the da and length 953 */ 954 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 955 956 if (carveout) { 957 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 958 dev_err(dev, 959 "Carveout already associated to resource table\n"); 960 return -ENOMEM; 961 } 962 963 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 964 return -ENOMEM; 965 966 /* Update memory carveout with resource table info */ 967 carveout->rsc_offset = offset; 968 carveout->flags = rsc->flags; 969 970 return 0; 971 } 972 973 /* Register carveout in in list */ 974 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 975 rproc_alloc_carveout, 976 rproc_release_carveout, rsc->name); 977 if (!carveout) { 978 dev_err(dev, "Can't allocate memory entry structure\n"); 979 return -ENOMEM; 980 } 981 982 carveout->flags = rsc->flags; 983 carveout->rsc_offset = offset; 984 rproc_add_carveout(rproc, carveout); 985 986 return 0; 987 } 988 989 /** 990 * rproc_add_carveout() - register an allocated carveout region 991 * @rproc: rproc handle 992 * @mem: memory entry to register 993 * 994 * This function registers specified memory entry in @rproc carveouts list. 995 * Specified carveout should have been allocated before registering. 996 */ 997 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 998 { 999 list_add_tail(&mem->node, &rproc->carveouts); 1000 } 1001 EXPORT_SYMBOL(rproc_add_carveout); 1002 1003 /** 1004 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1005 * @dev: pointer on device struct 1006 * @va: virtual address 1007 * @dma: dma address 1008 * @len: memory carveout length 1009 * @da: device address 1010 * @alloc: memory carveout allocation function 1011 * @release: memory carveout release function 1012 * @name: carveout name 1013 * 1014 * This function allocates a rproc_mem_entry struct and fill it with parameters 1015 * provided by client. 1016 * 1017 * Return: a valid pointer on success, or NULL on failure 1018 */ 1019 __printf(8, 9) 1020 struct rproc_mem_entry * 1021 rproc_mem_entry_init(struct device *dev, 1022 void *va, dma_addr_t dma, size_t len, u32 da, 1023 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 1024 int (*release)(struct rproc *, struct rproc_mem_entry *), 1025 const char *name, ...) 1026 { 1027 struct rproc_mem_entry *mem; 1028 va_list args; 1029 1030 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1031 if (!mem) 1032 return mem; 1033 1034 mem->va = va; 1035 mem->dma = dma; 1036 mem->da = da; 1037 mem->len = len; 1038 mem->alloc = alloc; 1039 mem->release = release; 1040 mem->rsc_offset = FW_RSC_ADDR_ANY; 1041 mem->of_resm_idx = -1; 1042 1043 va_start(args, name); 1044 vsnprintf(mem->name, sizeof(mem->name), name, args); 1045 va_end(args); 1046 1047 return mem; 1048 } 1049 EXPORT_SYMBOL(rproc_mem_entry_init); 1050 1051 /** 1052 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1053 * from a reserved memory phandle 1054 * @dev: pointer on device struct 1055 * @of_resm_idx: reserved memory phandle index in "memory-region" 1056 * @len: memory carveout length 1057 * @da: device address 1058 * @name: carveout name 1059 * 1060 * This function allocates a rproc_mem_entry struct and fill it with parameters 1061 * provided by client. 1062 * 1063 * Return: a valid pointer on success, or NULL on failure 1064 */ 1065 __printf(5, 6) 1066 struct rproc_mem_entry * 1067 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1068 u32 da, const char *name, ...) 1069 { 1070 struct rproc_mem_entry *mem; 1071 va_list args; 1072 1073 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1074 if (!mem) 1075 return mem; 1076 1077 mem->da = da; 1078 mem->len = len; 1079 mem->rsc_offset = FW_RSC_ADDR_ANY; 1080 mem->of_resm_idx = of_resm_idx; 1081 1082 va_start(args, name); 1083 vsnprintf(mem->name, sizeof(mem->name), name, args); 1084 va_end(args); 1085 1086 return mem; 1087 } 1088 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1089 1090 /** 1091 * rproc_of_parse_firmware() - parse and return the firmware-name 1092 * @dev: pointer on device struct representing a rproc 1093 * @index: index to use for the firmware-name retrieval 1094 * @fw_name: pointer to a character string, in which the firmware 1095 * name is returned on success and unmodified otherwise. 1096 * 1097 * This is an OF helper function that parses a device's DT node for 1098 * the "firmware-name" property and returns the firmware name pointer 1099 * in @fw_name on success. 1100 * 1101 * Return: 0 on success, or an appropriate failure. 1102 */ 1103 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1104 { 1105 int ret; 1106 1107 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1108 index, fw_name); 1109 return ret ? ret : 0; 1110 } 1111 EXPORT_SYMBOL(rproc_of_parse_firmware); 1112 1113 /* 1114 * A lookup table for resource handlers. The indices are defined in 1115 * enum fw_resource_type. 1116 */ 1117 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1118 [RSC_CARVEOUT] = rproc_handle_carveout, 1119 [RSC_DEVMEM] = rproc_handle_devmem, 1120 [RSC_TRACE] = rproc_handle_trace, 1121 [RSC_VDEV] = rproc_handle_vdev, 1122 }; 1123 1124 /* handle firmware resource entries before booting the remote processor */ 1125 static int rproc_handle_resources(struct rproc *rproc, 1126 rproc_handle_resource_t handlers[RSC_LAST]) 1127 { 1128 struct device *dev = &rproc->dev; 1129 rproc_handle_resource_t handler; 1130 int ret = 0, i; 1131 1132 if (!rproc->table_ptr) 1133 return 0; 1134 1135 for (i = 0; i < rproc->table_ptr->num; i++) { 1136 int offset = rproc->table_ptr->offset[i]; 1137 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1138 int avail = rproc->table_sz - offset - sizeof(*hdr); 1139 void *rsc = (void *)hdr + sizeof(*hdr); 1140 1141 /* make sure table isn't truncated */ 1142 if (avail < 0) { 1143 dev_err(dev, "rsc table is truncated\n"); 1144 return -EINVAL; 1145 } 1146 1147 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1148 1149 if (hdr->type >= RSC_VENDOR_START && 1150 hdr->type <= RSC_VENDOR_END) { 1151 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1152 offset + sizeof(*hdr), avail); 1153 if (ret == RSC_HANDLED) 1154 continue; 1155 else if (ret < 0) 1156 break; 1157 1158 dev_warn(dev, "unsupported vendor resource %d\n", 1159 hdr->type); 1160 continue; 1161 } 1162 1163 if (hdr->type >= RSC_LAST) { 1164 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1165 continue; 1166 } 1167 1168 handler = handlers[hdr->type]; 1169 if (!handler) 1170 continue; 1171 1172 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1173 if (ret) 1174 break; 1175 } 1176 1177 return ret; 1178 } 1179 1180 static int rproc_prepare_subdevices(struct rproc *rproc) 1181 { 1182 struct rproc_subdev *subdev; 1183 int ret; 1184 1185 list_for_each_entry(subdev, &rproc->subdevs, node) { 1186 if (subdev->prepare) { 1187 ret = subdev->prepare(subdev); 1188 if (ret) 1189 goto unroll_preparation; 1190 } 1191 } 1192 1193 return 0; 1194 1195 unroll_preparation: 1196 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1197 if (subdev->unprepare) 1198 subdev->unprepare(subdev); 1199 } 1200 1201 return ret; 1202 } 1203 1204 static int rproc_start_subdevices(struct rproc *rproc) 1205 { 1206 struct rproc_subdev *subdev; 1207 int ret; 1208 1209 list_for_each_entry(subdev, &rproc->subdevs, node) { 1210 if (subdev->start) { 1211 ret = subdev->start(subdev); 1212 if (ret) 1213 goto unroll_registration; 1214 } 1215 } 1216 1217 return 0; 1218 1219 unroll_registration: 1220 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1221 if (subdev->stop) 1222 subdev->stop(subdev, true); 1223 } 1224 1225 return ret; 1226 } 1227 1228 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1229 { 1230 struct rproc_subdev *subdev; 1231 1232 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1233 if (subdev->stop) 1234 subdev->stop(subdev, crashed); 1235 } 1236 } 1237 1238 static void rproc_unprepare_subdevices(struct rproc *rproc) 1239 { 1240 struct rproc_subdev *subdev; 1241 1242 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1243 if (subdev->unprepare) 1244 subdev->unprepare(subdev); 1245 } 1246 } 1247 1248 /** 1249 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1250 * in the list 1251 * @rproc: the remote processor handle 1252 * 1253 * This function parses registered carveout list, performs allocation 1254 * if alloc() ops registered and updates resource table information 1255 * if rsc_offset set. 1256 * 1257 * Return: 0 on success 1258 */ 1259 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1260 { 1261 struct rproc_mem_entry *entry, *tmp; 1262 struct fw_rsc_carveout *rsc; 1263 struct device *dev = &rproc->dev; 1264 u64 pa; 1265 int ret; 1266 1267 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1268 if (entry->alloc) { 1269 ret = entry->alloc(rproc, entry); 1270 if (ret) { 1271 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1272 entry->name, ret); 1273 return -ENOMEM; 1274 } 1275 } 1276 1277 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1278 /* update resource table */ 1279 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1280 1281 /* 1282 * Some remote processors might need to know the pa 1283 * even though they are behind an IOMMU. E.g., OMAP4's 1284 * remote M3 processor needs this so it can control 1285 * on-chip hardware accelerators that are not behind 1286 * the IOMMU, and therefor must know the pa. 1287 * 1288 * Generally we don't want to expose physical addresses 1289 * if we don't have to (remote processors are generally 1290 * _not_ trusted), so we might want to do this only for 1291 * remote processor that _must_ have this (e.g. OMAP4's 1292 * dual M3 subsystem). 1293 * 1294 * Non-IOMMU processors might also want to have this info. 1295 * In this case, the device address and the physical address 1296 * are the same. 1297 */ 1298 1299 /* Use va if defined else dma to generate pa */ 1300 if (entry->va) 1301 pa = (u64)rproc_va_to_pa(entry->va); 1302 else 1303 pa = (u64)entry->dma; 1304 1305 if (((u64)pa) & HIGH_BITS_MASK) 1306 dev_warn(dev, 1307 "Physical address cast in 32bit to fit resource table format\n"); 1308 1309 rsc->pa = (u32)pa; 1310 rsc->da = entry->da; 1311 rsc->len = entry->len; 1312 } 1313 } 1314 1315 return 0; 1316 } 1317 1318 1319 /** 1320 * rproc_resource_cleanup() - clean up and free all acquired resources 1321 * @rproc: rproc handle 1322 * 1323 * This function will free all resources acquired for @rproc, and it 1324 * is called whenever @rproc either shuts down or fails to boot. 1325 */ 1326 void rproc_resource_cleanup(struct rproc *rproc) 1327 { 1328 struct rproc_mem_entry *entry, *tmp; 1329 struct rproc_debug_trace *trace, *ttmp; 1330 struct rproc_vdev *rvdev, *rvtmp; 1331 struct device *dev = &rproc->dev; 1332 1333 /* clean up debugfs trace entries */ 1334 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1335 rproc_remove_trace_file(trace->tfile); 1336 rproc->num_traces--; 1337 list_del(&trace->node); 1338 kfree(trace); 1339 } 1340 1341 /* clean up iommu mapping entries */ 1342 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1343 size_t unmapped; 1344 1345 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1346 if (unmapped != entry->len) { 1347 /* nothing much to do besides complaining */ 1348 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1349 unmapped); 1350 } 1351 1352 list_del(&entry->node); 1353 kfree(entry); 1354 } 1355 1356 /* clean up carveout allocations */ 1357 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1358 if (entry->release) 1359 entry->release(rproc, entry); 1360 list_del(&entry->node); 1361 kfree(entry); 1362 } 1363 1364 /* clean up remote vdev entries */ 1365 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1366 kref_put(&rvdev->refcount, rproc_vdev_release); 1367 1368 rproc_coredump_cleanup(rproc); 1369 } 1370 EXPORT_SYMBOL(rproc_resource_cleanup); 1371 1372 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1373 { 1374 struct resource_table *loaded_table; 1375 struct device *dev = &rproc->dev; 1376 int ret; 1377 1378 /* load the ELF segments to memory */ 1379 ret = rproc_load_segments(rproc, fw); 1380 if (ret) { 1381 dev_err(dev, "Failed to load program segments: %d\n", ret); 1382 return ret; 1383 } 1384 1385 /* 1386 * The starting device has been given the rproc->cached_table as the 1387 * resource table. The address of the vring along with the other 1388 * allocated resources (carveouts etc) is stored in cached_table. 1389 * In order to pass this information to the remote device we must copy 1390 * this information to device memory. We also update the table_ptr so 1391 * that any subsequent changes will be applied to the loaded version. 1392 */ 1393 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1394 if (loaded_table) { 1395 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1396 rproc->table_ptr = loaded_table; 1397 } 1398 1399 ret = rproc_prepare_subdevices(rproc); 1400 if (ret) { 1401 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1402 rproc->name, ret); 1403 goto reset_table_ptr; 1404 } 1405 1406 /* power up the remote processor */ 1407 ret = rproc->ops->start(rproc); 1408 if (ret) { 1409 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1410 goto unprepare_subdevices; 1411 } 1412 1413 /* Start any subdevices for the remote processor */ 1414 ret = rproc_start_subdevices(rproc); 1415 if (ret) { 1416 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1417 rproc->name, ret); 1418 goto stop_rproc; 1419 } 1420 1421 rproc->state = RPROC_RUNNING; 1422 1423 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1424 1425 return 0; 1426 1427 stop_rproc: 1428 rproc->ops->stop(rproc); 1429 unprepare_subdevices: 1430 rproc_unprepare_subdevices(rproc); 1431 reset_table_ptr: 1432 rproc->table_ptr = rproc->cached_table; 1433 1434 return ret; 1435 } 1436 1437 static int __rproc_attach(struct rproc *rproc) 1438 { 1439 struct device *dev = &rproc->dev; 1440 int ret; 1441 1442 ret = rproc_prepare_subdevices(rproc); 1443 if (ret) { 1444 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1445 rproc->name, ret); 1446 goto out; 1447 } 1448 1449 /* Attach to the remote processor */ 1450 ret = rproc_attach_device(rproc); 1451 if (ret) { 1452 dev_err(dev, "can't attach to rproc %s: %d\n", 1453 rproc->name, ret); 1454 goto unprepare_subdevices; 1455 } 1456 1457 /* Start any subdevices for the remote processor */ 1458 ret = rproc_start_subdevices(rproc); 1459 if (ret) { 1460 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1461 rproc->name, ret); 1462 goto stop_rproc; 1463 } 1464 1465 rproc->state = RPROC_ATTACHED; 1466 1467 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1468 1469 return 0; 1470 1471 stop_rproc: 1472 rproc->ops->stop(rproc); 1473 unprepare_subdevices: 1474 rproc_unprepare_subdevices(rproc); 1475 out: 1476 return ret; 1477 } 1478 1479 /* 1480 * take a firmware and boot a remote processor with it. 1481 */ 1482 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1483 { 1484 struct device *dev = &rproc->dev; 1485 const char *name = rproc->firmware; 1486 int ret; 1487 1488 ret = rproc_fw_sanity_check(rproc, fw); 1489 if (ret) 1490 return ret; 1491 1492 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1493 1494 /* 1495 * if enabling an IOMMU isn't relevant for this rproc, this is 1496 * just a nop 1497 */ 1498 ret = rproc_enable_iommu(rproc); 1499 if (ret) { 1500 dev_err(dev, "can't enable iommu: %d\n", ret); 1501 return ret; 1502 } 1503 1504 /* Prepare rproc for firmware loading if needed */ 1505 ret = rproc_prepare_device(rproc); 1506 if (ret) { 1507 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1508 goto disable_iommu; 1509 } 1510 1511 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1512 1513 /* Load resource table, core dump segment list etc from the firmware */ 1514 ret = rproc_parse_fw(rproc, fw); 1515 if (ret) 1516 goto unprepare_rproc; 1517 1518 /* reset max_notifyid */ 1519 rproc->max_notifyid = -1; 1520 1521 /* reset handled vdev */ 1522 rproc->nb_vdev = 0; 1523 1524 /* handle fw resources which are required to boot rproc */ 1525 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1526 if (ret) { 1527 dev_err(dev, "Failed to process resources: %d\n", ret); 1528 goto clean_up_resources; 1529 } 1530 1531 /* Allocate carveout resources associated to rproc */ 1532 ret = rproc_alloc_registered_carveouts(rproc); 1533 if (ret) { 1534 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1535 ret); 1536 goto clean_up_resources; 1537 } 1538 1539 ret = rproc_start(rproc, fw); 1540 if (ret) 1541 goto clean_up_resources; 1542 1543 return 0; 1544 1545 clean_up_resources: 1546 rproc_resource_cleanup(rproc); 1547 kfree(rproc->cached_table); 1548 rproc->cached_table = NULL; 1549 rproc->table_ptr = NULL; 1550 unprepare_rproc: 1551 /* release HW resources if needed */ 1552 rproc_unprepare_device(rproc); 1553 disable_iommu: 1554 rproc_disable_iommu(rproc); 1555 return ret; 1556 } 1557 1558 static int rproc_set_rsc_table(struct rproc *rproc) 1559 { 1560 struct resource_table *table_ptr; 1561 struct device *dev = &rproc->dev; 1562 size_t table_sz; 1563 int ret; 1564 1565 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1566 if (!table_ptr) { 1567 /* Not having a resource table is acceptable */ 1568 return 0; 1569 } 1570 1571 if (IS_ERR(table_ptr)) { 1572 ret = PTR_ERR(table_ptr); 1573 dev_err(dev, "can't load resource table: %d\n", ret); 1574 return ret; 1575 } 1576 1577 /* 1578 * If it is possible to detach the remote processor, keep an untouched 1579 * copy of the resource table. That way we can start fresh again when 1580 * the remote processor is re-attached, that is: 1581 * 1582 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1583 * 1584 * Free'd in rproc_reset_rsc_table_on_detach() and 1585 * rproc_reset_rsc_table_on_stop(). 1586 */ 1587 if (rproc->ops->detach) { 1588 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1589 if (!rproc->clean_table) 1590 return -ENOMEM; 1591 } else { 1592 rproc->clean_table = NULL; 1593 } 1594 1595 rproc->cached_table = NULL; 1596 rproc->table_ptr = table_ptr; 1597 rproc->table_sz = table_sz; 1598 1599 return 0; 1600 } 1601 1602 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1603 { 1604 struct resource_table *table_ptr; 1605 1606 /* A resource table was never retrieved, nothing to do here */ 1607 if (!rproc->table_ptr) 1608 return 0; 1609 1610 /* 1611 * If we made it to this point a clean_table _must_ have been 1612 * allocated in rproc_set_rsc_table(). If one isn't present 1613 * something went really wrong and we must complain. 1614 */ 1615 if (WARN_ON(!rproc->clean_table)) 1616 return -EINVAL; 1617 1618 /* Remember where the external entity installed the resource table */ 1619 table_ptr = rproc->table_ptr; 1620 1621 /* 1622 * If we made it here the remote processor was started by another 1623 * entity and a cache table doesn't exist. As such make a copy of 1624 * the resource table currently used by the remote processor and 1625 * use that for the rest of the shutdown process. The memory 1626 * allocated here is free'd in rproc_detach(). 1627 */ 1628 rproc->cached_table = kmemdup(rproc->table_ptr, 1629 rproc->table_sz, GFP_KERNEL); 1630 if (!rproc->cached_table) 1631 return -ENOMEM; 1632 1633 /* 1634 * Use a copy of the resource table for the remainder of the 1635 * shutdown process. 1636 */ 1637 rproc->table_ptr = rproc->cached_table; 1638 1639 /* 1640 * Reset the memory area where the firmware loaded the resource table 1641 * to its original value. That way when we re-attach the remote 1642 * processor the resource table is clean and ready to be used again. 1643 */ 1644 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1645 1646 /* 1647 * The clean resource table is no longer needed. Allocated in 1648 * rproc_set_rsc_table(). 1649 */ 1650 kfree(rproc->clean_table); 1651 1652 return 0; 1653 } 1654 1655 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1656 { 1657 /* A resource table was never retrieved, nothing to do here */ 1658 if (!rproc->table_ptr) 1659 return 0; 1660 1661 /* 1662 * If a cache table exists the remote processor was started by 1663 * the remoteproc core. That cache table should be used for 1664 * the rest of the shutdown process. 1665 */ 1666 if (rproc->cached_table) 1667 goto out; 1668 1669 /* 1670 * If we made it here the remote processor was started by another 1671 * entity and a cache table doesn't exist. As such make a copy of 1672 * the resource table currently used by the remote processor and 1673 * use that for the rest of the shutdown process. The memory 1674 * allocated here is free'd in rproc_shutdown(). 1675 */ 1676 rproc->cached_table = kmemdup(rproc->table_ptr, 1677 rproc->table_sz, GFP_KERNEL); 1678 if (!rproc->cached_table) 1679 return -ENOMEM; 1680 1681 /* 1682 * Since the remote processor is being switched off the clean table 1683 * won't be needed. Allocated in rproc_set_rsc_table(). 1684 */ 1685 kfree(rproc->clean_table); 1686 1687 out: 1688 /* 1689 * Use a copy of the resource table for the remainder of the 1690 * shutdown process. 1691 */ 1692 rproc->table_ptr = rproc->cached_table; 1693 return 0; 1694 } 1695 1696 /* 1697 * Attach to remote processor - similar to rproc_fw_boot() but without 1698 * the steps that deal with the firmware image. 1699 */ 1700 static int rproc_attach(struct rproc *rproc) 1701 { 1702 struct device *dev = &rproc->dev; 1703 int ret; 1704 1705 /* 1706 * if enabling an IOMMU isn't relevant for this rproc, this is 1707 * just a nop 1708 */ 1709 ret = rproc_enable_iommu(rproc); 1710 if (ret) { 1711 dev_err(dev, "can't enable iommu: %d\n", ret); 1712 return ret; 1713 } 1714 1715 /* Do anything that is needed to boot the remote processor */ 1716 ret = rproc_prepare_device(rproc); 1717 if (ret) { 1718 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1719 goto disable_iommu; 1720 } 1721 1722 ret = rproc_set_rsc_table(rproc); 1723 if (ret) { 1724 dev_err(dev, "can't load resource table: %d\n", ret); 1725 goto unprepare_device; 1726 } 1727 1728 /* reset max_notifyid */ 1729 rproc->max_notifyid = -1; 1730 1731 /* reset handled vdev */ 1732 rproc->nb_vdev = 0; 1733 1734 /* 1735 * Handle firmware resources required to attach to a remote processor. 1736 * Because we are attaching rather than booting the remote processor, 1737 * we expect the platform driver to properly set rproc->table_ptr. 1738 */ 1739 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1740 if (ret) { 1741 dev_err(dev, "Failed to process resources: %d\n", ret); 1742 goto unprepare_device; 1743 } 1744 1745 /* Allocate carveout resources associated to rproc */ 1746 ret = rproc_alloc_registered_carveouts(rproc); 1747 if (ret) { 1748 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1749 ret); 1750 goto clean_up_resources; 1751 } 1752 1753 ret = __rproc_attach(rproc); 1754 if (ret) 1755 goto clean_up_resources; 1756 1757 return 0; 1758 1759 clean_up_resources: 1760 rproc_resource_cleanup(rproc); 1761 unprepare_device: 1762 /* release HW resources if needed */ 1763 rproc_unprepare_device(rproc); 1764 disable_iommu: 1765 rproc_disable_iommu(rproc); 1766 return ret; 1767 } 1768 1769 /* 1770 * take a firmware and boot it up. 1771 * 1772 * Note: this function is called asynchronously upon registration of the 1773 * remote processor (so we must wait until it completes before we try 1774 * to unregister the device. one other option is just to use kref here, 1775 * that might be cleaner). 1776 */ 1777 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1778 { 1779 struct rproc *rproc = context; 1780 1781 rproc_boot(rproc); 1782 1783 release_firmware(fw); 1784 } 1785 1786 static int rproc_trigger_auto_boot(struct rproc *rproc) 1787 { 1788 int ret; 1789 1790 /* 1791 * Since the remote processor is in a detached state, it has already 1792 * been booted by another entity. As such there is no point in waiting 1793 * for a firmware image to be loaded, we can simply initiate the process 1794 * of attaching to it immediately. 1795 */ 1796 if (rproc->state == RPROC_DETACHED) 1797 return rproc_boot(rproc); 1798 1799 /* 1800 * We're initiating an asynchronous firmware loading, so we can 1801 * be built-in kernel code, without hanging the boot process. 1802 */ 1803 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 1804 rproc->firmware, &rproc->dev, GFP_KERNEL, 1805 rproc, rproc_auto_boot_callback); 1806 if (ret < 0) 1807 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1808 1809 return ret; 1810 } 1811 1812 static int rproc_stop(struct rproc *rproc, bool crashed) 1813 { 1814 struct device *dev = &rproc->dev; 1815 int ret; 1816 1817 /* No need to continue if a stop() operation has not been provided */ 1818 if (!rproc->ops->stop) 1819 return -EINVAL; 1820 1821 /* Stop any subdevices for the remote processor */ 1822 rproc_stop_subdevices(rproc, crashed); 1823 1824 /* the installed resource table is no longer accessible */ 1825 ret = rproc_reset_rsc_table_on_stop(rproc); 1826 if (ret) { 1827 dev_err(dev, "can't reset resource table: %d\n", ret); 1828 return ret; 1829 } 1830 1831 1832 /* power off the remote processor */ 1833 ret = rproc->ops->stop(rproc); 1834 if (ret) { 1835 dev_err(dev, "can't stop rproc: %d\n", ret); 1836 return ret; 1837 } 1838 1839 rproc_unprepare_subdevices(rproc); 1840 1841 rproc->state = RPROC_OFFLINE; 1842 1843 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1844 1845 return 0; 1846 } 1847 1848 /* 1849 * __rproc_detach(): Does the opposite of __rproc_attach() 1850 */ 1851 static int __rproc_detach(struct rproc *rproc) 1852 { 1853 struct device *dev = &rproc->dev; 1854 int ret; 1855 1856 /* No need to continue if a detach() operation has not been provided */ 1857 if (!rproc->ops->detach) 1858 return -EINVAL; 1859 1860 /* Stop any subdevices for the remote processor */ 1861 rproc_stop_subdevices(rproc, false); 1862 1863 /* the installed resource table is no longer accessible */ 1864 ret = rproc_reset_rsc_table_on_detach(rproc); 1865 if (ret) { 1866 dev_err(dev, "can't reset resource table: %d\n", ret); 1867 return ret; 1868 } 1869 1870 /* Tell the remote processor the core isn't available anymore */ 1871 ret = rproc->ops->detach(rproc); 1872 if (ret) { 1873 dev_err(dev, "can't detach from rproc: %d\n", ret); 1874 return ret; 1875 } 1876 1877 rproc_unprepare_subdevices(rproc); 1878 1879 rproc->state = RPROC_DETACHED; 1880 1881 dev_info(dev, "detached remote processor %s\n", rproc->name); 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * rproc_trigger_recovery() - recover a remoteproc 1888 * @rproc: the remote processor 1889 * 1890 * The recovery is done by resetting all the virtio devices, that way all the 1891 * rpmsg drivers will be reseted along with the remote processor making the 1892 * remoteproc functional again. 1893 * 1894 * This function can sleep, so it cannot be called from atomic context. 1895 * 1896 * Return: 0 on success or a negative value upon failure 1897 */ 1898 int rproc_trigger_recovery(struct rproc *rproc) 1899 { 1900 const struct firmware *firmware_p; 1901 struct device *dev = &rproc->dev; 1902 int ret; 1903 1904 ret = mutex_lock_interruptible(&rproc->lock); 1905 if (ret) 1906 return ret; 1907 1908 /* State could have changed before we got the mutex */ 1909 if (rproc->state != RPROC_CRASHED) 1910 goto unlock_mutex; 1911 1912 dev_err(dev, "recovering %s\n", rproc->name); 1913 1914 ret = rproc_stop(rproc, true); 1915 if (ret) 1916 goto unlock_mutex; 1917 1918 /* generate coredump */ 1919 rproc->ops->coredump(rproc); 1920 1921 /* load firmware */ 1922 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1923 if (ret < 0) { 1924 dev_err(dev, "request_firmware failed: %d\n", ret); 1925 goto unlock_mutex; 1926 } 1927 1928 /* boot the remote processor up again */ 1929 ret = rproc_start(rproc, firmware_p); 1930 1931 release_firmware(firmware_p); 1932 1933 unlock_mutex: 1934 mutex_unlock(&rproc->lock); 1935 return ret; 1936 } 1937 1938 /** 1939 * rproc_crash_handler_work() - handle a crash 1940 * @work: work treating the crash 1941 * 1942 * This function needs to handle everything related to a crash, like cpu 1943 * registers and stack dump, information to help to debug the fatal error, etc. 1944 */ 1945 static void rproc_crash_handler_work(struct work_struct *work) 1946 { 1947 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1948 struct device *dev = &rproc->dev; 1949 1950 dev_dbg(dev, "enter %s\n", __func__); 1951 1952 mutex_lock(&rproc->lock); 1953 1954 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1955 /* handle only the first crash detected */ 1956 mutex_unlock(&rproc->lock); 1957 return; 1958 } 1959 1960 rproc->state = RPROC_CRASHED; 1961 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1962 rproc->name); 1963 1964 mutex_unlock(&rproc->lock); 1965 1966 if (!rproc->recovery_disabled) 1967 rproc_trigger_recovery(rproc); 1968 1969 pm_relax(rproc->dev.parent); 1970 } 1971 1972 /** 1973 * rproc_boot() - boot a remote processor 1974 * @rproc: handle of a remote processor 1975 * 1976 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1977 * 1978 * If the remote processor is already powered on, this function immediately 1979 * returns (successfully). 1980 * 1981 * Return: 0 on success, and an appropriate error value otherwise 1982 */ 1983 int rproc_boot(struct rproc *rproc) 1984 { 1985 const struct firmware *firmware_p; 1986 struct device *dev; 1987 int ret; 1988 1989 if (!rproc) { 1990 pr_err("invalid rproc handle\n"); 1991 return -EINVAL; 1992 } 1993 1994 dev = &rproc->dev; 1995 1996 ret = mutex_lock_interruptible(&rproc->lock); 1997 if (ret) { 1998 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1999 return ret; 2000 } 2001 2002 if (rproc->state == RPROC_DELETED) { 2003 ret = -ENODEV; 2004 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 2005 goto unlock_mutex; 2006 } 2007 2008 /* skip the boot or attach process if rproc is already powered up */ 2009 if (atomic_inc_return(&rproc->power) > 1) { 2010 ret = 0; 2011 goto unlock_mutex; 2012 } 2013 2014 if (rproc->state == RPROC_DETACHED) { 2015 dev_info(dev, "attaching to %s\n", rproc->name); 2016 2017 ret = rproc_attach(rproc); 2018 } else { 2019 dev_info(dev, "powering up %s\n", rproc->name); 2020 2021 /* load firmware */ 2022 ret = request_firmware(&firmware_p, rproc->firmware, dev); 2023 if (ret < 0) { 2024 dev_err(dev, "request_firmware failed: %d\n", ret); 2025 goto downref_rproc; 2026 } 2027 2028 ret = rproc_fw_boot(rproc, firmware_p); 2029 2030 release_firmware(firmware_p); 2031 } 2032 2033 downref_rproc: 2034 if (ret) 2035 atomic_dec(&rproc->power); 2036 unlock_mutex: 2037 mutex_unlock(&rproc->lock); 2038 return ret; 2039 } 2040 EXPORT_SYMBOL(rproc_boot); 2041 2042 /** 2043 * rproc_shutdown() - power off the remote processor 2044 * @rproc: the remote processor 2045 * 2046 * Power off a remote processor (previously booted with rproc_boot()). 2047 * 2048 * In case @rproc is still being used by an additional user(s), then 2049 * this function will just decrement the power refcount and exit, 2050 * without really powering off the device. 2051 * 2052 * Every call to rproc_boot() must (eventually) be accompanied by a call 2053 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 2054 * 2055 * Notes: 2056 * - we're not decrementing the rproc's refcount, only the power refcount. 2057 * which means that the @rproc handle stays valid even after rproc_shutdown() 2058 * returns, and users can still use it with a subsequent rproc_boot(), if 2059 * needed. 2060 * 2061 * Return: 0 on success, and an appropriate error value otherwise 2062 */ 2063 int rproc_shutdown(struct rproc *rproc) 2064 { 2065 struct device *dev = &rproc->dev; 2066 int ret = 0; 2067 2068 ret = mutex_lock_interruptible(&rproc->lock); 2069 if (ret) { 2070 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2071 return ret; 2072 } 2073 2074 if (rproc->state != RPROC_RUNNING && 2075 rproc->state != RPROC_ATTACHED) { 2076 ret = -EINVAL; 2077 goto out; 2078 } 2079 2080 /* if the remote proc is still needed, bail out */ 2081 if (!atomic_dec_and_test(&rproc->power)) 2082 goto out; 2083 2084 ret = rproc_stop(rproc, false); 2085 if (ret) { 2086 atomic_inc(&rproc->power); 2087 goto out; 2088 } 2089 2090 /* clean up all acquired resources */ 2091 rproc_resource_cleanup(rproc); 2092 2093 /* release HW resources if needed */ 2094 rproc_unprepare_device(rproc); 2095 2096 rproc_disable_iommu(rproc); 2097 2098 /* Free the copy of the resource table */ 2099 kfree(rproc->cached_table); 2100 rproc->cached_table = NULL; 2101 rproc->table_ptr = NULL; 2102 out: 2103 mutex_unlock(&rproc->lock); 2104 return ret; 2105 } 2106 EXPORT_SYMBOL(rproc_shutdown); 2107 2108 /** 2109 * rproc_detach() - Detach the remote processor from the 2110 * remoteproc core 2111 * 2112 * @rproc: the remote processor 2113 * 2114 * Detach a remote processor (previously attached to with rproc_attach()). 2115 * 2116 * In case @rproc is still being used by an additional user(s), then 2117 * this function will just decrement the power refcount and exit, 2118 * without disconnecting the device. 2119 * 2120 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2121 * processor know that services provided by the application processor are 2122 * no longer available. From there it should be possible to remove the 2123 * platform driver and even power cycle the application processor (if the HW 2124 * supports it) without needing to switch off the remote processor. 2125 * 2126 * Return: 0 on success, and an appropriate error value otherwise 2127 */ 2128 int rproc_detach(struct rproc *rproc) 2129 { 2130 struct device *dev = &rproc->dev; 2131 int ret; 2132 2133 ret = mutex_lock_interruptible(&rproc->lock); 2134 if (ret) { 2135 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2136 return ret; 2137 } 2138 2139 if (rproc->state != RPROC_ATTACHED) { 2140 ret = -EINVAL; 2141 goto out; 2142 } 2143 2144 /* if the remote proc is still needed, bail out */ 2145 if (!atomic_dec_and_test(&rproc->power)) { 2146 ret = 0; 2147 goto out; 2148 } 2149 2150 ret = __rproc_detach(rproc); 2151 if (ret) { 2152 atomic_inc(&rproc->power); 2153 goto out; 2154 } 2155 2156 /* clean up all acquired resources */ 2157 rproc_resource_cleanup(rproc); 2158 2159 /* release HW resources if needed */ 2160 rproc_unprepare_device(rproc); 2161 2162 rproc_disable_iommu(rproc); 2163 2164 /* Free the copy of the resource table */ 2165 kfree(rproc->cached_table); 2166 rproc->cached_table = NULL; 2167 rproc->table_ptr = NULL; 2168 out: 2169 mutex_unlock(&rproc->lock); 2170 return ret; 2171 } 2172 EXPORT_SYMBOL(rproc_detach); 2173 2174 /** 2175 * rproc_get_by_phandle() - find a remote processor by phandle 2176 * @phandle: phandle to the rproc 2177 * 2178 * Finds an rproc handle using the remote processor's phandle, and then 2179 * return a handle to the rproc. 2180 * 2181 * This function increments the remote processor's refcount, so always 2182 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2183 * 2184 * Return: rproc handle on success, and NULL on failure 2185 */ 2186 #ifdef CONFIG_OF 2187 struct rproc *rproc_get_by_phandle(phandle phandle) 2188 { 2189 struct rproc *rproc = NULL, *r; 2190 struct device_node *np; 2191 2192 np = of_find_node_by_phandle(phandle); 2193 if (!np) 2194 return NULL; 2195 2196 rcu_read_lock(); 2197 list_for_each_entry_rcu(r, &rproc_list, node) { 2198 if (r->dev.parent && r->dev.parent->of_node == np) { 2199 /* prevent underlying implementation from being removed */ 2200 if (!try_module_get(r->dev.parent->driver->owner)) { 2201 dev_err(&r->dev, "can't get owner\n"); 2202 break; 2203 } 2204 2205 rproc = r; 2206 get_device(&rproc->dev); 2207 break; 2208 } 2209 } 2210 rcu_read_unlock(); 2211 2212 of_node_put(np); 2213 2214 return rproc; 2215 } 2216 #else 2217 struct rproc *rproc_get_by_phandle(phandle phandle) 2218 { 2219 return NULL; 2220 } 2221 #endif 2222 EXPORT_SYMBOL(rproc_get_by_phandle); 2223 2224 /** 2225 * rproc_set_firmware() - assign a new firmware 2226 * @rproc: rproc handle to which the new firmware is being assigned 2227 * @fw_name: new firmware name to be assigned 2228 * 2229 * This function allows remoteproc drivers or clients to configure a custom 2230 * firmware name that is different from the default name used during remoteproc 2231 * registration. The function does not trigger a remote processor boot, 2232 * only sets the firmware name used for a subsequent boot. This function 2233 * should also be called only when the remote processor is offline. 2234 * 2235 * This allows either the userspace to configure a different name through 2236 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2237 * a specific firmware when it is controlling the boot and shutdown of the 2238 * remote processor. 2239 * 2240 * Return: 0 on success or a negative value upon failure 2241 */ 2242 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2243 { 2244 struct device *dev; 2245 int ret, len; 2246 char *p; 2247 2248 if (!rproc || !fw_name) 2249 return -EINVAL; 2250 2251 dev = rproc->dev.parent; 2252 2253 ret = mutex_lock_interruptible(&rproc->lock); 2254 if (ret) { 2255 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2256 return -EINVAL; 2257 } 2258 2259 if (rproc->state != RPROC_OFFLINE) { 2260 dev_err(dev, "can't change firmware while running\n"); 2261 ret = -EBUSY; 2262 goto out; 2263 } 2264 2265 len = strcspn(fw_name, "\n"); 2266 if (!len) { 2267 dev_err(dev, "can't provide empty string for firmware name\n"); 2268 ret = -EINVAL; 2269 goto out; 2270 } 2271 2272 p = kstrndup(fw_name, len, GFP_KERNEL); 2273 if (!p) { 2274 ret = -ENOMEM; 2275 goto out; 2276 } 2277 2278 kfree_const(rproc->firmware); 2279 rproc->firmware = p; 2280 2281 out: 2282 mutex_unlock(&rproc->lock); 2283 return ret; 2284 } 2285 EXPORT_SYMBOL(rproc_set_firmware); 2286 2287 static int rproc_validate(struct rproc *rproc) 2288 { 2289 switch (rproc->state) { 2290 case RPROC_OFFLINE: 2291 /* 2292 * An offline processor without a start() 2293 * function makes no sense. 2294 */ 2295 if (!rproc->ops->start) 2296 return -EINVAL; 2297 break; 2298 case RPROC_DETACHED: 2299 /* 2300 * A remote processor in a detached state without an 2301 * attach() function makes not sense. 2302 */ 2303 if (!rproc->ops->attach) 2304 return -EINVAL; 2305 /* 2306 * When attaching to a remote processor the device memory 2307 * is already available and as such there is no need to have a 2308 * cached table. 2309 */ 2310 if (rproc->cached_table) 2311 return -EINVAL; 2312 break; 2313 default: 2314 /* 2315 * When adding a remote processor, the state of the device 2316 * can be offline or detached, nothing else. 2317 */ 2318 return -EINVAL; 2319 } 2320 2321 return 0; 2322 } 2323 2324 /** 2325 * rproc_add() - register a remote processor 2326 * @rproc: the remote processor handle to register 2327 * 2328 * Registers @rproc with the remoteproc framework, after it has been 2329 * allocated with rproc_alloc(). 2330 * 2331 * This is called by the platform-specific rproc implementation, whenever 2332 * a new remote processor device is probed. 2333 * 2334 * Note: this function initiates an asynchronous firmware loading 2335 * context, which will look for virtio devices supported by the rproc's 2336 * firmware. 2337 * 2338 * If found, those virtio devices will be created and added, so as a result 2339 * of registering this remote processor, additional virtio drivers might be 2340 * probed. 2341 * 2342 * Return: 0 on success and an appropriate error code otherwise 2343 */ 2344 int rproc_add(struct rproc *rproc) 2345 { 2346 struct device *dev = &rproc->dev; 2347 int ret; 2348 2349 ret = rproc_validate(rproc); 2350 if (ret < 0) 2351 return ret; 2352 2353 /* add char device for this remoteproc */ 2354 ret = rproc_char_device_add(rproc); 2355 if (ret < 0) 2356 return ret; 2357 2358 ret = device_add(dev); 2359 if (ret < 0) { 2360 put_device(dev); 2361 goto rproc_remove_cdev; 2362 } 2363 2364 dev_info(dev, "%s is available\n", rproc->name); 2365 2366 /* create debugfs entries */ 2367 rproc_create_debug_dir(rproc); 2368 2369 /* if rproc is marked always-on, request it to boot */ 2370 if (rproc->auto_boot) { 2371 ret = rproc_trigger_auto_boot(rproc); 2372 if (ret < 0) 2373 goto rproc_remove_dev; 2374 } 2375 2376 /* expose to rproc_get_by_phandle users */ 2377 mutex_lock(&rproc_list_mutex); 2378 list_add_rcu(&rproc->node, &rproc_list); 2379 mutex_unlock(&rproc_list_mutex); 2380 2381 return 0; 2382 2383 rproc_remove_dev: 2384 rproc_delete_debug_dir(rproc); 2385 device_del(dev); 2386 rproc_remove_cdev: 2387 rproc_char_device_remove(rproc); 2388 return ret; 2389 } 2390 EXPORT_SYMBOL(rproc_add); 2391 2392 static void devm_rproc_remove(void *rproc) 2393 { 2394 rproc_del(rproc); 2395 } 2396 2397 /** 2398 * devm_rproc_add() - resource managed rproc_add() 2399 * @dev: the underlying device 2400 * @rproc: the remote processor handle to register 2401 * 2402 * This function performs like rproc_add() but the registered rproc device will 2403 * automatically be removed on driver detach. 2404 * 2405 * Return: 0 on success, negative errno on failure 2406 */ 2407 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2408 { 2409 int err; 2410 2411 err = rproc_add(rproc); 2412 if (err) 2413 return err; 2414 2415 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2416 } 2417 EXPORT_SYMBOL(devm_rproc_add); 2418 2419 /** 2420 * rproc_type_release() - release a remote processor instance 2421 * @dev: the rproc's device 2422 * 2423 * This function should _never_ be called directly. 2424 * 2425 * It will be called by the driver core when no one holds a valid pointer 2426 * to @dev anymore. 2427 */ 2428 static void rproc_type_release(struct device *dev) 2429 { 2430 struct rproc *rproc = container_of(dev, struct rproc, dev); 2431 2432 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2433 2434 idr_destroy(&rproc->notifyids); 2435 2436 if (rproc->index >= 0) 2437 ida_simple_remove(&rproc_dev_index, rproc->index); 2438 2439 kfree_const(rproc->firmware); 2440 kfree_const(rproc->name); 2441 kfree(rproc->ops); 2442 kfree(rproc); 2443 } 2444 2445 static const struct device_type rproc_type = { 2446 .name = "remoteproc", 2447 .release = rproc_type_release, 2448 }; 2449 2450 static int rproc_alloc_firmware(struct rproc *rproc, 2451 const char *name, const char *firmware) 2452 { 2453 const char *p; 2454 2455 /* 2456 * Allocate a firmware name if the caller gave us one to work 2457 * with. Otherwise construct a new one using a default pattern. 2458 */ 2459 if (firmware) 2460 p = kstrdup_const(firmware, GFP_KERNEL); 2461 else 2462 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2463 2464 if (!p) 2465 return -ENOMEM; 2466 2467 rproc->firmware = p; 2468 2469 return 0; 2470 } 2471 2472 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2473 { 2474 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2475 if (!rproc->ops) 2476 return -ENOMEM; 2477 2478 /* Default to rproc_coredump if no coredump function is specified */ 2479 if (!rproc->ops->coredump) 2480 rproc->ops->coredump = rproc_coredump; 2481 2482 if (rproc->ops->load) 2483 return 0; 2484 2485 /* Default to ELF loader if no load function is specified */ 2486 rproc->ops->load = rproc_elf_load_segments; 2487 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2488 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2489 rproc->ops->sanity_check = rproc_elf_sanity_check; 2490 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2491 2492 return 0; 2493 } 2494 2495 /** 2496 * rproc_alloc() - allocate a remote processor handle 2497 * @dev: the underlying device 2498 * @name: name of this remote processor 2499 * @ops: platform-specific handlers (mainly start/stop) 2500 * @firmware: name of firmware file to load, can be NULL 2501 * @len: length of private data needed by the rproc driver (in bytes) 2502 * 2503 * Allocates a new remote processor handle, but does not register 2504 * it yet. if @firmware is NULL, a default name is used. 2505 * 2506 * This function should be used by rproc implementations during initialization 2507 * of the remote processor. 2508 * 2509 * After creating an rproc handle using this function, and when ready, 2510 * implementations should then call rproc_add() to complete 2511 * the registration of the remote processor. 2512 * 2513 * Note: _never_ directly deallocate @rproc, even if it was not registered 2514 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2515 * 2516 * Return: new rproc pointer on success, and NULL on failure 2517 */ 2518 struct rproc *rproc_alloc(struct device *dev, const char *name, 2519 const struct rproc_ops *ops, 2520 const char *firmware, int len) 2521 { 2522 struct rproc *rproc; 2523 2524 if (!dev || !name || !ops) 2525 return NULL; 2526 2527 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2528 if (!rproc) 2529 return NULL; 2530 2531 rproc->priv = &rproc[1]; 2532 rproc->auto_boot = true; 2533 rproc->elf_class = ELFCLASSNONE; 2534 rproc->elf_machine = EM_NONE; 2535 2536 device_initialize(&rproc->dev); 2537 rproc->dev.parent = dev; 2538 rproc->dev.type = &rproc_type; 2539 rproc->dev.class = &rproc_class; 2540 rproc->dev.driver_data = rproc; 2541 idr_init(&rproc->notifyids); 2542 2543 rproc->name = kstrdup_const(name, GFP_KERNEL); 2544 if (!rproc->name) 2545 goto put_device; 2546 2547 if (rproc_alloc_firmware(rproc, name, firmware)) 2548 goto put_device; 2549 2550 if (rproc_alloc_ops(rproc, ops)) 2551 goto put_device; 2552 2553 /* Assign a unique device index and name */ 2554 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2555 if (rproc->index < 0) { 2556 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2557 goto put_device; 2558 } 2559 2560 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2561 2562 atomic_set(&rproc->power, 0); 2563 2564 mutex_init(&rproc->lock); 2565 2566 INIT_LIST_HEAD(&rproc->carveouts); 2567 INIT_LIST_HEAD(&rproc->mappings); 2568 INIT_LIST_HEAD(&rproc->traces); 2569 INIT_LIST_HEAD(&rproc->rvdevs); 2570 INIT_LIST_HEAD(&rproc->subdevs); 2571 INIT_LIST_HEAD(&rproc->dump_segments); 2572 2573 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2574 2575 rproc->state = RPROC_OFFLINE; 2576 2577 return rproc; 2578 2579 put_device: 2580 put_device(&rproc->dev); 2581 return NULL; 2582 } 2583 EXPORT_SYMBOL(rproc_alloc); 2584 2585 /** 2586 * rproc_free() - unroll rproc_alloc() 2587 * @rproc: the remote processor handle 2588 * 2589 * This function decrements the rproc dev refcount. 2590 * 2591 * If no one holds any reference to rproc anymore, then its refcount would 2592 * now drop to zero, and it would be freed. 2593 */ 2594 void rproc_free(struct rproc *rproc) 2595 { 2596 put_device(&rproc->dev); 2597 } 2598 EXPORT_SYMBOL(rproc_free); 2599 2600 /** 2601 * rproc_put() - release rproc reference 2602 * @rproc: the remote processor handle 2603 * 2604 * This function decrements the rproc dev refcount. 2605 * 2606 * If no one holds any reference to rproc anymore, then its refcount would 2607 * now drop to zero, and it would be freed. 2608 */ 2609 void rproc_put(struct rproc *rproc) 2610 { 2611 module_put(rproc->dev.parent->driver->owner); 2612 put_device(&rproc->dev); 2613 } 2614 EXPORT_SYMBOL(rproc_put); 2615 2616 /** 2617 * rproc_del() - unregister a remote processor 2618 * @rproc: rproc handle to unregister 2619 * 2620 * This function should be called when the platform specific rproc 2621 * implementation decides to remove the rproc device. it should 2622 * _only_ be called if a previous invocation of rproc_add() 2623 * has completed successfully. 2624 * 2625 * After rproc_del() returns, @rproc isn't freed yet, because 2626 * of the outstanding reference created by rproc_alloc. To decrement that 2627 * one last refcount, one still needs to call rproc_free(). 2628 * 2629 * Return: 0 on success and -EINVAL if @rproc isn't valid 2630 */ 2631 int rproc_del(struct rproc *rproc) 2632 { 2633 if (!rproc) 2634 return -EINVAL; 2635 2636 /* TODO: make sure this works with rproc->power > 1 */ 2637 rproc_shutdown(rproc); 2638 2639 mutex_lock(&rproc->lock); 2640 rproc->state = RPROC_DELETED; 2641 mutex_unlock(&rproc->lock); 2642 2643 rproc_delete_debug_dir(rproc); 2644 2645 /* the rproc is downref'ed as soon as it's removed from the klist */ 2646 mutex_lock(&rproc_list_mutex); 2647 list_del_rcu(&rproc->node); 2648 mutex_unlock(&rproc_list_mutex); 2649 2650 /* Ensure that no readers of rproc_list are still active */ 2651 synchronize_rcu(); 2652 2653 device_del(&rproc->dev); 2654 rproc_char_device_remove(rproc); 2655 2656 return 0; 2657 } 2658 EXPORT_SYMBOL(rproc_del); 2659 2660 static void devm_rproc_free(struct device *dev, void *res) 2661 { 2662 rproc_free(*(struct rproc **)res); 2663 } 2664 2665 /** 2666 * devm_rproc_alloc() - resource managed rproc_alloc() 2667 * @dev: the underlying device 2668 * @name: name of this remote processor 2669 * @ops: platform-specific handlers (mainly start/stop) 2670 * @firmware: name of firmware file to load, can be NULL 2671 * @len: length of private data needed by the rproc driver (in bytes) 2672 * 2673 * This function performs like rproc_alloc() but the acquired rproc device will 2674 * automatically be released on driver detach. 2675 * 2676 * Return: new rproc instance, or NULL on failure 2677 */ 2678 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2679 const struct rproc_ops *ops, 2680 const char *firmware, int len) 2681 { 2682 struct rproc **ptr, *rproc; 2683 2684 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2685 if (!ptr) 2686 return NULL; 2687 2688 rproc = rproc_alloc(dev, name, ops, firmware, len); 2689 if (rproc) { 2690 *ptr = rproc; 2691 devres_add(dev, ptr); 2692 } else { 2693 devres_free(ptr); 2694 } 2695 2696 return rproc; 2697 } 2698 EXPORT_SYMBOL(devm_rproc_alloc); 2699 2700 /** 2701 * rproc_add_subdev() - add a subdevice to a remoteproc 2702 * @rproc: rproc handle to add the subdevice to 2703 * @subdev: subdev handle to register 2704 * 2705 * Caller is responsible for populating optional subdevice function pointers. 2706 */ 2707 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2708 { 2709 list_add_tail(&subdev->node, &rproc->subdevs); 2710 } 2711 EXPORT_SYMBOL(rproc_add_subdev); 2712 2713 /** 2714 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2715 * @rproc: rproc handle to remove the subdevice from 2716 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2717 */ 2718 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2719 { 2720 list_del(&subdev->node); 2721 } 2722 EXPORT_SYMBOL(rproc_remove_subdev); 2723 2724 /** 2725 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2726 * @dev: child device to find ancestor of 2727 * 2728 * Return: the ancestor rproc instance, or NULL if not found 2729 */ 2730 struct rproc *rproc_get_by_child(struct device *dev) 2731 { 2732 for (dev = dev->parent; dev; dev = dev->parent) { 2733 if (dev->type == &rproc_type) 2734 return dev->driver_data; 2735 } 2736 2737 return NULL; 2738 } 2739 EXPORT_SYMBOL(rproc_get_by_child); 2740 2741 /** 2742 * rproc_report_crash() - rproc crash reporter function 2743 * @rproc: remote processor 2744 * @type: crash type 2745 * 2746 * This function must be called every time a crash is detected by the low-level 2747 * drivers implementing a specific remoteproc. This should not be called from a 2748 * non-remoteproc driver. 2749 * 2750 * This function can be called from atomic/interrupt context. 2751 */ 2752 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2753 { 2754 if (!rproc) { 2755 pr_err("NULL rproc pointer\n"); 2756 return; 2757 } 2758 2759 /* Prevent suspend while the remoteproc is being recovered */ 2760 pm_stay_awake(rproc->dev.parent); 2761 2762 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2763 rproc->name, rproc_crash_to_string(type)); 2764 2765 /* Have a worker handle the error; ensure system is not suspended */ 2766 queue_work(system_freezable_wq, &rproc->crash_handler); 2767 } 2768 EXPORT_SYMBOL(rproc_report_crash); 2769 2770 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2771 void *ptr) 2772 { 2773 unsigned int longest = 0; 2774 struct rproc *rproc; 2775 unsigned int d; 2776 2777 rcu_read_lock(); 2778 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2779 if (!rproc->ops->panic) 2780 continue; 2781 2782 if (rproc->state != RPROC_RUNNING && 2783 rproc->state != RPROC_ATTACHED) 2784 continue; 2785 2786 d = rproc->ops->panic(rproc); 2787 longest = max(longest, d); 2788 } 2789 rcu_read_unlock(); 2790 2791 /* 2792 * Delay for the longest requested duration before returning. This can 2793 * be used by the remoteproc drivers to give the remote processor time 2794 * to perform any requested operations (such as flush caches), when 2795 * it's not possible to signal the Linux side due to the panic. 2796 */ 2797 mdelay(longest); 2798 2799 return NOTIFY_DONE; 2800 } 2801 2802 static void __init rproc_init_panic(void) 2803 { 2804 rproc_panic_nb.notifier_call = rproc_panic_handler; 2805 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2806 } 2807 2808 static void __exit rproc_exit_panic(void) 2809 { 2810 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2811 } 2812 2813 static int __init remoteproc_init(void) 2814 { 2815 rproc_init_sysfs(); 2816 rproc_init_debugfs(); 2817 rproc_init_cdev(); 2818 rproc_init_panic(); 2819 2820 return 0; 2821 } 2822 subsys_initcall(remoteproc_init); 2823 2824 static void __exit remoteproc_exit(void) 2825 { 2826 ida_destroy(&rproc_dev_index); 2827 2828 rproc_exit_panic(); 2829 rproc_exit_debugfs(); 2830 rproc_exit_sysfs(); 2831 } 2832 module_exit(remoteproc_exit); 2833 2834 MODULE_LICENSE("GPL v2"); 2835 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2836