1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43 
44 #include "remoteproc_internal.h"
45 
46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 static struct notifier_block rproc_panic_nb;
51 
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 static int rproc_alloc_carveout(struct rproc *rproc,
56 				struct rproc_mem_entry *mem);
57 static int rproc_release_carveout(struct rproc *rproc,
58 				  struct rproc_mem_entry *mem);
59 
60 /* Unique indices for remoteproc devices */
61 static DEFINE_IDA(rproc_dev_index);
62 
63 static const char * const rproc_crash_names[] = {
64 	[RPROC_MMUFAULT]	= "mmufault",
65 	[RPROC_WATCHDOG]	= "watchdog",
66 	[RPROC_FATAL_ERROR]	= "fatal error",
67 };
68 
69 /* translate rproc_crash_type to string */
70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 	if (type < ARRAY_SIZE(rproc_crash_names))
73 		return rproc_crash_names[type];
74 	return "unknown";
75 }
76 
77 /*
78  * This is the IOMMU fault handler we register with the IOMMU API
79  * (when relevant; not all remote processors access memory through
80  * an IOMMU).
81  *
82  * IOMMU core will invoke this handler whenever the remote processor
83  * will try to access an unmapped device address.
84  */
85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 			     unsigned long iova, int flags, void *token)
87 {
88 	struct rproc *rproc = token;
89 
90 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91 
92 	rproc_report_crash(rproc, RPROC_MMUFAULT);
93 
94 	/*
95 	 * Let the iommu core know we're not really handling this fault;
96 	 * we just used it as a recovery trigger.
97 	 */
98 	return -ENOSYS;
99 }
100 
101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 	struct iommu_domain *domain;
104 	struct device *dev = rproc->dev.parent;
105 	int ret;
106 
107 	if (!rproc->has_iommu) {
108 		dev_dbg(dev, "iommu not present\n");
109 		return 0;
110 	}
111 
112 	domain = iommu_domain_alloc(dev->bus);
113 	if (!domain) {
114 		dev_err(dev, "can't alloc iommu domain\n");
115 		return -ENOMEM;
116 	}
117 
118 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119 
120 	ret = iommu_attach_device(domain, dev);
121 	if (ret) {
122 		dev_err(dev, "can't attach iommu device: %d\n", ret);
123 		goto free_domain;
124 	}
125 
126 	rproc->domain = domain;
127 
128 	return 0;
129 
130 free_domain:
131 	iommu_domain_free(domain);
132 	return ret;
133 }
134 
135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 	struct iommu_domain *domain = rproc->domain;
138 	struct device *dev = rproc->dev.parent;
139 
140 	if (!domain)
141 		return;
142 
143 	iommu_detach_device(domain, dev);
144 	iommu_domain_free(domain);
145 }
146 
147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 	/*
150 	 * Return physical address according to virtual address location
151 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 	 * - in kernel: if region allocated in generic dma memory pool
153 	 */
154 	if (is_vmalloc_addr(cpu_addr)) {
155 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 				    offset_in_page(cpu_addr);
157 	}
158 
159 	WARN_ON(!virt_addr_valid(cpu_addr));
160 	return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163 
164 /**
165  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166  * @rproc: handle of a remote processor
167  * @da: remoteproc device address to translate
168  * @len: length of the memory region @da is pointing to
169  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170  *
171  * Some remote processors will ask us to allocate them physically contiguous
172  * memory regions (which we call "carveouts"), and map them to specific
173  * device addresses (which are hardcoded in the firmware). They may also have
174  * dedicated memory regions internal to the processors, and use them either
175  * exclusively or alongside carveouts.
176  *
177  * They may then ask us to copy objects into specific device addresses (e.g.
178  * code/data sections) or expose us certain symbols in other device address
179  * (e.g. their trace buffer).
180  *
181  * This function is a helper function with which we can go over the allocated
182  * carveouts and translate specific device addresses to kernel virtual addresses
183  * so we can access the referenced memory. This function also allows to perform
184  * translations on the internal remoteproc memory regions through a platform
185  * implementation specific da_to_va ops, if present.
186  *
187  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188  * but only on kernel direct mapped RAM memory. Instead, we're just using
189  * here the output of the DMA API for the carveouts, which should be more
190  * correct.
191  *
192  * Return: a valid kernel address on success or NULL on failure
193  */
194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 	struct rproc_mem_entry *carveout;
197 	void *ptr = NULL;
198 
199 	if (rproc->ops->da_to_va) {
200 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 		if (ptr)
202 			goto out;
203 	}
204 
205 	list_for_each_entry(carveout, &rproc->carveouts, node) {
206 		int offset = da - carveout->da;
207 
208 		/*  Verify that carveout is allocated */
209 		if (!carveout->va)
210 			continue;
211 
212 		/* try next carveout if da is too small */
213 		if (offset < 0)
214 			continue;
215 
216 		/* try next carveout if da is too large */
217 		if (offset + len > carveout->len)
218 			continue;
219 
220 		ptr = carveout->va + offset;
221 
222 		if (is_iomem)
223 			*is_iomem = carveout->is_iomem;
224 
225 		break;
226 	}
227 
228 out:
229 	return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232 
233 /**
234  * rproc_find_carveout_by_name() - lookup the carveout region by a name
235  * @rproc: handle of a remote processor
236  * @name: carveout name to find (format string)
237  * @...: optional parameters matching @name string
238  *
239  * Platform driver has the capability to register some pre-allacoted carveout
240  * (physically contiguous memory regions) before rproc firmware loading and
241  * associated resource table analysis. These regions may be dedicated memory
242  * regions internal to the coprocessor or specified DDR region with specific
243  * attributes
244  *
245  * This function is a helper function with which we can go over the
246  * allocated carveouts and return associated region characteristics like
247  * coprocessor address, length or processor virtual address.
248  *
249  * Return: a valid pointer on carveout entry on success or NULL on failure.
250  */
251 __printf(2, 3)
252 struct rproc_mem_entry *
253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 	va_list args;
256 	char _name[32];
257 	struct rproc_mem_entry *carveout, *mem = NULL;
258 
259 	if (!name)
260 		return NULL;
261 
262 	va_start(args, name);
263 	vsnprintf(_name, sizeof(_name), name, args);
264 	va_end(args);
265 
266 	list_for_each_entry(carveout, &rproc->carveouts, node) {
267 		/* Compare carveout and requested names */
268 		if (!strcmp(carveout->name, _name)) {
269 			mem = carveout;
270 			break;
271 		}
272 	}
273 
274 	return mem;
275 }
276 
277 /**
278  * rproc_check_carveout_da() - Check specified carveout da configuration
279  * @rproc: handle of a remote processor
280  * @mem: pointer on carveout to check
281  * @da: area device address
282  * @len: associated area size
283  *
284  * This function is a helper function to verify requested device area (couple
285  * da, len) is part of specified carveout.
286  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287  * checked.
288  *
289  * Return: 0 if carveout matches request else error
290  */
291 static int rproc_check_carveout_da(struct rproc *rproc,
292 				   struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 	struct device *dev = &rproc->dev;
295 	int delta;
296 
297 	/* Check requested resource length */
298 	if (len > mem->len) {
299 		dev_err(dev, "Registered carveout doesn't fit len request\n");
300 		return -EINVAL;
301 	}
302 
303 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 		/* Address doesn't match registered carveout configuration */
305 		return -EINVAL;
306 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 		delta = da - mem->da;
308 
309 		/* Check requested resource belongs to registered carveout */
310 		if (delta < 0) {
311 			dev_err(dev,
312 				"Registered carveout doesn't fit da request\n");
313 			return -EINVAL;
314 		}
315 
316 		if (delta + len > mem->len) {
317 			dev_err(dev,
318 				"Registered carveout doesn't fit len request\n");
319 			return -EINVAL;
320 		}
321 	}
322 
323 	return 0;
324 }
325 
326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 	struct rproc *rproc = rvdev->rproc;
329 	struct device *dev = &rproc->dev;
330 	struct rproc_vring *rvring = &rvdev->vring[i];
331 	struct fw_rsc_vdev *rsc;
332 	int ret, notifyid;
333 	struct rproc_mem_entry *mem;
334 	size_t size;
335 
336 	/* actual size of vring (in bytes) */
337 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
338 
339 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340 
341 	/* Search for pre-registered carveout */
342 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 					  i);
344 	if (mem) {
345 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 			return -ENOMEM;
347 	} else {
348 		/* Register carveout in in list */
349 		mem = rproc_mem_entry_init(dev, NULL, 0,
350 					   size, rsc->vring[i].da,
351 					   rproc_alloc_carveout,
352 					   rproc_release_carveout,
353 					   "vdev%dvring%d",
354 					   rvdev->index, i);
355 		if (!mem) {
356 			dev_err(dev, "Can't allocate memory entry structure\n");
357 			return -ENOMEM;
358 		}
359 
360 		rproc_add_carveout(rproc, mem);
361 	}
362 
363 	/*
364 	 * Assign an rproc-wide unique index for this vring
365 	 * TODO: assign a notifyid for rvdev updates as well
366 	 * TODO: support predefined notifyids (via resource table)
367 	 */
368 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 	if (ret < 0) {
370 		dev_err(dev, "idr_alloc failed: %d\n", ret);
371 		return ret;
372 	}
373 	notifyid = ret;
374 
375 	/* Potentially bump max_notifyid */
376 	if (notifyid > rproc->max_notifyid)
377 		rproc->max_notifyid = notifyid;
378 
379 	rvring->notifyid = notifyid;
380 
381 	/* Let the rproc know the notifyid of this vring.*/
382 	rsc->vring[i].notifyid = notifyid;
383 	return 0;
384 }
385 
386 static int
387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 	struct rproc *rproc = rvdev->rproc;
390 	struct device *dev = &rproc->dev;
391 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 	struct rproc_vring *rvring = &rvdev->vring[i];
393 
394 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 		i, vring->da, vring->num, vring->align);
396 
397 	/* verify queue size and vring alignment are sane */
398 	if (!vring->num || !vring->align) {
399 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 			vring->num, vring->align);
401 		return -EINVAL;
402 	}
403 
404 	rvring->len = vring->num;
405 	rvring->align = vring->align;
406 	rvring->rvdev = rvdev;
407 
408 	return 0;
409 }
410 
411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 	struct rproc *rproc = rvring->rvdev->rproc;
414 	int idx = rvring - rvring->rvdev->vring;
415 	struct fw_rsc_vdev *rsc;
416 
417 	idr_remove(&rproc->notifyids, rvring->notifyid);
418 
419 	/*
420 	 * At this point rproc_stop() has been called and the installed resource
421 	 * table in the remote processor memory may no longer be accessible. As
422 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 	 * resource table (rproc->cached_table).  The cached resource table is
424 	 * only available when a remote processor has been booted by the
425 	 * remoteproc core, otherwise it is NULL.
426 	 *
427 	 * Based on the above, reset the virtio device section in the cached
428 	 * resource table only if there is one to work with.
429 	 */
430 	if (rproc->table_ptr) {
431 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 		rsc->vring[idx].da = 0;
433 		rsc->vring[idx].notifyid = -1;
434 	}
435 }
436 
437 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
438 {
439 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
440 
441 	return rproc_add_virtio_dev(rvdev, rvdev->id);
442 }
443 
444 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
445 {
446 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
447 	int ret;
448 
449 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
450 	if (ret)
451 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
452 }
453 
454 /**
455  * rproc_rvdev_release() - release the existence of a rvdev
456  *
457  * @dev: the subdevice's dev
458  */
459 static void rproc_rvdev_release(struct device *dev)
460 {
461 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
462 
463 	of_reserved_mem_device_release(dev);
464 
465 	kfree(rvdev);
466 }
467 
468 static int copy_dma_range_map(struct device *to, struct device *from)
469 {
470 	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
471 	int num_ranges = 0;
472 
473 	if (!map)
474 		return 0;
475 
476 	for (r = map; r->size; r++)
477 		num_ranges++;
478 
479 	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
480 			  GFP_KERNEL);
481 	if (!new_map)
482 		return -ENOMEM;
483 	to->dma_range_map = new_map;
484 	return 0;
485 }
486 
487 /**
488  * rproc_handle_vdev() - handle a vdev fw resource
489  * @rproc: the remote processor
490  * @ptr: the vring resource descriptor
491  * @offset: offset of the resource entry
492  * @avail: size of available data (for sanity checking the image)
493  *
494  * This resource entry requests the host to statically register a virtio
495  * device (vdev), and setup everything needed to support it. It contains
496  * everything needed to make it possible: the virtio device id, virtio
497  * device features, vrings information, virtio config space, etc...
498  *
499  * Before registering the vdev, the vrings are allocated from non-cacheable
500  * physically contiguous memory. Currently we only support two vrings per
501  * remote processor (temporary limitation). We might also want to consider
502  * doing the vring allocation only later when ->find_vqs() is invoked, and
503  * then release them upon ->del_vqs().
504  *
505  * Note: @da is currently not really handled correctly: we dynamically
506  * allocate it using the DMA API, ignoring requested hard coded addresses,
507  * and we don't take care of any required IOMMU programming. This is all
508  * going to be taken care of when the generic iommu-based DMA API will be
509  * merged. Meanwhile, statically-addressed iommu-based firmware images should
510  * use RSC_DEVMEM resource entries to map their required @da to the physical
511  * address of their base CMA region (ouch, hacky!).
512  *
513  * Return: 0 on success, or an appropriate error code otherwise
514  */
515 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
516 			     int offset, int avail)
517 {
518 	struct fw_rsc_vdev *rsc = ptr;
519 	struct device *dev = &rproc->dev;
520 	struct rproc_vdev *rvdev;
521 	int i, ret;
522 	char name[16];
523 
524 	/* make sure resource isn't truncated */
525 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
526 			avail) {
527 		dev_err(dev, "vdev rsc is truncated\n");
528 		return -EINVAL;
529 	}
530 
531 	/* make sure reserved bytes are zeroes */
532 	if (rsc->reserved[0] || rsc->reserved[1]) {
533 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
534 		return -EINVAL;
535 	}
536 
537 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
538 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
539 
540 	/* we currently support only two vrings per rvdev */
541 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
542 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
543 		return -EINVAL;
544 	}
545 
546 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
547 	if (!rvdev)
548 		return -ENOMEM;
549 
550 	kref_init(&rvdev->refcount);
551 
552 	rvdev->id = rsc->id;
553 	rvdev->rproc = rproc;
554 	rvdev->index = rproc->nb_vdev++;
555 
556 	/* Initialise vdev subdevice */
557 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
558 	rvdev->dev.parent = &rproc->dev;
559 	rvdev->dev.release = rproc_rvdev_release;
560 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
561 	dev_set_drvdata(&rvdev->dev, rvdev);
562 
563 	ret = device_register(&rvdev->dev);
564 	if (ret) {
565 		put_device(&rvdev->dev);
566 		return ret;
567 	}
568 
569 	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
570 	if (ret)
571 		goto free_rvdev;
572 
573 	/* Make device dma capable by inheriting from parent's capabilities */
574 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
575 
576 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
577 					   dma_get_mask(rproc->dev.parent));
578 	if (ret) {
579 		dev_warn(dev,
580 			 "Failed to set DMA mask %llx. Trying to continue... (%pe)\n",
581 			 dma_get_mask(rproc->dev.parent), ERR_PTR(ret));
582 	}
583 
584 	/* parse the vrings */
585 	for (i = 0; i < rsc->num_of_vrings; i++) {
586 		ret = rproc_parse_vring(rvdev, rsc, i);
587 		if (ret)
588 			goto free_rvdev;
589 	}
590 
591 	/* remember the resource offset*/
592 	rvdev->rsc_offset = offset;
593 
594 	/* allocate the vring resources */
595 	for (i = 0; i < rsc->num_of_vrings; i++) {
596 		ret = rproc_alloc_vring(rvdev, i);
597 		if (ret)
598 			goto unwind_vring_allocations;
599 	}
600 
601 	list_add_tail(&rvdev->node, &rproc->rvdevs);
602 
603 	rvdev->subdev.start = rproc_vdev_do_start;
604 	rvdev->subdev.stop = rproc_vdev_do_stop;
605 
606 	rproc_add_subdev(rproc, &rvdev->subdev);
607 
608 	return 0;
609 
610 unwind_vring_allocations:
611 	for (i--; i >= 0; i--)
612 		rproc_free_vring(&rvdev->vring[i]);
613 free_rvdev:
614 	device_unregister(&rvdev->dev);
615 	return ret;
616 }
617 
618 void rproc_vdev_release(struct kref *ref)
619 {
620 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
621 	struct rproc_vring *rvring;
622 	struct rproc *rproc = rvdev->rproc;
623 	int id;
624 
625 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
626 		rvring = &rvdev->vring[id];
627 		rproc_free_vring(rvring);
628 	}
629 
630 	rproc_remove_subdev(rproc, &rvdev->subdev);
631 	list_del(&rvdev->node);
632 	device_unregister(&rvdev->dev);
633 }
634 
635 /**
636  * rproc_handle_trace() - handle a shared trace buffer resource
637  * @rproc: the remote processor
638  * @ptr: the trace resource descriptor
639  * @offset: offset of the resource entry
640  * @avail: size of available data (for sanity checking the image)
641  *
642  * In case the remote processor dumps trace logs into memory,
643  * export it via debugfs.
644  *
645  * Currently, the 'da' member of @rsc should contain the device address
646  * where the remote processor is dumping the traces. Later we could also
647  * support dynamically allocating this address using the generic
648  * DMA API (but currently there isn't a use case for that).
649  *
650  * Return: 0 on success, or an appropriate error code otherwise
651  */
652 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
653 			      int offset, int avail)
654 {
655 	struct fw_rsc_trace *rsc = ptr;
656 	struct rproc_debug_trace *trace;
657 	struct device *dev = &rproc->dev;
658 	char name[15];
659 
660 	if (sizeof(*rsc) > avail) {
661 		dev_err(dev, "trace rsc is truncated\n");
662 		return -EINVAL;
663 	}
664 
665 	/* make sure reserved bytes are zeroes */
666 	if (rsc->reserved) {
667 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
668 		return -EINVAL;
669 	}
670 
671 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
672 	if (!trace)
673 		return -ENOMEM;
674 
675 	/* set the trace buffer dma properties */
676 	trace->trace_mem.len = rsc->len;
677 	trace->trace_mem.da = rsc->da;
678 
679 	/* set pointer on rproc device */
680 	trace->rproc = rproc;
681 
682 	/* make sure snprintf always null terminates, even if truncating */
683 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
684 
685 	/* create the debugfs entry */
686 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
687 
688 	list_add_tail(&trace->node, &rproc->traces);
689 
690 	rproc->num_traces++;
691 
692 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
693 		name, rsc->da, rsc->len);
694 
695 	return 0;
696 }
697 
698 /**
699  * rproc_handle_devmem() - handle devmem resource entry
700  * @rproc: remote processor handle
701  * @ptr: the devmem resource entry
702  * @offset: offset of the resource entry
703  * @avail: size of available data (for sanity checking the image)
704  *
705  * Remote processors commonly need to access certain on-chip peripherals.
706  *
707  * Some of these remote processors access memory via an iommu device,
708  * and might require us to configure their iommu before they can access
709  * the on-chip peripherals they need.
710  *
711  * This resource entry is a request to map such a peripheral device.
712  *
713  * These devmem entries will contain the physical address of the device in
714  * the 'pa' member. If a specific device address is expected, then 'da' will
715  * contain it (currently this is the only use case supported). 'len' will
716  * contain the size of the physical region we need to map.
717  *
718  * Currently we just "trust" those devmem entries to contain valid physical
719  * addresses, but this is going to change: we want the implementations to
720  * tell us ranges of physical addresses the firmware is allowed to request,
721  * and not allow firmwares to request access to physical addresses that
722  * are outside those ranges.
723  *
724  * Return: 0 on success, or an appropriate error code otherwise
725  */
726 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
727 			       int offset, int avail)
728 {
729 	struct fw_rsc_devmem *rsc = ptr;
730 	struct rproc_mem_entry *mapping;
731 	struct device *dev = &rproc->dev;
732 	int ret;
733 
734 	/* no point in handling this resource without a valid iommu domain */
735 	if (!rproc->domain)
736 		return -EINVAL;
737 
738 	if (sizeof(*rsc) > avail) {
739 		dev_err(dev, "devmem rsc is truncated\n");
740 		return -EINVAL;
741 	}
742 
743 	/* make sure reserved bytes are zeroes */
744 	if (rsc->reserved) {
745 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
746 		return -EINVAL;
747 	}
748 
749 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
750 	if (!mapping)
751 		return -ENOMEM;
752 
753 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
754 	if (ret) {
755 		dev_err(dev, "failed to map devmem: %d\n", ret);
756 		goto out;
757 	}
758 
759 	/*
760 	 * We'll need this info later when we'll want to unmap everything
761 	 * (e.g. on shutdown).
762 	 *
763 	 * We can't trust the remote processor not to change the resource
764 	 * table, so we must maintain this info independently.
765 	 */
766 	mapping->da = rsc->da;
767 	mapping->len = rsc->len;
768 	list_add_tail(&mapping->node, &rproc->mappings);
769 
770 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
771 		rsc->pa, rsc->da, rsc->len);
772 
773 	return 0;
774 
775 out:
776 	kfree(mapping);
777 	return ret;
778 }
779 
780 /**
781  * rproc_alloc_carveout() - allocated specified carveout
782  * @rproc: rproc handle
783  * @mem: the memory entry to allocate
784  *
785  * This function allocate specified memory entry @mem using
786  * dma_alloc_coherent() as default allocator
787  *
788  * Return: 0 on success, or an appropriate error code otherwise
789  */
790 static int rproc_alloc_carveout(struct rproc *rproc,
791 				struct rproc_mem_entry *mem)
792 {
793 	struct rproc_mem_entry *mapping = NULL;
794 	struct device *dev = &rproc->dev;
795 	dma_addr_t dma;
796 	void *va;
797 	int ret;
798 
799 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
800 	if (!va) {
801 		dev_err(dev->parent,
802 			"failed to allocate dma memory: len 0x%zx\n",
803 			mem->len);
804 		return -ENOMEM;
805 	}
806 
807 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
808 		va, &dma, mem->len);
809 
810 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
811 		/*
812 		 * Check requested da is equal to dma address
813 		 * and print a warn message in case of missalignment.
814 		 * Don't stop rproc_start sequence as coprocessor may
815 		 * build pa to da translation on its side.
816 		 */
817 		if (mem->da != (u32)dma)
818 			dev_warn(dev->parent,
819 				 "Allocated carveout doesn't fit device address request\n");
820 	}
821 
822 	/*
823 	 * Ok, this is non-standard.
824 	 *
825 	 * Sometimes we can't rely on the generic iommu-based DMA API
826 	 * to dynamically allocate the device address and then set the IOMMU
827 	 * tables accordingly, because some remote processors might
828 	 * _require_ us to use hard coded device addresses that their
829 	 * firmware was compiled with.
830 	 *
831 	 * In this case, we must use the IOMMU API directly and map
832 	 * the memory to the device address as expected by the remote
833 	 * processor.
834 	 *
835 	 * Obviously such remote processor devices should not be configured
836 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
837 	 * physical address in this case.
838 	 */
839 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
840 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
841 		if (!mapping) {
842 			ret = -ENOMEM;
843 			goto dma_free;
844 		}
845 
846 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
847 				mem->flags);
848 		if (ret) {
849 			dev_err(dev, "iommu_map failed: %d\n", ret);
850 			goto free_mapping;
851 		}
852 
853 		/*
854 		 * We'll need this info later when we'll want to unmap
855 		 * everything (e.g. on shutdown).
856 		 *
857 		 * We can't trust the remote processor not to change the
858 		 * resource table, so we must maintain this info independently.
859 		 */
860 		mapping->da = mem->da;
861 		mapping->len = mem->len;
862 		list_add_tail(&mapping->node, &rproc->mappings);
863 
864 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
865 			mem->da, &dma);
866 	}
867 
868 	if (mem->da == FW_RSC_ADDR_ANY) {
869 		/* Update device address as undefined by requester */
870 		if ((u64)dma & HIGH_BITS_MASK)
871 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
872 
873 		mem->da = (u32)dma;
874 	}
875 
876 	mem->dma = dma;
877 	mem->va = va;
878 
879 	return 0;
880 
881 free_mapping:
882 	kfree(mapping);
883 dma_free:
884 	dma_free_coherent(dev->parent, mem->len, va, dma);
885 	return ret;
886 }
887 
888 /**
889  * rproc_release_carveout() - release acquired carveout
890  * @rproc: rproc handle
891  * @mem: the memory entry to release
892  *
893  * This function releases specified memory entry @mem allocated via
894  * rproc_alloc_carveout() function by @rproc.
895  *
896  * Return: 0 on success, or an appropriate error code otherwise
897  */
898 static int rproc_release_carveout(struct rproc *rproc,
899 				  struct rproc_mem_entry *mem)
900 {
901 	struct device *dev = &rproc->dev;
902 
903 	/* clean up carveout allocations */
904 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
905 	return 0;
906 }
907 
908 /**
909  * rproc_handle_carveout() - handle phys contig memory allocation requests
910  * @rproc: rproc handle
911  * @ptr: the resource entry
912  * @offset: offset of the resource entry
913  * @avail: size of available data (for image validation)
914  *
915  * This function will handle firmware requests for allocation of physically
916  * contiguous memory regions.
917  *
918  * These request entries should come first in the firmware's resource table,
919  * as other firmware entries might request placing other data objects inside
920  * these memory regions (e.g. data/code segments, trace resource entries, ...).
921  *
922  * Allocating memory this way helps utilizing the reserved physical memory
923  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
924  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
925  * pressure is important; it may have a substantial impact on performance.
926  *
927  * Return: 0 on success, or an appropriate error code otherwise
928  */
929 static int rproc_handle_carveout(struct rproc *rproc,
930 				 void *ptr, int offset, int avail)
931 {
932 	struct fw_rsc_carveout *rsc = ptr;
933 	struct rproc_mem_entry *carveout;
934 	struct device *dev = &rproc->dev;
935 
936 	if (sizeof(*rsc) > avail) {
937 		dev_err(dev, "carveout rsc is truncated\n");
938 		return -EINVAL;
939 	}
940 
941 	/* make sure reserved bytes are zeroes */
942 	if (rsc->reserved) {
943 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
944 		return -EINVAL;
945 	}
946 
947 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
948 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
949 
950 	/*
951 	 * Check carveout rsc already part of a registered carveout,
952 	 * Search by name, then check the da and length
953 	 */
954 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
955 
956 	if (carveout) {
957 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
958 			dev_err(dev,
959 				"Carveout already associated to resource table\n");
960 			return -ENOMEM;
961 		}
962 
963 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
964 			return -ENOMEM;
965 
966 		/* Update memory carveout with resource table info */
967 		carveout->rsc_offset = offset;
968 		carveout->flags = rsc->flags;
969 
970 		return 0;
971 	}
972 
973 	/* Register carveout in in list */
974 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
975 					rproc_alloc_carveout,
976 					rproc_release_carveout, rsc->name);
977 	if (!carveout) {
978 		dev_err(dev, "Can't allocate memory entry structure\n");
979 		return -ENOMEM;
980 	}
981 
982 	carveout->flags = rsc->flags;
983 	carveout->rsc_offset = offset;
984 	rproc_add_carveout(rproc, carveout);
985 
986 	return 0;
987 }
988 
989 /**
990  * rproc_add_carveout() - register an allocated carveout region
991  * @rproc: rproc handle
992  * @mem: memory entry to register
993  *
994  * This function registers specified memory entry in @rproc carveouts list.
995  * Specified carveout should have been allocated before registering.
996  */
997 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
998 {
999 	list_add_tail(&mem->node, &rproc->carveouts);
1000 }
1001 EXPORT_SYMBOL(rproc_add_carveout);
1002 
1003 /**
1004  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1005  * @dev: pointer on device struct
1006  * @va: virtual address
1007  * @dma: dma address
1008  * @len: memory carveout length
1009  * @da: device address
1010  * @alloc: memory carveout allocation function
1011  * @release: memory carveout release function
1012  * @name: carveout name
1013  *
1014  * This function allocates a rproc_mem_entry struct and fill it with parameters
1015  * provided by client.
1016  *
1017  * Return: a valid pointer on success, or NULL on failure
1018  */
1019 __printf(8, 9)
1020 struct rproc_mem_entry *
1021 rproc_mem_entry_init(struct device *dev,
1022 		     void *va, dma_addr_t dma, size_t len, u32 da,
1023 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1024 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1025 		     const char *name, ...)
1026 {
1027 	struct rproc_mem_entry *mem;
1028 	va_list args;
1029 
1030 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1031 	if (!mem)
1032 		return mem;
1033 
1034 	mem->va = va;
1035 	mem->dma = dma;
1036 	mem->da = da;
1037 	mem->len = len;
1038 	mem->alloc = alloc;
1039 	mem->release = release;
1040 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1041 	mem->of_resm_idx = -1;
1042 
1043 	va_start(args, name);
1044 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1045 	va_end(args);
1046 
1047 	return mem;
1048 }
1049 EXPORT_SYMBOL(rproc_mem_entry_init);
1050 
1051 /**
1052  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1053  * from a reserved memory phandle
1054  * @dev: pointer on device struct
1055  * @of_resm_idx: reserved memory phandle index in "memory-region"
1056  * @len: memory carveout length
1057  * @da: device address
1058  * @name: carveout name
1059  *
1060  * This function allocates a rproc_mem_entry struct and fill it with parameters
1061  * provided by client.
1062  *
1063  * Return: a valid pointer on success, or NULL on failure
1064  */
1065 __printf(5, 6)
1066 struct rproc_mem_entry *
1067 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1068 			     u32 da, const char *name, ...)
1069 {
1070 	struct rproc_mem_entry *mem;
1071 	va_list args;
1072 
1073 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1074 	if (!mem)
1075 		return mem;
1076 
1077 	mem->da = da;
1078 	mem->len = len;
1079 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1080 	mem->of_resm_idx = of_resm_idx;
1081 
1082 	va_start(args, name);
1083 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1084 	va_end(args);
1085 
1086 	return mem;
1087 }
1088 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1089 
1090 /**
1091  * rproc_of_parse_firmware() - parse and return the firmware-name
1092  * @dev: pointer on device struct representing a rproc
1093  * @index: index to use for the firmware-name retrieval
1094  * @fw_name: pointer to a character string, in which the firmware
1095  *           name is returned on success and unmodified otherwise.
1096  *
1097  * This is an OF helper function that parses a device's DT node for
1098  * the "firmware-name" property and returns the firmware name pointer
1099  * in @fw_name on success.
1100  *
1101  * Return: 0 on success, or an appropriate failure.
1102  */
1103 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1104 {
1105 	int ret;
1106 
1107 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1108 					    index, fw_name);
1109 	return ret ? ret : 0;
1110 }
1111 EXPORT_SYMBOL(rproc_of_parse_firmware);
1112 
1113 /*
1114  * A lookup table for resource handlers. The indices are defined in
1115  * enum fw_resource_type.
1116  */
1117 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1118 	[RSC_CARVEOUT] = rproc_handle_carveout,
1119 	[RSC_DEVMEM] = rproc_handle_devmem,
1120 	[RSC_TRACE] = rproc_handle_trace,
1121 	[RSC_VDEV] = rproc_handle_vdev,
1122 };
1123 
1124 /* handle firmware resource entries before booting the remote processor */
1125 static int rproc_handle_resources(struct rproc *rproc,
1126 				  rproc_handle_resource_t handlers[RSC_LAST])
1127 {
1128 	struct device *dev = &rproc->dev;
1129 	rproc_handle_resource_t handler;
1130 	int ret = 0, i;
1131 
1132 	if (!rproc->table_ptr)
1133 		return 0;
1134 
1135 	for (i = 0; i < rproc->table_ptr->num; i++) {
1136 		int offset = rproc->table_ptr->offset[i];
1137 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1138 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1139 		void *rsc = (void *)hdr + sizeof(*hdr);
1140 
1141 		/* make sure table isn't truncated */
1142 		if (avail < 0) {
1143 			dev_err(dev, "rsc table is truncated\n");
1144 			return -EINVAL;
1145 		}
1146 
1147 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1148 
1149 		if (hdr->type >= RSC_VENDOR_START &&
1150 		    hdr->type <= RSC_VENDOR_END) {
1151 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1152 					       offset + sizeof(*hdr), avail);
1153 			if (ret == RSC_HANDLED)
1154 				continue;
1155 			else if (ret < 0)
1156 				break;
1157 
1158 			dev_warn(dev, "unsupported vendor resource %d\n",
1159 				 hdr->type);
1160 			continue;
1161 		}
1162 
1163 		if (hdr->type >= RSC_LAST) {
1164 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1165 			continue;
1166 		}
1167 
1168 		handler = handlers[hdr->type];
1169 		if (!handler)
1170 			continue;
1171 
1172 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1173 		if (ret)
1174 			break;
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 static int rproc_prepare_subdevices(struct rproc *rproc)
1181 {
1182 	struct rproc_subdev *subdev;
1183 	int ret;
1184 
1185 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1186 		if (subdev->prepare) {
1187 			ret = subdev->prepare(subdev);
1188 			if (ret)
1189 				goto unroll_preparation;
1190 		}
1191 	}
1192 
1193 	return 0;
1194 
1195 unroll_preparation:
1196 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1197 		if (subdev->unprepare)
1198 			subdev->unprepare(subdev);
1199 	}
1200 
1201 	return ret;
1202 }
1203 
1204 static int rproc_start_subdevices(struct rproc *rproc)
1205 {
1206 	struct rproc_subdev *subdev;
1207 	int ret;
1208 
1209 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1210 		if (subdev->start) {
1211 			ret = subdev->start(subdev);
1212 			if (ret)
1213 				goto unroll_registration;
1214 		}
1215 	}
1216 
1217 	return 0;
1218 
1219 unroll_registration:
1220 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1221 		if (subdev->stop)
1222 			subdev->stop(subdev, true);
1223 	}
1224 
1225 	return ret;
1226 }
1227 
1228 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1229 {
1230 	struct rproc_subdev *subdev;
1231 
1232 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1233 		if (subdev->stop)
1234 			subdev->stop(subdev, crashed);
1235 	}
1236 }
1237 
1238 static void rproc_unprepare_subdevices(struct rproc *rproc)
1239 {
1240 	struct rproc_subdev *subdev;
1241 
1242 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1243 		if (subdev->unprepare)
1244 			subdev->unprepare(subdev);
1245 	}
1246 }
1247 
1248 /**
1249  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1250  * in the list
1251  * @rproc: the remote processor handle
1252  *
1253  * This function parses registered carveout list, performs allocation
1254  * if alloc() ops registered and updates resource table information
1255  * if rsc_offset set.
1256  *
1257  * Return: 0 on success
1258  */
1259 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1260 {
1261 	struct rproc_mem_entry *entry, *tmp;
1262 	struct fw_rsc_carveout *rsc;
1263 	struct device *dev = &rproc->dev;
1264 	u64 pa;
1265 	int ret;
1266 
1267 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1268 		if (entry->alloc) {
1269 			ret = entry->alloc(rproc, entry);
1270 			if (ret) {
1271 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1272 					entry->name, ret);
1273 				return -ENOMEM;
1274 			}
1275 		}
1276 
1277 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1278 			/* update resource table */
1279 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1280 
1281 			/*
1282 			 * Some remote processors might need to know the pa
1283 			 * even though they are behind an IOMMU. E.g., OMAP4's
1284 			 * remote M3 processor needs this so it can control
1285 			 * on-chip hardware accelerators that are not behind
1286 			 * the IOMMU, and therefor must know the pa.
1287 			 *
1288 			 * Generally we don't want to expose physical addresses
1289 			 * if we don't have to (remote processors are generally
1290 			 * _not_ trusted), so we might want to do this only for
1291 			 * remote processor that _must_ have this (e.g. OMAP4's
1292 			 * dual M3 subsystem).
1293 			 *
1294 			 * Non-IOMMU processors might also want to have this info.
1295 			 * In this case, the device address and the physical address
1296 			 * are the same.
1297 			 */
1298 
1299 			/* Use va if defined else dma to generate pa */
1300 			if (entry->va)
1301 				pa = (u64)rproc_va_to_pa(entry->va);
1302 			else
1303 				pa = (u64)entry->dma;
1304 
1305 			if (((u64)pa) & HIGH_BITS_MASK)
1306 				dev_warn(dev,
1307 					 "Physical address cast in 32bit to fit resource table format\n");
1308 
1309 			rsc->pa = (u32)pa;
1310 			rsc->da = entry->da;
1311 			rsc->len = entry->len;
1312 		}
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 
1319 /**
1320  * rproc_resource_cleanup() - clean up and free all acquired resources
1321  * @rproc: rproc handle
1322  *
1323  * This function will free all resources acquired for @rproc, and it
1324  * is called whenever @rproc either shuts down or fails to boot.
1325  */
1326 void rproc_resource_cleanup(struct rproc *rproc)
1327 {
1328 	struct rproc_mem_entry *entry, *tmp;
1329 	struct rproc_debug_trace *trace, *ttmp;
1330 	struct rproc_vdev *rvdev, *rvtmp;
1331 	struct device *dev = &rproc->dev;
1332 
1333 	/* clean up debugfs trace entries */
1334 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1335 		rproc_remove_trace_file(trace->tfile);
1336 		rproc->num_traces--;
1337 		list_del(&trace->node);
1338 		kfree(trace);
1339 	}
1340 
1341 	/* clean up iommu mapping entries */
1342 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1343 		size_t unmapped;
1344 
1345 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1346 		if (unmapped != entry->len) {
1347 			/* nothing much to do besides complaining */
1348 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1349 				unmapped);
1350 		}
1351 
1352 		list_del(&entry->node);
1353 		kfree(entry);
1354 	}
1355 
1356 	/* clean up carveout allocations */
1357 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1358 		if (entry->release)
1359 			entry->release(rproc, entry);
1360 		list_del(&entry->node);
1361 		kfree(entry);
1362 	}
1363 
1364 	/* clean up remote vdev entries */
1365 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1366 		kref_put(&rvdev->refcount, rproc_vdev_release);
1367 
1368 	rproc_coredump_cleanup(rproc);
1369 }
1370 EXPORT_SYMBOL(rproc_resource_cleanup);
1371 
1372 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1373 {
1374 	struct resource_table *loaded_table;
1375 	struct device *dev = &rproc->dev;
1376 	int ret;
1377 
1378 	/* load the ELF segments to memory */
1379 	ret = rproc_load_segments(rproc, fw);
1380 	if (ret) {
1381 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1382 		return ret;
1383 	}
1384 
1385 	/*
1386 	 * The starting device has been given the rproc->cached_table as the
1387 	 * resource table. The address of the vring along with the other
1388 	 * allocated resources (carveouts etc) is stored in cached_table.
1389 	 * In order to pass this information to the remote device we must copy
1390 	 * this information to device memory. We also update the table_ptr so
1391 	 * that any subsequent changes will be applied to the loaded version.
1392 	 */
1393 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1394 	if (loaded_table) {
1395 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1396 		rproc->table_ptr = loaded_table;
1397 	}
1398 
1399 	ret = rproc_prepare_subdevices(rproc);
1400 	if (ret) {
1401 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1402 			rproc->name, ret);
1403 		goto reset_table_ptr;
1404 	}
1405 
1406 	/* power up the remote processor */
1407 	ret = rproc->ops->start(rproc);
1408 	if (ret) {
1409 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1410 		goto unprepare_subdevices;
1411 	}
1412 
1413 	/* Start any subdevices for the remote processor */
1414 	ret = rproc_start_subdevices(rproc);
1415 	if (ret) {
1416 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1417 			rproc->name, ret);
1418 		goto stop_rproc;
1419 	}
1420 
1421 	rproc->state = RPROC_RUNNING;
1422 
1423 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1424 
1425 	return 0;
1426 
1427 stop_rproc:
1428 	rproc->ops->stop(rproc);
1429 unprepare_subdevices:
1430 	rproc_unprepare_subdevices(rproc);
1431 reset_table_ptr:
1432 	rproc->table_ptr = rproc->cached_table;
1433 
1434 	return ret;
1435 }
1436 
1437 static int __rproc_attach(struct rproc *rproc)
1438 {
1439 	struct device *dev = &rproc->dev;
1440 	int ret;
1441 
1442 	ret = rproc_prepare_subdevices(rproc);
1443 	if (ret) {
1444 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1445 			rproc->name, ret);
1446 		goto out;
1447 	}
1448 
1449 	/* Attach to the remote processor */
1450 	ret = rproc_attach_device(rproc);
1451 	if (ret) {
1452 		dev_err(dev, "can't attach to rproc %s: %d\n",
1453 			rproc->name, ret);
1454 		goto unprepare_subdevices;
1455 	}
1456 
1457 	/* Start any subdevices for the remote processor */
1458 	ret = rproc_start_subdevices(rproc);
1459 	if (ret) {
1460 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1461 			rproc->name, ret);
1462 		goto stop_rproc;
1463 	}
1464 
1465 	rproc->state = RPROC_ATTACHED;
1466 
1467 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1468 
1469 	return 0;
1470 
1471 stop_rproc:
1472 	rproc->ops->stop(rproc);
1473 unprepare_subdevices:
1474 	rproc_unprepare_subdevices(rproc);
1475 out:
1476 	return ret;
1477 }
1478 
1479 /*
1480  * take a firmware and boot a remote processor with it.
1481  */
1482 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1483 {
1484 	struct device *dev = &rproc->dev;
1485 	const char *name = rproc->firmware;
1486 	int ret;
1487 
1488 	ret = rproc_fw_sanity_check(rproc, fw);
1489 	if (ret)
1490 		return ret;
1491 
1492 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1493 
1494 	/*
1495 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1496 	 * just a nop
1497 	 */
1498 	ret = rproc_enable_iommu(rproc);
1499 	if (ret) {
1500 		dev_err(dev, "can't enable iommu: %d\n", ret);
1501 		return ret;
1502 	}
1503 
1504 	/* Prepare rproc for firmware loading if needed */
1505 	ret = rproc_prepare_device(rproc);
1506 	if (ret) {
1507 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1508 		goto disable_iommu;
1509 	}
1510 
1511 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1512 
1513 	/* Load resource table, core dump segment list etc from the firmware */
1514 	ret = rproc_parse_fw(rproc, fw);
1515 	if (ret)
1516 		goto unprepare_rproc;
1517 
1518 	/* reset max_notifyid */
1519 	rproc->max_notifyid = -1;
1520 
1521 	/* reset handled vdev */
1522 	rproc->nb_vdev = 0;
1523 
1524 	/* handle fw resources which are required to boot rproc */
1525 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1526 	if (ret) {
1527 		dev_err(dev, "Failed to process resources: %d\n", ret);
1528 		goto clean_up_resources;
1529 	}
1530 
1531 	/* Allocate carveout resources associated to rproc */
1532 	ret = rproc_alloc_registered_carveouts(rproc);
1533 	if (ret) {
1534 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1535 			ret);
1536 		goto clean_up_resources;
1537 	}
1538 
1539 	ret = rproc_start(rproc, fw);
1540 	if (ret)
1541 		goto clean_up_resources;
1542 
1543 	return 0;
1544 
1545 clean_up_resources:
1546 	rproc_resource_cleanup(rproc);
1547 	kfree(rproc->cached_table);
1548 	rproc->cached_table = NULL;
1549 	rproc->table_ptr = NULL;
1550 unprepare_rproc:
1551 	/* release HW resources if needed */
1552 	rproc_unprepare_device(rproc);
1553 disable_iommu:
1554 	rproc_disable_iommu(rproc);
1555 	return ret;
1556 }
1557 
1558 static int rproc_set_rsc_table(struct rproc *rproc)
1559 {
1560 	struct resource_table *table_ptr;
1561 	struct device *dev = &rproc->dev;
1562 	size_t table_sz;
1563 	int ret;
1564 
1565 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1566 	if (!table_ptr) {
1567 		/* Not having a resource table is acceptable */
1568 		return 0;
1569 	}
1570 
1571 	if (IS_ERR(table_ptr)) {
1572 		ret = PTR_ERR(table_ptr);
1573 		dev_err(dev, "can't load resource table: %d\n", ret);
1574 		return ret;
1575 	}
1576 
1577 	/*
1578 	 * If it is possible to detach the remote processor, keep an untouched
1579 	 * copy of the resource table.  That way we can start fresh again when
1580 	 * the remote processor is re-attached, that is:
1581 	 *
1582 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1583 	 *
1584 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1585 	 * rproc_reset_rsc_table_on_stop().
1586 	 */
1587 	if (rproc->ops->detach) {
1588 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1589 		if (!rproc->clean_table)
1590 			return -ENOMEM;
1591 	} else {
1592 		rproc->clean_table = NULL;
1593 	}
1594 
1595 	rproc->cached_table = NULL;
1596 	rproc->table_ptr = table_ptr;
1597 	rproc->table_sz = table_sz;
1598 
1599 	return 0;
1600 }
1601 
1602 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1603 {
1604 	struct resource_table *table_ptr;
1605 
1606 	/* A resource table was never retrieved, nothing to do here */
1607 	if (!rproc->table_ptr)
1608 		return 0;
1609 
1610 	/*
1611 	 * If we made it to this point a clean_table _must_ have been
1612 	 * allocated in rproc_set_rsc_table().  If one isn't present
1613 	 * something went really wrong and we must complain.
1614 	 */
1615 	if (WARN_ON(!rproc->clean_table))
1616 		return -EINVAL;
1617 
1618 	/* Remember where the external entity installed the resource table */
1619 	table_ptr = rproc->table_ptr;
1620 
1621 	/*
1622 	 * If we made it here the remote processor was started by another
1623 	 * entity and a cache table doesn't exist.  As such make a copy of
1624 	 * the resource table currently used by the remote processor and
1625 	 * use that for the rest of the shutdown process.  The memory
1626 	 * allocated here is free'd in rproc_detach().
1627 	 */
1628 	rproc->cached_table = kmemdup(rproc->table_ptr,
1629 				      rproc->table_sz, GFP_KERNEL);
1630 	if (!rproc->cached_table)
1631 		return -ENOMEM;
1632 
1633 	/*
1634 	 * Use a copy of the resource table for the remainder of the
1635 	 * shutdown process.
1636 	 */
1637 	rproc->table_ptr = rproc->cached_table;
1638 
1639 	/*
1640 	 * Reset the memory area where the firmware loaded the resource table
1641 	 * to its original value.  That way when we re-attach the remote
1642 	 * processor the resource table is clean and ready to be used again.
1643 	 */
1644 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1645 
1646 	/*
1647 	 * The clean resource table is no longer needed.  Allocated in
1648 	 * rproc_set_rsc_table().
1649 	 */
1650 	kfree(rproc->clean_table);
1651 
1652 	return 0;
1653 }
1654 
1655 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1656 {
1657 	/* A resource table was never retrieved, nothing to do here */
1658 	if (!rproc->table_ptr)
1659 		return 0;
1660 
1661 	/*
1662 	 * If a cache table exists the remote processor was started by
1663 	 * the remoteproc core.  That cache table should be used for
1664 	 * the rest of the shutdown process.
1665 	 */
1666 	if (rproc->cached_table)
1667 		goto out;
1668 
1669 	/*
1670 	 * If we made it here the remote processor was started by another
1671 	 * entity and a cache table doesn't exist.  As such make a copy of
1672 	 * the resource table currently used by the remote processor and
1673 	 * use that for the rest of the shutdown process.  The memory
1674 	 * allocated here is free'd in rproc_shutdown().
1675 	 */
1676 	rproc->cached_table = kmemdup(rproc->table_ptr,
1677 				      rproc->table_sz, GFP_KERNEL);
1678 	if (!rproc->cached_table)
1679 		return -ENOMEM;
1680 
1681 	/*
1682 	 * Since the remote processor is being switched off the clean table
1683 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1684 	 */
1685 	kfree(rproc->clean_table);
1686 
1687 out:
1688 	/*
1689 	 * Use a copy of the resource table for the remainder of the
1690 	 * shutdown process.
1691 	 */
1692 	rproc->table_ptr = rproc->cached_table;
1693 	return 0;
1694 }
1695 
1696 /*
1697  * Attach to remote processor - similar to rproc_fw_boot() but without
1698  * the steps that deal with the firmware image.
1699  */
1700 static int rproc_attach(struct rproc *rproc)
1701 {
1702 	struct device *dev = &rproc->dev;
1703 	int ret;
1704 
1705 	/*
1706 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1707 	 * just a nop
1708 	 */
1709 	ret = rproc_enable_iommu(rproc);
1710 	if (ret) {
1711 		dev_err(dev, "can't enable iommu: %d\n", ret);
1712 		return ret;
1713 	}
1714 
1715 	/* Do anything that is needed to boot the remote processor */
1716 	ret = rproc_prepare_device(rproc);
1717 	if (ret) {
1718 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1719 		goto disable_iommu;
1720 	}
1721 
1722 	ret = rproc_set_rsc_table(rproc);
1723 	if (ret) {
1724 		dev_err(dev, "can't load resource table: %d\n", ret);
1725 		goto unprepare_device;
1726 	}
1727 
1728 	/* reset max_notifyid */
1729 	rproc->max_notifyid = -1;
1730 
1731 	/* reset handled vdev */
1732 	rproc->nb_vdev = 0;
1733 
1734 	/*
1735 	 * Handle firmware resources required to attach to a remote processor.
1736 	 * Because we are attaching rather than booting the remote processor,
1737 	 * we expect the platform driver to properly set rproc->table_ptr.
1738 	 */
1739 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1740 	if (ret) {
1741 		dev_err(dev, "Failed to process resources: %d\n", ret);
1742 		goto unprepare_device;
1743 	}
1744 
1745 	/* Allocate carveout resources associated to rproc */
1746 	ret = rproc_alloc_registered_carveouts(rproc);
1747 	if (ret) {
1748 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1749 			ret);
1750 		goto clean_up_resources;
1751 	}
1752 
1753 	ret = __rproc_attach(rproc);
1754 	if (ret)
1755 		goto clean_up_resources;
1756 
1757 	return 0;
1758 
1759 clean_up_resources:
1760 	rproc_resource_cleanup(rproc);
1761 unprepare_device:
1762 	/* release HW resources if needed */
1763 	rproc_unprepare_device(rproc);
1764 disable_iommu:
1765 	rproc_disable_iommu(rproc);
1766 	return ret;
1767 }
1768 
1769 /*
1770  * take a firmware and boot it up.
1771  *
1772  * Note: this function is called asynchronously upon registration of the
1773  * remote processor (so we must wait until it completes before we try
1774  * to unregister the device. one other option is just to use kref here,
1775  * that might be cleaner).
1776  */
1777 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1778 {
1779 	struct rproc *rproc = context;
1780 
1781 	rproc_boot(rproc);
1782 
1783 	release_firmware(fw);
1784 }
1785 
1786 static int rproc_trigger_auto_boot(struct rproc *rproc)
1787 {
1788 	int ret;
1789 
1790 	/*
1791 	 * Since the remote processor is in a detached state, it has already
1792 	 * been booted by another entity.  As such there is no point in waiting
1793 	 * for a firmware image to be loaded, we can simply initiate the process
1794 	 * of attaching to it immediately.
1795 	 */
1796 	if (rproc->state == RPROC_DETACHED)
1797 		return rproc_boot(rproc);
1798 
1799 	/*
1800 	 * We're initiating an asynchronous firmware loading, so we can
1801 	 * be built-in kernel code, without hanging the boot process.
1802 	 */
1803 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1804 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1805 				      rproc, rproc_auto_boot_callback);
1806 	if (ret < 0)
1807 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1808 
1809 	return ret;
1810 }
1811 
1812 static int rproc_stop(struct rproc *rproc, bool crashed)
1813 {
1814 	struct device *dev = &rproc->dev;
1815 	int ret;
1816 
1817 	/* No need to continue if a stop() operation has not been provided */
1818 	if (!rproc->ops->stop)
1819 		return -EINVAL;
1820 
1821 	/* Stop any subdevices for the remote processor */
1822 	rproc_stop_subdevices(rproc, crashed);
1823 
1824 	/* the installed resource table is no longer accessible */
1825 	ret = rproc_reset_rsc_table_on_stop(rproc);
1826 	if (ret) {
1827 		dev_err(dev, "can't reset resource table: %d\n", ret);
1828 		return ret;
1829 	}
1830 
1831 
1832 	/* power off the remote processor */
1833 	ret = rproc->ops->stop(rproc);
1834 	if (ret) {
1835 		dev_err(dev, "can't stop rproc: %d\n", ret);
1836 		return ret;
1837 	}
1838 
1839 	rproc_unprepare_subdevices(rproc);
1840 
1841 	rproc->state = RPROC_OFFLINE;
1842 
1843 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1844 
1845 	return 0;
1846 }
1847 
1848 /*
1849  * __rproc_detach(): Does the opposite of __rproc_attach()
1850  */
1851 static int __rproc_detach(struct rproc *rproc)
1852 {
1853 	struct device *dev = &rproc->dev;
1854 	int ret;
1855 
1856 	/* No need to continue if a detach() operation has not been provided */
1857 	if (!rproc->ops->detach)
1858 		return -EINVAL;
1859 
1860 	/* Stop any subdevices for the remote processor */
1861 	rproc_stop_subdevices(rproc, false);
1862 
1863 	/* the installed resource table is no longer accessible */
1864 	ret = rproc_reset_rsc_table_on_detach(rproc);
1865 	if (ret) {
1866 		dev_err(dev, "can't reset resource table: %d\n", ret);
1867 		return ret;
1868 	}
1869 
1870 	/* Tell the remote processor the core isn't available anymore */
1871 	ret = rproc->ops->detach(rproc);
1872 	if (ret) {
1873 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1874 		return ret;
1875 	}
1876 
1877 	rproc_unprepare_subdevices(rproc);
1878 
1879 	rproc->state = RPROC_DETACHED;
1880 
1881 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * rproc_trigger_recovery() - recover a remoteproc
1888  * @rproc: the remote processor
1889  *
1890  * The recovery is done by resetting all the virtio devices, that way all the
1891  * rpmsg drivers will be reseted along with the remote processor making the
1892  * remoteproc functional again.
1893  *
1894  * This function can sleep, so it cannot be called from atomic context.
1895  *
1896  * Return: 0 on success or a negative value upon failure
1897  */
1898 int rproc_trigger_recovery(struct rproc *rproc)
1899 {
1900 	const struct firmware *firmware_p;
1901 	struct device *dev = &rproc->dev;
1902 	int ret;
1903 
1904 	ret = mutex_lock_interruptible(&rproc->lock);
1905 	if (ret)
1906 		return ret;
1907 
1908 	/* State could have changed before we got the mutex */
1909 	if (rproc->state != RPROC_CRASHED)
1910 		goto unlock_mutex;
1911 
1912 	dev_err(dev, "recovering %s\n", rproc->name);
1913 
1914 	ret = rproc_stop(rproc, true);
1915 	if (ret)
1916 		goto unlock_mutex;
1917 
1918 	/* generate coredump */
1919 	rproc->ops->coredump(rproc);
1920 
1921 	/* load firmware */
1922 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1923 	if (ret < 0) {
1924 		dev_err(dev, "request_firmware failed: %d\n", ret);
1925 		goto unlock_mutex;
1926 	}
1927 
1928 	/* boot the remote processor up again */
1929 	ret = rproc_start(rproc, firmware_p);
1930 
1931 	release_firmware(firmware_p);
1932 
1933 unlock_mutex:
1934 	mutex_unlock(&rproc->lock);
1935 	return ret;
1936 }
1937 
1938 /**
1939  * rproc_crash_handler_work() - handle a crash
1940  * @work: work treating the crash
1941  *
1942  * This function needs to handle everything related to a crash, like cpu
1943  * registers and stack dump, information to help to debug the fatal error, etc.
1944  */
1945 static void rproc_crash_handler_work(struct work_struct *work)
1946 {
1947 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1948 	struct device *dev = &rproc->dev;
1949 
1950 	dev_dbg(dev, "enter %s\n", __func__);
1951 
1952 	mutex_lock(&rproc->lock);
1953 
1954 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1955 		/* handle only the first crash detected */
1956 		mutex_unlock(&rproc->lock);
1957 		return;
1958 	}
1959 
1960 	rproc->state = RPROC_CRASHED;
1961 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1962 		rproc->name);
1963 
1964 	mutex_unlock(&rproc->lock);
1965 
1966 	if (!rproc->recovery_disabled)
1967 		rproc_trigger_recovery(rproc);
1968 
1969 	pm_relax(rproc->dev.parent);
1970 }
1971 
1972 /**
1973  * rproc_boot() - boot a remote processor
1974  * @rproc: handle of a remote processor
1975  *
1976  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1977  *
1978  * If the remote processor is already powered on, this function immediately
1979  * returns (successfully).
1980  *
1981  * Return: 0 on success, and an appropriate error value otherwise
1982  */
1983 int rproc_boot(struct rproc *rproc)
1984 {
1985 	const struct firmware *firmware_p;
1986 	struct device *dev;
1987 	int ret;
1988 
1989 	if (!rproc) {
1990 		pr_err("invalid rproc handle\n");
1991 		return -EINVAL;
1992 	}
1993 
1994 	dev = &rproc->dev;
1995 
1996 	ret = mutex_lock_interruptible(&rproc->lock);
1997 	if (ret) {
1998 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1999 		return ret;
2000 	}
2001 
2002 	if (rproc->state == RPROC_DELETED) {
2003 		ret = -ENODEV;
2004 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2005 		goto unlock_mutex;
2006 	}
2007 
2008 	/* skip the boot or attach process if rproc is already powered up */
2009 	if (atomic_inc_return(&rproc->power) > 1) {
2010 		ret = 0;
2011 		goto unlock_mutex;
2012 	}
2013 
2014 	if (rproc->state == RPROC_DETACHED) {
2015 		dev_info(dev, "attaching to %s\n", rproc->name);
2016 
2017 		ret = rproc_attach(rproc);
2018 	} else {
2019 		dev_info(dev, "powering up %s\n", rproc->name);
2020 
2021 		/* load firmware */
2022 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
2023 		if (ret < 0) {
2024 			dev_err(dev, "request_firmware failed: %d\n", ret);
2025 			goto downref_rproc;
2026 		}
2027 
2028 		ret = rproc_fw_boot(rproc, firmware_p);
2029 
2030 		release_firmware(firmware_p);
2031 	}
2032 
2033 downref_rproc:
2034 	if (ret)
2035 		atomic_dec(&rproc->power);
2036 unlock_mutex:
2037 	mutex_unlock(&rproc->lock);
2038 	return ret;
2039 }
2040 EXPORT_SYMBOL(rproc_boot);
2041 
2042 /**
2043  * rproc_shutdown() - power off the remote processor
2044  * @rproc: the remote processor
2045  *
2046  * Power off a remote processor (previously booted with rproc_boot()).
2047  *
2048  * In case @rproc is still being used by an additional user(s), then
2049  * this function will just decrement the power refcount and exit,
2050  * without really powering off the device.
2051  *
2052  * Every call to rproc_boot() must (eventually) be accompanied by a call
2053  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2054  *
2055  * Notes:
2056  * - we're not decrementing the rproc's refcount, only the power refcount.
2057  *   which means that the @rproc handle stays valid even after rproc_shutdown()
2058  *   returns, and users can still use it with a subsequent rproc_boot(), if
2059  *   needed.
2060  *
2061  * Return: 0 on success, and an appropriate error value otherwise
2062  */
2063 int rproc_shutdown(struct rproc *rproc)
2064 {
2065 	struct device *dev = &rproc->dev;
2066 	int ret = 0;
2067 
2068 	ret = mutex_lock_interruptible(&rproc->lock);
2069 	if (ret) {
2070 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2071 		return ret;
2072 	}
2073 
2074 	if (rproc->state != RPROC_RUNNING &&
2075 	    rproc->state != RPROC_ATTACHED) {
2076 		ret = -EINVAL;
2077 		goto out;
2078 	}
2079 
2080 	/* if the remote proc is still needed, bail out */
2081 	if (!atomic_dec_and_test(&rproc->power))
2082 		goto out;
2083 
2084 	ret = rproc_stop(rproc, false);
2085 	if (ret) {
2086 		atomic_inc(&rproc->power);
2087 		goto out;
2088 	}
2089 
2090 	/* clean up all acquired resources */
2091 	rproc_resource_cleanup(rproc);
2092 
2093 	/* release HW resources if needed */
2094 	rproc_unprepare_device(rproc);
2095 
2096 	rproc_disable_iommu(rproc);
2097 
2098 	/* Free the copy of the resource table */
2099 	kfree(rproc->cached_table);
2100 	rproc->cached_table = NULL;
2101 	rproc->table_ptr = NULL;
2102 out:
2103 	mutex_unlock(&rproc->lock);
2104 	return ret;
2105 }
2106 EXPORT_SYMBOL(rproc_shutdown);
2107 
2108 /**
2109  * rproc_detach() - Detach the remote processor from the
2110  * remoteproc core
2111  *
2112  * @rproc: the remote processor
2113  *
2114  * Detach a remote processor (previously attached to with rproc_attach()).
2115  *
2116  * In case @rproc is still being used by an additional user(s), then
2117  * this function will just decrement the power refcount and exit,
2118  * without disconnecting the device.
2119  *
2120  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2121  * processor know that services provided by the application processor are
2122  * no longer available.  From there it should be possible to remove the
2123  * platform driver and even power cycle the application processor (if the HW
2124  * supports it) without needing to switch off the remote processor.
2125  *
2126  * Return: 0 on success, and an appropriate error value otherwise
2127  */
2128 int rproc_detach(struct rproc *rproc)
2129 {
2130 	struct device *dev = &rproc->dev;
2131 	int ret;
2132 
2133 	ret = mutex_lock_interruptible(&rproc->lock);
2134 	if (ret) {
2135 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2136 		return ret;
2137 	}
2138 
2139 	if (rproc->state != RPROC_ATTACHED) {
2140 		ret = -EINVAL;
2141 		goto out;
2142 	}
2143 
2144 	/* if the remote proc is still needed, bail out */
2145 	if (!atomic_dec_and_test(&rproc->power)) {
2146 		ret = 0;
2147 		goto out;
2148 	}
2149 
2150 	ret = __rproc_detach(rproc);
2151 	if (ret) {
2152 		atomic_inc(&rproc->power);
2153 		goto out;
2154 	}
2155 
2156 	/* clean up all acquired resources */
2157 	rproc_resource_cleanup(rproc);
2158 
2159 	/* release HW resources if needed */
2160 	rproc_unprepare_device(rproc);
2161 
2162 	rproc_disable_iommu(rproc);
2163 
2164 	/* Free the copy of the resource table */
2165 	kfree(rproc->cached_table);
2166 	rproc->cached_table = NULL;
2167 	rproc->table_ptr = NULL;
2168 out:
2169 	mutex_unlock(&rproc->lock);
2170 	return ret;
2171 }
2172 EXPORT_SYMBOL(rproc_detach);
2173 
2174 /**
2175  * rproc_get_by_phandle() - find a remote processor by phandle
2176  * @phandle: phandle to the rproc
2177  *
2178  * Finds an rproc handle using the remote processor's phandle, and then
2179  * return a handle to the rproc.
2180  *
2181  * This function increments the remote processor's refcount, so always
2182  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2183  *
2184  * Return: rproc handle on success, and NULL on failure
2185  */
2186 #ifdef CONFIG_OF
2187 struct rproc *rproc_get_by_phandle(phandle phandle)
2188 {
2189 	struct rproc *rproc = NULL, *r;
2190 	struct device_node *np;
2191 
2192 	np = of_find_node_by_phandle(phandle);
2193 	if (!np)
2194 		return NULL;
2195 
2196 	rcu_read_lock();
2197 	list_for_each_entry_rcu(r, &rproc_list, node) {
2198 		if (r->dev.parent && r->dev.parent->of_node == np) {
2199 			/* prevent underlying implementation from being removed */
2200 			if (!try_module_get(r->dev.parent->driver->owner)) {
2201 				dev_err(&r->dev, "can't get owner\n");
2202 				break;
2203 			}
2204 
2205 			rproc = r;
2206 			get_device(&rproc->dev);
2207 			break;
2208 		}
2209 	}
2210 	rcu_read_unlock();
2211 
2212 	of_node_put(np);
2213 
2214 	return rproc;
2215 }
2216 #else
2217 struct rproc *rproc_get_by_phandle(phandle phandle)
2218 {
2219 	return NULL;
2220 }
2221 #endif
2222 EXPORT_SYMBOL(rproc_get_by_phandle);
2223 
2224 /**
2225  * rproc_set_firmware() - assign a new firmware
2226  * @rproc: rproc handle to which the new firmware is being assigned
2227  * @fw_name: new firmware name to be assigned
2228  *
2229  * This function allows remoteproc drivers or clients to configure a custom
2230  * firmware name that is different from the default name used during remoteproc
2231  * registration. The function does not trigger a remote processor boot,
2232  * only sets the firmware name used for a subsequent boot. This function
2233  * should also be called only when the remote processor is offline.
2234  *
2235  * This allows either the userspace to configure a different name through
2236  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2237  * a specific firmware when it is controlling the boot and shutdown of the
2238  * remote processor.
2239  *
2240  * Return: 0 on success or a negative value upon failure
2241  */
2242 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2243 {
2244 	struct device *dev;
2245 	int ret, len;
2246 	char *p;
2247 
2248 	if (!rproc || !fw_name)
2249 		return -EINVAL;
2250 
2251 	dev = rproc->dev.parent;
2252 
2253 	ret = mutex_lock_interruptible(&rproc->lock);
2254 	if (ret) {
2255 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2256 		return -EINVAL;
2257 	}
2258 
2259 	if (rproc->state != RPROC_OFFLINE) {
2260 		dev_err(dev, "can't change firmware while running\n");
2261 		ret = -EBUSY;
2262 		goto out;
2263 	}
2264 
2265 	len = strcspn(fw_name, "\n");
2266 	if (!len) {
2267 		dev_err(dev, "can't provide empty string for firmware name\n");
2268 		ret = -EINVAL;
2269 		goto out;
2270 	}
2271 
2272 	p = kstrndup(fw_name, len, GFP_KERNEL);
2273 	if (!p) {
2274 		ret = -ENOMEM;
2275 		goto out;
2276 	}
2277 
2278 	kfree_const(rproc->firmware);
2279 	rproc->firmware = p;
2280 
2281 out:
2282 	mutex_unlock(&rproc->lock);
2283 	return ret;
2284 }
2285 EXPORT_SYMBOL(rproc_set_firmware);
2286 
2287 static int rproc_validate(struct rproc *rproc)
2288 {
2289 	switch (rproc->state) {
2290 	case RPROC_OFFLINE:
2291 		/*
2292 		 * An offline processor without a start()
2293 		 * function makes no sense.
2294 		 */
2295 		if (!rproc->ops->start)
2296 			return -EINVAL;
2297 		break;
2298 	case RPROC_DETACHED:
2299 		/*
2300 		 * A remote processor in a detached state without an
2301 		 * attach() function makes not sense.
2302 		 */
2303 		if (!rproc->ops->attach)
2304 			return -EINVAL;
2305 		/*
2306 		 * When attaching to a remote processor the device memory
2307 		 * is already available and as such there is no need to have a
2308 		 * cached table.
2309 		 */
2310 		if (rproc->cached_table)
2311 			return -EINVAL;
2312 		break;
2313 	default:
2314 		/*
2315 		 * When adding a remote processor, the state of the device
2316 		 * can be offline or detached, nothing else.
2317 		 */
2318 		return -EINVAL;
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 /**
2325  * rproc_add() - register a remote processor
2326  * @rproc: the remote processor handle to register
2327  *
2328  * Registers @rproc with the remoteproc framework, after it has been
2329  * allocated with rproc_alloc().
2330  *
2331  * This is called by the platform-specific rproc implementation, whenever
2332  * a new remote processor device is probed.
2333  *
2334  * Note: this function initiates an asynchronous firmware loading
2335  * context, which will look for virtio devices supported by the rproc's
2336  * firmware.
2337  *
2338  * If found, those virtio devices will be created and added, so as a result
2339  * of registering this remote processor, additional virtio drivers might be
2340  * probed.
2341  *
2342  * Return: 0 on success and an appropriate error code otherwise
2343  */
2344 int rproc_add(struct rproc *rproc)
2345 {
2346 	struct device *dev = &rproc->dev;
2347 	int ret;
2348 
2349 	ret = rproc_validate(rproc);
2350 	if (ret < 0)
2351 		return ret;
2352 
2353 	/* add char device for this remoteproc */
2354 	ret = rproc_char_device_add(rproc);
2355 	if (ret < 0)
2356 		return ret;
2357 
2358 	ret = device_add(dev);
2359 	if (ret < 0) {
2360 		put_device(dev);
2361 		goto rproc_remove_cdev;
2362 	}
2363 
2364 	dev_info(dev, "%s is available\n", rproc->name);
2365 
2366 	/* create debugfs entries */
2367 	rproc_create_debug_dir(rproc);
2368 
2369 	/* if rproc is marked always-on, request it to boot */
2370 	if (rproc->auto_boot) {
2371 		ret = rproc_trigger_auto_boot(rproc);
2372 		if (ret < 0)
2373 			goto rproc_remove_dev;
2374 	}
2375 
2376 	/* expose to rproc_get_by_phandle users */
2377 	mutex_lock(&rproc_list_mutex);
2378 	list_add_rcu(&rproc->node, &rproc_list);
2379 	mutex_unlock(&rproc_list_mutex);
2380 
2381 	return 0;
2382 
2383 rproc_remove_dev:
2384 	rproc_delete_debug_dir(rproc);
2385 	device_del(dev);
2386 rproc_remove_cdev:
2387 	rproc_char_device_remove(rproc);
2388 	return ret;
2389 }
2390 EXPORT_SYMBOL(rproc_add);
2391 
2392 static void devm_rproc_remove(void *rproc)
2393 {
2394 	rproc_del(rproc);
2395 }
2396 
2397 /**
2398  * devm_rproc_add() - resource managed rproc_add()
2399  * @dev: the underlying device
2400  * @rproc: the remote processor handle to register
2401  *
2402  * This function performs like rproc_add() but the registered rproc device will
2403  * automatically be removed on driver detach.
2404  *
2405  * Return: 0 on success, negative errno on failure
2406  */
2407 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2408 {
2409 	int err;
2410 
2411 	err = rproc_add(rproc);
2412 	if (err)
2413 		return err;
2414 
2415 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2416 }
2417 EXPORT_SYMBOL(devm_rproc_add);
2418 
2419 /**
2420  * rproc_type_release() - release a remote processor instance
2421  * @dev: the rproc's device
2422  *
2423  * This function should _never_ be called directly.
2424  *
2425  * It will be called by the driver core when no one holds a valid pointer
2426  * to @dev anymore.
2427  */
2428 static void rproc_type_release(struct device *dev)
2429 {
2430 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2431 
2432 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2433 
2434 	idr_destroy(&rproc->notifyids);
2435 
2436 	if (rproc->index >= 0)
2437 		ida_simple_remove(&rproc_dev_index, rproc->index);
2438 
2439 	kfree_const(rproc->firmware);
2440 	kfree_const(rproc->name);
2441 	kfree(rproc->ops);
2442 	kfree(rproc);
2443 }
2444 
2445 static const struct device_type rproc_type = {
2446 	.name		= "remoteproc",
2447 	.release	= rproc_type_release,
2448 };
2449 
2450 static int rproc_alloc_firmware(struct rproc *rproc,
2451 				const char *name, const char *firmware)
2452 {
2453 	const char *p;
2454 
2455 	/*
2456 	 * Allocate a firmware name if the caller gave us one to work
2457 	 * with.  Otherwise construct a new one using a default pattern.
2458 	 */
2459 	if (firmware)
2460 		p = kstrdup_const(firmware, GFP_KERNEL);
2461 	else
2462 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2463 
2464 	if (!p)
2465 		return -ENOMEM;
2466 
2467 	rproc->firmware = p;
2468 
2469 	return 0;
2470 }
2471 
2472 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2473 {
2474 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2475 	if (!rproc->ops)
2476 		return -ENOMEM;
2477 
2478 	/* Default to rproc_coredump if no coredump function is specified */
2479 	if (!rproc->ops->coredump)
2480 		rproc->ops->coredump = rproc_coredump;
2481 
2482 	if (rproc->ops->load)
2483 		return 0;
2484 
2485 	/* Default to ELF loader if no load function is specified */
2486 	rproc->ops->load = rproc_elf_load_segments;
2487 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2488 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2489 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2490 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2491 
2492 	return 0;
2493 }
2494 
2495 /**
2496  * rproc_alloc() - allocate a remote processor handle
2497  * @dev: the underlying device
2498  * @name: name of this remote processor
2499  * @ops: platform-specific handlers (mainly start/stop)
2500  * @firmware: name of firmware file to load, can be NULL
2501  * @len: length of private data needed by the rproc driver (in bytes)
2502  *
2503  * Allocates a new remote processor handle, but does not register
2504  * it yet. if @firmware is NULL, a default name is used.
2505  *
2506  * This function should be used by rproc implementations during initialization
2507  * of the remote processor.
2508  *
2509  * After creating an rproc handle using this function, and when ready,
2510  * implementations should then call rproc_add() to complete
2511  * the registration of the remote processor.
2512  *
2513  * Note: _never_ directly deallocate @rproc, even if it was not registered
2514  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2515  *
2516  * Return: new rproc pointer on success, and NULL on failure
2517  */
2518 struct rproc *rproc_alloc(struct device *dev, const char *name,
2519 			  const struct rproc_ops *ops,
2520 			  const char *firmware, int len)
2521 {
2522 	struct rproc *rproc;
2523 
2524 	if (!dev || !name || !ops)
2525 		return NULL;
2526 
2527 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2528 	if (!rproc)
2529 		return NULL;
2530 
2531 	rproc->priv = &rproc[1];
2532 	rproc->auto_boot = true;
2533 	rproc->elf_class = ELFCLASSNONE;
2534 	rproc->elf_machine = EM_NONE;
2535 
2536 	device_initialize(&rproc->dev);
2537 	rproc->dev.parent = dev;
2538 	rproc->dev.type = &rproc_type;
2539 	rproc->dev.class = &rproc_class;
2540 	rproc->dev.driver_data = rproc;
2541 	idr_init(&rproc->notifyids);
2542 
2543 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2544 	if (!rproc->name)
2545 		goto put_device;
2546 
2547 	if (rproc_alloc_firmware(rproc, name, firmware))
2548 		goto put_device;
2549 
2550 	if (rproc_alloc_ops(rproc, ops))
2551 		goto put_device;
2552 
2553 	/* Assign a unique device index and name */
2554 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2555 	if (rproc->index < 0) {
2556 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2557 		goto put_device;
2558 	}
2559 
2560 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2561 
2562 	atomic_set(&rproc->power, 0);
2563 
2564 	mutex_init(&rproc->lock);
2565 
2566 	INIT_LIST_HEAD(&rproc->carveouts);
2567 	INIT_LIST_HEAD(&rproc->mappings);
2568 	INIT_LIST_HEAD(&rproc->traces);
2569 	INIT_LIST_HEAD(&rproc->rvdevs);
2570 	INIT_LIST_HEAD(&rproc->subdevs);
2571 	INIT_LIST_HEAD(&rproc->dump_segments);
2572 
2573 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2574 
2575 	rproc->state = RPROC_OFFLINE;
2576 
2577 	return rproc;
2578 
2579 put_device:
2580 	put_device(&rproc->dev);
2581 	return NULL;
2582 }
2583 EXPORT_SYMBOL(rproc_alloc);
2584 
2585 /**
2586  * rproc_free() - unroll rproc_alloc()
2587  * @rproc: the remote processor handle
2588  *
2589  * This function decrements the rproc dev refcount.
2590  *
2591  * If no one holds any reference to rproc anymore, then its refcount would
2592  * now drop to zero, and it would be freed.
2593  */
2594 void rproc_free(struct rproc *rproc)
2595 {
2596 	put_device(&rproc->dev);
2597 }
2598 EXPORT_SYMBOL(rproc_free);
2599 
2600 /**
2601  * rproc_put() - release rproc reference
2602  * @rproc: the remote processor handle
2603  *
2604  * This function decrements the rproc dev refcount.
2605  *
2606  * If no one holds any reference to rproc anymore, then its refcount would
2607  * now drop to zero, and it would be freed.
2608  */
2609 void rproc_put(struct rproc *rproc)
2610 {
2611 	module_put(rproc->dev.parent->driver->owner);
2612 	put_device(&rproc->dev);
2613 }
2614 EXPORT_SYMBOL(rproc_put);
2615 
2616 /**
2617  * rproc_del() - unregister a remote processor
2618  * @rproc: rproc handle to unregister
2619  *
2620  * This function should be called when the platform specific rproc
2621  * implementation decides to remove the rproc device. it should
2622  * _only_ be called if a previous invocation of rproc_add()
2623  * has completed successfully.
2624  *
2625  * After rproc_del() returns, @rproc isn't freed yet, because
2626  * of the outstanding reference created by rproc_alloc. To decrement that
2627  * one last refcount, one still needs to call rproc_free().
2628  *
2629  * Return: 0 on success and -EINVAL if @rproc isn't valid
2630  */
2631 int rproc_del(struct rproc *rproc)
2632 {
2633 	if (!rproc)
2634 		return -EINVAL;
2635 
2636 	/* TODO: make sure this works with rproc->power > 1 */
2637 	rproc_shutdown(rproc);
2638 
2639 	mutex_lock(&rproc->lock);
2640 	rproc->state = RPROC_DELETED;
2641 	mutex_unlock(&rproc->lock);
2642 
2643 	rproc_delete_debug_dir(rproc);
2644 
2645 	/* the rproc is downref'ed as soon as it's removed from the klist */
2646 	mutex_lock(&rproc_list_mutex);
2647 	list_del_rcu(&rproc->node);
2648 	mutex_unlock(&rproc_list_mutex);
2649 
2650 	/* Ensure that no readers of rproc_list are still active */
2651 	synchronize_rcu();
2652 
2653 	device_del(&rproc->dev);
2654 	rproc_char_device_remove(rproc);
2655 
2656 	return 0;
2657 }
2658 EXPORT_SYMBOL(rproc_del);
2659 
2660 static void devm_rproc_free(struct device *dev, void *res)
2661 {
2662 	rproc_free(*(struct rproc **)res);
2663 }
2664 
2665 /**
2666  * devm_rproc_alloc() - resource managed rproc_alloc()
2667  * @dev: the underlying device
2668  * @name: name of this remote processor
2669  * @ops: platform-specific handlers (mainly start/stop)
2670  * @firmware: name of firmware file to load, can be NULL
2671  * @len: length of private data needed by the rproc driver (in bytes)
2672  *
2673  * This function performs like rproc_alloc() but the acquired rproc device will
2674  * automatically be released on driver detach.
2675  *
2676  * Return: new rproc instance, or NULL on failure
2677  */
2678 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2679 			       const struct rproc_ops *ops,
2680 			       const char *firmware, int len)
2681 {
2682 	struct rproc **ptr, *rproc;
2683 
2684 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2685 	if (!ptr)
2686 		return NULL;
2687 
2688 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2689 	if (rproc) {
2690 		*ptr = rproc;
2691 		devres_add(dev, ptr);
2692 	} else {
2693 		devres_free(ptr);
2694 	}
2695 
2696 	return rproc;
2697 }
2698 EXPORT_SYMBOL(devm_rproc_alloc);
2699 
2700 /**
2701  * rproc_add_subdev() - add a subdevice to a remoteproc
2702  * @rproc: rproc handle to add the subdevice to
2703  * @subdev: subdev handle to register
2704  *
2705  * Caller is responsible for populating optional subdevice function pointers.
2706  */
2707 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2708 {
2709 	list_add_tail(&subdev->node, &rproc->subdevs);
2710 }
2711 EXPORT_SYMBOL(rproc_add_subdev);
2712 
2713 /**
2714  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2715  * @rproc: rproc handle to remove the subdevice from
2716  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2717  */
2718 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2719 {
2720 	list_del(&subdev->node);
2721 }
2722 EXPORT_SYMBOL(rproc_remove_subdev);
2723 
2724 /**
2725  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2726  * @dev:	child device to find ancestor of
2727  *
2728  * Return: the ancestor rproc instance, or NULL if not found
2729  */
2730 struct rproc *rproc_get_by_child(struct device *dev)
2731 {
2732 	for (dev = dev->parent; dev; dev = dev->parent) {
2733 		if (dev->type == &rproc_type)
2734 			return dev->driver_data;
2735 	}
2736 
2737 	return NULL;
2738 }
2739 EXPORT_SYMBOL(rproc_get_by_child);
2740 
2741 /**
2742  * rproc_report_crash() - rproc crash reporter function
2743  * @rproc: remote processor
2744  * @type: crash type
2745  *
2746  * This function must be called every time a crash is detected by the low-level
2747  * drivers implementing a specific remoteproc. This should not be called from a
2748  * non-remoteproc driver.
2749  *
2750  * This function can be called from atomic/interrupt context.
2751  */
2752 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2753 {
2754 	if (!rproc) {
2755 		pr_err("NULL rproc pointer\n");
2756 		return;
2757 	}
2758 
2759 	/* Prevent suspend while the remoteproc is being recovered */
2760 	pm_stay_awake(rproc->dev.parent);
2761 
2762 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2763 		rproc->name, rproc_crash_to_string(type));
2764 
2765 	/* Have a worker handle the error; ensure system is not suspended */
2766 	queue_work(system_freezable_wq, &rproc->crash_handler);
2767 }
2768 EXPORT_SYMBOL(rproc_report_crash);
2769 
2770 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2771 			       void *ptr)
2772 {
2773 	unsigned int longest = 0;
2774 	struct rproc *rproc;
2775 	unsigned int d;
2776 
2777 	rcu_read_lock();
2778 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2779 		if (!rproc->ops->panic)
2780 			continue;
2781 
2782 		if (rproc->state != RPROC_RUNNING &&
2783 		    rproc->state != RPROC_ATTACHED)
2784 			continue;
2785 
2786 		d = rproc->ops->panic(rproc);
2787 		longest = max(longest, d);
2788 	}
2789 	rcu_read_unlock();
2790 
2791 	/*
2792 	 * Delay for the longest requested duration before returning. This can
2793 	 * be used by the remoteproc drivers to give the remote processor time
2794 	 * to perform any requested operations (such as flush caches), when
2795 	 * it's not possible to signal the Linux side due to the panic.
2796 	 */
2797 	mdelay(longest);
2798 
2799 	return NOTIFY_DONE;
2800 }
2801 
2802 static void __init rproc_init_panic(void)
2803 {
2804 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2805 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2806 }
2807 
2808 static void __exit rproc_exit_panic(void)
2809 {
2810 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2811 }
2812 
2813 static int __init remoteproc_init(void)
2814 {
2815 	rproc_init_sysfs();
2816 	rproc_init_debugfs();
2817 	rproc_init_cdev();
2818 	rproc_init_panic();
2819 
2820 	return 0;
2821 }
2822 subsys_initcall(remoteproc_init);
2823 
2824 static void __exit remoteproc_exit(void)
2825 {
2826 	ida_destroy(&rproc_dev_index);
2827 
2828 	rproc_exit_panic();
2829 	rproc_exit_debugfs();
2830 	rproc_exit_sysfs();
2831 }
2832 module_exit(remoteproc_exit);
2833 
2834 MODULE_LICENSE("GPL v2");
2835 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2836