xref: /openbmc/linux/drivers/remoteproc/remoteproc_core.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/virtio_ids.h>
43 #include <linux/virtio_ring.h>
44 #include <asm/byteorder.h>
45 
46 #include "remoteproc_internal.h"
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 
51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
52 				struct resource_table *table, int len);
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 				 void *, int offset, int avail);
55 
56 /* Unique indices for remoteproc devices */
57 static DEFINE_IDA(rproc_dev_index);
58 
59 static const char * const rproc_crash_names[] = {
60 	[RPROC_MMUFAULT]	= "mmufault",
61 	[RPROC_WATCHDOG]	= "watchdog",
62 	[RPROC_FATAL_ERROR]	= "fatal error",
63 };
64 
65 /* translate rproc_crash_type to string */
66 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 {
68 	if (type < ARRAY_SIZE(rproc_crash_names))
69 		return rproc_crash_names[type];
70 	return "unknown";
71 }
72 
73 /*
74  * This is the IOMMU fault handler we register with the IOMMU API
75  * (when relevant; not all remote processors access memory through
76  * an IOMMU).
77  *
78  * IOMMU core will invoke this handler whenever the remote processor
79  * will try to access an unmapped device address.
80  */
81 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
82 			     unsigned long iova, int flags, void *token)
83 {
84 	struct rproc *rproc = token;
85 
86 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 
88 	rproc_report_crash(rproc, RPROC_MMUFAULT);
89 
90 	/*
91 	 * Let the iommu core know we're not really handling this fault;
92 	 * we just used it as a recovery trigger.
93 	 */
94 	return -ENOSYS;
95 }
96 
97 static int rproc_enable_iommu(struct rproc *rproc)
98 {
99 	struct iommu_domain *domain;
100 	struct device *dev = rproc->dev.parent;
101 	int ret;
102 
103 	if (!rproc->has_iommu) {
104 		dev_dbg(dev, "iommu not present\n");
105 		return 0;
106 	}
107 
108 	domain = iommu_domain_alloc(dev->bus);
109 	if (!domain) {
110 		dev_err(dev, "can't alloc iommu domain\n");
111 		return -ENOMEM;
112 	}
113 
114 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 
116 	ret = iommu_attach_device(domain, dev);
117 	if (ret) {
118 		dev_err(dev, "can't attach iommu device: %d\n", ret);
119 		goto free_domain;
120 	}
121 
122 	rproc->domain = domain;
123 
124 	return 0;
125 
126 free_domain:
127 	iommu_domain_free(domain);
128 	return ret;
129 }
130 
131 static void rproc_disable_iommu(struct rproc *rproc)
132 {
133 	struct iommu_domain *domain = rproc->domain;
134 	struct device *dev = rproc->dev.parent;
135 
136 	if (!domain)
137 		return;
138 
139 	iommu_detach_device(domain, dev);
140 	iommu_domain_free(domain);
141 }
142 
143 /**
144  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
145  * @rproc: handle of a remote processor
146  * @da: remoteproc device address to translate
147  * @len: length of the memory region @da is pointing to
148  *
149  * Some remote processors will ask us to allocate them physically contiguous
150  * memory regions (which we call "carveouts"), and map them to specific
151  * device addresses (which are hardcoded in the firmware). They may also have
152  * dedicated memory regions internal to the processors, and use them either
153  * exclusively or alongside carveouts.
154  *
155  * They may then ask us to copy objects into specific device addresses (e.g.
156  * code/data sections) or expose us certain symbols in other device address
157  * (e.g. their trace buffer).
158  *
159  * This function is a helper function with which we can go over the allocated
160  * carveouts and translate specific device addresses to kernel virtual addresses
161  * so we can access the referenced memory. This function also allows to perform
162  * translations on the internal remoteproc memory regions through a platform
163  * implementation specific da_to_va ops, if present.
164  *
165  * The function returns a valid kernel address on success or NULL on failure.
166  *
167  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
168  * but only on kernel direct mapped RAM memory. Instead, we're just using
169  * here the output of the DMA API for the carveouts, which should be more
170  * correct.
171  */
172 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
173 {
174 	struct rproc_mem_entry *carveout;
175 	void *ptr = NULL;
176 
177 	if (rproc->ops->da_to_va) {
178 		ptr = rproc->ops->da_to_va(rproc, da, len);
179 		if (ptr)
180 			goto out;
181 	}
182 
183 	list_for_each_entry(carveout, &rproc->carveouts, node) {
184 		int offset = da - carveout->da;
185 
186 		/* try next carveout if da is too small */
187 		if (offset < 0)
188 			continue;
189 
190 		/* try next carveout if da is too large */
191 		if (offset + len > carveout->len)
192 			continue;
193 
194 		ptr = carveout->va + offset;
195 
196 		break;
197 	}
198 
199 out:
200 	return ptr;
201 }
202 EXPORT_SYMBOL(rproc_da_to_va);
203 
204 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
205 {
206 	struct rproc *rproc = rvdev->rproc;
207 	struct device *dev = &rproc->dev;
208 	struct rproc_vring *rvring = &rvdev->vring[i];
209 	struct fw_rsc_vdev *rsc;
210 	dma_addr_t dma;
211 	void *va;
212 	int ret, size, notifyid;
213 
214 	/* actual size of vring (in bytes) */
215 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
216 
217 	/*
218 	 * Allocate non-cacheable memory for the vring. In the future
219 	 * this call will also configure the IOMMU for us
220 	 */
221 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
222 	if (!va) {
223 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
224 		return -EINVAL;
225 	}
226 
227 	/*
228 	 * Assign an rproc-wide unique index for this vring
229 	 * TODO: assign a notifyid for rvdev updates as well
230 	 * TODO: support predefined notifyids (via resource table)
231 	 */
232 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
233 	if (ret < 0) {
234 		dev_err(dev, "idr_alloc failed: %d\n", ret);
235 		dma_free_coherent(dev->parent, size, va, dma);
236 		return ret;
237 	}
238 	notifyid = ret;
239 
240 	/* Potentially bump max_notifyid */
241 	if (notifyid > rproc->max_notifyid)
242 		rproc->max_notifyid = notifyid;
243 
244 	dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
245 		i, va, &dma, size, notifyid);
246 
247 	rvring->va = va;
248 	rvring->dma = dma;
249 	rvring->notifyid = notifyid;
250 
251 	/*
252 	 * Let the rproc know the notifyid and da of this vring.
253 	 * Not all platforms use dma_alloc_coherent to automatically
254 	 * set up the iommu. In this case the device address (da) will
255 	 * hold the physical address and not the device address.
256 	 */
257 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
258 	rsc->vring[i].da = dma;
259 	rsc->vring[i].notifyid = notifyid;
260 	return 0;
261 }
262 
263 static int
264 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
265 {
266 	struct rproc *rproc = rvdev->rproc;
267 	struct device *dev = &rproc->dev;
268 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
269 	struct rproc_vring *rvring = &rvdev->vring[i];
270 
271 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
272 		i, vring->da, vring->num, vring->align);
273 
274 	/* verify queue size and vring alignment are sane */
275 	if (!vring->num || !vring->align) {
276 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
277 			vring->num, vring->align);
278 		return -EINVAL;
279 	}
280 
281 	rvring->len = vring->num;
282 	rvring->align = vring->align;
283 	rvring->rvdev = rvdev;
284 
285 	return 0;
286 }
287 
288 void rproc_free_vring(struct rproc_vring *rvring)
289 {
290 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
291 	struct rproc *rproc = rvring->rvdev->rproc;
292 	int idx = rvring->rvdev->vring - rvring;
293 	struct fw_rsc_vdev *rsc;
294 
295 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
296 	idr_remove(&rproc->notifyids, rvring->notifyid);
297 
298 	/* reset resource entry info */
299 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
300 	rsc->vring[idx].da = 0;
301 	rsc->vring[idx].notifyid = -1;
302 }
303 
304 static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
305 {
306 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
307 
308 	return rproc_add_virtio_dev(rvdev, rvdev->id);
309 }
310 
311 static void rproc_vdev_do_remove(struct rproc_subdev *subdev, bool crashed)
312 {
313 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
314 
315 	rproc_remove_virtio_dev(rvdev);
316 }
317 
318 /**
319  * rproc_handle_vdev() - handle a vdev fw resource
320  * @rproc: the remote processor
321  * @rsc: the vring resource descriptor
322  * @avail: size of available data (for sanity checking the image)
323  *
324  * This resource entry requests the host to statically register a virtio
325  * device (vdev), and setup everything needed to support it. It contains
326  * everything needed to make it possible: the virtio device id, virtio
327  * device features, vrings information, virtio config space, etc...
328  *
329  * Before registering the vdev, the vrings are allocated from non-cacheable
330  * physically contiguous memory. Currently we only support two vrings per
331  * remote processor (temporary limitation). We might also want to consider
332  * doing the vring allocation only later when ->find_vqs() is invoked, and
333  * then release them upon ->del_vqs().
334  *
335  * Note: @da is currently not really handled correctly: we dynamically
336  * allocate it using the DMA API, ignoring requested hard coded addresses,
337  * and we don't take care of any required IOMMU programming. This is all
338  * going to be taken care of when the generic iommu-based DMA API will be
339  * merged. Meanwhile, statically-addressed iommu-based firmware images should
340  * use RSC_DEVMEM resource entries to map their required @da to the physical
341  * address of their base CMA region (ouch, hacky!).
342  *
343  * Returns 0 on success, or an appropriate error code otherwise
344  */
345 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
346 			     int offset, int avail)
347 {
348 	struct device *dev = &rproc->dev;
349 	struct rproc_vdev *rvdev;
350 	int i, ret;
351 
352 	/* make sure resource isn't truncated */
353 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
354 			+ rsc->config_len > avail) {
355 		dev_err(dev, "vdev rsc is truncated\n");
356 		return -EINVAL;
357 	}
358 
359 	/* make sure reserved bytes are zeroes */
360 	if (rsc->reserved[0] || rsc->reserved[1]) {
361 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
362 		return -EINVAL;
363 	}
364 
365 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
366 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
367 
368 	/* we currently support only two vrings per rvdev */
369 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
370 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
371 		return -EINVAL;
372 	}
373 
374 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
375 	if (!rvdev)
376 		return -ENOMEM;
377 
378 	kref_init(&rvdev->refcount);
379 
380 	rvdev->id = rsc->id;
381 	rvdev->rproc = rproc;
382 
383 	/* parse the vrings */
384 	for (i = 0; i < rsc->num_of_vrings; i++) {
385 		ret = rproc_parse_vring(rvdev, rsc, i);
386 		if (ret)
387 			goto free_rvdev;
388 	}
389 
390 	/* remember the resource offset*/
391 	rvdev->rsc_offset = offset;
392 
393 	/* allocate the vring resources */
394 	for (i = 0; i < rsc->num_of_vrings; i++) {
395 		ret = rproc_alloc_vring(rvdev, i);
396 		if (ret)
397 			goto unwind_vring_allocations;
398 	}
399 
400 	list_add_tail(&rvdev->node, &rproc->rvdevs);
401 
402 	rproc_add_subdev(rproc, &rvdev->subdev,
403 			 rproc_vdev_do_probe, rproc_vdev_do_remove);
404 
405 	return 0;
406 
407 unwind_vring_allocations:
408 	for (i--; i >= 0; i--)
409 		rproc_free_vring(&rvdev->vring[i]);
410 free_rvdev:
411 	kfree(rvdev);
412 	return ret;
413 }
414 
415 void rproc_vdev_release(struct kref *ref)
416 {
417 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
418 	struct rproc_vring *rvring;
419 	struct rproc *rproc = rvdev->rproc;
420 	int id;
421 
422 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
423 		rvring = &rvdev->vring[id];
424 		if (!rvring->va)
425 			continue;
426 
427 		rproc_free_vring(rvring);
428 	}
429 
430 	rproc_remove_subdev(rproc, &rvdev->subdev);
431 	list_del(&rvdev->node);
432 	kfree(rvdev);
433 }
434 
435 /**
436  * rproc_handle_trace() - handle a shared trace buffer resource
437  * @rproc: the remote processor
438  * @rsc: the trace resource descriptor
439  * @avail: size of available data (for sanity checking the image)
440  *
441  * In case the remote processor dumps trace logs into memory,
442  * export it via debugfs.
443  *
444  * Currently, the 'da' member of @rsc should contain the device address
445  * where the remote processor is dumping the traces. Later we could also
446  * support dynamically allocating this address using the generic
447  * DMA API (but currently there isn't a use case for that).
448  *
449  * Returns 0 on success, or an appropriate error code otherwise
450  */
451 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
452 			      int offset, int avail)
453 {
454 	struct rproc_mem_entry *trace;
455 	struct device *dev = &rproc->dev;
456 	void *ptr;
457 	char name[15];
458 
459 	if (sizeof(*rsc) > avail) {
460 		dev_err(dev, "trace rsc is truncated\n");
461 		return -EINVAL;
462 	}
463 
464 	/* make sure reserved bytes are zeroes */
465 	if (rsc->reserved) {
466 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
467 		return -EINVAL;
468 	}
469 
470 	/* what's the kernel address of this resource ? */
471 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
472 	if (!ptr) {
473 		dev_err(dev, "erroneous trace resource entry\n");
474 		return -EINVAL;
475 	}
476 
477 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
478 	if (!trace)
479 		return -ENOMEM;
480 
481 	/* set the trace buffer dma properties */
482 	trace->len = rsc->len;
483 	trace->va = ptr;
484 
485 	/* make sure snprintf always null terminates, even if truncating */
486 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
487 
488 	/* create the debugfs entry */
489 	trace->priv = rproc_create_trace_file(name, rproc, trace);
490 	if (!trace->priv) {
491 		trace->va = NULL;
492 		kfree(trace);
493 		return -EINVAL;
494 	}
495 
496 	list_add_tail(&trace->node, &rproc->traces);
497 
498 	rproc->num_traces++;
499 
500 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
501 		name, ptr, rsc->da, rsc->len);
502 
503 	return 0;
504 }
505 
506 /**
507  * rproc_handle_devmem() - handle devmem resource entry
508  * @rproc: remote processor handle
509  * @rsc: the devmem resource entry
510  * @avail: size of available data (for sanity checking the image)
511  *
512  * Remote processors commonly need to access certain on-chip peripherals.
513  *
514  * Some of these remote processors access memory via an iommu device,
515  * and might require us to configure their iommu before they can access
516  * the on-chip peripherals they need.
517  *
518  * This resource entry is a request to map such a peripheral device.
519  *
520  * These devmem entries will contain the physical address of the device in
521  * the 'pa' member. If a specific device address is expected, then 'da' will
522  * contain it (currently this is the only use case supported). 'len' will
523  * contain the size of the physical region we need to map.
524  *
525  * Currently we just "trust" those devmem entries to contain valid physical
526  * addresses, but this is going to change: we want the implementations to
527  * tell us ranges of physical addresses the firmware is allowed to request,
528  * and not allow firmwares to request access to physical addresses that
529  * are outside those ranges.
530  */
531 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
532 			       int offset, int avail)
533 {
534 	struct rproc_mem_entry *mapping;
535 	struct device *dev = &rproc->dev;
536 	int ret;
537 
538 	/* no point in handling this resource without a valid iommu domain */
539 	if (!rproc->domain)
540 		return -EINVAL;
541 
542 	if (sizeof(*rsc) > avail) {
543 		dev_err(dev, "devmem rsc is truncated\n");
544 		return -EINVAL;
545 	}
546 
547 	/* make sure reserved bytes are zeroes */
548 	if (rsc->reserved) {
549 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
550 		return -EINVAL;
551 	}
552 
553 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
554 	if (!mapping)
555 		return -ENOMEM;
556 
557 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
558 	if (ret) {
559 		dev_err(dev, "failed to map devmem: %d\n", ret);
560 		goto out;
561 	}
562 
563 	/*
564 	 * We'll need this info later when we'll want to unmap everything
565 	 * (e.g. on shutdown).
566 	 *
567 	 * We can't trust the remote processor not to change the resource
568 	 * table, so we must maintain this info independently.
569 	 */
570 	mapping->da = rsc->da;
571 	mapping->len = rsc->len;
572 	list_add_tail(&mapping->node, &rproc->mappings);
573 
574 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
575 		rsc->pa, rsc->da, rsc->len);
576 
577 	return 0;
578 
579 out:
580 	kfree(mapping);
581 	return ret;
582 }
583 
584 /**
585  * rproc_handle_carveout() - handle phys contig memory allocation requests
586  * @rproc: rproc handle
587  * @rsc: the resource entry
588  * @avail: size of available data (for image validation)
589  *
590  * This function will handle firmware requests for allocation of physically
591  * contiguous memory regions.
592  *
593  * These request entries should come first in the firmware's resource table,
594  * as other firmware entries might request placing other data objects inside
595  * these memory regions (e.g. data/code segments, trace resource entries, ...).
596  *
597  * Allocating memory this way helps utilizing the reserved physical memory
598  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
599  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
600  * pressure is important; it may have a substantial impact on performance.
601  */
602 static int rproc_handle_carveout(struct rproc *rproc,
603 				 struct fw_rsc_carveout *rsc,
604 				 int offset, int avail)
605 {
606 	struct rproc_mem_entry *carveout, *mapping;
607 	struct device *dev = &rproc->dev;
608 	dma_addr_t dma;
609 	void *va;
610 	int ret;
611 
612 	if (sizeof(*rsc) > avail) {
613 		dev_err(dev, "carveout rsc is truncated\n");
614 		return -EINVAL;
615 	}
616 
617 	/* make sure reserved bytes are zeroes */
618 	if (rsc->reserved) {
619 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
620 		return -EINVAL;
621 	}
622 
623 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
624 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
625 
626 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
627 	if (!carveout)
628 		return -ENOMEM;
629 
630 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
631 	if (!va) {
632 		dev_err(dev->parent,
633 			"failed to allocate dma memory: len 0x%x\n", rsc->len);
634 		ret = -ENOMEM;
635 		goto free_carv;
636 	}
637 
638 	dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
639 		va, &dma, rsc->len);
640 
641 	/*
642 	 * Ok, this is non-standard.
643 	 *
644 	 * Sometimes we can't rely on the generic iommu-based DMA API
645 	 * to dynamically allocate the device address and then set the IOMMU
646 	 * tables accordingly, because some remote processors might
647 	 * _require_ us to use hard coded device addresses that their
648 	 * firmware was compiled with.
649 	 *
650 	 * In this case, we must use the IOMMU API directly and map
651 	 * the memory to the device address as expected by the remote
652 	 * processor.
653 	 *
654 	 * Obviously such remote processor devices should not be configured
655 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
656 	 * physical address in this case.
657 	 */
658 	if (rproc->domain) {
659 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
660 		if (!mapping) {
661 			ret = -ENOMEM;
662 			goto dma_free;
663 		}
664 
665 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
666 				rsc->flags);
667 		if (ret) {
668 			dev_err(dev, "iommu_map failed: %d\n", ret);
669 			goto free_mapping;
670 		}
671 
672 		/*
673 		 * We'll need this info later when we'll want to unmap
674 		 * everything (e.g. on shutdown).
675 		 *
676 		 * We can't trust the remote processor not to change the
677 		 * resource table, so we must maintain this info independently.
678 		 */
679 		mapping->da = rsc->da;
680 		mapping->len = rsc->len;
681 		list_add_tail(&mapping->node, &rproc->mappings);
682 
683 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
684 			rsc->da, &dma);
685 	}
686 
687 	/*
688 	 * Some remote processors might need to know the pa
689 	 * even though they are behind an IOMMU. E.g., OMAP4's
690 	 * remote M3 processor needs this so it can control
691 	 * on-chip hardware accelerators that are not behind
692 	 * the IOMMU, and therefor must know the pa.
693 	 *
694 	 * Generally we don't want to expose physical addresses
695 	 * if we don't have to (remote processors are generally
696 	 * _not_ trusted), so we might want to do this only for
697 	 * remote processor that _must_ have this (e.g. OMAP4's
698 	 * dual M3 subsystem).
699 	 *
700 	 * Non-IOMMU processors might also want to have this info.
701 	 * In this case, the device address and the physical address
702 	 * are the same.
703 	 */
704 	rsc->pa = dma;
705 
706 	carveout->va = va;
707 	carveout->len = rsc->len;
708 	carveout->dma = dma;
709 	carveout->da = rsc->da;
710 
711 	list_add_tail(&carveout->node, &rproc->carveouts);
712 
713 	return 0;
714 
715 free_mapping:
716 	kfree(mapping);
717 dma_free:
718 	dma_free_coherent(dev->parent, rsc->len, va, dma);
719 free_carv:
720 	kfree(carveout);
721 	return ret;
722 }
723 
724 /*
725  * A lookup table for resource handlers. The indices are defined in
726  * enum fw_resource_type.
727  */
728 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
729 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
730 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
731 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
732 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
733 };
734 
735 /* handle firmware resource entries before booting the remote processor */
736 static int rproc_handle_resources(struct rproc *rproc,
737 				  rproc_handle_resource_t handlers[RSC_LAST])
738 {
739 	struct device *dev = &rproc->dev;
740 	rproc_handle_resource_t handler;
741 	int ret = 0, i;
742 
743 	if (!rproc->table_ptr)
744 		return 0;
745 
746 	for (i = 0; i < rproc->table_ptr->num; i++) {
747 		int offset = rproc->table_ptr->offset[i];
748 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
749 		int avail = rproc->table_sz - offset - sizeof(*hdr);
750 		void *rsc = (void *)hdr + sizeof(*hdr);
751 
752 		/* make sure table isn't truncated */
753 		if (avail < 0) {
754 			dev_err(dev, "rsc table is truncated\n");
755 			return -EINVAL;
756 		}
757 
758 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
759 
760 		if (hdr->type >= RSC_LAST) {
761 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
762 			continue;
763 		}
764 
765 		handler = handlers[hdr->type];
766 		if (!handler)
767 			continue;
768 
769 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
770 		if (ret)
771 			break;
772 	}
773 
774 	return ret;
775 }
776 
777 static int rproc_probe_subdevices(struct rproc *rproc)
778 {
779 	struct rproc_subdev *subdev;
780 	int ret;
781 
782 	list_for_each_entry(subdev, &rproc->subdevs, node) {
783 		ret = subdev->probe(subdev);
784 		if (ret)
785 			goto unroll_registration;
786 	}
787 
788 	return 0;
789 
790 unroll_registration:
791 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
792 		subdev->remove(subdev, true);
793 
794 	return ret;
795 }
796 
797 static void rproc_remove_subdevices(struct rproc *rproc, bool crashed)
798 {
799 	struct rproc_subdev *subdev;
800 
801 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node)
802 		subdev->remove(subdev, crashed);
803 }
804 
805 /**
806  * rproc_coredump_cleanup() - clean up dump_segments list
807  * @rproc: the remote processor handle
808  */
809 static void rproc_coredump_cleanup(struct rproc *rproc)
810 {
811 	struct rproc_dump_segment *entry, *tmp;
812 
813 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
814 		list_del(&entry->node);
815 		kfree(entry);
816 	}
817 }
818 
819 /**
820  * rproc_resource_cleanup() - clean up and free all acquired resources
821  * @rproc: rproc handle
822  *
823  * This function will free all resources acquired for @rproc, and it
824  * is called whenever @rproc either shuts down or fails to boot.
825  */
826 static void rproc_resource_cleanup(struct rproc *rproc)
827 {
828 	struct rproc_mem_entry *entry, *tmp;
829 	struct rproc_vdev *rvdev, *rvtmp;
830 	struct device *dev = &rproc->dev;
831 
832 	/* clean up debugfs trace entries */
833 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
834 		rproc_remove_trace_file(entry->priv);
835 		rproc->num_traces--;
836 		list_del(&entry->node);
837 		kfree(entry);
838 	}
839 
840 	/* clean up iommu mapping entries */
841 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
842 		size_t unmapped;
843 
844 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
845 		if (unmapped != entry->len) {
846 			/* nothing much to do besides complaining */
847 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
848 				unmapped);
849 		}
850 
851 		list_del(&entry->node);
852 		kfree(entry);
853 	}
854 
855 	/* clean up carveout allocations */
856 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
857 		dma_free_coherent(dev->parent, entry->len, entry->va,
858 				  entry->dma);
859 		list_del(&entry->node);
860 		kfree(entry);
861 	}
862 
863 	/* clean up remote vdev entries */
864 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
865 		kref_put(&rvdev->refcount, rproc_vdev_release);
866 
867 	rproc_coredump_cleanup(rproc);
868 }
869 
870 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
871 {
872 	struct resource_table *loaded_table;
873 	struct device *dev = &rproc->dev;
874 	int ret;
875 
876 	/* load the ELF segments to memory */
877 	ret = rproc_load_segments(rproc, fw);
878 	if (ret) {
879 		dev_err(dev, "Failed to load program segments: %d\n", ret);
880 		return ret;
881 	}
882 
883 	/*
884 	 * The starting device has been given the rproc->cached_table as the
885 	 * resource table. The address of the vring along with the other
886 	 * allocated resources (carveouts etc) is stored in cached_table.
887 	 * In order to pass this information to the remote device we must copy
888 	 * this information to device memory. We also update the table_ptr so
889 	 * that any subsequent changes will be applied to the loaded version.
890 	 */
891 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
892 	if (loaded_table) {
893 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
894 		rproc->table_ptr = loaded_table;
895 	}
896 
897 	/* power up the remote processor */
898 	ret = rproc->ops->start(rproc);
899 	if (ret) {
900 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
901 		return ret;
902 	}
903 
904 	/* probe any subdevices for the remote processor */
905 	ret = rproc_probe_subdevices(rproc);
906 	if (ret) {
907 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
908 			rproc->name, ret);
909 		rproc->ops->stop(rproc);
910 		return ret;
911 	}
912 
913 	rproc->state = RPROC_RUNNING;
914 
915 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
916 
917 	return 0;
918 }
919 
920 /*
921  * take a firmware and boot a remote processor with it.
922  */
923 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
924 {
925 	struct device *dev = &rproc->dev;
926 	const char *name = rproc->firmware;
927 	int ret;
928 
929 	ret = rproc_fw_sanity_check(rproc, fw);
930 	if (ret)
931 		return ret;
932 
933 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
934 
935 	/*
936 	 * if enabling an IOMMU isn't relevant for this rproc, this is
937 	 * just a nop
938 	 */
939 	ret = rproc_enable_iommu(rproc);
940 	if (ret) {
941 		dev_err(dev, "can't enable iommu: %d\n", ret);
942 		return ret;
943 	}
944 
945 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
946 
947 	/* Load resource table, core dump segment list etc from the firmware */
948 	ret = rproc_parse_fw(rproc, fw);
949 	if (ret)
950 		goto disable_iommu;
951 
952 	/* reset max_notifyid */
953 	rproc->max_notifyid = -1;
954 
955 	/* handle fw resources which are required to boot rproc */
956 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
957 	if (ret) {
958 		dev_err(dev, "Failed to process resources: %d\n", ret);
959 		goto clean_up_resources;
960 	}
961 
962 	ret = rproc_start(rproc, fw);
963 	if (ret)
964 		goto clean_up_resources;
965 
966 	return 0;
967 
968 clean_up_resources:
969 	rproc_resource_cleanup(rproc);
970 	kfree(rproc->cached_table);
971 	rproc->cached_table = NULL;
972 	rproc->table_ptr = NULL;
973 disable_iommu:
974 	rproc_disable_iommu(rproc);
975 	return ret;
976 }
977 
978 /*
979  * take a firmware and boot it up.
980  *
981  * Note: this function is called asynchronously upon registration of the
982  * remote processor (so we must wait until it completes before we try
983  * to unregister the device. one other option is just to use kref here,
984  * that might be cleaner).
985  */
986 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
987 {
988 	struct rproc *rproc = context;
989 
990 	rproc_boot(rproc);
991 
992 	release_firmware(fw);
993 }
994 
995 static int rproc_trigger_auto_boot(struct rproc *rproc)
996 {
997 	int ret;
998 
999 	/*
1000 	 * We're initiating an asynchronous firmware loading, so we can
1001 	 * be built-in kernel code, without hanging the boot process.
1002 	 */
1003 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1004 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1005 				      rproc, rproc_auto_boot_callback);
1006 	if (ret < 0)
1007 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1008 
1009 	return ret;
1010 }
1011 
1012 static int rproc_stop(struct rproc *rproc, bool crashed)
1013 {
1014 	struct device *dev = &rproc->dev;
1015 	int ret;
1016 
1017 	/* remove any subdevices for the remote processor */
1018 	rproc_remove_subdevices(rproc, crashed);
1019 
1020 	/* the installed resource table is no longer accessible */
1021 	rproc->table_ptr = rproc->cached_table;
1022 
1023 	/* power off the remote processor */
1024 	ret = rproc->ops->stop(rproc);
1025 	if (ret) {
1026 		dev_err(dev, "can't stop rproc: %d\n", ret);
1027 		return ret;
1028 	}
1029 
1030 	rproc->state = RPROC_OFFLINE;
1031 
1032 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1033 
1034 	return 0;
1035 }
1036 
1037 /**
1038  * rproc_coredump_add_segment() - add segment of device memory to coredump
1039  * @rproc:	handle of a remote processor
1040  * @da:		device address
1041  * @size:	size of segment
1042  *
1043  * Add device memory to the list of segments to be included in a coredump for
1044  * the remoteproc.
1045  *
1046  * Return: 0 on success, negative errno on error.
1047  */
1048 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1049 {
1050 	struct rproc_dump_segment *segment;
1051 
1052 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1053 	if (!segment)
1054 		return -ENOMEM;
1055 
1056 	segment->da = da;
1057 	segment->size = size;
1058 
1059 	list_add_tail(&segment->node, &rproc->dump_segments);
1060 
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL(rproc_coredump_add_segment);
1064 
1065 /**
1066  * rproc_coredump() - perform coredump
1067  * @rproc:	rproc handle
1068  *
1069  * This function will generate an ELF header for the registered segments
1070  * and create a devcoredump device associated with rproc.
1071  */
1072 static void rproc_coredump(struct rproc *rproc)
1073 {
1074 	struct rproc_dump_segment *segment;
1075 	struct elf32_phdr *phdr;
1076 	struct elf32_hdr *ehdr;
1077 	size_t data_size;
1078 	size_t offset;
1079 	void *data;
1080 	void *ptr;
1081 	int phnum = 0;
1082 
1083 	if (list_empty(&rproc->dump_segments))
1084 		return;
1085 
1086 	data_size = sizeof(*ehdr);
1087 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1088 		data_size += sizeof(*phdr) + segment->size;
1089 
1090 		phnum++;
1091 	}
1092 
1093 	data = vmalloc(data_size);
1094 	if (!data)
1095 		return;
1096 
1097 	ehdr = data;
1098 
1099 	memset(ehdr, 0, sizeof(*ehdr));
1100 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1101 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1102 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1103 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1104 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1105 	ehdr->e_type = ET_CORE;
1106 	ehdr->e_machine = EM_NONE;
1107 	ehdr->e_version = EV_CURRENT;
1108 	ehdr->e_entry = rproc->bootaddr;
1109 	ehdr->e_phoff = sizeof(*ehdr);
1110 	ehdr->e_ehsize = sizeof(*ehdr);
1111 	ehdr->e_phentsize = sizeof(*phdr);
1112 	ehdr->e_phnum = phnum;
1113 
1114 	phdr = data + ehdr->e_phoff;
1115 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1116 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1117 		memset(phdr, 0, sizeof(*phdr));
1118 		phdr->p_type = PT_LOAD;
1119 		phdr->p_offset = offset;
1120 		phdr->p_vaddr = segment->da;
1121 		phdr->p_paddr = segment->da;
1122 		phdr->p_filesz = segment->size;
1123 		phdr->p_memsz = segment->size;
1124 		phdr->p_flags = PF_R | PF_W | PF_X;
1125 		phdr->p_align = 0;
1126 
1127 		ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1128 		if (!ptr) {
1129 			dev_err(&rproc->dev,
1130 				"invalid coredump segment (%pad, %zu)\n",
1131 				&segment->da, segment->size);
1132 			memset(data + offset, 0xff, segment->size);
1133 		} else {
1134 			memcpy(data + offset, ptr, segment->size);
1135 		}
1136 
1137 		offset += phdr->p_filesz;
1138 		phdr++;
1139 	}
1140 
1141 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1142 }
1143 
1144 /**
1145  * rproc_trigger_recovery() - recover a remoteproc
1146  * @rproc: the remote processor
1147  *
1148  * The recovery is done by resetting all the virtio devices, that way all the
1149  * rpmsg drivers will be reseted along with the remote processor making the
1150  * remoteproc functional again.
1151  *
1152  * This function can sleep, so it cannot be called from atomic context.
1153  */
1154 int rproc_trigger_recovery(struct rproc *rproc)
1155 {
1156 	const struct firmware *firmware_p;
1157 	struct device *dev = &rproc->dev;
1158 	int ret;
1159 
1160 	dev_err(dev, "recovering %s\n", rproc->name);
1161 
1162 	ret = mutex_lock_interruptible(&rproc->lock);
1163 	if (ret)
1164 		return ret;
1165 
1166 	ret = rproc_stop(rproc, false);
1167 	if (ret)
1168 		goto unlock_mutex;
1169 
1170 	/* generate coredump */
1171 	rproc_coredump(rproc);
1172 
1173 	/* load firmware */
1174 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1175 	if (ret < 0) {
1176 		dev_err(dev, "request_firmware failed: %d\n", ret);
1177 		goto unlock_mutex;
1178 	}
1179 
1180 	/* boot the remote processor up again */
1181 	ret = rproc_start(rproc, firmware_p);
1182 
1183 	release_firmware(firmware_p);
1184 
1185 unlock_mutex:
1186 	mutex_unlock(&rproc->lock);
1187 	return ret;
1188 }
1189 
1190 /**
1191  * rproc_crash_handler_work() - handle a crash
1192  *
1193  * This function needs to handle everything related to a crash, like cpu
1194  * registers and stack dump, information to help to debug the fatal error, etc.
1195  */
1196 static void rproc_crash_handler_work(struct work_struct *work)
1197 {
1198 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1199 	struct device *dev = &rproc->dev;
1200 
1201 	dev_dbg(dev, "enter %s\n", __func__);
1202 
1203 	mutex_lock(&rproc->lock);
1204 
1205 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1206 		/* handle only the first crash detected */
1207 		mutex_unlock(&rproc->lock);
1208 		return;
1209 	}
1210 
1211 	rproc->state = RPROC_CRASHED;
1212 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1213 		rproc->name);
1214 
1215 	mutex_unlock(&rproc->lock);
1216 
1217 	if (!rproc->recovery_disabled)
1218 		rproc_trigger_recovery(rproc);
1219 }
1220 
1221 /**
1222  * rproc_boot() - boot a remote processor
1223  * @rproc: handle of a remote processor
1224  *
1225  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1226  *
1227  * If the remote processor is already powered on, this function immediately
1228  * returns (successfully).
1229  *
1230  * Returns 0 on success, and an appropriate error value otherwise.
1231  */
1232 int rproc_boot(struct rproc *rproc)
1233 {
1234 	const struct firmware *firmware_p;
1235 	struct device *dev;
1236 	int ret;
1237 
1238 	if (!rproc) {
1239 		pr_err("invalid rproc handle\n");
1240 		return -EINVAL;
1241 	}
1242 
1243 	dev = &rproc->dev;
1244 
1245 	ret = mutex_lock_interruptible(&rproc->lock);
1246 	if (ret) {
1247 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1248 		return ret;
1249 	}
1250 
1251 	if (rproc->state == RPROC_DELETED) {
1252 		ret = -ENODEV;
1253 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1254 		goto unlock_mutex;
1255 	}
1256 
1257 	/* skip the boot process if rproc is already powered up */
1258 	if (atomic_inc_return(&rproc->power) > 1) {
1259 		ret = 0;
1260 		goto unlock_mutex;
1261 	}
1262 
1263 	dev_info(dev, "powering up %s\n", rproc->name);
1264 
1265 	/* load firmware */
1266 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1267 	if (ret < 0) {
1268 		dev_err(dev, "request_firmware failed: %d\n", ret);
1269 		goto downref_rproc;
1270 	}
1271 
1272 	ret = rproc_fw_boot(rproc, firmware_p);
1273 
1274 	release_firmware(firmware_p);
1275 
1276 downref_rproc:
1277 	if (ret)
1278 		atomic_dec(&rproc->power);
1279 unlock_mutex:
1280 	mutex_unlock(&rproc->lock);
1281 	return ret;
1282 }
1283 EXPORT_SYMBOL(rproc_boot);
1284 
1285 /**
1286  * rproc_shutdown() - power off the remote processor
1287  * @rproc: the remote processor
1288  *
1289  * Power off a remote processor (previously booted with rproc_boot()).
1290  *
1291  * In case @rproc is still being used by an additional user(s), then
1292  * this function will just decrement the power refcount and exit,
1293  * without really powering off the device.
1294  *
1295  * Every call to rproc_boot() must (eventually) be accompanied by a call
1296  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1297  *
1298  * Notes:
1299  * - we're not decrementing the rproc's refcount, only the power refcount.
1300  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1301  *   returns, and users can still use it with a subsequent rproc_boot(), if
1302  *   needed.
1303  */
1304 void rproc_shutdown(struct rproc *rproc)
1305 {
1306 	struct device *dev = &rproc->dev;
1307 	int ret;
1308 
1309 	ret = mutex_lock_interruptible(&rproc->lock);
1310 	if (ret) {
1311 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1312 		return;
1313 	}
1314 
1315 	/* if the remote proc is still needed, bail out */
1316 	if (!atomic_dec_and_test(&rproc->power))
1317 		goto out;
1318 
1319 	ret = rproc_stop(rproc, true);
1320 	if (ret) {
1321 		atomic_inc(&rproc->power);
1322 		goto out;
1323 	}
1324 
1325 	/* clean up all acquired resources */
1326 	rproc_resource_cleanup(rproc);
1327 
1328 	rproc_disable_iommu(rproc);
1329 
1330 	/* Free the copy of the resource table */
1331 	kfree(rproc->cached_table);
1332 	rproc->cached_table = NULL;
1333 	rproc->table_ptr = NULL;
1334 out:
1335 	mutex_unlock(&rproc->lock);
1336 }
1337 EXPORT_SYMBOL(rproc_shutdown);
1338 
1339 /**
1340  * rproc_get_by_phandle() - find a remote processor by phandle
1341  * @phandle: phandle to the rproc
1342  *
1343  * Finds an rproc handle using the remote processor's phandle, and then
1344  * return a handle to the rproc.
1345  *
1346  * This function increments the remote processor's refcount, so always
1347  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1348  *
1349  * Returns the rproc handle on success, and NULL on failure.
1350  */
1351 #ifdef CONFIG_OF
1352 struct rproc *rproc_get_by_phandle(phandle phandle)
1353 {
1354 	struct rproc *rproc = NULL, *r;
1355 	struct device_node *np;
1356 
1357 	np = of_find_node_by_phandle(phandle);
1358 	if (!np)
1359 		return NULL;
1360 
1361 	mutex_lock(&rproc_list_mutex);
1362 	list_for_each_entry(r, &rproc_list, node) {
1363 		if (r->dev.parent && r->dev.parent->of_node == np) {
1364 			/* prevent underlying implementation from being removed */
1365 			if (!try_module_get(r->dev.parent->driver->owner)) {
1366 				dev_err(&r->dev, "can't get owner\n");
1367 				break;
1368 			}
1369 
1370 			rproc = r;
1371 			get_device(&rproc->dev);
1372 			break;
1373 		}
1374 	}
1375 	mutex_unlock(&rproc_list_mutex);
1376 
1377 	of_node_put(np);
1378 
1379 	return rproc;
1380 }
1381 #else
1382 struct rproc *rproc_get_by_phandle(phandle phandle)
1383 {
1384 	return NULL;
1385 }
1386 #endif
1387 EXPORT_SYMBOL(rproc_get_by_phandle);
1388 
1389 /**
1390  * rproc_add() - register a remote processor
1391  * @rproc: the remote processor handle to register
1392  *
1393  * Registers @rproc with the remoteproc framework, after it has been
1394  * allocated with rproc_alloc().
1395  *
1396  * This is called by the platform-specific rproc implementation, whenever
1397  * a new remote processor device is probed.
1398  *
1399  * Returns 0 on success and an appropriate error code otherwise.
1400  *
1401  * Note: this function initiates an asynchronous firmware loading
1402  * context, which will look for virtio devices supported by the rproc's
1403  * firmware.
1404  *
1405  * If found, those virtio devices will be created and added, so as a result
1406  * of registering this remote processor, additional virtio drivers might be
1407  * probed.
1408  */
1409 int rproc_add(struct rproc *rproc)
1410 {
1411 	struct device *dev = &rproc->dev;
1412 	int ret;
1413 
1414 	ret = device_add(dev);
1415 	if (ret < 0)
1416 		return ret;
1417 
1418 	dev_info(dev, "%s is available\n", rproc->name);
1419 
1420 	/* create debugfs entries */
1421 	rproc_create_debug_dir(rproc);
1422 
1423 	/* if rproc is marked always-on, request it to boot */
1424 	if (rproc->auto_boot) {
1425 		ret = rproc_trigger_auto_boot(rproc);
1426 		if (ret < 0)
1427 			return ret;
1428 	}
1429 
1430 	/* expose to rproc_get_by_phandle users */
1431 	mutex_lock(&rproc_list_mutex);
1432 	list_add(&rproc->node, &rproc_list);
1433 	mutex_unlock(&rproc_list_mutex);
1434 
1435 	return 0;
1436 }
1437 EXPORT_SYMBOL(rproc_add);
1438 
1439 /**
1440  * rproc_type_release() - release a remote processor instance
1441  * @dev: the rproc's device
1442  *
1443  * This function should _never_ be called directly.
1444  *
1445  * It will be called by the driver core when no one holds a valid pointer
1446  * to @dev anymore.
1447  */
1448 static void rproc_type_release(struct device *dev)
1449 {
1450 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1451 
1452 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1453 
1454 	idr_destroy(&rproc->notifyids);
1455 
1456 	if (rproc->index >= 0)
1457 		ida_simple_remove(&rproc_dev_index, rproc->index);
1458 
1459 	kfree(rproc->firmware);
1460 	kfree(rproc->ops);
1461 	kfree(rproc);
1462 }
1463 
1464 static const struct device_type rproc_type = {
1465 	.name		= "remoteproc",
1466 	.release	= rproc_type_release,
1467 };
1468 
1469 /**
1470  * rproc_alloc() - allocate a remote processor handle
1471  * @dev: the underlying device
1472  * @name: name of this remote processor
1473  * @ops: platform-specific handlers (mainly start/stop)
1474  * @firmware: name of firmware file to load, can be NULL
1475  * @len: length of private data needed by the rproc driver (in bytes)
1476  *
1477  * Allocates a new remote processor handle, but does not register
1478  * it yet. if @firmware is NULL, a default name is used.
1479  *
1480  * This function should be used by rproc implementations during initialization
1481  * of the remote processor.
1482  *
1483  * After creating an rproc handle using this function, and when ready,
1484  * implementations should then call rproc_add() to complete
1485  * the registration of the remote processor.
1486  *
1487  * On success the new rproc is returned, and on failure, NULL.
1488  *
1489  * Note: _never_ directly deallocate @rproc, even if it was not registered
1490  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1491  */
1492 struct rproc *rproc_alloc(struct device *dev, const char *name,
1493 			  const struct rproc_ops *ops,
1494 			  const char *firmware, int len)
1495 {
1496 	struct rproc *rproc;
1497 	char *p, *template = "rproc-%s-fw";
1498 	int name_len;
1499 
1500 	if (!dev || !name || !ops)
1501 		return NULL;
1502 
1503 	if (!firmware) {
1504 		/*
1505 		 * If the caller didn't pass in a firmware name then
1506 		 * construct a default name.
1507 		 */
1508 		name_len = strlen(name) + strlen(template) - 2 + 1;
1509 		p = kmalloc(name_len, GFP_KERNEL);
1510 		if (!p)
1511 			return NULL;
1512 		snprintf(p, name_len, template, name);
1513 	} else {
1514 		p = kstrdup(firmware, GFP_KERNEL);
1515 		if (!p)
1516 			return NULL;
1517 	}
1518 
1519 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1520 	if (!rproc) {
1521 		kfree(p);
1522 		return NULL;
1523 	}
1524 
1525 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1526 	if (!rproc->ops) {
1527 		kfree(p);
1528 		kfree(rproc);
1529 		return NULL;
1530 	}
1531 
1532 	rproc->firmware = p;
1533 	rproc->name = name;
1534 	rproc->priv = &rproc[1];
1535 	rproc->auto_boot = true;
1536 
1537 	device_initialize(&rproc->dev);
1538 	rproc->dev.parent = dev;
1539 	rproc->dev.type = &rproc_type;
1540 	rproc->dev.class = &rproc_class;
1541 	rproc->dev.driver_data = rproc;
1542 
1543 	/* Assign a unique device index and name */
1544 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1545 	if (rproc->index < 0) {
1546 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1547 		put_device(&rproc->dev);
1548 		return NULL;
1549 	}
1550 
1551 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1552 
1553 	atomic_set(&rproc->power, 0);
1554 
1555 	/* Default to ELF loader if no load function is specified */
1556 	if (!rproc->ops->load) {
1557 		rproc->ops->load = rproc_elf_load_segments;
1558 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1559 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1560 		rproc->ops->sanity_check = rproc_elf_sanity_check;
1561 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1562 	}
1563 
1564 	mutex_init(&rproc->lock);
1565 
1566 	idr_init(&rproc->notifyids);
1567 
1568 	INIT_LIST_HEAD(&rproc->carveouts);
1569 	INIT_LIST_HEAD(&rproc->mappings);
1570 	INIT_LIST_HEAD(&rproc->traces);
1571 	INIT_LIST_HEAD(&rproc->rvdevs);
1572 	INIT_LIST_HEAD(&rproc->subdevs);
1573 	INIT_LIST_HEAD(&rproc->dump_segments);
1574 
1575 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1576 
1577 	rproc->state = RPROC_OFFLINE;
1578 
1579 	return rproc;
1580 }
1581 EXPORT_SYMBOL(rproc_alloc);
1582 
1583 /**
1584  * rproc_free() - unroll rproc_alloc()
1585  * @rproc: the remote processor handle
1586  *
1587  * This function decrements the rproc dev refcount.
1588  *
1589  * If no one holds any reference to rproc anymore, then its refcount would
1590  * now drop to zero, and it would be freed.
1591  */
1592 void rproc_free(struct rproc *rproc)
1593 {
1594 	put_device(&rproc->dev);
1595 }
1596 EXPORT_SYMBOL(rproc_free);
1597 
1598 /**
1599  * rproc_put() - release rproc reference
1600  * @rproc: the remote processor handle
1601  *
1602  * This function decrements the rproc dev refcount.
1603  *
1604  * If no one holds any reference to rproc anymore, then its refcount would
1605  * now drop to zero, and it would be freed.
1606  */
1607 void rproc_put(struct rproc *rproc)
1608 {
1609 	module_put(rproc->dev.parent->driver->owner);
1610 	put_device(&rproc->dev);
1611 }
1612 EXPORT_SYMBOL(rproc_put);
1613 
1614 /**
1615  * rproc_del() - unregister a remote processor
1616  * @rproc: rproc handle to unregister
1617  *
1618  * This function should be called when the platform specific rproc
1619  * implementation decides to remove the rproc device. it should
1620  * _only_ be called if a previous invocation of rproc_add()
1621  * has completed successfully.
1622  *
1623  * After rproc_del() returns, @rproc isn't freed yet, because
1624  * of the outstanding reference created by rproc_alloc. To decrement that
1625  * one last refcount, one still needs to call rproc_free().
1626  *
1627  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1628  */
1629 int rproc_del(struct rproc *rproc)
1630 {
1631 	if (!rproc)
1632 		return -EINVAL;
1633 
1634 	/* if rproc is marked always-on, rproc_add() booted it */
1635 	/* TODO: make sure this works with rproc->power > 1 */
1636 	if (rproc->auto_boot)
1637 		rproc_shutdown(rproc);
1638 
1639 	mutex_lock(&rproc->lock);
1640 	rproc->state = RPROC_DELETED;
1641 	mutex_unlock(&rproc->lock);
1642 
1643 	rproc_delete_debug_dir(rproc);
1644 
1645 	/* the rproc is downref'ed as soon as it's removed from the klist */
1646 	mutex_lock(&rproc_list_mutex);
1647 	list_del(&rproc->node);
1648 	mutex_unlock(&rproc_list_mutex);
1649 
1650 	device_del(&rproc->dev);
1651 
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(rproc_del);
1655 
1656 /**
1657  * rproc_add_subdev() - add a subdevice to a remoteproc
1658  * @rproc: rproc handle to add the subdevice to
1659  * @subdev: subdev handle to register
1660  * @probe: function to call when the rproc boots
1661  * @remove: function to call when the rproc shuts down
1662  */
1663 void rproc_add_subdev(struct rproc *rproc,
1664 		      struct rproc_subdev *subdev,
1665 		      int (*probe)(struct rproc_subdev *subdev),
1666 		      void (*remove)(struct rproc_subdev *subdev, bool crashed))
1667 {
1668 	subdev->probe = probe;
1669 	subdev->remove = remove;
1670 
1671 	list_add_tail(&subdev->node, &rproc->subdevs);
1672 }
1673 EXPORT_SYMBOL(rproc_add_subdev);
1674 
1675 /**
1676  * rproc_remove_subdev() - remove a subdevice from a remoteproc
1677  * @rproc: rproc handle to remove the subdevice from
1678  * @subdev: subdev handle, previously registered with rproc_add_subdev()
1679  */
1680 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1681 {
1682 	list_del(&subdev->node);
1683 }
1684 EXPORT_SYMBOL(rproc_remove_subdev);
1685 
1686 /**
1687  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1688  * @dev:	child device to find ancestor of
1689  *
1690  * Returns the ancestor rproc instance, or NULL if not found.
1691  */
1692 struct rproc *rproc_get_by_child(struct device *dev)
1693 {
1694 	for (dev = dev->parent; dev; dev = dev->parent) {
1695 		if (dev->type == &rproc_type)
1696 			return dev->driver_data;
1697 	}
1698 
1699 	return NULL;
1700 }
1701 EXPORT_SYMBOL(rproc_get_by_child);
1702 
1703 /**
1704  * rproc_report_crash() - rproc crash reporter function
1705  * @rproc: remote processor
1706  * @type: crash type
1707  *
1708  * This function must be called every time a crash is detected by the low-level
1709  * drivers implementing a specific remoteproc. This should not be called from a
1710  * non-remoteproc driver.
1711  *
1712  * This function can be called from atomic/interrupt context.
1713  */
1714 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1715 {
1716 	if (!rproc) {
1717 		pr_err("NULL rproc pointer\n");
1718 		return;
1719 	}
1720 
1721 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1722 		rproc->name, rproc_crash_to_string(type));
1723 
1724 	/* create a new task to handle the error */
1725 	schedule_work(&rproc->crash_handler);
1726 }
1727 EXPORT_SYMBOL(rproc_report_crash);
1728 
1729 static int __init remoteproc_init(void)
1730 {
1731 	rproc_init_sysfs();
1732 	rproc_init_debugfs();
1733 
1734 	return 0;
1735 }
1736 module_init(remoteproc_init);
1737 
1738 static void __exit remoteproc_exit(void)
1739 {
1740 	ida_destroy(&rproc_dev_index);
1741 
1742 	rproc_exit_debugfs();
1743 	rproc_exit_sysfs();
1744 }
1745 module_exit(remoteproc_exit);
1746 
1747 MODULE_LICENSE("GPL v2");
1748 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1749