1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/devcoredump.h> 37 #include <linux/remoteproc.h> 38 #include <linux/iommu.h> 39 #include <linux/idr.h> 40 #include <linux/elf.h> 41 #include <linux/crc32.h> 42 #include <linux/virtio_ids.h> 43 #include <linux/virtio_ring.h> 44 #include <asm/byteorder.h> 45 46 #include "remoteproc_internal.h" 47 48 static DEFINE_MUTEX(rproc_list_mutex); 49 static LIST_HEAD(rproc_list); 50 51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 52 struct resource_table *table, int len); 53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 54 void *, int offset, int avail); 55 56 /* Unique indices for remoteproc devices */ 57 static DEFINE_IDA(rproc_dev_index); 58 59 static const char * const rproc_crash_names[] = { 60 [RPROC_MMUFAULT] = "mmufault", 61 [RPROC_WATCHDOG] = "watchdog", 62 [RPROC_FATAL_ERROR] = "fatal error", 63 }; 64 65 /* translate rproc_crash_type to string */ 66 static const char *rproc_crash_to_string(enum rproc_crash_type type) 67 { 68 if (type < ARRAY_SIZE(rproc_crash_names)) 69 return rproc_crash_names[type]; 70 return "unknown"; 71 } 72 73 /* 74 * This is the IOMMU fault handler we register with the IOMMU API 75 * (when relevant; not all remote processors access memory through 76 * an IOMMU). 77 * 78 * IOMMU core will invoke this handler whenever the remote processor 79 * will try to access an unmapped device address. 80 */ 81 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 82 unsigned long iova, int flags, void *token) 83 { 84 struct rproc *rproc = token; 85 86 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 87 88 rproc_report_crash(rproc, RPROC_MMUFAULT); 89 90 /* 91 * Let the iommu core know we're not really handling this fault; 92 * we just used it as a recovery trigger. 93 */ 94 return -ENOSYS; 95 } 96 97 static int rproc_enable_iommu(struct rproc *rproc) 98 { 99 struct iommu_domain *domain; 100 struct device *dev = rproc->dev.parent; 101 int ret; 102 103 if (!rproc->has_iommu) { 104 dev_dbg(dev, "iommu not present\n"); 105 return 0; 106 } 107 108 domain = iommu_domain_alloc(dev->bus); 109 if (!domain) { 110 dev_err(dev, "can't alloc iommu domain\n"); 111 return -ENOMEM; 112 } 113 114 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 115 116 ret = iommu_attach_device(domain, dev); 117 if (ret) { 118 dev_err(dev, "can't attach iommu device: %d\n", ret); 119 goto free_domain; 120 } 121 122 rproc->domain = domain; 123 124 return 0; 125 126 free_domain: 127 iommu_domain_free(domain); 128 return ret; 129 } 130 131 static void rproc_disable_iommu(struct rproc *rproc) 132 { 133 struct iommu_domain *domain = rproc->domain; 134 struct device *dev = rproc->dev.parent; 135 136 if (!domain) 137 return; 138 139 iommu_detach_device(domain, dev); 140 iommu_domain_free(domain); 141 } 142 143 /** 144 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 145 * @rproc: handle of a remote processor 146 * @da: remoteproc device address to translate 147 * @len: length of the memory region @da is pointing to 148 * 149 * Some remote processors will ask us to allocate them physically contiguous 150 * memory regions (which we call "carveouts"), and map them to specific 151 * device addresses (which are hardcoded in the firmware). They may also have 152 * dedicated memory regions internal to the processors, and use them either 153 * exclusively or alongside carveouts. 154 * 155 * They may then ask us to copy objects into specific device addresses (e.g. 156 * code/data sections) or expose us certain symbols in other device address 157 * (e.g. their trace buffer). 158 * 159 * This function is a helper function with which we can go over the allocated 160 * carveouts and translate specific device addresses to kernel virtual addresses 161 * so we can access the referenced memory. This function also allows to perform 162 * translations on the internal remoteproc memory regions through a platform 163 * implementation specific da_to_va ops, if present. 164 * 165 * The function returns a valid kernel address on success or NULL on failure. 166 * 167 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 168 * but only on kernel direct mapped RAM memory. Instead, we're just using 169 * here the output of the DMA API for the carveouts, which should be more 170 * correct. 171 */ 172 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 173 { 174 struct rproc_mem_entry *carveout; 175 void *ptr = NULL; 176 177 if (rproc->ops->da_to_va) { 178 ptr = rproc->ops->da_to_va(rproc, da, len); 179 if (ptr) 180 goto out; 181 } 182 183 list_for_each_entry(carveout, &rproc->carveouts, node) { 184 int offset = da - carveout->da; 185 186 /* try next carveout if da is too small */ 187 if (offset < 0) 188 continue; 189 190 /* try next carveout if da is too large */ 191 if (offset + len > carveout->len) 192 continue; 193 194 ptr = carveout->va + offset; 195 196 break; 197 } 198 199 out: 200 return ptr; 201 } 202 EXPORT_SYMBOL(rproc_da_to_va); 203 204 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 205 { 206 struct rproc *rproc = rvdev->rproc; 207 struct device *dev = &rproc->dev; 208 struct rproc_vring *rvring = &rvdev->vring[i]; 209 struct fw_rsc_vdev *rsc; 210 dma_addr_t dma; 211 void *va; 212 int ret, size, notifyid; 213 214 /* actual size of vring (in bytes) */ 215 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 216 217 /* 218 * Allocate non-cacheable memory for the vring. In the future 219 * this call will also configure the IOMMU for us 220 */ 221 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); 222 if (!va) { 223 dev_err(dev->parent, "dma_alloc_coherent failed\n"); 224 return -EINVAL; 225 } 226 227 /* 228 * Assign an rproc-wide unique index for this vring 229 * TODO: assign a notifyid for rvdev updates as well 230 * TODO: support predefined notifyids (via resource table) 231 */ 232 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 233 if (ret < 0) { 234 dev_err(dev, "idr_alloc failed: %d\n", ret); 235 dma_free_coherent(dev->parent, size, va, dma); 236 return ret; 237 } 238 notifyid = ret; 239 240 /* Potentially bump max_notifyid */ 241 if (notifyid > rproc->max_notifyid) 242 rproc->max_notifyid = notifyid; 243 244 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n", 245 i, va, &dma, size, notifyid); 246 247 rvring->va = va; 248 rvring->dma = dma; 249 rvring->notifyid = notifyid; 250 251 /* 252 * Let the rproc know the notifyid and da of this vring. 253 * Not all platforms use dma_alloc_coherent to automatically 254 * set up the iommu. In this case the device address (da) will 255 * hold the physical address and not the device address. 256 */ 257 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 258 rsc->vring[i].da = dma; 259 rsc->vring[i].notifyid = notifyid; 260 return 0; 261 } 262 263 static int 264 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 265 { 266 struct rproc *rproc = rvdev->rproc; 267 struct device *dev = &rproc->dev; 268 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 269 struct rproc_vring *rvring = &rvdev->vring[i]; 270 271 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 272 i, vring->da, vring->num, vring->align); 273 274 /* verify queue size and vring alignment are sane */ 275 if (!vring->num || !vring->align) { 276 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 277 vring->num, vring->align); 278 return -EINVAL; 279 } 280 281 rvring->len = vring->num; 282 rvring->align = vring->align; 283 rvring->rvdev = rvdev; 284 285 return 0; 286 } 287 288 void rproc_free_vring(struct rproc_vring *rvring) 289 { 290 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 291 struct rproc *rproc = rvring->rvdev->rproc; 292 int idx = rvring->rvdev->vring - rvring; 293 struct fw_rsc_vdev *rsc; 294 295 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); 296 idr_remove(&rproc->notifyids, rvring->notifyid); 297 298 /* reset resource entry info */ 299 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 300 rsc->vring[idx].da = 0; 301 rsc->vring[idx].notifyid = -1; 302 } 303 304 static int rproc_vdev_do_probe(struct rproc_subdev *subdev) 305 { 306 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 307 308 return rproc_add_virtio_dev(rvdev, rvdev->id); 309 } 310 311 static void rproc_vdev_do_remove(struct rproc_subdev *subdev, bool crashed) 312 { 313 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 314 315 rproc_remove_virtio_dev(rvdev); 316 } 317 318 /** 319 * rproc_handle_vdev() - handle a vdev fw resource 320 * @rproc: the remote processor 321 * @rsc: the vring resource descriptor 322 * @avail: size of available data (for sanity checking the image) 323 * 324 * This resource entry requests the host to statically register a virtio 325 * device (vdev), and setup everything needed to support it. It contains 326 * everything needed to make it possible: the virtio device id, virtio 327 * device features, vrings information, virtio config space, etc... 328 * 329 * Before registering the vdev, the vrings are allocated from non-cacheable 330 * physically contiguous memory. Currently we only support two vrings per 331 * remote processor (temporary limitation). We might also want to consider 332 * doing the vring allocation only later when ->find_vqs() is invoked, and 333 * then release them upon ->del_vqs(). 334 * 335 * Note: @da is currently not really handled correctly: we dynamically 336 * allocate it using the DMA API, ignoring requested hard coded addresses, 337 * and we don't take care of any required IOMMU programming. This is all 338 * going to be taken care of when the generic iommu-based DMA API will be 339 * merged. Meanwhile, statically-addressed iommu-based firmware images should 340 * use RSC_DEVMEM resource entries to map their required @da to the physical 341 * address of their base CMA region (ouch, hacky!). 342 * 343 * Returns 0 on success, or an appropriate error code otherwise 344 */ 345 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 346 int offset, int avail) 347 { 348 struct device *dev = &rproc->dev; 349 struct rproc_vdev *rvdev; 350 int i, ret; 351 352 /* make sure resource isn't truncated */ 353 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 354 + rsc->config_len > avail) { 355 dev_err(dev, "vdev rsc is truncated\n"); 356 return -EINVAL; 357 } 358 359 /* make sure reserved bytes are zeroes */ 360 if (rsc->reserved[0] || rsc->reserved[1]) { 361 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 362 return -EINVAL; 363 } 364 365 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 366 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 367 368 /* we currently support only two vrings per rvdev */ 369 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 370 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 371 return -EINVAL; 372 } 373 374 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 375 if (!rvdev) 376 return -ENOMEM; 377 378 kref_init(&rvdev->refcount); 379 380 rvdev->id = rsc->id; 381 rvdev->rproc = rproc; 382 383 /* parse the vrings */ 384 for (i = 0; i < rsc->num_of_vrings; i++) { 385 ret = rproc_parse_vring(rvdev, rsc, i); 386 if (ret) 387 goto free_rvdev; 388 } 389 390 /* remember the resource offset*/ 391 rvdev->rsc_offset = offset; 392 393 /* allocate the vring resources */ 394 for (i = 0; i < rsc->num_of_vrings; i++) { 395 ret = rproc_alloc_vring(rvdev, i); 396 if (ret) 397 goto unwind_vring_allocations; 398 } 399 400 list_add_tail(&rvdev->node, &rproc->rvdevs); 401 402 rproc_add_subdev(rproc, &rvdev->subdev, 403 rproc_vdev_do_probe, rproc_vdev_do_remove); 404 405 return 0; 406 407 unwind_vring_allocations: 408 for (i--; i >= 0; i--) 409 rproc_free_vring(&rvdev->vring[i]); 410 free_rvdev: 411 kfree(rvdev); 412 return ret; 413 } 414 415 void rproc_vdev_release(struct kref *ref) 416 { 417 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 418 struct rproc_vring *rvring; 419 struct rproc *rproc = rvdev->rproc; 420 int id; 421 422 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 423 rvring = &rvdev->vring[id]; 424 if (!rvring->va) 425 continue; 426 427 rproc_free_vring(rvring); 428 } 429 430 rproc_remove_subdev(rproc, &rvdev->subdev); 431 list_del(&rvdev->node); 432 kfree(rvdev); 433 } 434 435 /** 436 * rproc_handle_trace() - handle a shared trace buffer resource 437 * @rproc: the remote processor 438 * @rsc: the trace resource descriptor 439 * @avail: size of available data (for sanity checking the image) 440 * 441 * In case the remote processor dumps trace logs into memory, 442 * export it via debugfs. 443 * 444 * Currently, the 'da' member of @rsc should contain the device address 445 * where the remote processor is dumping the traces. Later we could also 446 * support dynamically allocating this address using the generic 447 * DMA API (but currently there isn't a use case for that). 448 * 449 * Returns 0 on success, or an appropriate error code otherwise 450 */ 451 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 452 int offset, int avail) 453 { 454 struct rproc_mem_entry *trace; 455 struct device *dev = &rproc->dev; 456 void *ptr; 457 char name[15]; 458 459 if (sizeof(*rsc) > avail) { 460 dev_err(dev, "trace rsc is truncated\n"); 461 return -EINVAL; 462 } 463 464 /* make sure reserved bytes are zeroes */ 465 if (rsc->reserved) { 466 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 467 return -EINVAL; 468 } 469 470 /* what's the kernel address of this resource ? */ 471 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 472 if (!ptr) { 473 dev_err(dev, "erroneous trace resource entry\n"); 474 return -EINVAL; 475 } 476 477 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 478 if (!trace) 479 return -ENOMEM; 480 481 /* set the trace buffer dma properties */ 482 trace->len = rsc->len; 483 trace->va = ptr; 484 485 /* make sure snprintf always null terminates, even if truncating */ 486 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 487 488 /* create the debugfs entry */ 489 trace->priv = rproc_create_trace_file(name, rproc, trace); 490 if (!trace->priv) { 491 trace->va = NULL; 492 kfree(trace); 493 return -EINVAL; 494 } 495 496 list_add_tail(&trace->node, &rproc->traces); 497 498 rproc->num_traces++; 499 500 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", 501 name, ptr, rsc->da, rsc->len); 502 503 return 0; 504 } 505 506 /** 507 * rproc_handle_devmem() - handle devmem resource entry 508 * @rproc: remote processor handle 509 * @rsc: the devmem resource entry 510 * @avail: size of available data (for sanity checking the image) 511 * 512 * Remote processors commonly need to access certain on-chip peripherals. 513 * 514 * Some of these remote processors access memory via an iommu device, 515 * and might require us to configure their iommu before they can access 516 * the on-chip peripherals they need. 517 * 518 * This resource entry is a request to map such a peripheral device. 519 * 520 * These devmem entries will contain the physical address of the device in 521 * the 'pa' member. If a specific device address is expected, then 'da' will 522 * contain it (currently this is the only use case supported). 'len' will 523 * contain the size of the physical region we need to map. 524 * 525 * Currently we just "trust" those devmem entries to contain valid physical 526 * addresses, but this is going to change: we want the implementations to 527 * tell us ranges of physical addresses the firmware is allowed to request, 528 * and not allow firmwares to request access to physical addresses that 529 * are outside those ranges. 530 */ 531 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 532 int offset, int avail) 533 { 534 struct rproc_mem_entry *mapping; 535 struct device *dev = &rproc->dev; 536 int ret; 537 538 /* no point in handling this resource without a valid iommu domain */ 539 if (!rproc->domain) 540 return -EINVAL; 541 542 if (sizeof(*rsc) > avail) { 543 dev_err(dev, "devmem rsc is truncated\n"); 544 return -EINVAL; 545 } 546 547 /* make sure reserved bytes are zeroes */ 548 if (rsc->reserved) { 549 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 550 return -EINVAL; 551 } 552 553 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 554 if (!mapping) 555 return -ENOMEM; 556 557 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 558 if (ret) { 559 dev_err(dev, "failed to map devmem: %d\n", ret); 560 goto out; 561 } 562 563 /* 564 * We'll need this info later when we'll want to unmap everything 565 * (e.g. on shutdown). 566 * 567 * We can't trust the remote processor not to change the resource 568 * table, so we must maintain this info independently. 569 */ 570 mapping->da = rsc->da; 571 mapping->len = rsc->len; 572 list_add_tail(&mapping->node, &rproc->mappings); 573 574 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 575 rsc->pa, rsc->da, rsc->len); 576 577 return 0; 578 579 out: 580 kfree(mapping); 581 return ret; 582 } 583 584 /** 585 * rproc_handle_carveout() - handle phys contig memory allocation requests 586 * @rproc: rproc handle 587 * @rsc: the resource entry 588 * @avail: size of available data (for image validation) 589 * 590 * This function will handle firmware requests for allocation of physically 591 * contiguous memory regions. 592 * 593 * These request entries should come first in the firmware's resource table, 594 * as other firmware entries might request placing other data objects inside 595 * these memory regions (e.g. data/code segments, trace resource entries, ...). 596 * 597 * Allocating memory this way helps utilizing the reserved physical memory 598 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 599 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 600 * pressure is important; it may have a substantial impact on performance. 601 */ 602 static int rproc_handle_carveout(struct rproc *rproc, 603 struct fw_rsc_carveout *rsc, 604 int offset, int avail) 605 { 606 struct rproc_mem_entry *carveout, *mapping; 607 struct device *dev = &rproc->dev; 608 dma_addr_t dma; 609 void *va; 610 int ret; 611 612 if (sizeof(*rsc) > avail) { 613 dev_err(dev, "carveout rsc is truncated\n"); 614 return -EINVAL; 615 } 616 617 /* make sure reserved bytes are zeroes */ 618 if (rsc->reserved) { 619 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 620 return -EINVAL; 621 } 622 623 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 624 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 625 626 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); 627 if (!carveout) 628 return -ENOMEM; 629 630 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); 631 if (!va) { 632 dev_err(dev->parent, 633 "failed to allocate dma memory: len 0x%x\n", rsc->len); 634 ret = -ENOMEM; 635 goto free_carv; 636 } 637 638 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n", 639 va, &dma, rsc->len); 640 641 /* 642 * Ok, this is non-standard. 643 * 644 * Sometimes we can't rely on the generic iommu-based DMA API 645 * to dynamically allocate the device address and then set the IOMMU 646 * tables accordingly, because some remote processors might 647 * _require_ us to use hard coded device addresses that their 648 * firmware was compiled with. 649 * 650 * In this case, we must use the IOMMU API directly and map 651 * the memory to the device address as expected by the remote 652 * processor. 653 * 654 * Obviously such remote processor devices should not be configured 655 * to use the iommu-based DMA API: we expect 'dma' to contain the 656 * physical address in this case. 657 */ 658 if (rproc->domain) { 659 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 660 if (!mapping) { 661 ret = -ENOMEM; 662 goto dma_free; 663 } 664 665 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, 666 rsc->flags); 667 if (ret) { 668 dev_err(dev, "iommu_map failed: %d\n", ret); 669 goto free_mapping; 670 } 671 672 /* 673 * We'll need this info later when we'll want to unmap 674 * everything (e.g. on shutdown). 675 * 676 * We can't trust the remote processor not to change the 677 * resource table, so we must maintain this info independently. 678 */ 679 mapping->da = rsc->da; 680 mapping->len = rsc->len; 681 list_add_tail(&mapping->node, &rproc->mappings); 682 683 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 684 rsc->da, &dma); 685 } 686 687 /* 688 * Some remote processors might need to know the pa 689 * even though they are behind an IOMMU. E.g., OMAP4's 690 * remote M3 processor needs this so it can control 691 * on-chip hardware accelerators that are not behind 692 * the IOMMU, and therefor must know the pa. 693 * 694 * Generally we don't want to expose physical addresses 695 * if we don't have to (remote processors are generally 696 * _not_ trusted), so we might want to do this only for 697 * remote processor that _must_ have this (e.g. OMAP4's 698 * dual M3 subsystem). 699 * 700 * Non-IOMMU processors might also want to have this info. 701 * In this case, the device address and the physical address 702 * are the same. 703 */ 704 rsc->pa = dma; 705 706 carveout->va = va; 707 carveout->len = rsc->len; 708 carveout->dma = dma; 709 carveout->da = rsc->da; 710 711 list_add_tail(&carveout->node, &rproc->carveouts); 712 713 return 0; 714 715 free_mapping: 716 kfree(mapping); 717 dma_free: 718 dma_free_coherent(dev->parent, rsc->len, va, dma); 719 free_carv: 720 kfree(carveout); 721 return ret; 722 } 723 724 /* 725 * A lookup table for resource handlers. The indices are defined in 726 * enum fw_resource_type. 727 */ 728 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 729 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 730 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 731 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 732 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 733 }; 734 735 /* handle firmware resource entries before booting the remote processor */ 736 static int rproc_handle_resources(struct rproc *rproc, 737 rproc_handle_resource_t handlers[RSC_LAST]) 738 { 739 struct device *dev = &rproc->dev; 740 rproc_handle_resource_t handler; 741 int ret = 0, i; 742 743 if (!rproc->table_ptr) 744 return 0; 745 746 for (i = 0; i < rproc->table_ptr->num; i++) { 747 int offset = rproc->table_ptr->offset[i]; 748 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 749 int avail = rproc->table_sz - offset - sizeof(*hdr); 750 void *rsc = (void *)hdr + sizeof(*hdr); 751 752 /* make sure table isn't truncated */ 753 if (avail < 0) { 754 dev_err(dev, "rsc table is truncated\n"); 755 return -EINVAL; 756 } 757 758 dev_dbg(dev, "rsc: type %d\n", hdr->type); 759 760 if (hdr->type >= RSC_LAST) { 761 dev_warn(dev, "unsupported resource %d\n", hdr->type); 762 continue; 763 } 764 765 handler = handlers[hdr->type]; 766 if (!handler) 767 continue; 768 769 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 770 if (ret) 771 break; 772 } 773 774 return ret; 775 } 776 777 static int rproc_probe_subdevices(struct rproc *rproc) 778 { 779 struct rproc_subdev *subdev; 780 int ret; 781 782 list_for_each_entry(subdev, &rproc->subdevs, node) { 783 ret = subdev->probe(subdev); 784 if (ret) 785 goto unroll_registration; 786 } 787 788 return 0; 789 790 unroll_registration: 791 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) 792 subdev->remove(subdev, true); 793 794 return ret; 795 } 796 797 static void rproc_remove_subdevices(struct rproc *rproc, bool crashed) 798 { 799 struct rproc_subdev *subdev; 800 801 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) 802 subdev->remove(subdev, crashed); 803 } 804 805 /** 806 * rproc_coredump_cleanup() - clean up dump_segments list 807 * @rproc: the remote processor handle 808 */ 809 static void rproc_coredump_cleanup(struct rproc *rproc) 810 { 811 struct rproc_dump_segment *entry, *tmp; 812 813 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { 814 list_del(&entry->node); 815 kfree(entry); 816 } 817 } 818 819 /** 820 * rproc_resource_cleanup() - clean up and free all acquired resources 821 * @rproc: rproc handle 822 * 823 * This function will free all resources acquired for @rproc, and it 824 * is called whenever @rproc either shuts down or fails to boot. 825 */ 826 static void rproc_resource_cleanup(struct rproc *rproc) 827 { 828 struct rproc_mem_entry *entry, *tmp; 829 struct rproc_vdev *rvdev, *rvtmp; 830 struct device *dev = &rproc->dev; 831 832 /* clean up debugfs trace entries */ 833 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 834 rproc_remove_trace_file(entry->priv); 835 rproc->num_traces--; 836 list_del(&entry->node); 837 kfree(entry); 838 } 839 840 /* clean up iommu mapping entries */ 841 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 842 size_t unmapped; 843 844 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 845 if (unmapped != entry->len) { 846 /* nothing much to do besides complaining */ 847 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 848 unmapped); 849 } 850 851 list_del(&entry->node); 852 kfree(entry); 853 } 854 855 /* clean up carveout allocations */ 856 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 857 dma_free_coherent(dev->parent, entry->len, entry->va, 858 entry->dma); 859 list_del(&entry->node); 860 kfree(entry); 861 } 862 863 /* clean up remote vdev entries */ 864 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 865 kref_put(&rvdev->refcount, rproc_vdev_release); 866 867 rproc_coredump_cleanup(rproc); 868 } 869 870 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 871 { 872 struct resource_table *loaded_table; 873 struct device *dev = &rproc->dev; 874 int ret; 875 876 /* load the ELF segments to memory */ 877 ret = rproc_load_segments(rproc, fw); 878 if (ret) { 879 dev_err(dev, "Failed to load program segments: %d\n", ret); 880 return ret; 881 } 882 883 /* 884 * The starting device has been given the rproc->cached_table as the 885 * resource table. The address of the vring along with the other 886 * allocated resources (carveouts etc) is stored in cached_table. 887 * In order to pass this information to the remote device we must copy 888 * this information to device memory. We also update the table_ptr so 889 * that any subsequent changes will be applied to the loaded version. 890 */ 891 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 892 if (loaded_table) { 893 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 894 rproc->table_ptr = loaded_table; 895 } 896 897 /* power up the remote processor */ 898 ret = rproc->ops->start(rproc); 899 if (ret) { 900 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 901 return ret; 902 } 903 904 /* probe any subdevices for the remote processor */ 905 ret = rproc_probe_subdevices(rproc); 906 if (ret) { 907 dev_err(dev, "failed to probe subdevices for %s: %d\n", 908 rproc->name, ret); 909 rproc->ops->stop(rproc); 910 return ret; 911 } 912 913 rproc->state = RPROC_RUNNING; 914 915 dev_info(dev, "remote processor %s is now up\n", rproc->name); 916 917 return 0; 918 } 919 920 /* 921 * take a firmware and boot a remote processor with it. 922 */ 923 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 924 { 925 struct device *dev = &rproc->dev; 926 const char *name = rproc->firmware; 927 int ret; 928 929 ret = rproc_fw_sanity_check(rproc, fw); 930 if (ret) 931 return ret; 932 933 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 934 935 /* 936 * if enabling an IOMMU isn't relevant for this rproc, this is 937 * just a nop 938 */ 939 ret = rproc_enable_iommu(rproc); 940 if (ret) { 941 dev_err(dev, "can't enable iommu: %d\n", ret); 942 return ret; 943 } 944 945 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 946 947 /* Load resource table, core dump segment list etc from the firmware */ 948 ret = rproc_parse_fw(rproc, fw); 949 if (ret) 950 goto disable_iommu; 951 952 /* reset max_notifyid */ 953 rproc->max_notifyid = -1; 954 955 /* handle fw resources which are required to boot rproc */ 956 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 957 if (ret) { 958 dev_err(dev, "Failed to process resources: %d\n", ret); 959 goto clean_up_resources; 960 } 961 962 ret = rproc_start(rproc, fw); 963 if (ret) 964 goto clean_up_resources; 965 966 return 0; 967 968 clean_up_resources: 969 rproc_resource_cleanup(rproc); 970 kfree(rproc->cached_table); 971 rproc->cached_table = NULL; 972 rproc->table_ptr = NULL; 973 disable_iommu: 974 rproc_disable_iommu(rproc); 975 return ret; 976 } 977 978 /* 979 * take a firmware and boot it up. 980 * 981 * Note: this function is called asynchronously upon registration of the 982 * remote processor (so we must wait until it completes before we try 983 * to unregister the device. one other option is just to use kref here, 984 * that might be cleaner). 985 */ 986 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 987 { 988 struct rproc *rproc = context; 989 990 rproc_boot(rproc); 991 992 release_firmware(fw); 993 } 994 995 static int rproc_trigger_auto_boot(struct rproc *rproc) 996 { 997 int ret; 998 999 /* 1000 * We're initiating an asynchronous firmware loading, so we can 1001 * be built-in kernel code, without hanging the boot process. 1002 */ 1003 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1004 rproc->firmware, &rproc->dev, GFP_KERNEL, 1005 rproc, rproc_auto_boot_callback); 1006 if (ret < 0) 1007 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1008 1009 return ret; 1010 } 1011 1012 static int rproc_stop(struct rproc *rproc, bool crashed) 1013 { 1014 struct device *dev = &rproc->dev; 1015 int ret; 1016 1017 /* remove any subdevices for the remote processor */ 1018 rproc_remove_subdevices(rproc, crashed); 1019 1020 /* the installed resource table is no longer accessible */ 1021 rproc->table_ptr = rproc->cached_table; 1022 1023 /* power off the remote processor */ 1024 ret = rproc->ops->stop(rproc); 1025 if (ret) { 1026 dev_err(dev, "can't stop rproc: %d\n", ret); 1027 return ret; 1028 } 1029 1030 rproc->state = RPROC_OFFLINE; 1031 1032 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1033 1034 return 0; 1035 } 1036 1037 /** 1038 * rproc_coredump_add_segment() - add segment of device memory to coredump 1039 * @rproc: handle of a remote processor 1040 * @da: device address 1041 * @size: size of segment 1042 * 1043 * Add device memory to the list of segments to be included in a coredump for 1044 * the remoteproc. 1045 * 1046 * Return: 0 on success, negative errno on error. 1047 */ 1048 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) 1049 { 1050 struct rproc_dump_segment *segment; 1051 1052 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1053 if (!segment) 1054 return -ENOMEM; 1055 1056 segment->da = da; 1057 segment->size = size; 1058 1059 list_add_tail(&segment->node, &rproc->dump_segments); 1060 1061 return 0; 1062 } 1063 EXPORT_SYMBOL(rproc_coredump_add_segment); 1064 1065 /** 1066 * rproc_coredump() - perform coredump 1067 * @rproc: rproc handle 1068 * 1069 * This function will generate an ELF header for the registered segments 1070 * and create a devcoredump device associated with rproc. 1071 */ 1072 static void rproc_coredump(struct rproc *rproc) 1073 { 1074 struct rproc_dump_segment *segment; 1075 struct elf32_phdr *phdr; 1076 struct elf32_hdr *ehdr; 1077 size_t data_size; 1078 size_t offset; 1079 void *data; 1080 void *ptr; 1081 int phnum = 0; 1082 1083 if (list_empty(&rproc->dump_segments)) 1084 return; 1085 1086 data_size = sizeof(*ehdr); 1087 list_for_each_entry(segment, &rproc->dump_segments, node) { 1088 data_size += sizeof(*phdr) + segment->size; 1089 1090 phnum++; 1091 } 1092 1093 data = vmalloc(data_size); 1094 if (!data) 1095 return; 1096 1097 ehdr = data; 1098 1099 memset(ehdr, 0, sizeof(*ehdr)); 1100 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1101 ehdr->e_ident[EI_CLASS] = ELFCLASS32; 1102 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1103 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1104 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; 1105 ehdr->e_type = ET_CORE; 1106 ehdr->e_machine = EM_NONE; 1107 ehdr->e_version = EV_CURRENT; 1108 ehdr->e_entry = rproc->bootaddr; 1109 ehdr->e_phoff = sizeof(*ehdr); 1110 ehdr->e_ehsize = sizeof(*ehdr); 1111 ehdr->e_phentsize = sizeof(*phdr); 1112 ehdr->e_phnum = phnum; 1113 1114 phdr = data + ehdr->e_phoff; 1115 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum; 1116 list_for_each_entry(segment, &rproc->dump_segments, node) { 1117 memset(phdr, 0, sizeof(*phdr)); 1118 phdr->p_type = PT_LOAD; 1119 phdr->p_offset = offset; 1120 phdr->p_vaddr = segment->da; 1121 phdr->p_paddr = segment->da; 1122 phdr->p_filesz = segment->size; 1123 phdr->p_memsz = segment->size; 1124 phdr->p_flags = PF_R | PF_W | PF_X; 1125 phdr->p_align = 0; 1126 1127 ptr = rproc_da_to_va(rproc, segment->da, segment->size); 1128 if (!ptr) { 1129 dev_err(&rproc->dev, 1130 "invalid coredump segment (%pad, %zu)\n", 1131 &segment->da, segment->size); 1132 memset(data + offset, 0xff, segment->size); 1133 } else { 1134 memcpy(data + offset, ptr, segment->size); 1135 } 1136 1137 offset += phdr->p_filesz; 1138 phdr++; 1139 } 1140 1141 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); 1142 } 1143 1144 /** 1145 * rproc_trigger_recovery() - recover a remoteproc 1146 * @rproc: the remote processor 1147 * 1148 * The recovery is done by resetting all the virtio devices, that way all the 1149 * rpmsg drivers will be reseted along with the remote processor making the 1150 * remoteproc functional again. 1151 * 1152 * This function can sleep, so it cannot be called from atomic context. 1153 */ 1154 int rproc_trigger_recovery(struct rproc *rproc) 1155 { 1156 const struct firmware *firmware_p; 1157 struct device *dev = &rproc->dev; 1158 int ret; 1159 1160 dev_err(dev, "recovering %s\n", rproc->name); 1161 1162 ret = mutex_lock_interruptible(&rproc->lock); 1163 if (ret) 1164 return ret; 1165 1166 ret = rproc_stop(rproc, false); 1167 if (ret) 1168 goto unlock_mutex; 1169 1170 /* generate coredump */ 1171 rproc_coredump(rproc); 1172 1173 /* load firmware */ 1174 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1175 if (ret < 0) { 1176 dev_err(dev, "request_firmware failed: %d\n", ret); 1177 goto unlock_mutex; 1178 } 1179 1180 /* boot the remote processor up again */ 1181 ret = rproc_start(rproc, firmware_p); 1182 1183 release_firmware(firmware_p); 1184 1185 unlock_mutex: 1186 mutex_unlock(&rproc->lock); 1187 return ret; 1188 } 1189 1190 /** 1191 * rproc_crash_handler_work() - handle a crash 1192 * 1193 * This function needs to handle everything related to a crash, like cpu 1194 * registers and stack dump, information to help to debug the fatal error, etc. 1195 */ 1196 static void rproc_crash_handler_work(struct work_struct *work) 1197 { 1198 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1199 struct device *dev = &rproc->dev; 1200 1201 dev_dbg(dev, "enter %s\n", __func__); 1202 1203 mutex_lock(&rproc->lock); 1204 1205 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1206 /* handle only the first crash detected */ 1207 mutex_unlock(&rproc->lock); 1208 return; 1209 } 1210 1211 rproc->state = RPROC_CRASHED; 1212 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1213 rproc->name); 1214 1215 mutex_unlock(&rproc->lock); 1216 1217 if (!rproc->recovery_disabled) 1218 rproc_trigger_recovery(rproc); 1219 } 1220 1221 /** 1222 * rproc_boot() - boot a remote processor 1223 * @rproc: handle of a remote processor 1224 * 1225 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1226 * 1227 * If the remote processor is already powered on, this function immediately 1228 * returns (successfully). 1229 * 1230 * Returns 0 on success, and an appropriate error value otherwise. 1231 */ 1232 int rproc_boot(struct rproc *rproc) 1233 { 1234 const struct firmware *firmware_p; 1235 struct device *dev; 1236 int ret; 1237 1238 if (!rproc) { 1239 pr_err("invalid rproc handle\n"); 1240 return -EINVAL; 1241 } 1242 1243 dev = &rproc->dev; 1244 1245 ret = mutex_lock_interruptible(&rproc->lock); 1246 if (ret) { 1247 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1248 return ret; 1249 } 1250 1251 if (rproc->state == RPROC_DELETED) { 1252 ret = -ENODEV; 1253 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1254 goto unlock_mutex; 1255 } 1256 1257 /* skip the boot process if rproc is already powered up */ 1258 if (atomic_inc_return(&rproc->power) > 1) { 1259 ret = 0; 1260 goto unlock_mutex; 1261 } 1262 1263 dev_info(dev, "powering up %s\n", rproc->name); 1264 1265 /* load firmware */ 1266 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1267 if (ret < 0) { 1268 dev_err(dev, "request_firmware failed: %d\n", ret); 1269 goto downref_rproc; 1270 } 1271 1272 ret = rproc_fw_boot(rproc, firmware_p); 1273 1274 release_firmware(firmware_p); 1275 1276 downref_rproc: 1277 if (ret) 1278 atomic_dec(&rproc->power); 1279 unlock_mutex: 1280 mutex_unlock(&rproc->lock); 1281 return ret; 1282 } 1283 EXPORT_SYMBOL(rproc_boot); 1284 1285 /** 1286 * rproc_shutdown() - power off the remote processor 1287 * @rproc: the remote processor 1288 * 1289 * Power off a remote processor (previously booted with rproc_boot()). 1290 * 1291 * In case @rproc is still being used by an additional user(s), then 1292 * this function will just decrement the power refcount and exit, 1293 * without really powering off the device. 1294 * 1295 * Every call to rproc_boot() must (eventually) be accompanied by a call 1296 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1297 * 1298 * Notes: 1299 * - we're not decrementing the rproc's refcount, only the power refcount. 1300 * which means that the @rproc handle stays valid even after rproc_shutdown() 1301 * returns, and users can still use it with a subsequent rproc_boot(), if 1302 * needed. 1303 */ 1304 void rproc_shutdown(struct rproc *rproc) 1305 { 1306 struct device *dev = &rproc->dev; 1307 int ret; 1308 1309 ret = mutex_lock_interruptible(&rproc->lock); 1310 if (ret) { 1311 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1312 return; 1313 } 1314 1315 /* if the remote proc is still needed, bail out */ 1316 if (!atomic_dec_and_test(&rproc->power)) 1317 goto out; 1318 1319 ret = rproc_stop(rproc, true); 1320 if (ret) { 1321 atomic_inc(&rproc->power); 1322 goto out; 1323 } 1324 1325 /* clean up all acquired resources */ 1326 rproc_resource_cleanup(rproc); 1327 1328 rproc_disable_iommu(rproc); 1329 1330 /* Free the copy of the resource table */ 1331 kfree(rproc->cached_table); 1332 rproc->cached_table = NULL; 1333 rproc->table_ptr = NULL; 1334 out: 1335 mutex_unlock(&rproc->lock); 1336 } 1337 EXPORT_SYMBOL(rproc_shutdown); 1338 1339 /** 1340 * rproc_get_by_phandle() - find a remote processor by phandle 1341 * @phandle: phandle to the rproc 1342 * 1343 * Finds an rproc handle using the remote processor's phandle, and then 1344 * return a handle to the rproc. 1345 * 1346 * This function increments the remote processor's refcount, so always 1347 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1348 * 1349 * Returns the rproc handle on success, and NULL on failure. 1350 */ 1351 #ifdef CONFIG_OF 1352 struct rproc *rproc_get_by_phandle(phandle phandle) 1353 { 1354 struct rproc *rproc = NULL, *r; 1355 struct device_node *np; 1356 1357 np = of_find_node_by_phandle(phandle); 1358 if (!np) 1359 return NULL; 1360 1361 mutex_lock(&rproc_list_mutex); 1362 list_for_each_entry(r, &rproc_list, node) { 1363 if (r->dev.parent && r->dev.parent->of_node == np) { 1364 /* prevent underlying implementation from being removed */ 1365 if (!try_module_get(r->dev.parent->driver->owner)) { 1366 dev_err(&r->dev, "can't get owner\n"); 1367 break; 1368 } 1369 1370 rproc = r; 1371 get_device(&rproc->dev); 1372 break; 1373 } 1374 } 1375 mutex_unlock(&rproc_list_mutex); 1376 1377 of_node_put(np); 1378 1379 return rproc; 1380 } 1381 #else 1382 struct rproc *rproc_get_by_phandle(phandle phandle) 1383 { 1384 return NULL; 1385 } 1386 #endif 1387 EXPORT_SYMBOL(rproc_get_by_phandle); 1388 1389 /** 1390 * rproc_add() - register a remote processor 1391 * @rproc: the remote processor handle to register 1392 * 1393 * Registers @rproc with the remoteproc framework, after it has been 1394 * allocated with rproc_alloc(). 1395 * 1396 * This is called by the platform-specific rproc implementation, whenever 1397 * a new remote processor device is probed. 1398 * 1399 * Returns 0 on success and an appropriate error code otherwise. 1400 * 1401 * Note: this function initiates an asynchronous firmware loading 1402 * context, which will look for virtio devices supported by the rproc's 1403 * firmware. 1404 * 1405 * If found, those virtio devices will be created and added, so as a result 1406 * of registering this remote processor, additional virtio drivers might be 1407 * probed. 1408 */ 1409 int rproc_add(struct rproc *rproc) 1410 { 1411 struct device *dev = &rproc->dev; 1412 int ret; 1413 1414 ret = device_add(dev); 1415 if (ret < 0) 1416 return ret; 1417 1418 dev_info(dev, "%s is available\n", rproc->name); 1419 1420 /* create debugfs entries */ 1421 rproc_create_debug_dir(rproc); 1422 1423 /* if rproc is marked always-on, request it to boot */ 1424 if (rproc->auto_boot) { 1425 ret = rproc_trigger_auto_boot(rproc); 1426 if (ret < 0) 1427 return ret; 1428 } 1429 1430 /* expose to rproc_get_by_phandle users */ 1431 mutex_lock(&rproc_list_mutex); 1432 list_add(&rproc->node, &rproc_list); 1433 mutex_unlock(&rproc_list_mutex); 1434 1435 return 0; 1436 } 1437 EXPORT_SYMBOL(rproc_add); 1438 1439 /** 1440 * rproc_type_release() - release a remote processor instance 1441 * @dev: the rproc's device 1442 * 1443 * This function should _never_ be called directly. 1444 * 1445 * It will be called by the driver core when no one holds a valid pointer 1446 * to @dev anymore. 1447 */ 1448 static void rproc_type_release(struct device *dev) 1449 { 1450 struct rproc *rproc = container_of(dev, struct rproc, dev); 1451 1452 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1453 1454 idr_destroy(&rproc->notifyids); 1455 1456 if (rproc->index >= 0) 1457 ida_simple_remove(&rproc_dev_index, rproc->index); 1458 1459 kfree(rproc->firmware); 1460 kfree(rproc->ops); 1461 kfree(rproc); 1462 } 1463 1464 static const struct device_type rproc_type = { 1465 .name = "remoteproc", 1466 .release = rproc_type_release, 1467 }; 1468 1469 /** 1470 * rproc_alloc() - allocate a remote processor handle 1471 * @dev: the underlying device 1472 * @name: name of this remote processor 1473 * @ops: platform-specific handlers (mainly start/stop) 1474 * @firmware: name of firmware file to load, can be NULL 1475 * @len: length of private data needed by the rproc driver (in bytes) 1476 * 1477 * Allocates a new remote processor handle, but does not register 1478 * it yet. if @firmware is NULL, a default name is used. 1479 * 1480 * This function should be used by rproc implementations during initialization 1481 * of the remote processor. 1482 * 1483 * After creating an rproc handle using this function, and when ready, 1484 * implementations should then call rproc_add() to complete 1485 * the registration of the remote processor. 1486 * 1487 * On success the new rproc is returned, and on failure, NULL. 1488 * 1489 * Note: _never_ directly deallocate @rproc, even if it was not registered 1490 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1491 */ 1492 struct rproc *rproc_alloc(struct device *dev, const char *name, 1493 const struct rproc_ops *ops, 1494 const char *firmware, int len) 1495 { 1496 struct rproc *rproc; 1497 char *p, *template = "rproc-%s-fw"; 1498 int name_len; 1499 1500 if (!dev || !name || !ops) 1501 return NULL; 1502 1503 if (!firmware) { 1504 /* 1505 * If the caller didn't pass in a firmware name then 1506 * construct a default name. 1507 */ 1508 name_len = strlen(name) + strlen(template) - 2 + 1; 1509 p = kmalloc(name_len, GFP_KERNEL); 1510 if (!p) 1511 return NULL; 1512 snprintf(p, name_len, template, name); 1513 } else { 1514 p = kstrdup(firmware, GFP_KERNEL); 1515 if (!p) 1516 return NULL; 1517 } 1518 1519 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 1520 if (!rproc) { 1521 kfree(p); 1522 return NULL; 1523 } 1524 1525 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 1526 if (!rproc->ops) { 1527 kfree(p); 1528 kfree(rproc); 1529 return NULL; 1530 } 1531 1532 rproc->firmware = p; 1533 rproc->name = name; 1534 rproc->priv = &rproc[1]; 1535 rproc->auto_boot = true; 1536 1537 device_initialize(&rproc->dev); 1538 rproc->dev.parent = dev; 1539 rproc->dev.type = &rproc_type; 1540 rproc->dev.class = &rproc_class; 1541 rproc->dev.driver_data = rproc; 1542 1543 /* Assign a unique device index and name */ 1544 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1545 if (rproc->index < 0) { 1546 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1547 put_device(&rproc->dev); 1548 return NULL; 1549 } 1550 1551 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1552 1553 atomic_set(&rproc->power, 0); 1554 1555 /* Default to ELF loader if no load function is specified */ 1556 if (!rproc->ops->load) { 1557 rproc->ops->load = rproc_elf_load_segments; 1558 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 1559 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 1560 rproc->ops->sanity_check = rproc_elf_sanity_check; 1561 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 1562 } 1563 1564 mutex_init(&rproc->lock); 1565 1566 idr_init(&rproc->notifyids); 1567 1568 INIT_LIST_HEAD(&rproc->carveouts); 1569 INIT_LIST_HEAD(&rproc->mappings); 1570 INIT_LIST_HEAD(&rproc->traces); 1571 INIT_LIST_HEAD(&rproc->rvdevs); 1572 INIT_LIST_HEAD(&rproc->subdevs); 1573 INIT_LIST_HEAD(&rproc->dump_segments); 1574 1575 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 1576 1577 rproc->state = RPROC_OFFLINE; 1578 1579 return rproc; 1580 } 1581 EXPORT_SYMBOL(rproc_alloc); 1582 1583 /** 1584 * rproc_free() - unroll rproc_alloc() 1585 * @rproc: the remote processor handle 1586 * 1587 * This function decrements the rproc dev refcount. 1588 * 1589 * If no one holds any reference to rproc anymore, then its refcount would 1590 * now drop to zero, and it would be freed. 1591 */ 1592 void rproc_free(struct rproc *rproc) 1593 { 1594 put_device(&rproc->dev); 1595 } 1596 EXPORT_SYMBOL(rproc_free); 1597 1598 /** 1599 * rproc_put() - release rproc reference 1600 * @rproc: the remote processor handle 1601 * 1602 * This function decrements the rproc dev refcount. 1603 * 1604 * If no one holds any reference to rproc anymore, then its refcount would 1605 * now drop to zero, and it would be freed. 1606 */ 1607 void rproc_put(struct rproc *rproc) 1608 { 1609 module_put(rproc->dev.parent->driver->owner); 1610 put_device(&rproc->dev); 1611 } 1612 EXPORT_SYMBOL(rproc_put); 1613 1614 /** 1615 * rproc_del() - unregister a remote processor 1616 * @rproc: rproc handle to unregister 1617 * 1618 * This function should be called when the platform specific rproc 1619 * implementation decides to remove the rproc device. it should 1620 * _only_ be called if a previous invocation of rproc_add() 1621 * has completed successfully. 1622 * 1623 * After rproc_del() returns, @rproc isn't freed yet, because 1624 * of the outstanding reference created by rproc_alloc. To decrement that 1625 * one last refcount, one still needs to call rproc_free(). 1626 * 1627 * Returns 0 on success and -EINVAL if @rproc isn't valid. 1628 */ 1629 int rproc_del(struct rproc *rproc) 1630 { 1631 if (!rproc) 1632 return -EINVAL; 1633 1634 /* if rproc is marked always-on, rproc_add() booted it */ 1635 /* TODO: make sure this works with rproc->power > 1 */ 1636 if (rproc->auto_boot) 1637 rproc_shutdown(rproc); 1638 1639 mutex_lock(&rproc->lock); 1640 rproc->state = RPROC_DELETED; 1641 mutex_unlock(&rproc->lock); 1642 1643 rproc_delete_debug_dir(rproc); 1644 1645 /* the rproc is downref'ed as soon as it's removed from the klist */ 1646 mutex_lock(&rproc_list_mutex); 1647 list_del(&rproc->node); 1648 mutex_unlock(&rproc_list_mutex); 1649 1650 device_del(&rproc->dev); 1651 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(rproc_del); 1655 1656 /** 1657 * rproc_add_subdev() - add a subdevice to a remoteproc 1658 * @rproc: rproc handle to add the subdevice to 1659 * @subdev: subdev handle to register 1660 * @probe: function to call when the rproc boots 1661 * @remove: function to call when the rproc shuts down 1662 */ 1663 void rproc_add_subdev(struct rproc *rproc, 1664 struct rproc_subdev *subdev, 1665 int (*probe)(struct rproc_subdev *subdev), 1666 void (*remove)(struct rproc_subdev *subdev, bool crashed)) 1667 { 1668 subdev->probe = probe; 1669 subdev->remove = remove; 1670 1671 list_add_tail(&subdev->node, &rproc->subdevs); 1672 } 1673 EXPORT_SYMBOL(rproc_add_subdev); 1674 1675 /** 1676 * rproc_remove_subdev() - remove a subdevice from a remoteproc 1677 * @rproc: rproc handle to remove the subdevice from 1678 * @subdev: subdev handle, previously registered with rproc_add_subdev() 1679 */ 1680 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 1681 { 1682 list_del(&subdev->node); 1683 } 1684 EXPORT_SYMBOL(rproc_remove_subdev); 1685 1686 /** 1687 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 1688 * @dev: child device to find ancestor of 1689 * 1690 * Returns the ancestor rproc instance, or NULL if not found. 1691 */ 1692 struct rproc *rproc_get_by_child(struct device *dev) 1693 { 1694 for (dev = dev->parent; dev; dev = dev->parent) { 1695 if (dev->type == &rproc_type) 1696 return dev->driver_data; 1697 } 1698 1699 return NULL; 1700 } 1701 EXPORT_SYMBOL(rproc_get_by_child); 1702 1703 /** 1704 * rproc_report_crash() - rproc crash reporter function 1705 * @rproc: remote processor 1706 * @type: crash type 1707 * 1708 * This function must be called every time a crash is detected by the low-level 1709 * drivers implementing a specific remoteproc. This should not be called from a 1710 * non-remoteproc driver. 1711 * 1712 * This function can be called from atomic/interrupt context. 1713 */ 1714 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 1715 { 1716 if (!rproc) { 1717 pr_err("NULL rproc pointer\n"); 1718 return; 1719 } 1720 1721 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 1722 rproc->name, rproc_crash_to_string(type)); 1723 1724 /* create a new task to handle the error */ 1725 schedule_work(&rproc->crash_handler); 1726 } 1727 EXPORT_SYMBOL(rproc_report_crash); 1728 1729 static int __init remoteproc_init(void) 1730 { 1731 rproc_init_sysfs(); 1732 rproc_init_debugfs(); 1733 1734 return 0; 1735 } 1736 module_init(remoteproc_init); 1737 1738 static void __exit remoteproc_exit(void) 1739 { 1740 ida_destroy(&rproc_dev_index); 1741 1742 rproc_exit_debugfs(); 1743 rproc_exit_sysfs(); 1744 } 1745 module_exit(remoteproc_exit); 1746 1747 MODULE_LICENSE("GPL v2"); 1748 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 1749