1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/firmware.h> 26 #include <linux/string.h> 27 #include <linux/debugfs.h> 28 #include <linux/devcoredump.h> 29 #include <linux/remoteproc.h> 30 #include <linux/iommu.h> 31 #include <linux/idr.h> 32 #include <linux/elf.h> 33 #include <linux/crc32.h> 34 #include <linux/of_reserved_mem.h> 35 #include <linux/virtio_ids.h> 36 #include <linux/virtio_ring.h> 37 #include <asm/byteorder.h> 38 #include <linux/platform_device.h> 39 40 #include "remoteproc_internal.h" 41 42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 43 44 static DEFINE_MUTEX(rproc_list_mutex); 45 static LIST_HEAD(rproc_list); 46 47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 48 struct resource_table *table, int len); 49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 50 void *, int offset, int avail); 51 52 static int rproc_alloc_carveout(struct rproc *rproc, 53 struct rproc_mem_entry *mem); 54 static int rproc_release_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56 57 /* Unique indices for remoteproc devices */ 58 static DEFINE_IDA(rproc_dev_index); 59 60 static const char * const rproc_crash_names[] = { 61 [RPROC_MMUFAULT] = "mmufault", 62 [RPROC_WATCHDOG] = "watchdog", 63 [RPROC_FATAL_ERROR] = "fatal error", 64 }; 65 66 /* translate rproc_crash_type to string */ 67 static const char *rproc_crash_to_string(enum rproc_crash_type type) 68 { 69 if (type < ARRAY_SIZE(rproc_crash_names)) 70 return rproc_crash_names[type]; 71 return "unknown"; 72 } 73 74 /* 75 * This is the IOMMU fault handler we register with the IOMMU API 76 * (when relevant; not all remote processors access memory through 77 * an IOMMU). 78 * 79 * IOMMU core will invoke this handler whenever the remote processor 80 * will try to access an unmapped device address. 81 */ 82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 83 unsigned long iova, int flags, void *token) 84 { 85 struct rproc *rproc = token; 86 87 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 88 89 rproc_report_crash(rproc, RPROC_MMUFAULT); 90 91 /* 92 * Let the iommu core know we're not really handling this fault; 93 * we just used it as a recovery trigger. 94 */ 95 return -ENOSYS; 96 } 97 98 static int rproc_enable_iommu(struct rproc *rproc) 99 { 100 struct iommu_domain *domain; 101 struct device *dev = rproc->dev.parent; 102 int ret; 103 104 if (!rproc->has_iommu) { 105 dev_dbg(dev, "iommu not present\n"); 106 return 0; 107 } 108 109 domain = iommu_domain_alloc(dev->bus); 110 if (!domain) { 111 dev_err(dev, "can't alloc iommu domain\n"); 112 return -ENOMEM; 113 } 114 115 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 116 117 ret = iommu_attach_device(domain, dev); 118 if (ret) { 119 dev_err(dev, "can't attach iommu device: %d\n", ret); 120 goto free_domain; 121 } 122 123 rproc->domain = domain; 124 125 return 0; 126 127 free_domain: 128 iommu_domain_free(domain); 129 return ret; 130 } 131 132 static void rproc_disable_iommu(struct rproc *rproc) 133 { 134 struct iommu_domain *domain = rproc->domain; 135 struct device *dev = rproc->dev.parent; 136 137 if (!domain) 138 return; 139 140 iommu_detach_device(domain, dev); 141 iommu_domain_free(domain); 142 } 143 144 phys_addr_t rproc_va_to_pa(void *cpu_addr) 145 { 146 /* 147 * Return physical address according to virtual address location 148 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 149 * - in kernel: if region allocated in generic dma memory pool 150 */ 151 if (is_vmalloc_addr(cpu_addr)) { 152 return page_to_phys(vmalloc_to_page(cpu_addr)) + 153 offset_in_page(cpu_addr); 154 } 155 156 WARN_ON(!virt_addr_valid(cpu_addr)); 157 return virt_to_phys(cpu_addr); 158 } 159 EXPORT_SYMBOL(rproc_va_to_pa); 160 161 /** 162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 163 * @rproc: handle of a remote processor 164 * @da: remoteproc device address to translate 165 * @len: length of the memory region @da is pointing to 166 * 167 * Some remote processors will ask us to allocate them physically contiguous 168 * memory regions (which we call "carveouts"), and map them to specific 169 * device addresses (which are hardcoded in the firmware). They may also have 170 * dedicated memory regions internal to the processors, and use them either 171 * exclusively or alongside carveouts. 172 * 173 * They may then ask us to copy objects into specific device addresses (e.g. 174 * code/data sections) or expose us certain symbols in other device address 175 * (e.g. their trace buffer). 176 * 177 * This function is a helper function with which we can go over the allocated 178 * carveouts and translate specific device addresses to kernel virtual addresses 179 * so we can access the referenced memory. This function also allows to perform 180 * translations on the internal remoteproc memory regions through a platform 181 * implementation specific da_to_va ops, if present. 182 * 183 * The function returns a valid kernel address on success or NULL on failure. 184 * 185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 186 * but only on kernel direct mapped RAM memory. Instead, we're just using 187 * here the output of the DMA API for the carveouts, which should be more 188 * correct. 189 */ 190 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 191 { 192 struct rproc_mem_entry *carveout; 193 void *ptr = NULL; 194 195 if (rproc->ops->da_to_va) { 196 ptr = rproc->ops->da_to_va(rproc, da, len); 197 if (ptr) 198 goto out; 199 } 200 201 list_for_each_entry(carveout, &rproc->carveouts, node) { 202 int offset = da - carveout->da; 203 204 /* Verify that carveout is allocated */ 205 if (!carveout->va) 206 continue; 207 208 /* try next carveout if da is too small */ 209 if (offset < 0) 210 continue; 211 212 /* try next carveout if da is too large */ 213 if (offset + len > carveout->len) 214 continue; 215 216 ptr = carveout->va + offset; 217 218 break; 219 } 220 221 out: 222 return ptr; 223 } 224 EXPORT_SYMBOL(rproc_da_to_va); 225 226 /** 227 * rproc_find_carveout_by_name() - lookup the carveout region by a name 228 * @rproc: handle of a remote processor 229 * @name,..: carveout name to find (standard printf format) 230 * 231 * Platform driver has the capability to register some pre-allacoted carveout 232 * (physically contiguous memory regions) before rproc firmware loading and 233 * associated resource table analysis. These regions may be dedicated memory 234 * regions internal to the coprocessor or specified DDR region with specific 235 * attributes 236 * 237 * This function is a helper function with which we can go over the 238 * allocated carveouts and return associated region characteristics like 239 * coprocessor address, length or processor virtual address. 240 * 241 * Return: a valid pointer on carveout entry on success or NULL on failure. 242 */ 243 struct rproc_mem_entry * 244 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 245 { 246 va_list args; 247 char _name[32]; 248 struct rproc_mem_entry *carveout, *mem = NULL; 249 250 if (!name) 251 return NULL; 252 253 va_start(args, name); 254 vsnprintf(_name, sizeof(_name), name, args); 255 va_end(args); 256 257 list_for_each_entry(carveout, &rproc->carveouts, node) { 258 /* Compare carveout and requested names */ 259 if (!strcmp(carveout->name, _name)) { 260 mem = carveout; 261 break; 262 } 263 } 264 265 return mem; 266 } 267 268 /** 269 * rproc_check_carveout_da() - Check specified carveout da configuration 270 * @rproc: handle of a remote processor 271 * @mem: pointer on carveout to check 272 * @da: area device address 273 * @len: associated area size 274 * 275 * This function is a helper function to verify requested device area (couple 276 * da, len) is part of specified carveout. 277 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 278 * checked. 279 * 280 * Return: 0 if carveout matches request else error 281 */ 282 static int rproc_check_carveout_da(struct rproc *rproc, 283 struct rproc_mem_entry *mem, u32 da, u32 len) 284 { 285 struct device *dev = &rproc->dev; 286 int delta; 287 288 /* Check requested resource length */ 289 if (len > mem->len) { 290 dev_err(dev, "Registered carveout doesn't fit len request\n"); 291 return -EINVAL; 292 } 293 294 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 295 /* Address doesn't match registered carveout configuration */ 296 return -EINVAL; 297 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 298 delta = da - mem->da; 299 300 /* Check requested resource belongs to registered carveout */ 301 if (delta < 0) { 302 dev_err(dev, 303 "Registered carveout doesn't fit da request\n"); 304 return -EINVAL; 305 } 306 307 if (delta + len > mem->len) { 308 dev_err(dev, 309 "Registered carveout doesn't fit len request\n"); 310 return -EINVAL; 311 } 312 } 313 314 return 0; 315 } 316 317 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 318 { 319 struct rproc *rproc = rvdev->rproc; 320 struct device *dev = &rproc->dev; 321 struct rproc_vring *rvring = &rvdev->vring[i]; 322 struct fw_rsc_vdev *rsc; 323 int ret, size, notifyid; 324 struct rproc_mem_entry *mem; 325 326 /* actual size of vring (in bytes) */ 327 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 328 329 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 330 331 /* Search for pre-registered carveout */ 332 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 333 i); 334 if (mem) { 335 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 336 return -ENOMEM; 337 } else { 338 /* Register carveout in in list */ 339 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da, 340 rproc_alloc_carveout, 341 rproc_release_carveout, 342 "vdev%dvring%d", 343 rvdev->index, i); 344 if (!mem) { 345 dev_err(dev, "Can't allocate memory entry structure\n"); 346 return -ENOMEM; 347 } 348 349 rproc_add_carveout(rproc, mem); 350 } 351 352 /* 353 * Assign an rproc-wide unique index for this vring 354 * TODO: assign a notifyid for rvdev updates as well 355 * TODO: support predefined notifyids (via resource table) 356 */ 357 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 358 if (ret < 0) { 359 dev_err(dev, "idr_alloc failed: %d\n", ret); 360 return ret; 361 } 362 notifyid = ret; 363 364 /* Potentially bump max_notifyid */ 365 if (notifyid > rproc->max_notifyid) 366 rproc->max_notifyid = notifyid; 367 368 rvring->notifyid = notifyid; 369 370 /* Let the rproc know the notifyid of this vring.*/ 371 rsc->vring[i].notifyid = notifyid; 372 return 0; 373 } 374 375 static int 376 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 377 { 378 struct rproc *rproc = rvdev->rproc; 379 struct device *dev = &rproc->dev; 380 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 381 struct rproc_vring *rvring = &rvdev->vring[i]; 382 383 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 384 i, vring->da, vring->num, vring->align); 385 386 /* verify queue size and vring alignment are sane */ 387 if (!vring->num || !vring->align) { 388 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 389 vring->num, vring->align); 390 return -EINVAL; 391 } 392 393 rvring->len = vring->num; 394 rvring->align = vring->align; 395 rvring->rvdev = rvdev; 396 397 return 0; 398 } 399 400 void rproc_free_vring(struct rproc_vring *rvring) 401 { 402 struct rproc *rproc = rvring->rvdev->rproc; 403 int idx = rvring->rvdev->vring - rvring; 404 struct fw_rsc_vdev *rsc; 405 406 idr_remove(&rproc->notifyids, rvring->notifyid); 407 408 /* reset resource entry info */ 409 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 410 rsc->vring[idx].da = 0; 411 rsc->vring[idx].notifyid = -1; 412 } 413 414 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 415 { 416 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 417 418 return rproc_add_virtio_dev(rvdev, rvdev->id); 419 } 420 421 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 422 { 423 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 424 int ret; 425 426 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 427 if (ret) 428 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 429 } 430 431 /** 432 * rproc_rvdev_release() - release the existence of a rvdev 433 * 434 * @dev: the subdevice's dev 435 */ 436 static void rproc_rvdev_release(struct device *dev) 437 { 438 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 439 440 of_reserved_mem_device_release(dev); 441 442 kfree(rvdev); 443 } 444 445 /** 446 * rproc_handle_vdev() - handle a vdev fw resource 447 * @rproc: the remote processor 448 * @rsc: the vring resource descriptor 449 * @avail: size of available data (for sanity checking the image) 450 * 451 * This resource entry requests the host to statically register a virtio 452 * device (vdev), and setup everything needed to support it. It contains 453 * everything needed to make it possible: the virtio device id, virtio 454 * device features, vrings information, virtio config space, etc... 455 * 456 * Before registering the vdev, the vrings are allocated from non-cacheable 457 * physically contiguous memory. Currently we only support two vrings per 458 * remote processor (temporary limitation). We might also want to consider 459 * doing the vring allocation only later when ->find_vqs() is invoked, and 460 * then release them upon ->del_vqs(). 461 * 462 * Note: @da is currently not really handled correctly: we dynamically 463 * allocate it using the DMA API, ignoring requested hard coded addresses, 464 * and we don't take care of any required IOMMU programming. This is all 465 * going to be taken care of when the generic iommu-based DMA API will be 466 * merged. Meanwhile, statically-addressed iommu-based firmware images should 467 * use RSC_DEVMEM resource entries to map their required @da to the physical 468 * address of their base CMA region (ouch, hacky!). 469 * 470 * Returns 0 on success, or an appropriate error code otherwise 471 */ 472 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 473 int offset, int avail) 474 { 475 struct device *dev = &rproc->dev; 476 struct rproc_vdev *rvdev; 477 int i, ret; 478 char name[16]; 479 480 /* make sure resource isn't truncated */ 481 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 482 + rsc->config_len > avail) { 483 dev_err(dev, "vdev rsc is truncated\n"); 484 return -EINVAL; 485 } 486 487 /* make sure reserved bytes are zeroes */ 488 if (rsc->reserved[0] || rsc->reserved[1]) { 489 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 490 return -EINVAL; 491 } 492 493 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 494 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 495 496 /* we currently support only two vrings per rvdev */ 497 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 498 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 499 return -EINVAL; 500 } 501 502 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 503 if (!rvdev) 504 return -ENOMEM; 505 506 kref_init(&rvdev->refcount); 507 508 rvdev->id = rsc->id; 509 rvdev->rproc = rproc; 510 rvdev->index = rproc->nb_vdev++; 511 512 /* Initialise vdev subdevice */ 513 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 514 rvdev->dev.parent = rproc->dev.parent; 515 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset; 516 rvdev->dev.release = rproc_rvdev_release; 517 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 518 dev_set_drvdata(&rvdev->dev, rvdev); 519 520 ret = device_register(&rvdev->dev); 521 if (ret) { 522 put_device(&rvdev->dev); 523 return ret; 524 } 525 /* Make device dma capable by inheriting from parent's capabilities */ 526 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 527 528 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 529 dma_get_mask(rproc->dev.parent)); 530 if (ret) { 531 dev_warn(dev, 532 "Failed to set DMA mask %llx. Trying to continue... %x\n", 533 dma_get_mask(rproc->dev.parent), ret); 534 } 535 536 /* parse the vrings */ 537 for (i = 0; i < rsc->num_of_vrings; i++) { 538 ret = rproc_parse_vring(rvdev, rsc, i); 539 if (ret) 540 goto free_rvdev; 541 } 542 543 /* remember the resource offset*/ 544 rvdev->rsc_offset = offset; 545 546 /* allocate the vring resources */ 547 for (i = 0; i < rsc->num_of_vrings; i++) { 548 ret = rproc_alloc_vring(rvdev, i); 549 if (ret) 550 goto unwind_vring_allocations; 551 } 552 553 list_add_tail(&rvdev->node, &rproc->rvdevs); 554 555 rvdev->subdev.start = rproc_vdev_do_start; 556 rvdev->subdev.stop = rproc_vdev_do_stop; 557 558 rproc_add_subdev(rproc, &rvdev->subdev); 559 560 return 0; 561 562 unwind_vring_allocations: 563 for (i--; i >= 0; i--) 564 rproc_free_vring(&rvdev->vring[i]); 565 free_rvdev: 566 device_unregister(&rvdev->dev); 567 return ret; 568 } 569 570 void rproc_vdev_release(struct kref *ref) 571 { 572 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 573 struct rproc_vring *rvring; 574 struct rproc *rproc = rvdev->rproc; 575 int id; 576 577 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 578 rvring = &rvdev->vring[id]; 579 rproc_free_vring(rvring); 580 } 581 582 rproc_remove_subdev(rproc, &rvdev->subdev); 583 list_del(&rvdev->node); 584 device_unregister(&rvdev->dev); 585 } 586 587 /** 588 * rproc_handle_trace() - handle a shared trace buffer resource 589 * @rproc: the remote processor 590 * @rsc: the trace resource descriptor 591 * @avail: size of available data (for sanity checking the image) 592 * 593 * In case the remote processor dumps trace logs into memory, 594 * export it via debugfs. 595 * 596 * Currently, the 'da' member of @rsc should contain the device address 597 * where the remote processor is dumping the traces. Later we could also 598 * support dynamically allocating this address using the generic 599 * DMA API (but currently there isn't a use case for that). 600 * 601 * Returns 0 on success, or an appropriate error code otherwise 602 */ 603 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 604 int offset, int avail) 605 { 606 struct rproc_debug_trace *trace; 607 struct device *dev = &rproc->dev; 608 char name[15]; 609 610 if (sizeof(*rsc) > avail) { 611 dev_err(dev, "trace rsc is truncated\n"); 612 return -EINVAL; 613 } 614 615 /* make sure reserved bytes are zeroes */ 616 if (rsc->reserved) { 617 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 618 return -EINVAL; 619 } 620 621 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 622 if (!trace) 623 return -ENOMEM; 624 625 /* set the trace buffer dma properties */ 626 trace->trace_mem.len = rsc->len; 627 trace->trace_mem.da = rsc->da; 628 629 /* set pointer on rproc device */ 630 trace->rproc = rproc; 631 632 /* make sure snprintf always null terminates, even if truncating */ 633 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 634 635 /* create the debugfs entry */ 636 trace->tfile = rproc_create_trace_file(name, rproc, trace); 637 if (!trace->tfile) { 638 kfree(trace); 639 return -EINVAL; 640 } 641 642 list_add_tail(&trace->node, &rproc->traces); 643 644 rproc->num_traces++; 645 646 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 647 name, rsc->da, rsc->len); 648 649 return 0; 650 } 651 652 /** 653 * rproc_handle_devmem() - handle devmem resource entry 654 * @rproc: remote processor handle 655 * @rsc: the devmem resource entry 656 * @avail: size of available data (for sanity checking the image) 657 * 658 * Remote processors commonly need to access certain on-chip peripherals. 659 * 660 * Some of these remote processors access memory via an iommu device, 661 * and might require us to configure their iommu before they can access 662 * the on-chip peripherals they need. 663 * 664 * This resource entry is a request to map such a peripheral device. 665 * 666 * These devmem entries will contain the physical address of the device in 667 * the 'pa' member. If a specific device address is expected, then 'da' will 668 * contain it (currently this is the only use case supported). 'len' will 669 * contain the size of the physical region we need to map. 670 * 671 * Currently we just "trust" those devmem entries to contain valid physical 672 * addresses, but this is going to change: we want the implementations to 673 * tell us ranges of physical addresses the firmware is allowed to request, 674 * and not allow firmwares to request access to physical addresses that 675 * are outside those ranges. 676 */ 677 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 678 int offset, int avail) 679 { 680 struct rproc_mem_entry *mapping; 681 struct device *dev = &rproc->dev; 682 int ret; 683 684 /* no point in handling this resource without a valid iommu domain */ 685 if (!rproc->domain) 686 return -EINVAL; 687 688 if (sizeof(*rsc) > avail) { 689 dev_err(dev, "devmem rsc is truncated\n"); 690 return -EINVAL; 691 } 692 693 /* make sure reserved bytes are zeroes */ 694 if (rsc->reserved) { 695 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 696 return -EINVAL; 697 } 698 699 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 700 if (!mapping) 701 return -ENOMEM; 702 703 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 704 if (ret) { 705 dev_err(dev, "failed to map devmem: %d\n", ret); 706 goto out; 707 } 708 709 /* 710 * We'll need this info later when we'll want to unmap everything 711 * (e.g. on shutdown). 712 * 713 * We can't trust the remote processor not to change the resource 714 * table, so we must maintain this info independently. 715 */ 716 mapping->da = rsc->da; 717 mapping->len = rsc->len; 718 list_add_tail(&mapping->node, &rproc->mappings); 719 720 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 721 rsc->pa, rsc->da, rsc->len); 722 723 return 0; 724 725 out: 726 kfree(mapping); 727 return ret; 728 } 729 730 /** 731 * rproc_alloc_carveout() - allocated specified carveout 732 * @rproc: rproc handle 733 * @mem: the memory entry to allocate 734 * 735 * This function allocate specified memory entry @mem using 736 * dma_alloc_coherent() as default allocator 737 */ 738 static int rproc_alloc_carveout(struct rproc *rproc, 739 struct rproc_mem_entry *mem) 740 { 741 struct rproc_mem_entry *mapping = NULL; 742 struct device *dev = &rproc->dev; 743 dma_addr_t dma; 744 void *va; 745 int ret; 746 747 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 748 if (!va) { 749 dev_err(dev->parent, 750 "failed to allocate dma memory: len 0x%x\n", mem->len); 751 return -ENOMEM; 752 } 753 754 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n", 755 va, &dma, mem->len); 756 757 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 758 /* 759 * Check requested da is equal to dma address 760 * and print a warn message in case of missalignment. 761 * Don't stop rproc_start sequence as coprocessor may 762 * build pa to da translation on its side. 763 */ 764 if (mem->da != (u32)dma) 765 dev_warn(dev->parent, 766 "Allocated carveout doesn't fit device address request\n"); 767 } 768 769 /* 770 * Ok, this is non-standard. 771 * 772 * Sometimes we can't rely on the generic iommu-based DMA API 773 * to dynamically allocate the device address and then set the IOMMU 774 * tables accordingly, because some remote processors might 775 * _require_ us to use hard coded device addresses that their 776 * firmware was compiled with. 777 * 778 * In this case, we must use the IOMMU API directly and map 779 * the memory to the device address as expected by the remote 780 * processor. 781 * 782 * Obviously such remote processor devices should not be configured 783 * to use the iommu-based DMA API: we expect 'dma' to contain the 784 * physical address in this case. 785 */ 786 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 787 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 788 if (!mapping) { 789 ret = -ENOMEM; 790 goto dma_free; 791 } 792 793 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 794 mem->flags); 795 if (ret) { 796 dev_err(dev, "iommu_map failed: %d\n", ret); 797 goto free_mapping; 798 } 799 800 /* 801 * We'll need this info later when we'll want to unmap 802 * everything (e.g. on shutdown). 803 * 804 * We can't trust the remote processor not to change the 805 * resource table, so we must maintain this info independently. 806 */ 807 mapping->da = mem->da; 808 mapping->len = mem->len; 809 list_add_tail(&mapping->node, &rproc->mappings); 810 811 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 812 mem->da, &dma); 813 } 814 815 if (mem->da == FW_RSC_ADDR_ANY) { 816 /* Update device address as undefined by requester */ 817 if ((u64)dma & HIGH_BITS_MASK) 818 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 819 820 mem->da = (u32)dma; 821 } 822 823 mem->dma = dma; 824 mem->va = va; 825 826 return 0; 827 828 free_mapping: 829 kfree(mapping); 830 dma_free: 831 dma_free_coherent(dev->parent, mem->len, va, dma); 832 return ret; 833 } 834 835 /** 836 * rproc_release_carveout() - release acquired carveout 837 * @rproc: rproc handle 838 * @mem: the memory entry to release 839 * 840 * This function releases specified memory entry @mem allocated via 841 * rproc_alloc_carveout() function by @rproc. 842 */ 843 static int rproc_release_carveout(struct rproc *rproc, 844 struct rproc_mem_entry *mem) 845 { 846 struct device *dev = &rproc->dev; 847 848 /* clean up carveout allocations */ 849 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 850 return 0; 851 } 852 853 /** 854 * rproc_handle_carveout() - handle phys contig memory allocation requests 855 * @rproc: rproc handle 856 * @rsc: the resource entry 857 * @avail: size of available data (for image validation) 858 * 859 * This function will handle firmware requests for allocation of physically 860 * contiguous memory regions. 861 * 862 * These request entries should come first in the firmware's resource table, 863 * as other firmware entries might request placing other data objects inside 864 * these memory regions (e.g. data/code segments, trace resource entries, ...). 865 * 866 * Allocating memory this way helps utilizing the reserved physical memory 867 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 868 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 869 * pressure is important; it may have a substantial impact on performance. 870 */ 871 static int rproc_handle_carveout(struct rproc *rproc, 872 struct fw_rsc_carveout *rsc, 873 int offset, int avail) 874 { 875 struct rproc_mem_entry *carveout; 876 struct device *dev = &rproc->dev; 877 878 if (sizeof(*rsc) > avail) { 879 dev_err(dev, "carveout rsc is truncated\n"); 880 return -EINVAL; 881 } 882 883 /* make sure reserved bytes are zeroes */ 884 if (rsc->reserved) { 885 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 886 return -EINVAL; 887 } 888 889 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 890 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 891 892 /* 893 * Check carveout rsc already part of a registered carveout, 894 * Search by name, then check the da and length 895 */ 896 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 897 898 if (carveout) { 899 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 900 dev_err(dev, 901 "Carveout already associated to resource table\n"); 902 return -ENOMEM; 903 } 904 905 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 906 return -ENOMEM; 907 908 /* Update memory carveout with resource table info */ 909 carveout->rsc_offset = offset; 910 carveout->flags = rsc->flags; 911 912 return 0; 913 } 914 915 /* Register carveout in in list */ 916 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da, 917 rproc_alloc_carveout, 918 rproc_release_carveout, rsc->name); 919 if (!carveout) { 920 dev_err(dev, "Can't allocate memory entry structure\n"); 921 return -ENOMEM; 922 } 923 924 carveout->flags = rsc->flags; 925 carveout->rsc_offset = offset; 926 rproc_add_carveout(rproc, carveout); 927 928 return 0; 929 } 930 931 /** 932 * rproc_add_carveout() - register an allocated carveout region 933 * @rproc: rproc handle 934 * @mem: memory entry to register 935 * 936 * This function registers specified memory entry in @rproc carveouts list. 937 * Specified carveout should have been allocated before registering. 938 */ 939 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 940 { 941 list_add_tail(&mem->node, &rproc->carveouts); 942 } 943 EXPORT_SYMBOL(rproc_add_carveout); 944 945 /** 946 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 947 * @dev: pointer on device struct 948 * @va: virtual address 949 * @dma: dma address 950 * @len: memory carveout length 951 * @da: device address 952 * @alloc: memory carveout allocation function 953 * @release: memory carveout release function 954 * @name: carveout name 955 * 956 * This function allocates a rproc_mem_entry struct and fill it with parameters 957 * provided by client. 958 */ 959 struct rproc_mem_entry * 960 rproc_mem_entry_init(struct device *dev, 961 void *va, dma_addr_t dma, int len, u32 da, 962 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 963 int (*release)(struct rproc *, struct rproc_mem_entry *), 964 const char *name, ...) 965 { 966 struct rproc_mem_entry *mem; 967 va_list args; 968 969 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 970 if (!mem) 971 return mem; 972 973 mem->va = va; 974 mem->dma = dma; 975 mem->da = da; 976 mem->len = len; 977 mem->alloc = alloc; 978 mem->release = release; 979 mem->rsc_offset = FW_RSC_ADDR_ANY; 980 mem->of_resm_idx = -1; 981 982 va_start(args, name); 983 vsnprintf(mem->name, sizeof(mem->name), name, args); 984 va_end(args); 985 986 return mem; 987 } 988 EXPORT_SYMBOL(rproc_mem_entry_init); 989 990 /** 991 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 992 * from a reserved memory phandle 993 * @dev: pointer on device struct 994 * @of_resm_idx: reserved memory phandle index in "memory-region" 995 * @len: memory carveout length 996 * @da: device address 997 * @name: carveout name 998 * 999 * This function allocates a rproc_mem_entry struct and fill it with parameters 1000 * provided by client. 1001 */ 1002 struct rproc_mem_entry * 1003 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len, 1004 u32 da, const char *name, ...) 1005 { 1006 struct rproc_mem_entry *mem; 1007 va_list args; 1008 1009 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1010 if (!mem) 1011 return mem; 1012 1013 mem->da = da; 1014 mem->len = len; 1015 mem->rsc_offset = FW_RSC_ADDR_ANY; 1016 mem->of_resm_idx = of_resm_idx; 1017 1018 va_start(args, name); 1019 vsnprintf(mem->name, sizeof(mem->name), name, args); 1020 va_end(args); 1021 1022 return mem; 1023 } 1024 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1025 1026 /** 1027 * A lookup table for resource handlers. The indices are defined in 1028 * enum fw_resource_type. 1029 */ 1030 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1031 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1032 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1033 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1034 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1035 }; 1036 1037 /* handle firmware resource entries before booting the remote processor */ 1038 static int rproc_handle_resources(struct rproc *rproc, 1039 rproc_handle_resource_t handlers[RSC_LAST]) 1040 { 1041 struct device *dev = &rproc->dev; 1042 rproc_handle_resource_t handler; 1043 int ret = 0, i; 1044 1045 if (!rproc->table_ptr) 1046 return 0; 1047 1048 for (i = 0; i < rproc->table_ptr->num; i++) { 1049 int offset = rproc->table_ptr->offset[i]; 1050 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1051 int avail = rproc->table_sz - offset - sizeof(*hdr); 1052 void *rsc = (void *)hdr + sizeof(*hdr); 1053 1054 /* make sure table isn't truncated */ 1055 if (avail < 0) { 1056 dev_err(dev, "rsc table is truncated\n"); 1057 return -EINVAL; 1058 } 1059 1060 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1061 1062 if (hdr->type >= RSC_VENDOR_START && 1063 hdr->type <= RSC_VENDOR_END) { 1064 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1065 offset + sizeof(*hdr), avail); 1066 if (ret == RSC_HANDLED) 1067 continue; 1068 else if (ret < 0) 1069 break; 1070 1071 dev_warn(dev, "unsupported vendor resource %d\n", 1072 hdr->type); 1073 continue; 1074 } 1075 1076 if (hdr->type >= RSC_LAST) { 1077 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1078 continue; 1079 } 1080 1081 handler = handlers[hdr->type]; 1082 if (!handler) 1083 continue; 1084 1085 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1086 if (ret) 1087 break; 1088 } 1089 1090 return ret; 1091 } 1092 1093 static int rproc_prepare_subdevices(struct rproc *rproc) 1094 { 1095 struct rproc_subdev *subdev; 1096 int ret; 1097 1098 list_for_each_entry(subdev, &rproc->subdevs, node) { 1099 if (subdev->prepare) { 1100 ret = subdev->prepare(subdev); 1101 if (ret) 1102 goto unroll_preparation; 1103 } 1104 } 1105 1106 return 0; 1107 1108 unroll_preparation: 1109 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1110 if (subdev->unprepare) 1111 subdev->unprepare(subdev); 1112 } 1113 1114 return ret; 1115 } 1116 1117 static int rproc_start_subdevices(struct rproc *rproc) 1118 { 1119 struct rproc_subdev *subdev; 1120 int ret; 1121 1122 list_for_each_entry(subdev, &rproc->subdevs, node) { 1123 if (subdev->start) { 1124 ret = subdev->start(subdev); 1125 if (ret) 1126 goto unroll_registration; 1127 } 1128 } 1129 1130 return 0; 1131 1132 unroll_registration: 1133 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1134 if (subdev->stop) 1135 subdev->stop(subdev, true); 1136 } 1137 1138 return ret; 1139 } 1140 1141 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1142 { 1143 struct rproc_subdev *subdev; 1144 1145 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1146 if (subdev->stop) 1147 subdev->stop(subdev, crashed); 1148 } 1149 } 1150 1151 static void rproc_unprepare_subdevices(struct rproc *rproc) 1152 { 1153 struct rproc_subdev *subdev; 1154 1155 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1156 if (subdev->unprepare) 1157 subdev->unprepare(subdev); 1158 } 1159 } 1160 1161 /** 1162 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1163 * in the list 1164 * @rproc: the remote processor handle 1165 * 1166 * This function parses registered carveout list, performs allocation 1167 * if alloc() ops registered and updates resource table information 1168 * if rsc_offset set. 1169 * 1170 * Return: 0 on success 1171 */ 1172 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1173 { 1174 struct rproc_mem_entry *entry, *tmp; 1175 struct fw_rsc_carveout *rsc; 1176 struct device *dev = &rproc->dev; 1177 u64 pa; 1178 int ret; 1179 1180 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1181 if (entry->alloc) { 1182 ret = entry->alloc(rproc, entry); 1183 if (ret) { 1184 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1185 entry->name, ret); 1186 return -ENOMEM; 1187 } 1188 } 1189 1190 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1191 /* update resource table */ 1192 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1193 1194 /* 1195 * Some remote processors might need to know the pa 1196 * even though they are behind an IOMMU. E.g., OMAP4's 1197 * remote M3 processor needs this so it can control 1198 * on-chip hardware accelerators that are not behind 1199 * the IOMMU, and therefor must know the pa. 1200 * 1201 * Generally we don't want to expose physical addresses 1202 * if we don't have to (remote processors are generally 1203 * _not_ trusted), so we might want to do this only for 1204 * remote processor that _must_ have this (e.g. OMAP4's 1205 * dual M3 subsystem). 1206 * 1207 * Non-IOMMU processors might also want to have this info. 1208 * In this case, the device address and the physical address 1209 * are the same. 1210 */ 1211 1212 /* Use va if defined else dma to generate pa */ 1213 if (entry->va) 1214 pa = (u64)rproc_va_to_pa(entry->va); 1215 else 1216 pa = (u64)entry->dma; 1217 1218 if (((u64)pa) & HIGH_BITS_MASK) 1219 dev_warn(dev, 1220 "Physical address cast in 32bit to fit resource table format\n"); 1221 1222 rsc->pa = (u32)pa; 1223 rsc->da = entry->da; 1224 rsc->len = entry->len; 1225 } 1226 } 1227 1228 return 0; 1229 } 1230 1231 /** 1232 * rproc_coredump_cleanup() - clean up dump_segments list 1233 * @rproc: the remote processor handle 1234 */ 1235 static void rproc_coredump_cleanup(struct rproc *rproc) 1236 { 1237 struct rproc_dump_segment *entry, *tmp; 1238 1239 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { 1240 list_del(&entry->node); 1241 kfree(entry); 1242 } 1243 } 1244 1245 /** 1246 * rproc_resource_cleanup() - clean up and free all acquired resources 1247 * @rproc: rproc handle 1248 * 1249 * This function will free all resources acquired for @rproc, and it 1250 * is called whenever @rproc either shuts down or fails to boot. 1251 */ 1252 static void rproc_resource_cleanup(struct rproc *rproc) 1253 { 1254 struct rproc_mem_entry *entry, *tmp; 1255 struct rproc_debug_trace *trace, *ttmp; 1256 struct rproc_vdev *rvdev, *rvtmp; 1257 struct device *dev = &rproc->dev; 1258 1259 /* clean up debugfs trace entries */ 1260 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1261 rproc_remove_trace_file(trace->tfile); 1262 rproc->num_traces--; 1263 list_del(&trace->node); 1264 kfree(trace); 1265 } 1266 1267 /* clean up iommu mapping entries */ 1268 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1269 size_t unmapped; 1270 1271 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1272 if (unmapped != entry->len) { 1273 /* nothing much to do besides complaining */ 1274 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 1275 unmapped); 1276 } 1277 1278 list_del(&entry->node); 1279 kfree(entry); 1280 } 1281 1282 /* clean up carveout allocations */ 1283 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1284 if (entry->release) 1285 entry->release(rproc, entry); 1286 list_del(&entry->node); 1287 kfree(entry); 1288 } 1289 1290 /* clean up remote vdev entries */ 1291 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1292 kref_put(&rvdev->refcount, rproc_vdev_release); 1293 1294 rproc_coredump_cleanup(rproc); 1295 } 1296 1297 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1298 { 1299 struct resource_table *loaded_table; 1300 struct device *dev = &rproc->dev; 1301 int ret; 1302 1303 /* load the ELF segments to memory */ 1304 ret = rproc_load_segments(rproc, fw); 1305 if (ret) { 1306 dev_err(dev, "Failed to load program segments: %d\n", ret); 1307 return ret; 1308 } 1309 1310 /* 1311 * The starting device has been given the rproc->cached_table as the 1312 * resource table. The address of the vring along with the other 1313 * allocated resources (carveouts etc) is stored in cached_table. 1314 * In order to pass this information to the remote device we must copy 1315 * this information to device memory. We also update the table_ptr so 1316 * that any subsequent changes will be applied to the loaded version. 1317 */ 1318 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1319 if (loaded_table) { 1320 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1321 rproc->table_ptr = loaded_table; 1322 } 1323 1324 ret = rproc_prepare_subdevices(rproc); 1325 if (ret) { 1326 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1327 rproc->name, ret); 1328 goto reset_table_ptr; 1329 } 1330 1331 /* power up the remote processor */ 1332 ret = rproc->ops->start(rproc); 1333 if (ret) { 1334 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1335 goto unprepare_subdevices; 1336 } 1337 1338 /* Start any subdevices for the remote processor */ 1339 ret = rproc_start_subdevices(rproc); 1340 if (ret) { 1341 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1342 rproc->name, ret); 1343 goto stop_rproc; 1344 } 1345 1346 rproc->state = RPROC_RUNNING; 1347 1348 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1349 1350 return 0; 1351 1352 stop_rproc: 1353 rproc->ops->stop(rproc); 1354 unprepare_subdevices: 1355 rproc_unprepare_subdevices(rproc); 1356 reset_table_ptr: 1357 rproc->table_ptr = rproc->cached_table; 1358 1359 return ret; 1360 } 1361 1362 /* 1363 * take a firmware and boot a remote processor with it. 1364 */ 1365 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1366 { 1367 struct device *dev = &rproc->dev; 1368 const char *name = rproc->firmware; 1369 int ret; 1370 1371 ret = rproc_fw_sanity_check(rproc, fw); 1372 if (ret) 1373 return ret; 1374 1375 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1376 1377 /* 1378 * if enabling an IOMMU isn't relevant for this rproc, this is 1379 * just a nop 1380 */ 1381 ret = rproc_enable_iommu(rproc); 1382 if (ret) { 1383 dev_err(dev, "can't enable iommu: %d\n", ret); 1384 return ret; 1385 } 1386 1387 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1388 1389 /* Load resource table, core dump segment list etc from the firmware */ 1390 ret = rproc_parse_fw(rproc, fw); 1391 if (ret) 1392 goto disable_iommu; 1393 1394 /* reset max_notifyid */ 1395 rproc->max_notifyid = -1; 1396 1397 /* reset handled vdev */ 1398 rproc->nb_vdev = 0; 1399 1400 /* handle fw resources which are required to boot rproc */ 1401 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1402 if (ret) { 1403 dev_err(dev, "Failed to process resources: %d\n", ret); 1404 goto clean_up_resources; 1405 } 1406 1407 /* Allocate carveout resources associated to rproc */ 1408 ret = rproc_alloc_registered_carveouts(rproc); 1409 if (ret) { 1410 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1411 ret); 1412 goto clean_up_resources; 1413 } 1414 1415 ret = rproc_start(rproc, fw); 1416 if (ret) 1417 goto clean_up_resources; 1418 1419 return 0; 1420 1421 clean_up_resources: 1422 rproc_resource_cleanup(rproc); 1423 kfree(rproc->cached_table); 1424 rproc->cached_table = NULL; 1425 rproc->table_ptr = NULL; 1426 disable_iommu: 1427 rproc_disable_iommu(rproc); 1428 return ret; 1429 } 1430 1431 /* 1432 * take a firmware and boot it up. 1433 * 1434 * Note: this function is called asynchronously upon registration of the 1435 * remote processor (so we must wait until it completes before we try 1436 * to unregister the device. one other option is just to use kref here, 1437 * that might be cleaner). 1438 */ 1439 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1440 { 1441 struct rproc *rproc = context; 1442 1443 rproc_boot(rproc); 1444 1445 release_firmware(fw); 1446 } 1447 1448 static int rproc_trigger_auto_boot(struct rproc *rproc) 1449 { 1450 int ret; 1451 1452 /* 1453 * We're initiating an asynchronous firmware loading, so we can 1454 * be built-in kernel code, without hanging the boot process. 1455 */ 1456 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1457 rproc->firmware, &rproc->dev, GFP_KERNEL, 1458 rproc, rproc_auto_boot_callback); 1459 if (ret < 0) 1460 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1461 1462 return ret; 1463 } 1464 1465 static int rproc_stop(struct rproc *rproc, bool crashed) 1466 { 1467 struct device *dev = &rproc->dev; 1468 int ret; 1469 1470 /* Stop any subdevices for the remote processor */ 1471 rproc_stop_subdevices(rproc, crashed); 1472 1473 /* the installed resource table is no longer accessible */ 1474 rproc->table_ptr = rproc->cached_table; 1475 1476 /* power off the remote processor */ 1477 ret = rproc->ops->stop(rproc); 1478 if (ret) { 1479 dev_err(dev, "can't stop rproc: %d\n", ret); 1480 return ret; 1481 } 1482 1483 rproc_unprepare_subdevices(rproc); 1484 1485 rproc->state = RPROC_OFFLINE; 1486 1487 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1488 1489 return 0; 1490 } 1491 1492 /** 1493 * rproc_coredump_add_segment() - add segment of device memory to coredump 1494 * @rproc: handle of a remote processor 1495 * @da: device address 1496 * @size: size of segment 1497 * 1498 * Add device memory to the list of segments to be included in a coredump for 1499 * the remoteproc. 1500 * 1501 * Return: 0 on success, negative errno on error. 1502 */ 1503 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) 1504 { 1505 struct rproc_dump_segment *segment; 1506 1507 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1508 if (!segment) 1509 return -ENOMEM; 1510 1511 segment->da = da; 1512 segment->size = size; 1513 1514 list_add_tail(&segment->node, &rproc->dump_segments); 1515 1516 return 0; 1517 } 1518 EXPORT_SYMBOL(rproc_coredump_add_segment); 1519 1520 /** 1521 * rproc_coredump_add_custom_segment() - add custom coredump segment 1522 * @rproc: handle of a remote processor 1523 * @da: device address 1524 * @size: size of segment 1525 * @dumpfn: custom dump function called for each segment during coredump 1526 * @priv: private data 1527 * 1528 * Add device memory to the list of segments to be included in the coredump 1529 * and associate the segment with the given custom dump function and private 1530 * data. 1531 * 1532 * Return: 0 on success, negative errno on error. 1533 */ 1534 int rproc_coredump_add_custom_segment(struct rproc *rproc, 1535 dma_addr_t da, size_t size, 1536 void (*dumpfn)(struct rproc *rproc, 1537 struct rproc_dump_segment *segment, 1538 void *dest), 1539 void *priv) 1540 { 1541 struct rproc_dump_segment *segment; 1542 1543 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1544 if (!segment) 1545 return -ENOMEM; 1546 1547 segment->da = da; 1548 segment->size = size; 1549 segment->priv = priv; 1550 segment->dump = dumpfn; 1551 1552 list_add_tail(&segment->node, &rproc->dump_segments); 1553 1554 return 0; 1555 } 1556 EXPORT_SYMBOL(rproc_coredump_add_custom_segment); 1557 1558 /** 1559 * rproc_coredump() - perform coredump 1560 * @rproc: rproc handle 1561 * 1562 * This function will generate an ELF header for the registered segments 1563 * and create a devcoredump device associated with rproc. 1564 */ 1565 static void rproc_coredump(struct rproc *rproc) 1566 { 1567 struct rproc_dump_segment *segment; 1568 struct elf32_phdr *phdr; 1569 struct elf32_hdr *ehdr; 1570 size_t data_size; 1571 size_t offset; 1572 void *data; 1573 void *ptr; 1574 int phnum = 0; 1575 1576 if (list_empty(&rproc->dump_segments)) 1577 return; 1578 1579 data_size = sizeof(*ehdr); 1580 list_for_each_entry(segment, &rproc->dump_segments, node) { 1581 data_size += sizeof(*phdr) + segment->size; 1582 1583 phnum++; 1584 } 1585 1586 data = vmalloc(data_size); 1587 if (!data) 1588 return; 1589 1590 ehdr = data; 1591 1592 memset(ehdr, 0, sizeof(*ehdr)); 1593 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1594 ehdr->e_ident[EI_CLASS] = ELFCLASS32; 1595 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1596 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1597 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; 1598 ehdr->e_type = ET_CORE; 1599 ehdr->e_machine = EM_NONE; 1600 ehdr->e_version = EV_CURRENT; 1601 ehdr->e_entry = rproc->bootaddr; 1602 ehdr->e_phoff = sizeof(*ehdr); 1603 ehdr->e_ehsize = sizeof(*ehdr); 1604 ehdr->e_phentsize = sizeof(*phdr); 1605 ehdr->e_phnum = phnum; 1606 1607 phdr = data + ehdr->e_phoff; 1608 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum; 1609 list_for_each_entry(segment, &rproc->dump_segments, node) { 1610 memset(phdr, 0, sizeof(*phdr)); 1611 phdr->p_type = PT_LOAD; 1612 phdr->p_offset = offset; 1613 phdr->p_vaddr = segment->da; 1614 phdr->p_paddr = segment->da; 1615 phdr->p_filesz = segment->size; 1616 phdr->p_memsz = segment->size; 1617 phdr->p_flags = PF_R | PF_W | PF_X; 1618 phdr->p_align = 0; 1619 1620 if (segment->dump) { 1621 segment->dump(rproc, segment, data + offset); 1622 } else { 1623 ptr = rproc_da_to_va(rproc, segment->da, segment->size); 1624 if (!ptr) { 1625 dev_err(&rproc->dev, 1626 "invalid coredump segment (%pad, %zu)\n", 1627 &segment->da, segment->size); 1628 memset(data + offset, 0xff, segment->size); 1629 } else { 1630 memcpy(data + offset, ptr, segment->size); 1631 } 1632 } 1633 1634 offset += phdr->p_filesz; 1635 phdr++; 1636 } 1637 1638 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); 1639 } 1640 1641 /** 1642 * rproc_trigger_recovery() - recover a remoteproc 1643 * @rproc: the remote processor 1644 * 1645 * The recovery is done by resetting all the virtio devices, that way all the 1646 * rpmsg drivers will be reseted along with the remote processor making the 1647 * remoteproc functional again. 1648 * 1649 * This function can sleep, so it cannot be called from atomic context. 1650 */ 1651 int rproc_trigger_recovery(struct rproc *rproc) 1652 { 1653 const struct firmware *firmware_p; 1654 struct device *dev = &rproc->dev; 1655 int ret; 1656 1657 dev_err(dev, "recovering %s\n", rproc->name); 1658 1659 ret = mutex_lock_interruptible(&rproc->lock); 1660 if (ret) 1661 return ret; 1662 1663 ret = rproc_stop(rproc, true); 1664 if (ret) 1665 goto unlock_mutex; 1666 1667 /* generate coredump */ 1668 rproc_coredump(rproc); 1669 1670 /* load firmware */ 1671 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1672 if (ret < 0) { 1673 dev_err(dev, "request_firmware failed: %d\n", ret); 1674 goto unlock_mutex; 1675 } 1676 1677 /* boot the remote processor up again */ 1678 ret = rproc_start(rproc, firmware_p); 1679 1680 release_firmware(firmware_p); 1681 1682 unlock_mutex: 1683 mutex_unlock(&rproc->lock); 1684 return ret; 1685 } 1686 1687 /** 1688 * rproc_crash_handler_work() - handle a crash 1689 * 1690 * This function needs to handle everything related to a crash, like cpu 1691 * registers and stack dump, information to help to debug the fatal error, etc. 1692 */ 1693 static void rproc_crash_handler_work(struct work_struct *work) 1694 { 1695 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1696 struct device *dev = &rproc->dev; 1697 1698 dev_dbg(dev, "enter %s\n", __func__); 1699 1700 mutex_lock(&rproc->lock); 1701 1702 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1703 /* handle only the first crash detected */ 1704 mutex_unlock(&rproc->lock); 1705 return; 1706 } 1707 1708 rproc->state = RPROC_CRASHED; 1709 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1710 rproc->name); 1711 1712 mutex_unlock(&rproc->lock); 1713 1714 if (!rproc->recovery_disabled) 1715 rproc_trigger_recovery(rproc); 1716 } 1717 1718 /** 1719 * rproc_boot() - boot a remote processor 1720 * @rproc: handle of a remote processor 1721 * 1722 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1723 * 1724 * If the remote processor is already powered on, this function immediately 1725 * returns (successfully). 1726 * 1727 * Returns 0 on success, and an appropriate error value otherwise. 1728 */ 1729 int rproc_boot(struct rproc *rproc) 1730 { 1731 const struct firmware *firmware_p; 1732 struct device *dev; 1733 int ret; 1734 1735 if (!rproc) { 1736 pr_err("invalid rproc handle\n"); 1737 return -EINVAL; 1738 } 1739 1740 dev = &rproc->dev; 1741 1742 ret = mutex_lock_interruptible(&rproc->lock); 1743 if (ret) { 1744 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1745 return ret; 1746 } 1747 1748 if (rproc->state == RPROC_DELETED) { 1749 ret = -ENODEV; 1750 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1751 goto unlock_mutex; 1752 } 1753 1754 /* skip the boot process if rproc is already powered up */ 1755 if (atomic_inc_return(&rproc->power) > 1) { 1756 ret = 0; 1757 goto unlock_mutex; 1758 } 1759 1760 dev_info(dev, "powering up %s\n", rproc->name); 1761 1762 /* load firmware */ 1763 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1764 if (ret < 0) { 1765 dev_err(dev, "request_firmware failed: %d\n", ret); 1766 goto downref_rproc; 1767 } 1768 1769 ret = rproc_fw_boot(rproc, firmware_p); 1770 1771 release_firmware(firmware_p); 1772 1773 downref_rproc: 1774 if (ret) 1775 atomic_dec(&rproc->power); 1776 unlock_mutex: 1777 mutex_unlock(&rproc->lock); 1778 return ret; 1779 } 1780 EXPORT_SYMBOL(rproc_boot); 1781 1782 /** 1783 * rproc_shutdown() - power off the remote processor 1784 * @rproc: the remote processor 1785 * 1786 * Power off a remote processor (previously booted with rproc_boot()). 1787 * 1788 * In case @rproc is still being used by an additional user(s), then 1789 * this function will just decrement the power refcount and exit, 1790 * without really powering off the device. 1791 * 1792 * Every call to rproc_boot() must (eventually) be accompanied by a call 1793 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1794 * 1795 * Notes: 1796 * - we're not decrementing the rproc's refcount, only the power refcount. 1797 * which means that the @rproc handle stays valid even after rproc_shutdown() 1798 * returns, and users can still use it with a subsequent rproc_boot(), if 1799 * needed. 1800 */ 1801 void rproc_shutdown(struct rproc *rproc) 1802 { 1803 struct device *dev = &rproc->dev; 1804 int ret; 1805 1806 ret = mutex_lock_interruptible(&rproc->lock); 1807 if (ret) { 1808 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1809 return; 1810 } 1811 1812 /* if the remote proc is still needed, bail out */ 1813 if (!atomic_dec_and_test(&rproc->power)) 1814 goto out; 1815 1816 ret = rproc_stop(rproc, false); 1817 if (ret) { 1818 atomic_inc(&rproc->power); 1819 goto out; 1820 } 1821 1822 /* clean up all acquired resources */ 1823 rproc_resource_cleanup(rproc); 1824 1825 rproc_disable_iommu(rproc); 1826 1827 /* Free the copy of the resource table */ 1828 kfree(rproc->cached_table); 1829 rproc->cached_table = NULL; 1830 rproc->table_ptr = NULL; 1831 out: 1832 mutex_unlock(&rproc->lock); 1833 } 1834 EXPORT_SYMBOL(rproc_shutdown); 1835 1836 /** 1837 * rproc_get_by_phandle() - find a remote processor by phandle 1838 * @phandle: phandle to the rproc 1839 * 1840 * Finds an rproc handle using the remote processor's phandle, and then 1841 * return a handle to the rproc. 1842 * 1843 * This function increments the remote processor's refcount, so always 1844 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1845 * 1846 * Returns the rproc handle on success, and NULL on failure. 1847 */ 1848 #ifdef CONFIG_OF 1849 struct rproc *rproc_get_by_phandle(phandle phandle) 1850 { 1851 struct rproc *rproc = NULL, *r; 1852 struct device_node *np; 1853 1854 np = of_find_node_by_phandle(phandle); 1855 if (!np) 1856 return NULL; 1857 1858 mutex_lock(&rproc_list_mutex); 1859 list_for_each_entry(r, &rproc_list, node) { 1860 if (r->dev.parent && r->dev.parent->of_node == np) { 1861 /* prevent underlying implementation from being removed */ 1862 if (!try_module_get(r->dev.parent->driver->owner)) { 1863 dev_err(&r->dev, "can't get owner\n"); 1864 break; 1865 } 1866 1867 rproc = r; 1868 get_device(&rproc->dev); 1869 break; 1870 } 1871 } 1872 mutex_unlock(&rproc_list_mutex); 1873 1874 of_node_put(np); 1875 1876 return rproc; 1877 } 1878 #else 1879 struct rproc *rproc_get_by_phandle(phandle phandle) 1880 { 1881 return NULL; 1882 } 1883 #endif 1884 EXPORT_SYMBOL(rproc_get_by_phandle); 1885 1886 /** 1887 * rproc_add() - register a remote processor 1888 * @rproc: the remote processor handle to register 1889 * 1890 * Registers @rproc with the remoteproc framework, after it has been 1891 * allocated with rproc_alloc(). 1892 * 1893 * This is called by the platform-specific rproc implementation, whenever 1894 * a new remote processor device is probed. 1895 * 1896 * Returns 0 on success and an appropriate error code otherwise. 1897 * 1898 * Note: this function initiates an asynchronous firmware loading 1899 * context, which will look for virtio devices supported by the rproc's 1900 * firmware. 1901 * 1902 * If found, those virtio devices will be created and added, so as a result 1903 * of registering this remote processor, additional virtio drivers might be 1904 * probed. 1905 */ 1906 int rproc_add(struct rproc *rproc) 1907 { 1908 struct device *dev = &rproc->dev; 1909 int ret; 1910 1911 ret = device_add(dev); 1912 if (ret < 0) 1913 return ret; 1914 1915 dev_info(dev, "%s is available\n", rproc->name); 1916 1917 /* create debugfs entries */ 1918 rproc_create_debug_dir(rproc); 1919 1920 /* if rproc is marked always-on, request it to boot */ 1921 if (rproc->auto_boot) { 1922 ret = rproc_trigger_auto_boot(rproc); 1923 if (ret < 0) 1924 return ret; 1925 } 1926 1927 /* expose to rproc_get_by_phandle users */ 1928 mutex_lock(&rproc_list_mutex); 1929 list_add(&rproc->node, &rproc_list); 1930 mutex_unlock(&rproc_list_mutex); 1931 1932 return 0; 1933 } 1934 EXPORT_SYMBOL(rproc_add); 1935 1936 /** 1937 * rproc_type_release() - release a remote processor instance 1938 * @dev: the rproc's device 1939 * 1940 * This function should _never_ be called directly. 1941 * 1942 * It will be called by the driver core when no one holds a valid pointer 1943 * to @dev anymore. 1944 */ 1945 static void rproc_type_release(struct device *dev) 1946 { 1947 struct rproc *rproc = container_of(dev, struct rproc, dev); 1948 1949 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1950 1951 idr_destroy(&rproc->notifyids); 1952 1953 if (rproc->index >= 0) 1954 ida_simple_remove(&rproc_dev_index, rproc->index); 1955 1956 kfree(rproc->firmware); 1957 kfree(rproc->ops); 1958 kfree(rproc); 1959 } 1960 1961 static const struct device_type rproc_type = { 1962 .name = "remoteproc", 1963 .release = rproc_type_release, 1964 }; 1965 1966 /** 1967 * rproc_alloc() - allocate a remote processor handle 1968 * @dev: the underlying device 1969 * @name: name of this remote processor 1970 * @ops: platform-specific handlers (mainly start/stop) 1971 * @firmware: name of firmware file to load, can be NULL 1972 * @len: length of private data needed by the rproc driver (in bytes) 1973 * 1974 * Allocates a new remote processor handle, but does not register 1975 * it yet. if @firmware is NULL, a default name is used. 1976 * 1977 * This function should be used by rproc implementations during initialization 1978 * of the remote processor. 1979 * 1980 * After creating an rproc handle using this function, and when ready, 1981 * implementations should then call rproc_add() to complete 1982 * the registration of the remote processor. 1983 * 1984 * On success the new rproc is returned, and on failure, NULL. 1985 * 1986 * Note: _never_ directly deallocate @rproc, even if it was not registered 1987 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1988 */ 1989 struct rproc *rproc_alloc(struct device *dev, const char *name, 1990 const struct rproc_ops *ops, 1991 const char *firmware, int len) 1992 { 1993 struct rproc *rproc; 1994 char *p, *template = "rproc-%s-fw"; 1995 int name_len; 1996 1997 if (!dev || !name || !ops) 1998 return NULL; 1999 2000 if (!firmware) { 2001 /* 2002 * If the caller didn't pass in a firmware name then 2003 * construct a default name. 2004 */ 2005 name_len = strlen(name) + strlen(template) - 2 + 1; 2006 p = kmalloc(name_len, GFP_KERNEL); 2007 if (!p) 2008 return NULL; 2009 snprintf(p, name_len, template, name); 2010 } else { 2011 p = kstrdup(firmware, GFP_KERNEL); 2012 if (!p) 2013 return NULL; 2014 } 2015 2016 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2017 if (!rproc) { 2018 kfree(p); 2019 return NULL; 2020 } 2021 2022 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2023 if (!rproc->ops) { 2024 kfree(p); 2025 kfree(rproc); 2026 return NULL; 2027 } 2028 2029 rproc->firmware = p; 2030 rproc->name = name; 2031 rproc->priv = &rproc[1]; 2032 rproc->auto_boot = true; 2033 2034 device_initialize(&rproc->dev); 2035 rproc->dev.parent = dev; 2036 rproc->dev.type = &rproc_type; 2037 rproc->dev.class = &rproc_class; 2038 rproc->dev.driver_data = rproc; 2039 2040 /* Assign a unique device index and name */ 2041 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2042 if (rproc->index < 0) { 2043 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2044 put_device(&rproc->dev); 2045 return NULL; 2046 } 2047 2048 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2049 2050 atomic_set(&rproc->power, 0); 2051 2052 /* Default to ELF loader if no load function is specified */ 2053 if (!rproc->ops->load) { 2054 rproc->ops->load = rproc_elf_load_segments; 2055 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2056 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2057 rproc->ops->sanity_check = rproc_elf_sanity_check; 2058 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2059 } 2060 2061 mutex_init(&rproc->lock); 2062 2063 idr_init(&rproc->notifyids); 2064 2065 INIT_LIST_HEAD(&rproc->carveouts); 2066 INIT_LIST_HEAD(&rproc->mappings); 2067 INIT_LIST_HEAD(&rproc->traces); 2068 INIT_LIST_HEAD(&rproc->rvdevs); 2069 INIT_LIST_HEAD(&rproc->subdevs); 2070 INIT_LIST_HEAD(&rproc->dump_segments); 2071 2072 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2073 2074 rproc->state = RPROC_OFFLINE; 2075 2076 return rproc; 2077 } 2078 EXPORT_SYMBOL(rproc_alloc); 2079 2080 /** 2081 * rproc_free() - unroll rproc_alloc() 2082 * @rproc: the remote processor handle 2083 * 2084 * This function decrements the rproc dev refcount. 2085 * 2086 * If no one holds any reference to rproc anymore, then its refcount would 2087 * now drop to zero, and it would be freed. 2088 */ 2089 void rproc_free(struct rproc *rproc) 2090 { 2091 put_device(&rproc->dev); 2092 } 2093 EXPORT_SYMBOL(rproc_free); 2094 2095 /** 2096 * rproc_put() - release rproc reference 2097 * @rproc: the remote processor handle 2098 * 2099 * This function decrements the rproc dev refcount. 2100 * 2101 * If no one holds any reference to rproc anymore, then its refcount would 2102 * now drop to zero, and it would be freed. 2103 */ 2104 void rproc_put(struct rproc *rproc) 2105 { 2106 module_put(rproc->dev.parent->driver->owner); 2107 put_device(&rproc->dev); 2108 } 2109 EXPORT_SYMBOL(rproc_put); 2110 2111 /** 2112 * rproc_del() - unregister a remote processor 2113 * @rproc: rproc handle to unregister 2114 * 2115 * This function should be called when the platform specific rproc 2116 * implementation decides to remove the rproc device. it should 2117 * _only_ be called if a previous invocation of rproc_add() 2118 * has completed successfully. 2119 * 2120 * After rproc_del() returns, @rproc isn't freed yet, because 2121 * of the outstanding reference created by rproc_alloc. To decrement that 2122 * one last refcount, one still needs to call rproc_free(). 2123 * 2124 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2125 */ 2126 int rproc_del(struct rproc *rproc) 2127 { 2128 if (!rproc) 2129 return -EINVAL; 2130 2131 /* if rproc is marked always-on, rproc_add() booted it */ 2132 /* TODO: make sure this works with rproc->power > 1 */ 2133 if (rproc->auto_boot) 2134 rproc_shutdown(rproc); 2135 2136 mutex_lock(&rproc->lock); 2137 rproc->state = RPROC_DELETED; 2138 mutex_unlock(&rproc->lock); 2139 2140 rproc_delete_debug_dir(rproc); 2141 2142 /* the rproc is downref'ed as soon as it's removed from the klist */ 2143 mutex_lock(&rproc_list_mutex); 2144 list_del(&rproc->node); 2145 mutex_unlock(&rproc_list_mutex); 2146 2147 device_del(&rproc->dev); 2148 2149 return 0; 2150 } 2151 EXPORT_SYMBOL(rproc_del); 2152 2153 /** 2154 * rproc_add_subdev() - add a subdevice to a remoteproc 2155 * @rproc: rproc handle to add the subdevice to 2156 * @subdev: subdev handle to register 2157 * 2158 * Caller is responsible for populating optional subdevice function pointers. 2159 */ 2160 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2161 { 2162 list_add_tail(&subdev->node, &rproc->subdevs); 2163 } 2164 EXPORT_SYMBOL(rproc_add_subdev); 2165 2166 /** 2167 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2168 * @rproc: rproc handle to remove the subdevice from 2169 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2170 */ 2171 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2172 { 2173 list_del(&subdev->node); 2174 } 2175 EXPORT_SYMBOL(rproc_remove_subdev); 2176 2177 /** 2178 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2179 * @dev: child device to find ancestor of 2180 * 2181 * Returns the ancestor rproc instance, or NULL if not found. 2182 */ 2183 struct rproc *rproc_get_by_child(struct device *dev) 2184 { 2185 for (dev = dev->parent; dev; dev = dev->parent) { 2186 if (dev->type == &rproc_type) 2187 return dev->driver_data; 2188 } 2189 2190 return NULL; 2191 } 2192 EXPORT_SYMBOL(rproc_get_by_child); 2193 2194 /** 2195 * rproc_report_crash() - rproc crash reporter function 2196 * @rproc: remote processor 2197 * @type: crash type 2198 * 2199 * This function must be called every time a crash is detected by the low-level 2200 * drivers implementing a specific remoteproc. This should not be called from a 2201 * non-remoteproc driver. 2202 * 2203 * This function can be called from atomic/interrupt context. 2204 */ 2205 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2206 { 2207 if (!rproc) { 2208 pr_err("NULL rproc pointer\n"); 2209 return; 2210 } 2211 2212 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2213 rproc->name, rproc_crash_to_string(type)); 2214 2215 /* create a new task to handle the error */ 2216 schedule_work(&rproc->crash_handler); 2217 } 2218 EXPORT_SYMBOL(rproc_report_crash); 2219 2220 static int __init remoteproc_init(void) 2221 { 2222 rproc_init_sysfs(); 2223 rproc_init_debugfs(); 2224 2225 return 0; 2226 } 2227 module_init(remoteproc_init); 2228 2229 static void __exit remoteproc_exit(void) 2230 { 2231 ida_destroy(&rproc_dev_index); 2232 2233 rproc_exit_debugfs(); 2234 rproc_exit_sysfs(); 2235 } 2236 module_exit(remoteproc_exit); 2237 2238 MODULE_LICENSE("GPL v2"); 2239 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2240