1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44 
45 #include "remoteproc_internal.h"
46 
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48 				struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 				 void *, int offset, int avail);
51 
52 /* Unique indices for remoteproc devices */
53 static DEFINE_IDA(rproc_dev_index);
54 
55 static const char * const rproc_crash_names[] = {
56 	[RPROC_MMUFAULT]	= "mmufault",
57 };
58 
59 /* translate rproc_crash_type to string */
60 static const char *rproc_crash_to_string(enum rproc_crash_type type)
61 {
62 	if (type < ARRAY_SIZE(rproc_crash_names))
63 		return rproc_crash_names[type];
64 	return "unknown";
65 }
66 
67 /*
68  * This is the IOMMU fault handler we register with the IOMMU API
69  * (when relevant; not all remote processors access memory through
70  * an IOMMU).
71  *
72  * IOMMU core will invoke this handler whenever the remote processor
73  * will try to access an unmapped device address.
74  */
75 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
76 		unsigned long iova, int flags, void *token)
77 {
78 	struct rproc *rproc = token;
79 
80 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
81 
82 	rproc_report_crash(rproc, RPROC_MMUFAULT);
83 
84 	/*
85 	 * Let the iommu core know we're not really handling this fault;
86 	 * we just used it as a recovery trigger.
87 	 */
88 	return -ENOSYS;
89 }
90 
91 static int rproc_enable_iommu(struct rproc *rproc)
92 {
93 	struct iommu_domain *domain;
94 	struct device *dev = rproc->dev.parent;
95 	int ret;
96 
97 	/*
98 	 * We currently use iommu_present() to decide if an IOMMU
99 	 * setup is needed.
100 	 *
101 	 * This works for simple cases, but will easily fail with
102 	 * platforms that do have an IOMMU, but not for this specific
103 	 * rproc.
104 	 *
105 	 * This will be easily solved by introducing hw capabilities
106 	 * that will be set by the remoteproc driver.
107 	 */
108 	if (!iommu_present(dev->bus)) {
109 		dev_dbg(dev, "iommu not found\n");
110 		return 0;
111 	}
112 
113 	domain = iommu_domain_alloc(dev->bus);
114 	if (!domain) {
115 		dev_err(dev, "can't alloc iommu domain\n");
116 		return -ENOMEM;
117 	}
118 
119 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
120 
121 	ret = iommu_attach_device(domain, dev);
122 	if (ret) {
123 		dev_err(dev, "can't attach iommu device: %d\n", ret);
124 		goto free_domain;
125 	}
126 
127 	rproc->domain = domain;
128 
129 	return 0;
130 
131 free_domain:
132 	iommu_domain_free(domain);
133 	return ret;
134 }
135 
136 static void rproc_disable_iommu(struct rproc *rproc)
137 {
138 	struct iommu_domain *domain = rproc->domain;
139 	struct device *dev = rproc->dev.parent;
140 
141 	if (!domain)
142 		return;
143 
144 	iommu_detach_device(domain, dev);
145 	iommu_domain_free(domain);
146 
147 	return;
148 }
149 
150 /*
151  * Some remote processors will ask us to allocate them physically contiguous
152  * memory regions (which we call "carveouts"), and map them to specific
153  * device addresses (which are hardcoded in the firmware).
154  *
155  * They may then ask us to copy objects into specific device addresses (e.g.
156  * code/data sections) or expose us certain symbols in other device address
157  * (e.g. their trace buffer).
158  *
159  * This function is an internal helper with which we can go over the allocated
160  * carveouts and translate specific device address to kernel virtual addresses
161  * so we can access the referenced memory.
162  *
163  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
164  * but only on kernel direct mapped RAM memory. Instead, we're just using
165  * here the output of the DMA API, which should be more correct.
166  */
167 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
168 {
169 	struct rproc_mem_entry *carveout;
170 	void *ptr = NULL;
171 
172 	list_for_each_entry(carveout, &rproc->carveouts, node) {
173 		int offset = da - carveout->da;
174 
175 		/* try next carveout if da is too small */
176 		if (offset < 0)
177 			continue;
178 
179 		/* try next carveout if da is too large */
180 		if (offset + len > carveout->len)
181 			continue;
182 
183 		ptr = carveout->va + offset;
184 
185 		break;
186 	}
187 
188 	return ptr;
189 }
190 EXPORT_SYMBOL(rproc_da_to_va);
191 
192 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
193 {
194 	struct rproc *rproc = rvdev->rproc;
195 	struct device *dev = &rproc->dev;
196 	struct rproc_vring *rvring = &rvdev->vring[i];
197 	struct fw_rsc_vdev *rsc;
198 	dma_addr_t dma;
199 	void *va;
200 	int ret, size, notifyid;
201 
202 	/* actual size of vring (in bytes) */
203 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
204 
205 	/*
206 	 * Allocate non-cacheable memory for the vring. In the future
207 	 * this call will also configure the IOMMU for us
208 	 */
209 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
210 	if (!va) {
211 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
212 		return -EINVAL;
213 	}
214 
215 	/*
216 	 * Assign an rproc-wide unique index for this vring
217 	 * TODO: assign a notifyid for rvdev updates as well
218 	 * TODO: support predefined notifyids (via resource table)
219 	 */
220 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
221 	if (ret < 0) {
222 		dev_err(dev, "idr_alloc failed: %d\n", ret);
223 		dma_free_coherent(dev->parent, size, va, dma);
224 		return ret;
225 	}
226 	notifyid = ret;
227 
228 	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
229 				(unsigned long long)dma, size, notifyid);
230 
231 	rvring->va = va;
232 	rvring->dma = dma;
233 	rvring->notifyid = notifyid;
234 
235 	/*
236 	 * Let the rproc know the notifyid and da of this vring.
237 	 * Not all platforms use dma_alloc_coherent to automatically
238 	 * set up the iommu. In this case the device address (da) will
239 	 * hold the physical address and not the device address.
240 	 */
241 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
242 	rsc->vring[i].da = dma;
243 	rsc->vring[i].notifyid = notifyid;
244 	return 0;
245 }
246 
247 static int
248 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
249 {
250 	struct rproc *rproc = rvdev->rproc;
251 	struct device *dev = &rproc->dev;
252 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
253 	struct rproc_vring *rvring = &rvdev->vring[i];
254 
255 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
256 				i, vring->da, vring->num, vring->align);
257 
258 	/* make sure reserved bytes are zeroes */
259 	if (vring->reserved) {
260 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
261 		return -EINVAL;
262 	}
263 
264 	/* verify queue size and vring alignment are sane */
265 	if (!vring->num || !vring->align) {
266 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
267 						vring->num, vring->align);
268 		return -EINVAL;
269 	}
270 
271 	rvring->len = vring->num;
272 	rvring->align = vring->align;
273 	rvring->rvdev = rvdev;
274 
275 	return 0;
276 }
277 
278 void rproc_free_vring(struct rproc_vring *rvring)
279 {
280 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
281 	struct rproc *rproc = rvring->rvdev->rproc;
282 	int idx = rvring->rvdev->vring - rvring;
283 	struct fw_rsc_vdev *rsc;
284 
285 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
286 	idr_remove(&rproc->notifyids, rvring->notifyid);
287 
288 	/* reset resource entry info */
289 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
290 	rsc->vring[idx].da = 0;
291 	rsc->vring[idx].notifyid = -1;
292 }
293 
294 /**
295  * rproc_handle_vdev() - handle a vdev fw resource
296  * @rproc: the remote processor
297  * @rsc: the vring resource descriptor
298  * @avail: size of available data (for sanity checking the image)
299  *
300  * This resource entry requests the host to statically register a virtio
301  * device (vdev), and setup everything needed to support it. It contains
302  * everything needed to make it possible: the virtio device id, virtio
303  * device features, vrings information, virtio config space, etc...
304  *
305  * Before registering the vdev, the vrings are allocated from non-cacheable
306  * physically contiguous memory. Currently we only support two vrings per
307  * remote processor (temporary limitation). We might also want to consider
308  * doing the vring allocation only later when ->find_vqs() is invoked, and
309  * then release them upon ->del_vqs().
310  *
311  * Note: @da is currently not really handled correctly: we dynamically
312  * allocate it using the DMA API, ignoring requested hard coded addresses,
313  * and we don't take care of any required IOMMU programming. This is all
314  * going to be taken care of when the generic iommu-based DMA API will be
315  * merged. Meanwhile, statically-addressed iommu-based firmware images should
316  * use RSC_DEVMEM resource entries to map their required @da to the physical
317  * address of their base CMA region (ouch, hacky!).
318  *
319  * Returns 0 on success, or an appropriate error code otherwise
320  */
321 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
322 							int offset, int avail)
323 {
324 	struct device *dev = &rproc->dev;
325 	struct rproc_vdev *rvdev;
326 	int i, ret;
327 
328 	/* make sure resource isn't truncated */
329 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
330 			+ rsc->config_len > avail) {
331 		dev_err(dev, "vdev rsc is truncated\n");
332 		return -EINVAL;
333 	}
334 
335 	/* make sure reserved bytes are zeroes */
336 	if (rsc->reserved[0] || rsc->reserved[1]) {
337 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
338 		return -EINVAL;
339 	}
340 
341 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
342 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
343 
344 	/* we currently support only two vrings per rvdev */
345 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
346 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
347 		return -EINVAL;
348 	}
349 
350 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
351 	if (!rvdev)
352 		return -ENOMEM;
353 
354 	rvdev->rproc = rproc;
355 
356 	/* parse the vrings */
357 	for (i = 0; i < rsc->num_of_vrings; i++) {
358 		ret = rproc_parse_vring(rvdev, rsc, i);
359 		if (ret)
360 			goto free_rvdev;
361 	}
362 
363 	/* remember the resource offset*/
364 	rvdev->rsc_offset = offset;
365 
366 	list_add_tail(&rvdev->node, &rproc->rvdevs);
367 
368 	/* it is now safe to add the virtio device */
369 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
370 	if (ret)
371 		goto remove_rvdev;
372 
373 	return 0;
374 
375 remove_rvdev:
376 	list_del(&rvdev->node);
377 free_rvdev:
378 	kfree(rvdev);
379 	return ret;
380 }
381 
382 /**
383  * rproc_handle_trace() - handle a shared trace buffer resource
384  * @rproc: the remote processor
385  * @rsc: the trace resource descriptor
386  * @avail: size of available data (for sanity checking the image)
387  *
388  * In case the remote processor dumps trace logs into memory,
389  * export it via debugfs.
390  *
391  * Currently, the 'da' member of @rsc should contain the device address
392  * where the remote processor is dumping the traces. Later we could also
393  * support dynamically allocating this address using the generic
394  * DMA API (but currently there isn't a use case for that).
395  *
396  * Returns 0 on success, or an appropriate error code otherwise
397  */
398 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
399 							int offset, int avail)
400 {
401 	struct rproc_mem_entry *trace;
402 	struct device *dev = &rproc->dev;
403 	void *ptr;
404 	char name[15];
405 
406 	if (sizeof(*rsc) > avail) {
407 		dev_err(dev, "trace rsc is truncated\n");
408 		return -EINVAL;
409 	}
410 
411 	/* make sure reserved bytes are zeroes */
412 	if (rsc->reserved) {
413 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
414 		return -EINVAL;
415 	}
416 
417 	/* what's the kernel address of this resource ? */
418 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
419 	if (!ptr) {
420 		dev_err(dev, "erroneous trace resource entry\n");
421 		return -EINVAL;
422 	}
423 
424 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
425 	if (!trace) {
426 		dev_err(dev, "kzalloc trace failed\n");
427 		return -ENOMEM;
428 	}
429 
430 	/* set the trace buffer dma properties */
431 	trace->len = rsc->len;
432 	trace->va = ptr;
433 
434 	/* make sure snprintf always null terminates, even if truncating */
435 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
436 
437 	/* create the debugfs entry */
438 	trace->priv = rproc_create_trace_file(name, rproc, trace);
439 	if (!trace->priv) {
440 		trace->va = NULL;
441 		kfree(trace);
442 		return -EINVAL;
443 	}
444 
445 	list_add_tail(&trace->node, &rproc->traces);
446 
447 	rproc->num_traces++;
448 
449 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
450 						rsc->da, rsc->len);
451 
452 	return 0;
453 }
454 
455 /**
456  * rproc_handle_devmem() - handle devmem resource entry
457  * @rproc: remote processor handle
458  * @rsc: the devmem resource entry
459  * @avail: size of available data (for sanity checking the image)
460  *
461  * Remote processors commonly need to access certain on-chip peripherals.
462  *
463  * Some of these remote processors access memory via an iommu device,
464  * and might require us to configure their iommu before they can access
465  * the on-chip peripherals they need.
466  *
467  * This resource entry is a request to map such a peripheral device.
468  *
469  * These devmem entries will contain the physical address of the device in
470  * the 'pa' member. If a specific device address is expected, then 'da' will
471  * contain it (currently this is the only use case supported). 'len' will
472  * contain the size of the physical region we need to map.
473  *
474  * Currently we just "trust" those devmem entries to contain valid physical
475  * addresses, but this is going to change: we want the implementations to
476  * tell us ranges of physical addresses the firmware is allowed to request,
477  * and not allow firmwares to request access to physical addresses that
478  * are outside those ranges.
479  */
480 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
481 							int offset, int avail)
482 {
483 	struct rproc_mem_entry *mapping;
484 	struct device *dev = &rproc->dev;
485 	int ret;
486 
487 	/* no point in handling this resource without a valid iommu domain */
488 	if (!rproc->domain)
489 		return -EINVAL;
490 
491 	if (sizeof(*rsc) > avail) {
492 		dev_err(dev, "devmem rsc is truncated\n");
493 		return -EINVAL;
494 	}
495 
496 	/* make sure reserved bytes are zeroes */
497 	if (rsc->reserved) {
498 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
499 		return -EINVAL;
500 	}
501 
502 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
503 	if (!mapping) {
504 		dev_err(dev, "kzalloc mapping failed\n");
505 		return -ENOMEM;
506 	}
507 
508 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
509 	if (ret) {
510 		dev_err(dev, "failed to map devmem: %d\n", ret);
511 		goto out;
512 	}
513 
514 	/*
515 	 * We'll need this info later when we'll want to unmap everything
516 	 * (e.g. on shutdown).
517 	 *
518 	 * We can't trust the remote processor not to change the resource
519 	 * table, so we must maintain this info independently.
520 	 */
521 	mapping->da = rsc->da;
522 	mapping->len = rsc->len;
523 	list_add_tail(&mapping->node, &rproc->mappings);
524 
525 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
526 					rsc->pa, rsc->da, rsc->len);
527 
528 	return 0;
529 
530 out:
531 	kfree(mapping);
532 	return ret;
533 }
534 
535 /**
536  * rproc_handle_carveout() - handle phys contig memory allocation requests
537  * @rproc: rproc handle
538  * @rsc: the resource entry
539  * @avail: size of available data (for image validation)
540  *
541  * This function will handle firmware requests for allocation of physically
542  * contiguous memory regions.
543  *
544  * These request entries should come first in the firmware's resource table,
545  * as other firmware entries might request placing other data objects inside
546  * these memory regions (e.g. data/code segments, trace resource entries, ...).
547  *
548  * Allocating memory this way helps utilizing the reserved physical memory
549  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
550  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
551  * pressure is important; it may have a substantial impact on performance.
552  */
553 static int rproc_handle_carveout(struct rproc *rproc,
554 						struct fw_rsc_carveout *rsc,
555 						int offset, int avail)
556 
557 {
558 	struct rproc_mem_entry *carveout, *mapping;
559 	struct device *dev = &rproc->dev;
560 	dma_addr_t dma;
561 	void *va;
562 	int ret;
563 
564 	if (sizeof(*rsc) > avail) {
565 		dev_err(dev, "carveout rsc is truncated\n");
566 		return -EINVAL;
567 	}
568 
569 	/* make sure reserved bytes are zeroes */
570 	if (rsc->reserved) {
571 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
572 		return -EINVAL;
573 	}
574 
575 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
576 			rsc->da, rsc->pa, rsc->len, rsc->flags);
577 
578 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
579 	if (!carveout) {
580 		dev_err(dev, "kzalloc carveout failed\n");
581 		return -ENOMEM;
582 	}
583 
584 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
585 	if (!va) {
586 		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
587 		ret = -ENOMEM;
588 		goto free_carv;
589 	}
590 
591 	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
592 					(unsigned long long)dma, rsc->len);
593 
594 	/*
595 	 * Ok, this is non-standard.
596 	 *
597 	 * Sometimes we can't rely on the generic iommu-based DMA API
598 	 * to dynamically allocate the device address and then set the IOMMU
599 	 * tables accordingly, because some remote processors might
600 	 * _require_ us to use hard coded device addresses that their
601 	 * firmware was compiled with.
602 	 *
603 	 * In this case, we must use the IOMMU API directly and map
604 	 * the memory to the device address as expected by the remote
605 	 * processor.
606 	 *
607 	 * Obviously such remote processor devices should not be configured
608 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
609 	 * physical address in this case.
610 	 */
611 	if (rproc->domain) {
612 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
613 		if (!mapping) {
614 			dev_err(dev, "kzalloc mapping failed\n");
615 			ret = -ENOMEM;
616 			goto dma_free;
617 		}
618 
619 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
620 								rsc->flags);
621 		if (ret) {
622 			dev_err(dev, "iommu_map failed: %d\n", ret);
623 			goto free_mapping;
624 		}
625 
626 		/*
627 		 * We'll need this info later when we'll want to unmap
628 		 * everything (e.g. on shutdown).
629 		 *
630 		 * We can't trust the remote processor not to change the
631 		 * resource table, so we must maintain this info independently.
632 		 */
633 		mapping->da = rsc->da;
634 		mapping->len = rsc->len;
635 		list_add_tail(&mapping->node, &rproc->mappings);
636 
637 		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
638 					rsc->da, (unsigned long long)dma);
639 	}
640 
641 	/*
642 	 * Some remote processors might need to know the pa
643 	 * even though they are behind an IOMMU. E.g., OMAP4's
644 	 * remote M3 processor needs this so it can control
645 	 * on-chip hardware accelerators that are not behind
646 	 * the IOMMU, and therefor must know the pa.
647 	 *
648 	 * Generally we don't want to expose physical addresses
649 	 * if we don't have to (remote processors are generally
650 	 * _not_ trusted), so we might want to do this only for
651 	 * remote processor that _must_ have this (e.g. OMAP4's
652 	 * dual M3 subsystem).
653 	 *
654 	 * Non-IOMMU processors might also want to have this info.
655 	 * In this case, the device address and the physical address
656 	 * are the same.
657 	 */
658 	rsc->pa = dma;
659 
660 	carveout->va = va;
661 	carveout->len = rsc->len;
662 	carveout->dma = dma;
663 	carveout->da = rsc->da;
664 
665 	list_add_tail(&carveout->node, &rproc->carveouts);
666 
667 	return 0;
668 
669 free_mapping:
670 	kfree(mapping);
671 dma_free:
672 	dma_free_coherent(dev->parent, rsc->len, va, dma);
673 free_carv:
674 	kfree(carveout);
675 	return ret;
676 }
677 
678 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
679 			      int offset, int avail)
680 {
681 	/* Summarize the number of notification IDs */
682 	rproc->max_notifyid += rsc->num_of_vrings;
683 
684 	return 0;
685 }
686 
687 /*
688  * A lookup table for resource handlers. The indices are defined in
689  * enum fw_resource_type.
690  */
691 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
692 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
693 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
694 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
695 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
696 };
697 
698 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
699 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
700 };
701 
702 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
703 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
704 };
705 
706 /* handle firmware resource entries before booting the remote processor */
707 static int rproc_handle_resources(struct rproc *rproc, int len,
708 				  rproc_handle_resource_t handlers[RSC_LAST])
709 {
710 	struct device *dev = &rproc->dev;
711 	rproc_handle_resource_t handler;
712 	int ret = 0, i;
713 
714 	for (i = 0; i < rproc->table_ptr->num; i++) {
715 		int offset = rproc->table_ptr->offset[i];
716 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
717 		int avail = len - offset - sizeof(*hdr);
718 		void *rsc = (void *)hdr + sizeof(*hdr);
719 
720 		/* make sure table isn't truncated */
721 		if (avail < 0) {
722 			dev_err(dev, "rsc table is truncated\n");
723 			return -EINVAL;
724 		}
725 
726 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
727 
728 		if (hdr->type >= RSC_LAST) {
729 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
730 			continue;
731 		}
732 
733 		handler = handlers[hdr->type];
734 		if (!handler)
735 			continue;
736 
737 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
738 		if (ret)
739 			break;
740 	}
741 
742 	return ret;
743 }
744 
745 /**
746  * rproc_resource_cleanup() - clean up and free all acquired resources
747  * @rproc: rproc handle
748  *
749  * This function will free all resources acquired for @rproc, and it
750  * is called whenever @rproc either shuts down or fails to boot.
751  */
752 static void rproc_resource_cleanup(struct rproc *rproc)
753 {
754 	struct rproc_mem_entry *entry, *tmp;
755 	struct device *dev = &rproc->dev;
756 
757 	/* clean up debugfs trace entries */
758 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
759 		rproc_remove_trace_file(entry->priv);
760 		rproc->num_traces--;
761 		list_del(&entry->node);
762 		kfree(entry);
763 	}
764 
765 	/* clean up iommu mapping entries */
766 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
767 		size_t unmapped;
768 
769 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
770 		if (unmapped != entry->len) {
771 			/* nothing much to do besides complaining */
772 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
773 								unmapped);
774 		}
775 
776 		list_del(&entry->node);
777 		kfree(entry);
778 	}
779 
780 	/* clean up carveout allocations */
781 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
782 		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
783 		list_del(&entry->node);
784 		kfree(entry);
785 	}
786 }
787 
788 /*
789  * take a firmware and boot a remote processor with it.
790  */
791 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
792 {
793 	struct device *dev = &rproc->dev;
794 	const char *name = rproc->firmware;
795 	struct resource_table *table, *loaded_table;
796 	int ret, tablesz;
797 
798 	if (!rproc->table_ptr)
799 		return -ENOMEM;
800 
801 	ret = rproc_fw_sanity_check(rproc, fw);
802 	if (ret)
803 		return ret;
804 
805 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
806 
807 	/*
808 	 * if enabling an IOMMU isn't relevant for this rproc, this is
809 	 * just a nop
810 	 */
811 	ret = rproc_enable_iommu(rproc);
812 	if (ret) {
813 		dev_err(dev, "can't enable iommu: %d\n", ret);
814 		return ret;
815 	}
816 
817 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
818 	ret = -EINVAL;
819 
820 	/* look for the resource table */
821 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
822 	if (!table) {
823 		goto clean_up;
824 	}
825 
826 	/* Verify that resource table in loaded fw is unchanged */
827 	if (rproc->table_csum != crc32(0, table, tablesz)) {
828 		dev_err(dev, "resource checksum failed, fw changed?\n");
829 		goto clean_up;
830 	}
831 
832 	/* handle fw resources which are required to boot rproc */
833 	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
834 	if (ret) {
835 		dev_err(dev, "Failed to process resources: %d\n", ret);
836 		goto clean_up;
837 	}
838 
839 	/* load the ELF segments to memory */
840 	ret = rproc_load_segments(rproc, fw);
841 	if (ret) {
842 		dev_err(dev, "Failed to load program segments: %d\n", ret);
843 		goto clean_up;
844 	}
845 
846 	/*
847 	 * The starting device has been given the rproc->cached_table as the
848 	 * resource table. The address of the vring along with the other
849 	 * allocated resources (carveouts etc) is stored in cached_table.
850 	 * In order to pass this information to the remote device we must
851 	 * copy this information to device memory.
852 	 */
853 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
854 	if (!loaded_table) {
855 		ret = -EINVAL;
856 		goto clean_up;
857 	}
858 
859 	memcpy(loaded_table, rproc->cached_table, tablesz);
860 
861 	/* power up the remote processor */
862 	ret = rproc->ops->start(rproc);
863 	if (ret) {
864 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
865 		goto clean_up;
866 	}
867 
868 	/*
869 	 * Update table_ptr so that all subsequent vring allocations and
870 	 * virtio fields manipulation update the actual loaded resource table
871 	 * in device memory.
872 	 */
873 	rproc->table_ptr = loaded_table;
874 
875 	rproc->state = RPROC_RUNNING;
876 
877 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
878 
879 	return 0;
880 
881 clean_up:
882 	rproc_resource_cleanup(rproc);
883 	rproc_disable_iommu(rproc);
884 	return ret;
885 }
886 
887 /*
888  * take a firmware and look for virtio devices to register.
889  *
890  * Note: this function is called asynchronously upon registration of the
891  * remote processor (so we must wait until it completes before we try
892  * to unregister the device. one other option is just to use kref here,
893  * that might be cleaner).
894  */
895 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
896 {
897 	struct rproc *rproc = context;
898 	struct resource_table *table;
899 	int ret, tablesz;
900 
901 	if (rproc_fw_sanity_check(rproc, fw) < 0)
902 		goto out;
903 
904 	/* look for the resource table */
905 	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
906 	if (!table)
907 		goto out;
908 
909 	rproc->table_csum = crc32(0, table, tablesz);
910 
911 	/*
912 	 * Create a copy of the resource table. When a virtio device starts
913 	 * and calls vring_new_virtqueue() the address of the allocated vring
914 	 * will be stored in the cached_table. Before the device is started,
915 	 * cached_table will be copied into devic memory.
916 	 */
917 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
918 	if (!rproc->cached_table)
919 		goto out;
920 
921 	rproc->table_ptr = rproc->cached_table;
922 
923 	/* count the number of notify-ids */
924 	rproc->max_notifyid = -1;
925 	ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
926 	if (ret)
927 		goto out;
928 
929 	/* look for virtio devices and register them */
930 	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
931 
932 out:
933 	release_firmware(fw);
934 	/* allow rproc_del() contexts, if any, to proceed */
935 	complete_all(&rproc->firmware_loading_complete);
936 }
937 
938 static int rproc_add_virtio_devices(struct rproc *rproc)
939 {
940 	int ret;
941 
942 	/* rproc_del() calls must wait until async loader completes */
943 	init_completion(&rproc->firmware_loading_complete);
944 
945 	/*
946 	 * We must retrieve early virtio configuration info from
947 	 * the firmware (e.g. whether to register a virtio device,
948 	 * what virtio features does it support, ...).
949 	 *
950 	 * We're initiating an asynchronous firmware loading, so we can
951 	 * be built-in kernel code, without hanging the boot process.
952 	 */
953 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
954 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
955 				      rproc, rproc_fw_config_virtio);
956 	if (ret < 0) {
957 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
958 		complete_all(&rproc->firmware_loading_complete);
959 	}
960 
961 	return ret;
962 }
963 
964 /**
965  * rproc_trigger_recovery() - recover a remoteproc
966  * @rproc: the remote processor
967  *
968  * The recovery is done by reseting all the virtio devices, that way all the
969  * rpmsg drivers will be reseted along with the remote processor making the
970  * remoteproc functional again.
971  *
972  * This function can sleep, so it cannot be called from atomic context.
973  */
974 int rproc_trigger_recovery(struct rproc *rproc)
975 {
976 	struct rproc_vdev *rvdev, *rvtmp;
977 
978 	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
979 
980 	init_completion(&rproc->crash_comp);
981 
982 	/* clean up remote vdev entries */
983 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
984 		rproc_remove_virtio_dev(rvdev);
985 
986 	/* wait until there is no more rproc users */
987 	wait_for_completion(&rproc->crash_comp);
988 
989 	/* Free the copy of the resource table */
990 	kfree(rproc->cached_table);
991 
992 	return rproc_add_virtio_devices(rproc);
993 }
994 
995 /**
996  * rproc_crash_handler_work() - handle a crash
997  *
998  * This function needs to handle everything related to a crash, like cpu
999  * registers and stack dump, information to help to debug the fatal error, etc.
1000  */
1001 static void rproc_crash_handler_work(struct work_struct *work)
1002 {
1003 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1004 	struct device *dev = &rproc->dev;
1005 
1006 	dev_dbg(dev, "enter %s\n", __func__);
1007 
1008 	mutex_lock(&rproc->lock);
1009 
1010 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1011 		/* handle only the first crash detected */
1012 		mutex_unlock(&rproc->lock);
1013 		return;
1014 	}
1015 
1016 	rproc->state = RPROC_CRASHED;
1017 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1018 		rproc->name);
1019 
1020 	mutex_unlock(&rproc->lock);
1021 
1022 	if (!rproc->recovery_disabled)
1023 		rproc_trigger_recovery(rproc);
1024 }
1025 
1026 /**
1027  * rproc_boot() - boot a remote processor
1028  * @rproc: handle of a remote processor
1029  *
1030  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1031  *
1032  * If the remote processor is already powered on, this function immediately
1033  * returns (successfully).
1034  *
1035  * Returns 0 on success, and an appropriate error value otherwise.
1036  */
1037 int rproc_boot(struct rproc *rproc)
1038 {
1039 	const struct firmware *firmware_p;
1040 	struct device *dev;
1041 	int ret;
1042 
1043 	if (!rproc) {
1044 		pr_err("invalid rproc handle\n");
1045 		return -EINVAL;
1046 	}
1047 
1048 	dev = &rproc->dev;
1049 
1050 	ret = mutex_lock_interruptible(&rproc->lock);
1051 	if (ret) {
1052 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1053 		return ret;
1054 	}
1055 
1056 	/* loading a firmware is required */
1057 	if (!rproc->firmware) {
1058 		dev_err(dev, "%s: no firmware to load\n", __func__);
1059 		ret = -EINVAL;
1060 		goto unlock_mutex;
1061 	}
1062 
1063 	/* prevent underlying implementation from being removed */
1064 	if (!try_module_get(dev->parent->driver->owner)) {
1065 		dev_err(dev, "%s: can't get owner\n", __func__);
1066 		ret = -EINVAL;
1067 		goto unlock_mutex;
1068 	}
1069 
1070 	/* skip the boot process if rproc is already powered up */
1071 	if (atomic_inc_return(&rproc->power) > 1) {
1072 		ret = 0;
1073 		goto unlock_mutex;
1074 	}
1075 
1076 	dev_info(dev, "powering up %s\n", rproc->name);
1077 
1078 	/* load firmware */
1079 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1080 	if (ret < 0) {
1081 		dev_err(dev, "request_firmware failed: %d\n", ret);
1082 		goto downref_rproc;
1083 	}
1084 
1085 	ret = rproc_fw_boot(rproc, firmware_p);
1086 
1087 	release_firmware(firmware_p);
1088 
1089 downref_rproc:
1090 	if (ret) {
1091 		module_put(dev->parent->driver->owner);
1092 		atomic_dec(&rproc->power);
1093 	}
1094 unlock_mutex:
1095 	mutex_unlock(&rproc->lock);
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL(rproc_boot);
1099 
1100 /**
1101  * rproc_shutdown() - power off the remote processor
1102  * @rproc: the remote processor
1103  *
1104  * Power off a remote processor (previously booted with rproc_boot()).
1105  *
1106  * In case @rproc is still being used by an additional user(s), then
1107  * this function will just decrement the power refcount and exit,
1108  * without really powering off the device.
1109  *
1110  * Every call to rproc_boot() must (eventually) be accompanied by a call
1111  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1112  *
1113  * Notes:
1114  * - we're not decrementing the rproc's refcount, only the power refcount.
1115  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1116  *   returns, and users can still use it with a subsequent rproc_boot(), if
1117  *   needed.
1118  */
1119 void rproc_shutdown(struct rproc *rproc)
1120 {
1121 	struct device *dev = &rproc->dev;
1122 	int ret;
1123 
1124 	ret = mutex_lock_interruptible(&rproc->lock);
1125 	if (ret) {
1126 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1127 		return;
1128 	}
1129 
1130 	/* if the remote proc is still needed, bail out */
1131 	if (!atomic_dec_and_test(&rproc->power))
1132 		goto out;
1133 
1134 	/* power off the remote processor */
1135 	ret = rproc->ops->stop(rproc);
1136 	if (ret) {
1137 		atomic_inc(&rproc->power);
1138 		dev_err(dev, "can't stop rproc: %d\n", ret);
1139 		goto out;
1140 	}
1141 
1142 	/* clean up all acquired resources */
1143 	rproc_resource_cleanup(rproc);
1144 
1145 	rproc_disable_iommu(rproc);
1146 
1147 	/* Give the next start a clean resource table */
1148 	rproc->table_ptr = rproc->cached_table;
1149 
1150 	/* if in crash state, unlock crash handler */
1151 	if (rproc->state == RPROC_CRASHED)
1152 		complete_all(&rproc->crash_comp);
1153 
1154 	rproc->state = RPROC_OFFLINE;
1155 
1156 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1157 
1158 out:
1159 	mutex_unlock(&rproc->lock);
1160 	if (!ret)
1161 		module_put(dev->parent->driver->owner);
1162 }
1163 EXPORT_SYMBOL(rproc_shutdown);
1164 
1165 /**
1166  * rproc_add() - register a remote processor
1167  * @rproc: the remote processor handle to register
1168  *
1169  * Registers @rproc with the remoteproc framework, after it has been
1170  * allocated with rproc_alloc().
1171  *
1172  * This is called by the platform-specific rproc implementation, whenever
1173  * a new remote processor device is probed.
1174  *
1175  * Returns 0 on success and an appropriate error code otherwise.
1176  *
1177  * Note: this function initiates an asynchronous firmware loading
1178  * context, which will look for virtio devices supported by the rproc's
1179  * firmware.
1180  *
1181  * If found, those virtio devices will be created and added, so as a result
1182  * of registering this remote processor, additional virtio drivers might be
1183  * probed.
1184  */
1185 int rproc_add(struct rproc *rproc)
1186 {
1187 	struct device *dev = &rproc->dev;
1188 	int ret;
1189 
1190 	ret = device_add(dev);
1191 	if (ret < 0)
1192 		return ret;
1193 
1194 	dev_info(dev, "%s is available\n", rproc->name);
1195 
1196 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1197 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1198 
1199 	/* create debugfs entries */
1200 	rproc_create_debug_dir(rproc);
1201 
1202 	return rproc_add_virtio_devices(rproc);
1203 }
1204 EXPORT_SYMBOL(rproc_add);
1205 
1206 /**
1207  * rproc_type_release() - release a remote processor instance
1208  * @dev: the rproc's device
1209  *
1210  * This function should _never_ be called directly.
1211  *
1212  * It will be called by the driver core when no one holds a valid pointer
1213  * to @dev anymore.
1214  */
1215 static void rproc_type_release(struct device *dev)
1216 {
1217 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1218 
1219 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1220 
1221 	rproc_delete_debug_dir(rproc);
1222 
1223 	idr_destroy(&rproc->notifyids);
1224 
1225 	if (rproc->index >= 0)
1226 		ida_simple_remove(&rproc_dev_index, rproc->index);
1227 
1228 	kfree(rproc);
1229 }
1230 
1231 static struct device_type rproc_type = {
1232 	.name		= "remoteproc",
1233 	.release	= rproc_type_release,
1234 };
1235 
1236 /**
1237  * rproc_alloc() - allocate a remote processor handle
1238  * @dev: the underlying device
1239  * @name: name of this remote processor
1240  * @ops: platform-specific handlers (mainly start/stop)
1241  * @firmware: name of firmware file to load, can be NULL
1242  * @len: length of private data needed by the rproc driver (in bytes)
1243  *
1244  * Allocates a new remote processor handle, but does not register
1245  * it yet. if @firmware is NULL, a default name is used.
1246  *
1247  * This function should be used by rproc implementations during initialization
1248  * of the remote processor.
1249  *
1250  * After creating an rproc handle using this function, and when ready,
1251  * implementations should then call rproc_add() to complete
1252  * the registration of the remote processor.
1253  *
1254  * On success the new rproc is returned, and on failure, NULL.
1255  *
1256  * Note: _never_ directly deallocate @rproc, even if it was not registered
1257  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1258  */
1259 struct rproc *rproc_alloc(struct device *dev, const char *name,
1260 				const struct rproc_ops *ops,
1261 				const char *firmware, int len)
1262 {
1263 	struct rproc *rproc;
1264 	char *p, *template = "rproc-%s-fw";
1265 	int name_len = 0;
1266 
1267 	if (!dev || !name || !ops)
1268 		return NULL;
1269 
1270 	if (!firmware)
1271 		/*
1272 		 * Make room for default firmware name (minus %s plus '\0').
1273 		 * If the caller didn't pass in a firmware name then
1274 		 * construct a default name.  We're already glomming 'len'
1275 		 * bytes onto the end of the struct rproc allocation, so do
1276 		 * a few more for the default firmware name (but only if
1277 		 * the caller doesn't pass one).
1278 		 */
1279 		name_len = strlen(name) + strlen(template) - 2 + 1;
1280 
1281 	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1282 	if (!rproc) {
1283 		dev_err(dev, "%s: kzalloc failed\n", __func__);
1284 		return NULL;
1285 	}
1286 
1287 	if (!firmware) {
1288 		p = (char *)rproc + sizeof(struct rproc) + len;
1289 		snprintf(p, name_len, template, name);
1290 	} else {
1291 		p = (char *)firmware;
1292 	}
1293 
1294 	rproc->firmware = p;
1295 	rproc->name = name;
1296 	rproc->ops = ops;
1297 	rproc->priv = &rproc[1];
1298 
1299 	device_initialize(&rproc->dev);
1300 	rproc->dev.parent = dev;
1301 	rproc->dev.type = &rproc_type;
1302 
1303 	/* Assign a unique device index and name */
1304 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1305 	if (rproc->index < 0) {
1306 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1307 		put_device(&rproc->dev);
1308 		return NULL;
1309 	}
1310 
1311 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1312 
1313 	atomic_set(&rproc->power, 0);
1314 
1315 	/* Set ELF as the default fw_ops handler */
1316 	rproc->fw_ops = &rproc_elf_fw_ops;
1317 
1318 	mutex_init(&rproc->lock);
1319 
1320 	idr_init(&rproc->notifyids);
1321 
1322 	INIT_LIST_HEAD(&rproc->carveouts);
1323 	INIT_LIST_HEAD(&rproc->mappings);
1324 	INIT_LIST_HEAD(&rproc->traces);
1325 	INIT_LIST_HEAD(&rproc->rvdevs);
1326 
1327 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1328 	init_completion(&rproc->crash_comp);
1329 
1330 	rproc->state = RPROC_OFFLINE;
1331 
1332 	return rproc;
1333 }
1334 EXPORT_SYMBOL(rproc_alloc);
1335 
1336 /**
1337  * rproc_put() - unroll rproc_alloc()
1338  * @rproc: the remote processor handle
1339  *
1340  * This function decrements the rproc dev refcount.
1341  *
1342  * If no one holds any reference to rproc anymore, then its refcount would
1343  * now drop to zero, and it would be freed.
1344  */
1345 void rproc_put(struct rproc *rproc)
1346 {
1347 	put_device(&rproc->dev);
1348 }
1349 EXPORT_SYMBOL(rproc_put);
1350 
1351 /**
1352  * rproc_del() - unregister a remote processor
1353  * @rproc: rproc handle to unregister
1354  *
1355  * This function should be called when the platform specific rproc
1356  * implementation decides to remove the rproc device. it should
1357  * _only_ be called if a previous invocation of rproc_add()
1358  * has completed successfully.
1359  *
1360  * After rproc_del() returns, @rproc isn't freed yet, because
1361  * of the outstanding reference created by rproc_alloc. To decrement that
1362  * one last refcount, one still needs to call rproc_put().
1363  *
1364  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1365  */
1366 int rproc_del(struct rproc *rproc)
1367 {
1368 	struct rproc_vdev *rvdev, *tmp;
1369 
1370 	if (!rproc)
1371 		return -EINVAL;
1372 
1373 	/* if rproc is just being registered, wait */
1374 	wait_for_completion(&rproc->firmware_loading_complete);
1375 
1376 	/* clean up remote vdev entries */
1377 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1378 		rproc_remove_virtio_dev(rvdev);
1379 
1380 	/* Free the copy of the resource table */
1381 	kfree(rproc->cached_table);
1382 
1383 	device_del(&rproc->dev);
1384 
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL(rproc_del);
1388 
1389 /**
1390  * rproc_report_crash() - rproc crash reporter function
1391  * @rproc: remote processor
1392  * @type: crash type
1393  *
1394  * This function must be called every time a crash is detected by the low-level
1395  * drivers implementing a specific remoteproc. This should not be called from a
1396  * non-remoteproc driver.
1397  *
1398  * This function can be called from atomic/interrupt context.
1399  */
1400 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1401 {
1402 	if (!rproc) {
1403 		pr_err("NULL rproc pointer\n");
1404 		return;
1405 	}
1406 
1407 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1408 		rproc->name, rproc_crash_to_string(type));
1409 
1410 	/* create a new task to handle the error */
1411 	schedule_work(&rproc->crash_handler);
1412 }
1413 EXPORT_SYMBOL(rproc_report_crash);
1414 
1415 static int __init remoteproc_init(void)
1416 {
1417 	rproc_init_debugfs();
1418 
1419 	return 0;
1420 }
1421 module_init(remoteproc_init);
1422 
1423 static void __exit remoteproc_exit(void)
1424 {
1425 	rproc_exit_debugfs();
1426 }
1427 module_exit(remoteproc_exit);
1428 
1429 MODULE_LICENSE("GPL v2");
1430 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1431