1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/slab.h> 25 #include <linux/mutex.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/string.h> 29 #include <linux/debugfs.h> 30 #include <linux/rculist.h> 31 #include <linux/remoteproc.h> 32 #include <linux/iommu.h> 33 #include <linux/idr.h> 34 #include <linux/elf.h> 35 #include <linux/crc32.h> 36 #include <linux/of_reserved_mem.h> 37 #include <linux/virtio_ids.h> 38 #include <linux/virtio_ring.h> 39 #include <asm/byteorder.h> 40 #include <linux/platform_device.h> 41 42 #include "remoteproc_internal.h" 43 44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 45 46 static DEFINE_MUTEX(rproc_list_mutex); 47 static LIST_HEAD(rproc_list); 48 static struct notifier_block rproc_panic_nb; 49 50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 51 void *, int offset, int avail); 52 53 static int rproc_alloc_carveout(struct rproc *rproc, 54 struct rproc_mem_entry *mem); 55 static int rproc_release_carveout(struct rproc *rproc, 56 struct rproc_mem_entry *mem); 57 58 /* Unique indices for remoteproc devices */ 59 static DEFINE_IDA(rproc_dev_index); 60 static struct workqueue_struct *rproc_recovery_wq; 61 62 static const char * const rproc_crash_names[] = { 63 [RPROC_MMUFAULT] = "mmufault", 64 [RPROC_WATCHDOG] = "watchdog", 65 [RPROC_FATAL_ERROR] = "fatal error", 66 }; 67 68 /* translate rproc_crash_type to string */ 69 static const char *rproc_crash_to_string(enum rproc_crash_type type) 70 { 71 if (type < ARRAY_SIZE(rproc_crash_names)) 72 return rproc_crash_names[type]; 73 return "unknown"; 74 } 75 76 /* 77 * This is the IOMMU fault handler we register with the IOMMU API 78 * (when relevant; not all remote processors access memory through 79 * an IOMMU). 80 * 81 * IOMMU core will invoke this handler whenever the remote processor 82 * will try to access an unmapped device address. 83 */ 84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 85 unsigned long iova, int flags, void *token) 86 { 87 struct rproc *rproc = token; 88 89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 90 91 rproc_report_crash(rproc, RPROC_MMUFAULT); 92 93 /* 94 * Let the iommu core know we're not really handling this fault; 95 * we just used it as a recovery trigger. 96 */ 97 return -ENOSYS; 98 } 99 100 static int rproc_enable_iommu(struct rproc *rproc) 101 { 102 struct iommu_domain *domain; 103 struct device *dev = rproc->dev.parent; 104 int ret; 105 106 if (!rproc->has_iommu) { 107 dev_dbg(dev, "iommu not present\n"); 108 return 0; 109 } 110 111 domain = iommu_domain_alloc(dev->bus); 112 if (!domain) { 113 dev_err(dev, "can't alloc iommu domain\n"); 114 return -ENOMEM; 115 } 116 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 118 119 ret = iommu_attach_device(domain, dev); 120 if (ret) { 121 dev_err(dev, "can't attach iommu device: %d\n", ret); 122 goto free_domain; 123 } 124 125 rproc->domain = domain; 126 127 return 0; 128 129 free_domain: 130 iommu_domain_free(domain); 131 return ret; 132 } 133 134 static void rproc_disable_iommu(struct rproc *rproc) 135 { 136 struct iommu_domain *domain = rproc->domain; 137 struct device *dev = rproc->dev.parent; 138 139 if (!domain) 140 return; 141 142 iommu_detach_device(domain, dev); 143 iommu_domain_free(domain); 144 } 145 146 phys_addr_t rproc_va_to_pa(void *cpu_addr) 147 { 148 /* 149 * Return physical address according to virtual address location 150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 151 * - in kernel: if region allocated in generic dma memory pool 152 */ 153 if (is_vmalloc_addr(cpu_addr)) { 154 return page_to_phys(vmalloc_to_page(cpu_addr)) + 155 offset_in_page(cpu_addr); 156 } 157 158 WARN_ON(!virt_addr_valid(cpu_addr)); 159 return virt_to_phys(cpu_addr); 160 } 161 EXPORT_SYMBOL(rproc_va_to_pa); 162 163 /** 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 165 * @rproc: handle of a remote processor 166 * @da: remoteproc device address to translate 167 * @len: length of the memory region @da is pointing to 168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory 169 * 170 * Some remote processors will ask us to allocate them physically contiguous 171 * memory regions (which we call "carveouts"), and map them to specific 172 * device addresses (which are hardcoded in the firmware). They may also have 173 * dedicated memory regions internal to the processors, and use them either 174 * exclusively or alongside carveouts. 175 * 176 * They may then ask us to copy objects into specific device addresses (e.g. 177 * code/data sections) or expose us certain symbols in other device address 178 * (e.g. their trace buffer). 179 * 180 * This function is a helper function with which we can go over the allocated 181 * carveouts and translate specific device addresses to kernel virtual addresses 182 * so we can access the referenced memory. This function also allows to perform 183 * translations on the internal remoteproc memory regions through a platform 184 * implementation specific da_to_va ops, if present. 185 * 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 187 * but only on kernel direct mapped RAM memory. Instead, we're just using 188 * here the output of the DMA API for the carveouts, which should be more 189 * correct. 190 * 191 * Return: a valid kernel address on success or NULL on failure 192 */ 193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 194 { 195 struct rproc_mem_entry *carveout; 196 void *ptr = NULL; 197 198 if (rproc->ops->da_to_va) { 199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 200 if (ptr) 201 goto out; 202 } 203 204 list_for_each_entry(carveout, &rproc->carveouts, node) { 205 int offset = da - carveout->da; 206 207 /* Verify that carveout is allocated */ 208 if (!carveout->va) 209 continue; 210 211 /* try next carveout if da is too small */ 212 if (offset < 0) 213 continue; 214 215 /* try next carveout if da is too large */ 216 if (offset + len > carveout->len) 217 continue; 218 219 ptr = carveout->va + offset; 220 221 if (is_iomem) 222 *is_iomem = carveout->is_iomem; 223 224 break; 225 } 226 227 out: 228 return ptr; 229 } 230 EXPORT_SYMBOL(rproc_da_to_va); 231 232 /** 233 * rproc_find_carveout_by_name() - lookup the carveout region by a name 234 * @rproc: handle of a remote processor 235 * @name: carveout name to find (format string) 236 * @...: optional parameters matching @name string 237 * 238 * Platform driver has the capability to register some pre-allacoted carveout 239 * (physically contiguous memory regions) before rproc firmware loading and 240 * associated resource table analysis. These regions may be dedicated memory 241 * regions internal to the coprocessor or specified DDR region with specific 242 * attributes 243 * 244 * This function is a helper function with which we can go over the 245 * allocated carveouts and return associated region characteristics like 246 * coprocessor address, length or processor virtual address. 247 * 248 * Return: a valid pointer on carveout entry on success or NULL on failure. 249 */ 250 __printf(2, 3) 251 struct rproc_mem_entry * 252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 253 { 254 va_list args; 255 char _name[32]; 256 struct rproc_mem_entry *carveout, *mem = NULL; 257 258 if (!name) 259 return NULL; 260 261 va_start(args, name); 262 vsnprintf(_name, sizeof(_name), name, args); 263 va_end(args); 264 265 list_for_each_entry(carveout, &rproc->carveouts, node) { 266 /* Compare carveout and requested names */ 267 if (!strcmp(carveout->name, _name)) { 268 mem = carveout; 269 break; 270 } 271 } 272 273 return mem; 274 } 275 276 /** 277 * rproc_check_carveout_da() - Check specified carveout da configuration 278 * @rproc: handle of a remote processor 279 * @mem: pointer on carveout to check 280 * @da: area device address 281 * @len: associated area size 282 * 283 * This function is a helper function to verify requested device area (couple 284 * da, len) is part of specified carveout. 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 286 * checked. 287 * 288 * Return: 0 if carveout matches request else error 289 */ 290 static int rproc_check_carveout_da(struct rproc *rproc, 291 struct rproc_mem_entry *mem, u32 da, u32 len) 292 { 293 struct device *dev = &rproc->dev; 294 int delta; 295 296 /* Check requested resource length */ 297 if (len > mem->len) { 298 dev_err(dev, "Registered carveout doesn't fit len request\n"); 299 return -EINVAL; 300 } 301 302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 303 /* Address doesn't match registered carveout configuration */ 304 return -EINVAL; 305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 306 delta = da - mem->da; 307 308 /* Check requested resource belongs to registered carveout */ 309 if (delta < 0) { 310 dev_err(dev, 311 "Registered carveout doesn't fit da request\n"); 312 return -EINVAL; 313 } 314 315 if (delta + len > mem->len) { 316 dev_err(dev, 317 "Registered carveout doesn't fit len request\n"); 318 return -EINVAL; 319 } 320 } 321 322 return 0; 323 } 324 325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 326 { 327 struct rproc *rproc = rvdev->rproc; 328 struct device *dev = &rproc->dev; 329 struct rproc_vring *rvring = &rvdev->vring[i]; 330 struct fw_rsc_vdev *rsc; 331 int ret, notifyid; 332 struct rproc_mem_entry *mem; 333 size_t size; 334 335 /* actual size of vring (in bytes) */ 336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); 337 338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 339 340 /* Search for pre-registered carveout */ 341 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 342 i); 343 if (mem) { 344 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 345 return -ENOMEM; 346 } else { 347 /* Register carveout in list */ 348 mem = rproc_mem_entry_init(dev, NULL, 0, 349 size, rsc->vring[i].da, 350 rproc_alloc_carveout, 351 rproc_release_carveout, 352 "vdev%dvring%d", 353 rvdev->index, i); 354 if (!mem) { 355 dev_err(dev, "Can't allocate memory entry structure\n"); 356 return -ENOMEM; 357 } 358 359 rproc_add_carveout(rproc, mem); 360 } 361 362 /* 363 * Assign an rproc-wide unique index for this vring 364 * TODO: assign a notifyid for rvdev updates as well 365 * TODO: support predefined notifyids (via resource table) 366 */ 367 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 368 if (ret < 0) { 369 dev_err(dev, "idr_alloc failed: %d\n", ret); 370 return ret; 371 } 372 notifyid = ret; 373 374 /* Potentially bump max_notifyid */ 375 if (notifyid > rproc->max_notifyid) 376 rproc->max_notifyid = notifyid; 377 378 rvring->notifyid = notifyid; 379 380 /* Let the rproc know the notifyid of this vring.*/ 381 rsc->vring[i].notifyid = notifyid; 382 return 0; 383 } 384 385 int 386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 387 { 388 struct rproc *rproc = rvdev->rproc; 389 struct device *dev = &rproc->dev; 390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 391 struct rproc_vring *rvring = &rvdev->vring[i]; 392 393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 394 i, vring->da, vring->num, vring->align); 395 396 /* verify queue size and vring alignment are sane */ 397 if (!vring->num || !vring->align) { 398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 399 vring->num, vring->align); 400 return -EINVAL; 401 } 402 403 rvring->num = vring->num; 404 rvring->align = vring->align; 405 rvring->rvdev = rvdev; 406 407 return 0; 408 } 409 410 void rproc_free_vring(struct rproc_vring *rvring) 411 { 412 struct rproc *rproc = rvring->rvdev->rproc; 413 int idx = rvring - rvring->rvdev->vring; 414 struct fw_rsc_vdev *rsc; 415 416 idr_remove(&rproc->notifyids, rvring->notifyid); 417 418 /* 419 * At this point rproc_stop() has been called and the installed resource 420 * table in the remote processor memory may no longer be accessible. As 421 * such and as per rproc_stop(), rproc->table_ptr points to the cached 422 * resource table (rproc->cached_table). The cached resource table is 423 * only available when a remote processor has been booted by the 424 * remoteproc core, otherwise it is NULL. 425 * 426 * Based on the above, reset the virtio device section in the cached 427 * resource table only if there is one to work with. 428 */ 429 if (rproc->table_ptr) { 430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 431 rsc->vring[idx].da = 0; 432 rsc->vring[idx].notifyid = -1; 433 } 434 } 435 436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) 437 { 438 if (rvdev && rproc) 439 list_add_tail(&rvdev->node, &rproc->rvdevs); 440 } 441 442 void rproc_remove_rvdev(struct rproc_vdev *rvdev) 443 { 444 if (rvdev) 445 list_del(&rvdev->node); 446 } 447 /** 448 * rproc_handle_vdev() - handle a vdev fw resource 449 * @rproc: the remote processor 450 * @ptr: the vring resource descriptor 451 * @offset: offset of the resource entry 452 * @avail: size of available data (for sanity checking the image) 453 * 454 * This resource entry requests the host to statically register a virtio 455 * device (vdev), and setup everything needed to support it. It contains 456 * everything needed to make it possible: the virtio device id, virtio 457 * device features, vrings information, virtio config space, etc... 458 * 459 * Before registering the vdev, the vrings are allocated from non-cacheable 460 * physically contiguous memory. Currently we only support two vrings per 461 * remote processor (temporary limitation). We might also want to consider 462 * doing the vring allocation only later when ->find_vqs() is invoked, and 463 * then release them upon ->del_vqs(). 464 * 465 * Note: @da is currently not really handled correctly: we dynamically 466 * allocate it using the DMA API, ignoring requested hard coded addresses, 467 * and we don't take care of any required IOMMU programming. This is all 468 * going to be taken care of when the generic iommu-based DMA API will be 469 * merged. Meanwhile, statically-addressed iommu-based firmware images should 470 * use RSC_DEVMEM resource entries to map their required @da to the physical 471 * address of their base CMA region (ouch, hacky!). 472 * 473 * Return: 0 on success, or an appropriate error code otherwise 474 */ 475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 476 int offset, int avail) 477 { 478 struct fw_rsc_vdev *rsc = ptr; 479 struct device *dev = &rproc->dev; 480 struct rproc_vdev *rvdev; 481 size_t rsc_size; 482 struct rproc_vdev_data rvdev_data; 483 struct platform_device *pdev; 484 485 /* make sure resource isn't truncated */ 486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); 487 if (size_add(rsc_size, rsc->config_len) > avail) { 488 dev_err(dev, "vdev rsc is truncated\n"); 489 return -EINVAL; 490 } 491 492 /* make sure reserved bytes are zeroes */ 493 if (rsc->reserved[0] || rsc->reserved[1]) { 494 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 495 return -EINVAL; 496 } 497 498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 500 501 /* we currently support only two vrings per rvdev */ 502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 504 return -EINVAL; 505 } 506 507 rvdev_data.id = rsc->id; 508 rvdev_data.index = rproc->nb_vdev++; 509 rvdev_data.rsc_offset = offset; 510 rvdev_data.rsc = rsc; 511 512 pdev = platform_device_register_data(dev, "rproc-virtio", rvdev_data.index, &rvdev_data, 513 sizeof(rvdev_data)); 514 if (IS_ERR(pdev)) { 515 dev_err(dev, "failed to create rproc-virtio device\n"); 516 return PTR_ERR(pdev); 517 } 518 519 return 0; 520 } 521 522 /** 523 * rproc_handle_trace() - handle a shared trace buffer resource 524 * @rproc: the remote processor 525 * @ptr: the trace resource descriptor 526 * @offset: offset of the resource entry 527 * @avail: size of available data (for sanity checking the image) 528 * 529 * In case the remote processor dumps trace logs into memory, 530 * export it via debugfs. 531 * 532 * Currently, the 'da' member of @rsc should contain the device address 533 * where the remote processor is dumping the traces. Later we could also 534 * support dynamically allocating this address using the generic 535 * DMA API (but currently there isn't a use case for that). 536 * 537 * Return: 0 on success, or an appropriate error code otherwise 538 */ 539 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 540 int offset, int avail) 541 { 542 struct fw_rsc_trace *rsc = ptr; 543 struct rproc_debug_trace *trace; 544 struct device *dev = &rproc->dev; 545 char name[15]; 546 547 if (sizeof(*rsc) > avail) { 548 dev_err(dev, "trace rsc is truncated\n"); 549 return -EINVAL; 550 } 551 552 /* make sure reserved bytes are zeroes */ 553 if (rsc->reserved) { 554 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 555 return -EINVAL; 556 } 557 558 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 559 if (!trace) 560 return -ENOMEM; 561 562 /* set the trace buffer dma properties */ 563 trace->trace_mem.len = rsc->len; 564 trace->trace_mem.da = rsc->da; 565 566 /* set pointer on rproc device */ 567 trace->rproc = rproc; 568 569 /* make sure snprintf always null terminates, even if truncating */ 570 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 571 572 /* create the debugfs entry */ 573 trace->tfile = rproc_create_trace_file(name, rproc, trace); 574 575 list_add_tail(&trace->node, &rproc->traces); 576 577 rproc->num_traces++; 578 579 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 580 name, rsc->da, rsc->len); 581 582 return 0; 583 } 584 585 /** 586 * rproc_handle_devmem() - handle devmem resource entry 587 * @rproc: remote processor handle 588 * @ptr: the devmem resource entry 589 * @offset: offset of the resource entry 590 * @avail: size of available data (for sanity checking the image) 591 * 592 * Remote processors commonly need to access certain on-chip peripherals. 593 * 594 * Some of these remote processors access memory via an iommu device, 595 * and might require us to configure their iommu before they can access 596 * the on-chip peripherals they need. 597 * 598 * This resource entry is a request to map such a peripheral device. 599 * 600 * These devmem entries will contain the physical address of the device in 601 * the 'pa' member. If a specific device address is expected, then 'da' will 602 * contain it (currently this is the only use case supported). 'len' will 603 * contain the size of the physical region we need to map. 604 * 605 * Currently we just "trust" those devmem entries to contain valid physical 606 * addresses, but this is going to change: we want the implementations to 607 * tell us ranges of physical addresses the firmware is allowed to request, 608 * and not allow firmwares to request access to physical addresses that 609 * are outside those ranges. 610 * 611 * Return: 0 on success, or an appropriate error code otherwise 612 */ 613 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 614 int offset, int avail) 615 { 616 struct fw_rsc_devmem *rsc = ptr; 617 struct rproc_mem_entry *mapping; 618 struct device *dev = &rproc->dev; 619 int ret; 620 621 /* no point in handling this resource without a valid iommu domain */ 622 if (!rproc->domain) 623 return -EINVAL; 624 625 if (sizeof(*rsc) > avail) { 626 dev_err(dev, "devmem rsc is truncated\n"); 627 return -EINVAL; 628 } 629 630 /* make sure reserved bytes are zeroes */ 631 if (rsc->reserved) { 632 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 633 return -EINVAL; 634 } 635 636 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 637 if (!mapping) 638 return -ENOMEM; 639 640 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 641 if (ret) { 642 dev_err(dev, "failed to map devmem: %d\n", ret); 643 goto out; 644 } 645 646 /* 647 * We'll need this info later when we'll want to unmap everything 648 * (e.g. on shutdown). 649 * 650 * We can't trust the remote processor not to change the resource 651 * table, so we must maintain this info independently. 652 */ 653 mapping->da = rsc->da; 654 mapping->len = rsc->len; 655 list_add_tail(&mapping->node, &rproc->mappings); 656 657 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 658 rsc->pa, rsc->da, rsc->len); 659 660 return 0; 661 662 out: 663 kfree(mapping); 664 return ret; 665 } 666 667 /** 668 * rproc_alloc_carveout() - allocated specified carveout 669 * @rproc: rproc handle 670 * @mem: the memory entry to allocate 671 * 672 * This function allocate specified memory entry @mem using 673 * dma_alloc_coherent() as default allocator 674 * 675 * Return: 0 on success, or an appropriate error code otherwise 676 */ 677 static int rproc_alloc_carveout(struct rproc *rproc, 678 struct rproc_mem_entry *mem) 679 { 680 struct rproc_mem_entry *mapping = NULL; 681 struct device *dev = &rproc->dev; 682 dma_addr_t dma; 683 void *va; 684 int ret; 685 686 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 687 if (!va) { 688 dev_err(dev->parent, 689 "failed to allocate dma memory: len 0x%zx\n", 690 mem->len); 691 return -ENOMEM; 692 } 693 694 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 695 va, &dma, mem->len); 696 697 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 698 /* 699 * Check requested da is equal to dma address 700 * and print a warn message in case of missalignment. 701 * Don't stop rproc_start sequence as coprocessor may 702 * build pa to da translation on its side. 703 */ 704 if (mem->da != (u32)dma) 705 dev_warn(dev->parent, 706 "Allocated carveout doesn't fit device address request\n"); 707 } 708 709 /* 710 * Ok, this is non-standard. 711 * 712 * Sometimes we can't rely on the generic iommu-based DMA API 713 * to dynamically allocate the device address and then set the IOMMU 714 * tables accordingly, because some remote processors might 715 * _require_ us to use hard coded device addresses that their 716 * firmware was compiled with. 717 * 718 * In this case, we must use the IOMMU API directly and map 719 * the memory to the device address as expected by the remote 720 * processor. 721 * 722 * Obviously such remote processor devices should not be configured 723 * to use the iommu-based DMA API: we expect 'dma' to contain the 724 * physical address in this case. 725 */ 726 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 727 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 728 if (!mapping) { 729 ret = -ENOMEM; 730 goto dma_free; 731 } 732 733 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 734 mem->flags); 735 if (ret) { 736 dev_err(dev, "iommu_map failed: %d\n", ret); 737 goto free_mapping; 738 } 739 740 /* 741 * We'll need this info later when we'll want to unmap 742 * everything (e.g. on shutdown). 743 * 744 * We can't trust the remote processor not to change the 745 * resource table, so we must maintain this info independently. 746 */ 747 mapping->da = mem->da; 748 mapping->len = mem->len; 749 list_add_tail(&mapping->node, &rproc->mappings); 750 751 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 752 mem->da, &dma); 753 } 754 755 if (mem->da == FW_RSC_ADDR_ANY) { 756 /* Update device address as undefined by requester */ 757 if ((u64)dma & HIGH_BITS_MASK) 758 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 759 760 mem->da = (u32)dma; 761 } 762 763 mem->dma = dma; 764 mem->va = va; 765 766 return 0; 767 768 free_mapping: 769 kfree(mapping); 770 dma_free: 771 dma_free_coherent(dev->parent, mem->len, va, dma); 772 return ret; 773 } 774 775 /** 776 * rproc_release_carveout() - release acquired carveout 777 * @rproc: rproc handle 778 * @mem: the memory entry to release 779 * 780 * This function releases specified memory entry @mem allocated via 781 * rproc_alloc_carveout() function by @rproc. 782 * 783 * Return: 0 on success, or an appropriate error code otherwise 784 */ 785 static int rproc_release_carveout(struct rproc *rproc, 786 struct rproc_mem_entry *mem) 787 { 788 struct device *dev = &rproc->dev; 789 790 /* clean up carveout allocations */ 791 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 792 return 0; 793 } 794 795 /** 796 * rproc_handle_carveout() - handle phys contig memory allocation requests 797 * @rproc: rproc handle 798 * @ptr: the resource entry 799 * @offset: offset of the resource entry 800 * @avail: size of available data (for image validation) 801 * 802 * This function will handle firmware requests for allocation of physically 803 * contiguous memory regions. 804 * 805 * These request entries should come first in the firmware's resource table, 806 * as other firmware entries might request placing other data objects inside 807 * these memory regions (e.g. data/code segments, trace resource entries, ...). 808 * 809 * Allocating memory this way helps utilizing the reserved physical memory 810 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 811 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 812 * pressure is important; it may have a substantial impact on performance. 813 * 814 * Return: 0 on success, or an appropriate error code otherwise 815 */ 816 static int rproc_handle_carveout(struct rproc *rproc, 817 void *ptr, int offset, int avail) 818 { 819 struct fw_rsc_carveout *rsc = ptr; 820 struct rproc_mem_entry *carveout; 821 struct device *dev = &rproc->dev; 822 823 if (sizeof(*rsc) > avail) { 824 dev_err(dev, "carveout rsc is truncated\n"); 825 return -EINVAL; 826 } 827 828 /* make sure reserved bytes are zeroes */ 829 if (rsc->reserved) { 830 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 831 return -EINVAL; 832 } 833 834 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 835 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 836 837 /* 838 * Check carveout rsc already part of a registered carveout, 839 * Search by name, then check the da and length 840 */ 841 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 842 843 if (carveout) { 844 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 845 dev_err(dev, 846 "Carveout already associated to resource table\n"); 847 return -ENOMEM; 848 } 849 850 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 851 return -ENOMEM; 852 853 /* Update memory carveout with resource table info */ 854 carveout->rsc_offset = offset; 855 carveout->flags = rsc->flags; 856 857 return 0; 858 } 859 860 /* Register carveout in list */ 861 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 862 rproc_alloc_carveout, 863 rproc_release_carveout, rsc->name); 864 if (!carveout) { 865 dev_err(dev, "Can't allocate memory entry structure\n"); 866 return -ENOMEM; 867 } 868 869 carveout->flags = rsc->flags; 870 carveout->rsc_offset = offset; 871 rproc_add_carveout(rproc, carveout); 872 873 return 0; 874 } 875 876 /** 877 * rproc_add_carveout() - register an allocated carveout region 878 * @rproc: rproc handle 879 * @mem: memory entry to register 880 * 881 * This function registers specified memory entry in @rproc carveouts list. 882 * Specified carveout should have been allocated before registering. 883 */ 884 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 885 { 886 list_add_tail(&mem->node, &rproc->carveouts); 887 } 888 EXPORT_SYMBOL(rproc_add_carveout); 889 890 /** 891 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 892 * @dev: pointer on device struct 893 * @va: virtual address 894 * @dma: dma address 895 * @len: memory carveout length 896 * @da: device address 897 * @alloc: memory carveout allocation function 898 * @release: memory carveout release function 899 * @name: carveout name 900 * 901 * This function allocates a rproc_mem_entry struct and fill it with parameters 902 * provided by client. 903 * 904 * Return: a valid pointer on success, or NULL on failure 905 */ 906 __printf(8, 9) 907 struct rproc_mem_entry * 908 rproc_mem_entry_init(struct device *dev, 909 void *va, dma_addr_t dma, size_t len, u32 da, 910 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 911 int (*release)(struct rproc *, struct rproc_mem_entry *), 912 const char *name, ...) 913 { 914 struct rproc_mem_entry *mem; 915 va_list args; 916 917 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 918 if (!mem) 919 return mem; 920 921 mem->va = va; 922 mem->dma = dma; 923 mem->da = da; 924 mem->len = len; 925 mem->alloc = alloc; 926 mem->release = release; 927 mem->rsc_offset = FW_RSC_ADDR_ANY; 928 mem->of_resm_idx = -1; 929 930 va_start(args, name); 931 vsnprintf(mem->name, sizeof(mem->name), name, args); 932 va_end(args); 933 934 return mem; 935 } 936 EXPORT_SYMBOL(rproc_mem_entry_init); 937 938 /** 939 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 940 * from a reserved memory phandle 941 * @dev: pointer on device struct 942 * @of_resm_idx: reserved memory phandle index in "memory-region" 943 * @len: memory carveout length 944 * @da: device address 945 * @name: carveout name 946 * 947 * This function allocates a rproc_mem_entry struct and fill it with parameters 948 * provided by client. 949 * 950 * Return: a valid pointer on success, or NULL on failure 951 */ 952 __printf(5, 6) 953 struct rproc_mem_entry * 954 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 955 u32 da, const char *name, ...) 956 { 957 struct rproc_mem_entry *mem; 958 va_list args; 959 960 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 961 if (!mem) 962 return mem; 963 964 mem->da = da; 965 mem->len = len; 966 mem->rsc_offset = FW_RSC_ADDR_ANY; 967 mem->of_resm_idx = of_resm_idx; 968 969 va_start(args, name); 970 vsnprintf(mem->name, sizeof(mem->name), name, args); 971 va_end(args); 972 973 return mem; 974 } 975 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 976 977 /** 978 * rproc_of_parse_firmware() - parse and return the firmware-name 979 * @dev: pointer on device struct representing a rproc 980 * @index: index to use for the firmware-name retrieval 981 * @fw_name: pointer to a character string, in which the firmware 982 * name is returned on success and unmodified otherwise. 983 * 984 * This is an OF helper function that parses a device's DT node for 985 * the "firmware-name" property and returns the firmware name pointer 986 * in @fw_name on success. 987 * 988 * Return: 0 on success, or an appropriate failure. 989 */ 990 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 991 { 992 int ret; 993 994 ret = of_property_read_string_index(dev->of_node, "firmware-name", 995 index, fw_name); 996 return ret ? ret : 0; 997 } 998 EXPORT_SYMBOL(rproc_of_parse_firmware); 999 1000 /* 1001 * A lookup table for resource handlers. The indices are defined in 1002 * enum fw_resource_type. 1003 */ 1004 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1005 [RSC_CARVEOUT] = rproc_handle_carveout, 1006 [RSC_DEVMEM] = rproc_handle_devmem, 1007 [RSC_TRACE] = rproc_handle_trace, 1008 [RSC_VDEV] = rproc_handle_vdev, 1009 }; 1010 1011 /* handle firmware resource entries before booting the remote processor */ 1012 static int rproc_handle_resources(struct rproc *rproc, 1013 rproc_handle_resource_t handlers[RSC_LAST]) 1014 { 1015 struct device *dev = &rproc->dev; 1016 rproc_handle_resource_t handler; 1017 int ret = 0, i; 1018 1019 if (!rproc->table_ptr) 1020 return 0; 1021 1022 for (i = 0; i < rproc->table_ptr->num; i++) { 1023 int offset = rproc->table_ptr->offset[i]; 1024 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1025 int avail = rproc->table_sz - offset - sizeof(*hdr); 1026 void *rsc = (void *)hdr + sizeof(*hdr); 1027 1028 /* make sure table isn't truncated */ 1029 if (avail < 0) { 1030 dev_err(dev, "rsc table is truncated\n"); 1031 return -EINVAL; 1032 } 1033 1034 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1035 1036 if (hdr->type >= RSC_VENDOR_START && 1037 hdr->type <= RSC_VENDOR_END) { 1038 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1039 offset + sizeof(*hdr), avail); 1040 if (ret == RSC_HANDLED) 1041 continue; 1042 else if (ret < 0) 1043 break; 1044 1045 dev_warn(dev, "unsupported vendor resource %d\n", 1046 hdr->type); 1047 continue; 1048 } 1049 1050 if (hdr->type >= RSC_LAST) { 1051 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1052 continue; 1053 } 1054 1055 handler = handlers[hdr->type]; 1056 if (!handler) 1057 continue; 1058 1059 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1060 if (ret) 1061 break; 1062 } 1063 1064 return ret; 1065 } 1066 1067 static int rproc_prepare_subdevices(struct rproc *rproc) 1068 { 1069 struct rproc_subdev *subdev; 1070 int ret; 1071 1072 list_for_each_entry(subdev, &rproc->subdevs, node) { 1073 if (subdev->prepare) { 1074 ret = subdev->prepare(subdev); 1075 if (ret) 1076 goto unroll_preparation; 1077 } 1078 } 1079 1080 return 0; 1081 1082 unroll_preparation: 1083 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1084 if (subdev->unprepare) 1085 subdev->unprepare(subdev); 1086 } 1087 1088 return ret; 1089 } 1090 1091 static int rproc_start_subdevices(struct rproc *rproc) 1092 { 1093 struct rproc_subdev *subdev; 1094 int ret; 1095 1096 list_for_each_entry(subdev, &rproc->subdevs, node) { 1097 if (subdev->start) { 1098 ret = subdev->start(subdev); 1099 if (ret) 1100 goto unroll_registration; 1101 } 1102 } 1103 1104 return 0; 1105 1106 unroll_registration: 1107 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1108 if (subdev->stop) 1109 subdev->stop(subdev, true); 1110 } 1111 1112 return ret; 1113 } 1114 1115 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1116 { 1117 struct rproc_subdev *subdev; 1118 1119 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1120 if (subdev->stop) 1121 subdev->stop(subdev, crashed); 1122 } 1123 } 1124 1125 static void rproc_unprepare_subdevices(struct rproc *rproc) 1126 { 1127 struct rproc_subdev *subdev; 1128 1129 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1130 if (subdev->unprepare) 1131 subdev->unprepare(subdev); 1132 } 1133 } 1134 1135 /** 1136 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1137 * in the list 1138 * @rproc: the remote processor handle 1139 * 1140 * This function parses registered carveout list, performs allocation 1141 * if alloc() ops registered and updates resource table information 1142 * if rsc_offset set. 1143 * 1144 * Return: 0 on success 1145 */ 1146 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1147 { 1148 struct rproc_mem_entry *entry, *tmp; 1149 struct fw_rsc_carveout *rsc; 1150 struct device *dev = &rproc->dev; 1151 u64 pa; 1152 int ret; 1153 1154 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1155 if (entry->alloc) { 1156 ret = entry->alloc(rproc, entry); 1157 if (ret) { 1158 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1159 entry->name, ret); 1160 return -ENOMEM; 1161 } 1162 } 1163 1164 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1165 /* update resource table */ 1166 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1167 1168 /* 1169 * Some remote processors might need to know the pa 1170 * even though they are behind an IOMMU. E.g., OMAP4's 1171 * remote M3 processor needs this so it can control 1172 * on-chip hardware accelerators that are not behind 1173 * the IOMMU, and therefor must know the pa. 1174 * 1175 * Generally we don't want to expose physical addresses 1176 * if we don't have to (remote processors are generally 1177 * _not_ trusted), so we might want to do this only for 1178 * remote processor that _must_ have this (e.g. OMAP4's 1179 * dual M3 subsystem). 1180 * 1181 * Non-IOMMU processors might also want to have this info. 1182 * In this case, the device address and the physical address 1183 * are the same. 1184 */ 1185 1186 /* Use va if defined else dma to generate pa */ 1187 if (entry->va) 1188 pa = (u64)rproc_va_to_pa(entry->va); 1189 else 1190 pa = (u64)entry->dma; 1191 1192 if (((u64)pa) & HIGH_BITS_MASK) 1193 dev_warn(dev, 1194 "Physical address cast in 32bit to fit resource table format\n"); 1195 1196 rsc->pa = (u32)pa; 1197 rsc->da = entry->da; 1198 rsc->len = entry->len; 1199 } 1200 } 1201 1202 return 0; 1203 } 1204 1205 1206 /** 1207 * rproc_resource_cleanup() - clean up and free all acquired resources 1208 * @rproc: rproc handle 1209 * 1210 * This function will free all resources acquired for @rproc, and it 1211 * is called whenever @rproc either shuts down or fails to boot. 1212 */ 1213 void rproc_resource_cleanup(struct rproc *rproc) 1214 { 1215 struct rproc_mem_entry *entry, *tmp; 1216 struct rproc_debug_trace *trace, *ttmp; 1217 struct rproc_vdev *rvdev, *rvtmp; 1218 struct device *dev = &rproc->dev; 1219 1220 /* clean up debugfs trace entries */ 1221 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1222 rproc_remove_trace_file(trace->tfile); 1223 rproc->num_traces--; 1224 list_del(&trace->node); 1225 kfree(trace); 1226 } 1227 1228 /* clean up iommu mapping entries */ 1229 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1230 size_t unmapped; 1231 1232 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1233 if (unmapped != entry->len) { 1234 /* nothing much to do besides complaining */ 1235 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1236 unmapped); 1237 } 1238 1239 list_del(&entry->node); 1240 kfree(entry); 1241 } 1242 1243 /* clean up carveout allocations */ 1244 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1245 if (entry->release) 1246 entry->release(rproc, entry); 1247 list_del(&entry->node); 1248 kfree(entry); 1249 } 1250 1251 /* clean up remote vdev entries */ 1252 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1253 platform_device_unregister(rvdev->pdev); 1254 1255 rproc_coredump_cleanup(rproc); 1256 } 1257 EXPORT_SYMBOL(rproc_resource_cleanup); 1258 1259 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1260 { 1261 struct resource_table *loaded_table; 1262 struct device *dev = &rproc->dev; 1263 int ret; 1264 1265 /* load the ELF segments to memory */ 1266 ret = rproc_load_segments(rproc, fw); 1267 if (ret) { 1268 dev_err(dev, "Failed to load program segments: %d\n", ret); 1269 return ret; 1270 } 1271 1272 /* 1273 * The starting device has been given the rproc->cached_table as the 1274 * resource table. The address of the vring along with the other 1275 * allocated resources (carveouts etc) is stored in cached_table. 1276 * In order to pass this information to the remote device we must copy 1277 * this information to device memory. We also update the table_ptr so 1278 * that any subsequent changes will be applied to the loaded version. 1279 */ 1280 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1281 if (loaded_table) { 1282 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1283 rproc->table_ptr = loaded_table; 1284 } 1285 1286 ret = rproc_prepare_subdevices(rproc); 1287 if (ret) { 1288 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1289 rproc->name, ret); 1290 goto reset_table_ptr; 1291 } 1292 1293 /* power up the remote processor */ 1294 ret = rproc->ops->start(rproc); 1295 if (ret) { 1296 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1297 goto unprepare_subdevices; 1298 } 1299 1300 /* Start any subdevices for the remote processor */ 1301 ret = rproc_start_subdevices(rproc); 1302 if (ret) { 1303 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1304 rproc->name, ret); 1305 goto stop_rproc; 1306 } 1307 1308 rproc->state = RPROC_RUNNING; 1309 1310 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1311 1312 return 0; 1313 1314 stop_rproc: 1315 rproc->ops->stop(rproc); 1316 unprepare_subdevices: 1317 rproc_unprepare_subdevices(rproc); 1318 reset_table_ptr: 1319 rproc->table_ptr = rproc->cached_table; 1320 1321 return ret; 1322 } 1323 1324 static int __rproc_attach(struct rproc *rproc) 1325 { 1326 struct device *dev = &rproc->dev; 1327 int ret; 1328 1329 ret = rproc_prepare_subdevices(rproc); 1330 if (ret) { 1331 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1332 rproc->name, ret); 1333 goto out; 1334 } 1335 1336 /* Attach to the remote processor */ 1337 ret = rproc_attach_device(rproc); 1338 if (ret) { 1339 dev_err(dev, "can't attach to rproc %s: %d\n", 1340 rproc->name, ret); 1341 goto unprepare_subdevices; 1342 } 1343 1344 /* Start any subdevices for the remote processor */ 1345 ret = rproc_start_subdevices(rproc); 1346 if (ret) { 1347 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1348 rproc->name, ret); 1349 goto stop_rproc; 1350 } 1351 1352 rproc->state = RPROC_ATTACHED; 1353 1354 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1355 1356 return 0; 1357 1358 stop_rproc: 1359 rproc->ops->stop(rproc); 1360 unprepare_subdevices: 1361 rproc_unprepare_subdevices(rproc); 1362 out: 1363 return ret; 1364 } 1365 1366 /* 1367 * take a firmware and boot a remote processor with it. 1368 */ 1369 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1370 { 1371 struct device *dev = &rproc->dev; 1372 const char *name = rproc->firmware; 1373 int ret; 1374 1375 ret = rproc_fw_sanity_check(rproc, fw); 1376 if (ret) 1377 return ret; 1378 1379 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1380 1381 /* 1382 * if enabling an IOMMU isn't relevant for this rproc, this is 1383 * just a nop 1384 */ 1385 ret = rproc_enable_iommu(rproc); 1386 if (ret) { 1387 dev_err(dev, "can't enable iommu: %d\n", ret); 1388 return ret; 1389 } 1390 1391 /* Prepare rproc for firmware loading if needed */ 1392 ret = rproc_prepare_device(rproc); 1393 if (ret) { 1394 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1395 goto disable_iommu; 1396 } 1397 1398 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1399 1400 /* Load resource table, core dump segment list etc from the firmware */ 1401 ret = rproc_parse_fw(rproc, fw); 1402 if (ret) 1403 goto unprepare_rproc; 1404 1405 /* reset max_notifyid */ 1406 rproc->max_notifyid = -1; 1407 1408 /* reset handled vdev */ 1409 rproc->nb_vdev = 0; 1410 1411 /* handle fw resources which are required to boot rproc */ 1412 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1413 if (ret) { 1414 dev_err(dev, "Failed to process resources: %d\n", ret); 1415 goto clean_up_resources; 1416 } 1417 1418 /* Allocate carveout resources associated to rproc */ 1419 ret = rproc_alloc_registered_carveouts(rproc); 1420 if (ret) { 1421 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1422 ret); 1423 goto clean_up_resources; 1424 } 1425 1426 ret = rproc_start(rproc, fw); 1427 if (ret) 1428 goto clean_up_resources; 1429 1430 return 0; 1431 1432 clean_up_resources: 1433 rproc_resource_cleanup(rproc); 1434 kfree(rproc->cached_table); 1435 rproc->cached_table = NULL; 1436 rproc->table_ptr = NULL; 1437 unprepare_rproc: 1438 /* release HW resources if needed */ 1439 rproc_unprepare_device(rproc); 1440 disable_iommu: 1441 rproc_disable_iommu(rproc); 1442 return ret; 1443 } 1444 1445 static int rproc_set_rsc_table(struct rproc *rproc) 1446 { 1447 struct resource_table *table_ptr; 1448 struct device *dev = &rproc->dev; 1449 size_t table_sz; 1450 int ret; 1451 1452 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1453 if (!table_ptr) { 1454 /* Not having a resource table is acceptable */ 1455 return 0; 1456 } 1457 1458 if (IS_ERR(table_ptr)) { 1459 ret = PTR_ERR(table_ptr); 1460 dev_err(dev, "can't load resource table: %d\n", ret); 1461 return ret; 1462 } 1463 1464 /* 1465 * If it is possible to detach the remote processor, keep an untouched 1466 * copy of the resource table. That way we can start fresh again when 1467 * the remote processor is re-attached, that is: 1468 * 1469 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1470 * 1471 * Free'd in rproc_reset_rsc_table_on_detach() and 1472 * rproc_reset_rsc_table_on_stop(). 1473 */ 1474 if (rproc->ops->detach) { 1475 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1476 if (!rproc->clean_table) 1477 return -ENOMEM; 1478 } else { 1479 rproc->clean_table = NULL; 1480 } 1481 1482 rproc->cached_table = NULL; 1483 rproc->table_ptr = table_ptr; 1484 rproc->table_sz = table_sz; 1485 1486 return 0; 1487 } 1488 1489 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1490 { 1491 struct resource_table *table_ptr; 1492 1493 /* A resource table was never retrieved, nothing to do here */ 1494 if (!rproc->table_ptr) 1495 return 0; 1496 1497 /* 1498 * If we made it to this point a clean_table _must_ have been 1499 * allocated in rproc_set_rsc_table(). If one isn't present 1500 * something went really wrong and we must complain. 1501 */ 1502 if (WARN_ON(!rproc->clean_table)) 1503 return -EINVAL; 1504 1505 /* Remember where the external entity installed the resource table */ 1506 table_ptr = rproc->table_ptr; 1507 1508 /* 1509 * If we made it here the remote processor was started by another 1510 * entity and a cache table doesn't exist. As such make a copy of 1511 * the resource table currently used by the remote processor and 1512 * use that for the rest of the shutdown process. The memory 1513 * allocated here is free'd in rproc_detach(). 1514 */ 1515 rproc->cached_table = kmemdup(rproc->table_ptr, 1516 rproc->table_sz, GFP_KERNEL); 1517 if (!rproc->cached_table) 1518 return -ENOMEM; 1519 1520 /* 1521 * Use a copy of the resource table for the remainder of the 1522 * shutdown process. 1523 */ 1524 rproc->table_ptr = rproc->cached_table; 1525 1526 /* 1527 * Reset the memory area where the firmware loaded the resource table 1528 * to its original value. That way when we re-attach the remote 1529 * processor the resource table is clean and ready to be used again. 1530 */ 1531 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1532 1533 /* 1534 * The clean resource table is no longer needed. Allocated in 1535 * rproc_set_rsc_table(). 1536 */ 1537 kfree(rproc->clean_table); 1538 1539 return 0; 1540 } 1541 1542 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1543 { 1544 /* A resource table was never retrieved, nothing to do here */ 1545 if (!rproc->table_ptr) 1546 return 0; 1547 1548 /* 1549 * If a cache table exists the remote processor was started by 1550 * the remoteproc core. That cache table should be used for 1551 * the rest of the shutdown process. 1552 */ 1553 if (rproc->cached_table) 1554 goto out; 1555 1556 /* 1557 * If we made it here the remote processor was started by another 1558 * entity and a cache table doesn't exist. As such make a copy of 1559 * the resource table currently used by the remote processor and 1560 * use that for the rest of the shutdown process. The memory 1561 * allocated here is free'd in rproc_shutdown(). 1562 */ 1563 rproc->cached_table = kmemdup(rproc->table_ptr, 1564 rproc->table_sz, GFP_KERNEL); 1565 if (!rproc->cached_table) 1566 return -ENOMEM; 1567 1568 /* 1569 * Since the remote processor is being switched off the clean table 1570 * won't be needed. Allocated in rproc_set_rsc_table(). 1571 */ 1572 kfree(rproc->clean_table); 1573 1574 out: 1575 /* 1576 * Use a copy of the resource table for the remainder of the 1577 * shutdown process. 1578 */ 1579 rproc->table_ptr = rproc->cached_table; 1580 return 0; 1581 } 1582 1583 /* 1584 * Attach to remote processor - similar to rproc_fw_boot() but without 1585 * the steps that deal with the firmware image. 1586 */ 1587 static int rproc_attach(struct rproc *rproc) 1588 { 1589 struct device *dev = &rproc->dev; 1590 int ret; 1591 1592 /* 1593 * if enabling an IOMMU isn't relevant for this rproc, this is 1594 * just a nop 1595 */ 1596 ret = rproc_enable_iommu(rproc); 1597 if (ret) { 1598 dev_err(dev, "can't enable iommu: %d\n", ret); 1599 return ret; 1600 } 1601 1602 /* Do anything that is needed to boot the remote processor */ 1603 ret = rproc_prepare_device(rproc); 1604 if (ret) { 1605 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1606 goto disable_iommu; 1607 } 1608 1609 ret = rproc_set_rsc_table(rproc); 1610 if (ret) { 1611 dev_err(dev, "can't load resource table: %d\n", ret); 1612 goto unprepare_device; 1613 } 1614 1615 /* reset max_notifyid */ 1616 rproc->max_notifyid = -1; 1617 1618 /* reset handled vdev */ 1619 rproc->nb_vdev = 0; 1620 1621 /* 1622 * Handle firmware resources required to attach to a remote processor. 1623 * Because we are attaching rather than booting the remote processor, 1624 * we expect the platform driver to properly set rproc->table_ptr. 1625 */ 1626 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1627 if (ret) { 1628 dev_err(dev, "Failed to process resources: %d\n", ret); 1629 goto unprepare_device; 1630 } 1631 1632 /* Allocate carveout resources associated to rproc */ 1633 ret = rproc_alloc_registered_carveouts(rproc); 1634 if (ret) { 1635 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1636 ret); 1637 goto clean_up_resources; 1638 } 1639 1640 ret = __rproc_attach(rproc); 1641 if (ret) 1642 goto clean_up_resources; 1643 1644 return 0; 1645 1646 clean_up_resources: 1647 rproc_resource_cleanup(rproc); 1648 unprepare_device: 1649 /* release HW resources if needed */ 1650 rproc_unprepare_device(rproc); 1651 disable_iommu: 1652 rproc_disable_iommu(rproc); 1653 return ret; 1654 } 1655 1656 /* 1657 * take a firmware and boot it up. 1658 * 1659 * Note: this function is called asynchronously upon registration of the 1660 * remote processor (so we must wait until it completes before we try 1661 * to unregister the device. one other option is just to use kref here, 1662 * that might be cleaner). 1663 */ 1664 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1665 { 1666 struct rproc *rproc = context; 1667 1668 rproc_boot(rproc); 1669 1670 release_firmware(fw); 1671 } 1672 1673 static int rproc_trigger_auto_boot(struct rproc *rproc) 1674 { 1675 int ret; 1676 1677 /* 1678 * Since the remote processor is in a detached state, it has already 1679 * been booted by another entity. As such there is no point in waiting 1680 * for a firmware image to be loaded, we can simply initiate the process 1681 * of attaching to it immediately. 1682 */ 1683 if (rproc->state == RPROC_DETACHED) 1684 return rproc_boot(rproc); 1685 1686 /* 1687 * We're initiating an asynchronous firmware loading, so we can 1688 * be built-in kernel code, without hanging the boot process. 1689 */ 1690 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 1691 rproc->firmware, &rproc->dev, GFP_KERNEL, 1692 rproc, rproc_auto_boot_callback); 1693 if (ret < 0) 1694 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1695 1696 return ret; 1697 } 1698 1699 static int rproc_stop(struct rproc *rproc, bool crashed) 1700 { 1701 struct device *dev = &rproc->dev; 1702 int ret; 1703 1704 /* No need to continue if a stop() operation has not been provided */ 1705 if (!rproc->ops->stop) 1706 return -EINVAL; 1707 1708 /* Stop any subdevices for the remote processor */ 1709 rproc_stop_subdevices(rproc, crashed); 1710 1711 /* the installed resource table is no longer accessible */ 1712 ret = rproc_reset_rsc_table_on_stop(rproc); 1713 if (ret) { 1714 dev_err(dev, "can't reset resource table: %d\n", ret); 1715 return ret; 1716 } 1717 1718 1719 /* power off the remote processor */ 1720 ret = rproc->ops->stop(rproc); 1721 if (ret) { 1722 dev_err(dev, "can't stop rproc: %d\n", ret); 1723 return ret; 1724 } 1725 1726 rproc_unprepare_subdevices(rproc); 1727 1728 rproc->state = RPROC_OFFLINE; 1729 1730 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1731 1732 return 0; 1733 } 1734 1735 /* 1736 * __rproc_detach(): Does the opposite of __rproc_attach() 1737 */ 1738 static int __rproc_detach(struct rproc *rproc) 1739 { 1740 struct device *dev = &rproc->dev; 1741 int ret; 1742 1743 /* No need to continue if a detach() operation has not been provided */ 1744 if (!rproc->ops->detach) 1745 return -EINVAL; 1746 1747 /* Stop any subdevices for the remote processor */ 1748 rproc_stop_subdevices(rproc, false); 1749 1750 /* the installed resource table is no longer accessible */ 1751 ret = rproc_reset_rsc_table_on_detach(rproc); 1752 if (ret) { 1753 dev_err(dev, "can't reset resource table: %d\n", ret); 1754 return ret; 1755 } 1756 1757 /* Tell the remote processor the core isn't available anymore */ 1758 ret = rproc->ops->detach(rproc); 1759 if (ret) { 1760 dev_err(dev, "can't detach from rproc: %d\n", ret); 1761 return ret; 1762 } 1763 1764 rproc_unprepare_subdevices(rproc); 1765 1766 rproc->state = RPROC_DETACHED; 1767 1768 dev_info(dev, "detached remote processor %s\n", rproc->name); 1769 1770 return 0; 1771 } 1772 1773 static int rproc_attach_recovery(struct rproc *rproc) 1774 { 1775 int ret; 1776 1777 ret = __rproc_detach(rproc); 1778 if (ret) 1779 return ret; 1780 1781 return __rproc_attach(rproc); 1782 } 1783 1784 static int rproc_boot_recovery(struct rproc *rproc) 1785 { 1786 const struct firmware *firmware_p; 1787 struct device *dev = &rproc->dev; 1788 int ret; 1789 1790 ret = rproc_stop(rproc, true); 1791 if (ret) 1792 return ret; 1793 1794 /* generate coredump */ 1795 rproc->ops->coredump(rproc); 1796 1797 /* load firmware */ 1798 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1799 if (ret < 0) { 1800 dev_err(dev, "request_firmware failed: %d\n", ret); 1801 return ret; 1802 } 1803 1804 /* boot the remote processor up again */ 1805 ret = rproc_start(rproc, firmware_p); 1806 1807 release_firmware(firmware_p); 1808 1809 return ret; 1810 } 1811 1812 /** 1813 * rproc_trigger_recovery() - recover a remoteproc 1814 * @rproc: the remote processor 1815 * 1816 * The recovery is done by resetting all the virtio devices, that way all the 1817 * rpmsg drivers will be reseted along with the remote processor making the 1818 * remoteproc functional again. 1819 * 1820 * This function can sleep, so it cannot be called from atomic context. 1821 * 1822 * Return: 0 on success or a negative value upon failure 1823 */ 1824 int rproc_trigger_recovery(struct rproc *rproc) 1825 { 1826 struct device *dev = &rproc->dev; 1827 int ret; 1828 1829 ret = mutex_lock_interruptible(&rproc->lock); 1830 if (ret) 1831 return ret; 1832 1833 /* State could have changed before we got the mutex */ 1834 if (rproc->state != RPROC_CRASHED) 1835 goto unlock_mutex; 1836 1837 dev_err(dev, "recovering %s\n", rproc->name); 1838 1839 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) 1840 ret = rproc_attach_recovery(rproc); 1841 else 1842 ret = rproc_boot_recovery(rproc); 1843 1844 unlock_mutex: 1845 mutex_unlock(&rproc->lock); 1846 return ret; 1847 } 1848 1849 /** 1850 * rproc_crash_handler_work() - handle a crash 1851 * @work: work treating the crash 1852 * 1853 * This function needs to handle everything related to a crash, like cpu 1854 * registers and stack dump, information to help to debug the fatal error, etc. 1855 */ 1856 static void rproc_crash_handler_work(struct work_struct *work) 1857 { 1858 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1859 struct device *dev = &rproc->dev; 1860 1861 dev_dbg(dev, "enter %s\n", __func__); 1862 1863 mutex_lock(&rproc->lock); 1864 1865 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1866 /* handle only the first crash detected */ 1867 mutex_unlock(&rproc->lock); 1868 return; 1869 } 1870 1871 rproc->state = RPROC_CRASHED; 1872 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1873 rproc->name); 1874 1875 mutex_unlock(&rproc->lock); 1876 1877 if (!rproc->recovery_disabled) 1878 rproc_trigger_recovery(rproc); 1879 1880 pm_relax(rproc->dev.parent); 1881 } 1882 1883 /** 1884 * rproc_boot() - boot a remote processor 1885 * @rproc: handle of a remote processor 1886 * 1887 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1888 * 1889 * If the remote processor is already powered on, this function immediately 1890 * returns (successfully). 1891 * 1892 * Return: 0 on success, and an appropriate error value otherwise 1893 */ 1894 int rproc_boot(struct rproc *rproc) 1895 { 1896 const struct firmware *firmware_p; 1897 struct device *dev; 1898 int ret; 1899 1900 if (!rproc) { 1901 pr_err("invalid rproc handle\n"); 1902 return -EINVAL; 1903 } 1904 1905 dev = &rproc->dev; 1906 1907 ret = mutex_lock_interruptible(&rproc->lock); 1908 if (ret) { 1909 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1910 return ret; 1911 } 1912 1913 if (rproc->state == RPROC_DELETED) { 1914 ret = -ENODEV; 1915 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1916 goto unlock_mutex; 1917 } 1918 1919 /* skip the boot or attach process if rproc is already powered up */ 1920 if (atomic_inc_return(&rproc->power) > 1) { 1921 ret = 0; 1922 goto unlock_mutex; 1923 } 1924 1925 if (rproc->state == RPROC_DETACHED) { 1926 dev_info(dev, "attaching to %s\n", rproc->name); 1927 1928 ret = rproc_attach(rproc); 1929 } else { 1930 dev_info(dev, "powering up %s\n", rproc->name); 1931 1932 /* load firmware */ 1933 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1934 if (ret < 0) { 1935 dev_err(dev, "request_firmware failed: %d\n", ret); 1936 goto downref_rproc; 1937 } 1938 1939 ret = rproc_fw_boot(rproc, firmware_p); 1940 1941 release_firmware(firmware_p); 1942 } 1943 1944 downref_rproc: 1945 if (ret) 1946 atomic_dec(&rproc->power); 1947 unlock_mutex: 1948 mutex_unlock(&rproc->lock); 1949 return ret; 1950 } 1951 EXPORT_SYMBOL(rproc_boot); 1952 1953 /** 1954 * rproc_shutdown() - power off the remote processor 1955 * @rproc: the remote processor 1956 * 1957 * Power off a remote processor (previously booted with rproc_boot()). 1958 * 1959 * In case @rproc is still being used by an additional user(s), then 1960 * this function will just decrement the power refcount and exit, 1961 * without really powering off the device. 1962 * 1963 * Every call to rproc_boot() must (eventually) be accompanied by a call 1964 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1965 * 1966 * Notes: 1967 * - we're not decrementing the rproc's refcount, only the power refcount. 1968 * which means that the @rproc handle stays valid even after rproc_shutdown() 1969 * returns, and users can still use it with a subsequent rproc_boot(), if 1970 * needed. 1971 * 1972 * Return: 0 on success, and an appropriate error value otherwise 1973 */ 1974 int rproc_shutdown(struct rproc *rproc) 1975 { 1976 struct device *dev = &rproc->dev; 1977 int ret = 0; 1978 1979 ret = mutex_lock_interruptible(&rproc->lock); 1980 if (ret) { 1981 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1982 return ret; 1983 } 1984 1985 if (rproc->state != RPROC_RUNNING && 1986 rproc->state != RPROC_ATTACHED) { 1987 ret = -EINVAL; 1988 goto out; 1989 } 1990 1991 /* if the remote proc is still needed, bail out */ 1992 if (!atomic_dec_and_test(&rproc->power)) 1993 goto out; 1994 1995 ret = rproc_stop(rproc, false); 1996 if (ret) { 1997 atomic_inc(&rproc->power); 1998 goto out; 1999 } 2000 2001 /* clean up all acquired resources */ 2002 rproc_resource_cleanup(rproc); 2003 2004 /* release HW resources if needed */ 2005 rproc_unprepare_device(rproc); 2006 2007 rproc_disable_iommu(rproc); 2008 2009 /* Free the copy of the resource table */ 2010 kfree(rproc->cached_table); 2011 rproc->cached_table = NULL; 2012 rproc->table_ptr = NULL; 2013 out: 2014 mutex_unlock(&rproc->lock); 2015 return ret; 2016 } 2017 EXPORT_SYMBOL(rproc_shutdown); 2018 2019 /** 2020 * rproc_detach() - Detach the remote processor from the 2021 * remoteproc core 2022 * 2023 * @rproc: the remote processor 2024 * 2025 * Detach a remote processor (previously attached to with rproc_attach()). 2026 * 2027 * In case @rproc is still being used by an additional user(s), then 2028 * this function will just decrement the power refcount and exit, 2029 * without disconnecting the device. 2030 * 2031 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2032 * processor know that services provided by the application processor are 2033 * no longer available. From there it should be possible to remove the 2034 * platform driver and even power cycle the application processor (if the HW 2035 * supports it) without needing to switch off the remote processor. 2036 * 2037 * Return: 0 on success, and an appropriate error value otherwise 2038 */ 2039 int rproc_detach(struct rproc *rproc) 2040 { 2041 struct device *dev = &rproc->dev; 2042 int ret; 2043 2044 ret = mutex_lock_interruptible(&rproc->lock); 2045 if (ret) { 2046 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2047 return ret; 2048 } 2049 2050 if (rproc->state != RPROC_ATTACHED) { 2051 ret = -EINVAL; 2052 goto out; 2053 } 2054 2055 /* if the remote proc is still needed, bail out */ 2056 if (!atomic_dec_and_test(&rproc->power)) { 2057 ret = 0; 2058 goto out; 2059 } 2060 2061 ret = __rproc_detach(rproc); 2062 if (ret) { 2063 atomic_inc(&rproc->power); 2064 goto out; 2065 } 2066 2067 /* clean up all acquired resources */ 2068 rproc_resource_cleanup(rproc); 2069 2070 /* release HW resources if needed */ 2071 rproc_unprepare_device(rproc); 2072 2073 rproc_disable_iommu(rproc); 2074 2075 /* Free the copy of the resource table */ 2076 kfree(rproc->cached_table); 2077 rproc->cached_table = NULL; 2078 rproc->table_ptr = NULL; 2079 out: 2080 mutex_unlock(&rproc->lock); 2081 return ret; 2082 } 2083 EXPORT_SYMBOL(rproc_detach); 2084 2085 /** 2086 * rproc_get_by_phandle() - find a remote processor by phandle 2087 * @phandle: phandle to the rproc 2088 * 2089 * Finds an rproc handle using the remote processor's phandle, and then 2090 * return a handle to the rproc. 2091 * 2092 * This function increments the remote processor's refcount, so always 2093 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2094 * 2095 * Return: rproc handle on success, and NULL on failure 2096 */ 2097 #ifdef CONFIG_OF 2098 struct rproc *rproc_get_by_phandle(phandle phandle) 2099 { 2100 struct rproc *rproc = NULL, *r; 2101 struct device_node *np; 2102 2103 np = of_find_node_by_phandle(phandle); 2104 if (!np) 2105 return NULL; 2106 2107 rcu_read_lock(); 2108 list_for_each_entry_rcu(r, &rproc_list, node) { 2109 if (r->dev.parent && r->dev.parent->of_node == np) { 2110 /* prevent underlying implementation from being removed */ 2111 if (!try_module_get(r->dev.parent->driver->owner)) { 2112 dev_err(&r->dev, "can't get owner\n"); 2113 break; 2114 } 2115 2116 rproc = r; 2117 get_device(&rproc->dev); 2118 break; 2119 } 2120 } 2121 rcu_read_unlock(); 2122 2123 of_node_put(np); 2124 2125 return rproc; 2126 } 2127 #else 2128 struct rproc *rproc_get_by_phandle(phandle phandle) 2129 { 2130 return NULL; 2131 } 2132 #endif 2133 EXPORT_SYMBOL(rproc_get_by_phandle); 2134 2135 /** 2136 * rproc_set_firmware() - assign a new firmware 2137 * @rproc: rproc handle to which the new firmware is being assigned 2138 * @fw_name: new firmware name to be assigned 2139 * 2140 * This function allows remoteproc drivers or clients to configure a custom 2141 * firmware name that is different from the default name used during remoteproc 2142 * registration. The function does not trigger a remote processor boot, 2143 * only sets the firmware name used for a subsequent boot. This function 2144 * should also be called only when the remote processor is offline. 2145 * 2146 * This allows either the userspace to configure a different name through 2147 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2148 * a specific firmware when it is controlling the boot and shutdown of the 2149 * remote processor. 2150 * 2151 * Return: 0 on success or a negative value upon failure 2152 */ 2153 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2154 { 2155 struct device *dev; 2156 int ret, len; 2157 char *p; 2158 2159 if (!rproc || !fw_name) 2160 return -EINVAL; 2161 2162 dev = rproc->dev.parent; 2163 2164 ret = mutex_lock_interruptible(&rproc->lock); 2165 if (ret) { 2166 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2167 return -EINVAL; 2168 } 2169 2170 if (rproc->state != RPROC_OFFLINE) { 2171 dev_err(dev, "can't change firmware while running\n"); 2172 ret = -EBUSY; 2173 goto out; 2174 } 2175 2176 len = strcspn(fw_name, "\n"); 2177 if (!len) { 2178 dev_err(dev, "can't provide empty string for firmware name\n"); 2179 ret = -EINVAL; 2180 goto out; 2181 } 2182 2183 p = kstrndup(fw_name, len, GFP_KERNEL); 2184 if (!p) { 2185 ret = -ENOMEM; 2186 goto out; 2187 } 2188 2189 kfree_const(rproc->firmware); 2190 rproc->firmware = p; 2191 2192 out: 2193 mutex_unlock(&rproc->lock); 2194 return ret; 2195 } 2196 EXPORT_SYMBOL(rproc_set_firmware); 2197 2198 static int rproc_validate(struct rproc *rproc) 2199 { 2200 switch (rproc->state) { 2201 case RPROC_OFFLINE: 2202 /* 2203 * An offline processor without a start() 2204 * function makes no sense. 2205 */ 2206 if (!rproc->ops->start) 2207 return -EINVAL; 2208 break; 2209 case RPROC_DETACHED: 2210 /* 2211 * A remote processor in a detached state without an 2212 * attach() function makes not sense. 2213 */ 2214 if (!rproc->ops->attach) 2215 return -EINVAL; 2216 /* 2217 * When attaching to a remote processor the device memory 2218 * is already available and as such there is no need to have a 2219 * cached table. 2220 */ 2221 if (rproc->cached_table) 2222 return -EINVAL; 2223 break; 2224 default: 2225 /* 2226 * When adding a remote processor, the state of the device 2227 * can be offline or detached, nothing else. 2228 */ 2229 return -EINVAL; 2230 } 2231 2232 return 0; 2233 } 2234 2235 /** 2236 * rproc_add() - register a remote processor 2237 * @rproc: the remote processor handle to register 2238 * 2239 * Registers @rproc with the remoteproc framework, after it has been 2240 * allocated with rproc_alloc(). 2241 * 2242 * This is called by the platform-specific rproc implementation, whenever 2243 * a new remote processor device is probed. 2244 * 2245 * Note: this function initiates an asynchronous firmware loading 2246 * context, which will look for virtio devices supported by the rproc's 2247 * firmware. 2248 * 2249 * If found, those virtio devices will be created and added, so as a result 2250 * of registering this remote processor, additional virtio drivers might be 2251 * probed. 2252 * 2253 * Return: 0 on success and an appropriate error code otherwise 2254 */ 2255 int rproc_add(struct rproc *rproc) 2256 { 2257 struct device *dev = &rproc->dev; 2258 int ret; 2259 2260 ret = rproc_validate(rproc); 2261 if (ret < 0) 2262 return ret; 2263 2264 /* add char device for this remoteproc */ 2265 ret = rproc_char_device_add(rproc); 2266 if (ret < 0) 2267 return ret; 2268 2269 ret = device_add(dev); 2270 if (ret < 0) { 2271 put_device(dev); 2272 goto rproc_remove_cdev; 2273 } 2274 2275 dev_info(dev, "%s is available\n", rproc->name); 2276 2277 /* create debugfs entries */ 2278 rproc_create_debug_dir(rproc); 2279 2280 /* if rproc is marked always-on, request it to boot */ 2281 if (rproc->auto_boot) { 2282 ret = rproc_trigger_auto_boot(rproc); 2283 if (ret < 0) 2284 goto rproc_remove_dev; 2285 } 2286 2287 /* expose to rproc_get_by_phandle users */ 2288 mutex_lock(&rproc_list_mutex); 2289 list_add_rcu(&rproc->node, &rproc_list); 2290 mutex_unlock(&rproc_list_mutex); 2291 2292 return 0; 2293 2294 rproc_remove_dev: 2295 rproc_delete_debug_dir(rproc); 2296 device_del(dev); 2297 rproc_remove_cdev: 2298 rproc_char_device_remove(rproc); 2299 return ret; 2300 } 2301 EXPORT_SYMBOL(rproc_add); 2302 2303 static void devm_rproc_remove(void *rproc) 2304 { 2305 rproc_del(rproc); 2306 } 2307 2308 /** 2309 * devm_rproc_add() - resource managed rproc_add() 2310 * @dev: the underlying device 2311 * @rproc: the remote processor handle to register 2312 * 2313 * This function performs like rproc_add() but the registered rproc device will 2314 * automatically be removed on driver detach. 2315 * 2316 * Return: 0 on success, negative errno on failure 2317 */ 2318 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2319 { 2320 int err; 2321 2322 err = rproc_add(rproc); 2323 if (err) 2324 return err; 2325 2326 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2327 } 2328 EXPORT_SYMBOL(devm_rproc_add); 2329 2330 /** 2331 * rproc_type_release() - release a remote processor instance 2332 * @dev: the rproc's device 2333 * 2334 * This function should _never_ be called directly. 2335 * 2336 * It will be called by the driver core when no one holds a valid pointer 2337 * to @dev anymore. 2338 */ 2339 static void rproc_type_release(struct device *dev) 2340 { 2341 struct rproc *rproc = container_of(dev, struct rproc, dev); 2342 2343 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2344 2345 idr_destroy(&rproc->notifyids); 2346 2347 if (rproc->index >= 0) 2348 ida_free(&rproc_dev_index, rproc->index); 2349 2350 kfree_const(rproc->firmware); 2351 kfree_const(rproc->name); 2352 kfree(rproc->ops); 2353 kfree(rproc); 2354 } 2355 2356 static const struct device_type rproc_type = { 2357 .name = "remoteproc", 2358 .release = rproc_type_release, 2359 }; 2360 2361 static int rproc_alloc_firmware(struct rproc *rproc, 2362 const char *name, const char *firmware) 2363 { 2364 const char *p; 2365 2366 /* 2367 * Allocate a firmware name if the caller gave us one to work 2368 * with. Otherwise construct a new one using a default pattern. 2369 */ 2370 if (firmware) 2371 p = kstrdup_const(firmware, GFP_KERNEL); 2372 else 2373 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2374 2375 if (!p) 2376 return -ENOMEM; 2377 2378 rproc->firmware = p; 2379 2380 return 0; 2381 } 2382 2383 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2384 { 2385 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2386 if (!rproc->ops) 2387 return -ENOMEM; 2388 2389 /* Default to rproc_coredump if no coredump function is specified */ 2390 if (!rproc->ops->coredump) 2391 rproc->ops->coredump = rproc_coredump; 2392 2393 if (rproc->ops->load) 2394 return 0; 2395 2396 /* Default to ELF loader if no load function is specified */ 2397 rproc->ops->load = rproc_elf_load_segments; 2398 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2399 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2400 rproc->ops->sanity_check = rproc_elf_sanity_check; 2401 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2402 2403 return 0; 2404 } 2405 2406 /** 2407 * rproc_alloc() - allocate a remote processor handle 2408 * @dev: the underlying device 2409 * @name: name of this remote processor 2410 * @ops: platform-specific handlers (mainly start/stop) 2411 * @firmware: name of firmware file to load, can be NULL 2412 * @len: length of private data needed by the rproc driver (in bytes) 2413 * 2414 * Allocates a new remote processor handle, but does not register 2415 * it yet. if @firmware is NULL, a default name is used. 2416 * 2417 * This function should be used by rproc implementations during initialization 2418 * of the remote processor. 2419 * 2420 * After creating an rproc handle using this function, and when ready, 2421 * implementations should then call rproc_add() to complete 2422 * the registration of the remote processor. 2423 * 2424 * Note: _never_ directly deallocate @rproc, even if it was not registered 2425 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2426 * 2427 * Return: new rproc pointer on success, and NULL on failure 2428 */ 2429 struct rproc *rproc_alloc(struct device *dev, const char *name, 2430 const struct rproc_ops *ops, 2431 const char *firmware, int len) 2432 { 2433 struct rproc *rproc; 2434 2435 if (!dev || !name || !ops) 2436 return NULL; 2437 2438 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2439 if (!rproc) 2440 return NULL; 2441 2442 rproc->priv = &rproc[1]; 2443 rproc->auto_boot = true; 2444 rproc->elf_class = ELFCLASSNONE; 2445 rproc->elf_machine = EM_NONE; 2446 2447 device_initialize(&rproc->dev); 2448 rproc->dev.parent = dev; 2449 rproc->dev.type = &rproc_type; 2450 rproc->dev.class = &rproc_class; 2451 rproc->dev.driver_data = rproc; 2452 idr_init(&rproc->notifyids); 2453 2454 rproc->name = kstrdup_const(name, GFP_KERNEL); 2455 if (!rproc->name) 2456 goto put_device; 2457 2458 if (rproc_alloc_firmware(rproc, name, firmware)) 2459 goto put_device; 2460 2461 if (rproc_alloc_ops(rproc, ops)) 2462 goto put_device; 2463 2464 /* Assign a unique device index and name */ 2465 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); 2466 if (rproc->index < 0) { 2467 dev_err(dev, "ida_alloc failed: %d\n", rproc->index); 2468 goto put_device; 2469 } 2470 2471 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2472 2473 atomic_set(&rproc->power, 0); 2474 2475 mutex_init(&rproc->lock); 2476 2477 INIT_LIST_HEAD(&rproc->carveouts); 2478 INIT_LIST_HEAD(&rproc->mappings); 2479 INIT_LIST_HEAD(&rproc->traces); 2480 INIT_LIST_HEAD(&rproc->rvdevs); 2481 INIT_LIST_HEAD(&rproc->subdevs); 2482 INIT_LIST_HEAD(&rproc->dump_segments); 2483 2484 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2485 2486 rproc->state = RPROC_OFFLINE; 2487 2488 return rproc; 2489 2490 put_device: 2491 put_device(&rproc->dev); 2492 return NULL; 2493 } 2494 EXPORT_SYMBOL(rproc_alloc); 2495 2496 /** 2497 * rproc_free() - unroll rproc_alloc() 2498 * @rproc: the remote processor handle 2499 * 2500 * This function decrements the rproc dev refcount. 2501 * 2502 * If no one holds any reference to rproc anymore, then its refcount would 2503 * now drop to zero, and it would be freed. 2504 */ 2505 void rproc_free(struct rproc *rproc) 2506 { 2507 put_device(&rproc->dev); 2508 } 2509 EXPORT_SYMBOL(rproc_free); 2510 2511 /** 2512 * rproc_put() - release rproc reference 2513 * @rproc: the remote processor handle 2514 * 2515 * This function decrements the rproc dev refcount. 2516 * 2517 * If no one holds any reference to rproc anymore, then its refcount would 2518 * now drop to zero, and it would be freed. 2519 */ 2520 void rproc_put(struct rproc *rproc) 2521 { 2522 module_put(rproc->dev.parent->driver->owner); 2523 put_device(&rproc->dev); 2524 } 2525 EXPORT_SYMBOL(rproc_put); 2526 2527 /** 2528 * rproc_del() - unregister a remote processor 2529 * @rproc: rproc handle to unregister 2530 * 2531 * This function should be called when the platform specific rproc 2532 * implementation decides to remove the rproc device. it should 2533 * _only_ be called if a previous invocation of rproc_add() 2534 * has completed successfully. 2535 * 2536 * After rproc_del() returns, @rproc isn't freed yet, because 2537 * of the outstanding reference created by rproc_alloc. To decrement that 2538 * one last refcount, one still needs to call rproc_free(). 2539 * 2540 * Return: 0 on success and -EINVAL if @rproc isn't valid 2541 */ 2542 int rproc_del(struct rproc *rproc) 2543 { 2544 if (!rproc) 2545 return -EINVAL; 2546 2547 /* TODO: make sure this works with rproc->power > 1 */ 2548 rproc_shutdown(rproc); 2549 2550 mutex_lock(&rproc->lock); 2551 rproc->state = RPROC_DELETED; 2552 mutex_unlock(&rproc->lock); 2553 2554 rproc_delete_debug_dir(rproc); 2555 2556 /* the rproc is downref'ed as soon as it's removed from the klist */ 2557 mutex_lock(&rproc_list_mutex); 2558 list_del_rcu(&rproc->node); 2559 mutex_unlock(&rproc_list_mutex); 2560 2561 /* Ensure that no readers of rproc_list are still active */ 2562 synchronize_rcu(); 2563 2564 device_del(&rproc->dev); 2565 rproc_char_device_remove(rproc); 2566 2567 return 0; 2568 } 2569 EXPORT_SYMBOL(rproc_del); 2570 2571 static void devm_rproc_free(struct device *dev, void *res) 2572 { 2573 rproc_free(*(struct rproc **)res); 2574 } 2575 2576 /** 2577 * devm_rproc_alloc() - resource managed rproc_alloc() 2578 * @dev: the underlying device 2579 * @name: name of this remote processor 2580 * @ops: platform-specific handlers (mainly start/stop) 2581 * @firmware: name of firmware file to load, can be NULL 2582 * @len: length of private data needed by the rproc driver (in bytes) 2583 * 2584 * This function performs like rproc_alloc() but the acquired rproc device will 2585 * automatically be released on driver detach. 2586 * 2587 * Return: new rproc instance, or NULL on failure 2588 */ 2589 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2590 const struct rproc_ops *ops, 2591 const char *firmware, int len) 2592 { 2593 struct rproc **ptr, *rproc; 2594 2595 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2596 if (!ptr) 2597 return NULL; 2598 2599 rproc = rproc_alloc(dev, name, ops, firmware, len); 2600 if (rproc) { 2601 *ptr = rproc; 2602 devres_add(dev, ptr); 2603 } else { 2604 devres_free(ptr); 2605 } 2606 2607 return rproc; 2608 } 2609 EXPORT_SYMBOL(devm_rproc_alloc); 2610 2611 /** 2612 * rproc_add_subdev() - add a subdevice to a remoteproc 2613 * @rproc: rproc handle to add the subdevice to 2614 * @subdev: subdev handle to register 2615 * 2616 * Caller is responsible for populating optional subdevice function pointers. 2617 */ 2618 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2619 { 2620 list_add_tail(&subdev->node, &rproc->subdevs); 2621 } 2622 EXPORT_SYMBOL(rproc_add_subdev); 2623 2624 /** 2625 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2626 * @rproc: rproc handle to remove the subdevice from 2627 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2628 */ 2629 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2630 { 2631 list_del(&subdev->node); 2632 } 2633 EXPORT_SYMBOL(rproc_remove_subdev); 2634 2635 /** 2636 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2637 * @dev: child device to find ancestor of 2638 * 2639 * Return: the ancestor rproc instance, or NULL if not found 2640 */ 2641 struct rproc *rproc_get_by_child(struct device *dev) 2642 { 2643 for (dev = dev->parent; dev; dev = dev->parent) { 2644 if (dev->type == &rproc_type) 2645 return dev->driver_data; 2646 } 2647 2648 return NULL; 2649 } 2650 EXPORT_SYMBOL(rproc_get_by_child); 2651 2652 /** 2653 * rproc_report_crash() - rproc crash reporter function 2654 * @rproc: remote processor 2655 * @type: crash type 2656 * 2657 * This function must be called every time a crash is detected by the low-level 2658 * drivers implementing a specific remoteproc. This should not be called from a 2659 * non-remoteproc driver. 2660 * 2661 * This function can be called from atomic/interrupt context. 2662 */ 2663 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2664 { 2665 if (!rproc) { 2666 pr_err("NULL rproc pointer\n"); 2667 return; 2668 } 2669 2670 /* Prevent suspend while the remoteproc is being recovered */ 2671 pm_stay_awake(rproc->dev.parent); 2672 2673 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2674 rproc->name, rproc_crash_to_string(type)); 2675 2676 queue_work(rproc_recovery_wq, &rproc->crash_handler); 2677 } 2678 EXPORT_SYMBOL(rproc_report_crash); 2679 2680 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2681 void *ptr) 2682 { 2683 unsigned int longest = 0; 2684 struct rproc *rproc; 2685 unsigned int d; 2686 2687 rcu_read_lock(); 2688 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2689 if (!rproc->ops->panic) 2690 continue; 2691 2692 if (rproc->state != RPROC_RUNNING && 2693 rproc->state != RPROC_ATTACHED) 2694 continue; 2695 2696 d = rproc->ops->panic(rproc); 2697 longest = max(longest, d); 2698 } 2699 rcu_read_unlock(); 2700 2701 /* 2702 * Delay for the longest requested duration before returning. This can 2703 * be used by the remoteproc drivers to give the remote processor time 2704 * to perform any requested operations (such as flush caches), when 2705 * it's not possible to signal the Linux side due to the panic. 2706 */ 2707 mdelay(longest); 2708 2709 return NOTIFY_DONE; 2710 } 2711 2712 static void __init rproc_init_panic(void) 2713 { 2714 rproc_panic_nb.notifier_call = rproc_panic_handler; 2715 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2716 } 2717 2718 static void __exit rproc_exit_panic(void) 2719 { 2720 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2721 } 2722 2723 static int __init remoteproc_init(void) 2724 { 2725 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", 2726 WQ_UNBOUND | WQ_FREEZABLE, 0); 2727 if (!rproc_recovery_wq) { 2728 pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); 2729 return -ENOMEM; 2730 } 2731 2732 rproc_init_sysfs(); 2733 rproc_init_debugfs(); 2734 rproc_init_cdev(); 2735 rproc_init_panic(); 2736 2737 return 0; 2738 } 2739 subsys_initcall(remoteproc_init); 2740 2741 static void __exit remoteproc_exit(void) 2742 { 2743 ida_destroy(&rproc_dev_index); 2744 2745 if (!rproc_recovery_wq) 2746 return; 2747 2748 rproc_exit_panic(); 2749 rproc_exit_debugfs(); 2750 rproc_exit_sysfs(); 2751 destroy_workqueue(rproc_recovery_wq); 2752 } 2753 module_exit(remoteproc_exit); 2754 2755 MODULE_LICENSE("GPL v2"); 2756 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2757