1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/virtio_ids.h>
43 #include <linux/virtio_ring.h>
44 #include <asm/byteorder.h>
45 
46 #include "remoteproc_internal.h"
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 
51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
52 				struct resource_table *table, int len);
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 				 void *, int offset, int avail);
55 
56 static int rproc_alloc_carveout(struct rproc *rproc,
57 				struct rproc_mem_entry *mem);
58 static int rproc_release_carveout(struct rproc *rproc,
59 				  struct rproc_mem_entry *mem);
60 
61 /* Unique indices for remoteproc devices */
62 static DEFINE_IDA(rproc_dev_index);
63 
64 static const char * const rproc_crash_names[] = {
65 	[RPROC_MMUFAULT]	= "mmufault",
66 	[RPROC_WATCHDOG]	= "watchdog",
67 	[RPROC_FATAL_ERROR]	= "fatal error",
68 };
69 
70 /* translate rproc_crash_type to string */
71 static const char *rproc_crash_to_string(enum rproc_crash_type type)
72 {
73 	if (type < ARRAY_SIZE(rproc_crash_names))
74 		return rproc_crash_names[type];
75 	return "unknown";
76 }
77 
78 /*
79  * This is the IOMMU fault handler we register with the IOMMU API
80  * (when relevant; not all remote processors access memory through
81  * an IOMMU).
82  *
83  * IOMMU core will invoke this handler whenever the remote processor
84  * will try to access an unmapped device address.
85  */
86 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
87 			     unsigned long iova, int flags, void *token)
88 {
89 	struct rproc *rproc = token;
90 
91 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
92 
93 	rproc_report_crash(rproc, RPROC_MMUFAULT);
94 
95 	/*
96 	 * Let the iommu core know we're not really handling this fault;
97 	 * we just used it as a recovery trigger.
98 	 */
99 	return -ENOSYS;
100 }
101 
102 static int rproc_enable_iommu(struct rproc *rproc)
103 {
104 	struct iommu_domain *domain;
105 	struct device *dev = rproc->dev.parent;
106 	int ret;
107 
108 	if (!rproc->has_iommu) {
109 		dev_dbg(dev, "iommu not present\n");
110 		return 0;
111 	}
112 
113 	domain = iommu_domain_alloc(dev->bus);
114 	if (!domain) {
115 		dev_err(dev, "can't alloc iommu domain\n");
116 		return -ENOMEM;
117 	}
118 
119 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
120 
121 	ret = iommu_attach_device(domain, dev);
122 	if (ret) {
123 		dev_err(dev, "can't attach iommu device: %d\n", ret);
124 		goto free_domain;
125 	}
126 
127 	rproc->domain = domain;
128 
129 	return 0;
130 
131 free_domain:
132 	iommu_domain_free(domain);
133 	return ret;
134 }
135 
136 static void rproc_disable_iommu(struct rproc *rproc)
137 {
138 	struct iommu_domain *domain = rproc->domain;
139 	struct device *dev = rproc->dev.parent;
140 
141 	if (!domain)
142 		return;
143 
144 	iommu_detach_device(domain, dev);
145 	iommu_domain_free(domain);
146 }
147 
148 static phys_addr_t rproc_va_to_pa(void *cpu_addr)
149 {
150 	/*
151 	 * Return physical address according to virtual address location
152 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
153 	 * - in kernel: if region allocated in generic dma memory pool
154 	 */
155 	if (is_vmalloc_addr(cpu_addr)) {
156 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
157 				    offset_in_page(cpu_addr);
158 	}
159 
160 	WARN_ON(!virt_addr_valid(cpu_addr));
161 	return virt_to_phys(cpu_addr);
162 }
163 
164 /**
165  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166  * @rproc: handle of a remote processor
167  * @da: remoteproc device address to translate
168  * @len: length of the memory region @da is pointing to
169  *
170  * Some remote processors will ask us to allocate them physically contiguous
171  * memory regions (which we call "carveouts"), and map them to specific
172  * device addresses (which are hardcoded in the firmware). They may also have
173  * dedicated memory regions internal to the processors, and use them either
174  * exclusively or alongside carveouts.
175  *
176  * They may then ask us to copy objects into specific device addresses (e.g.
177  * code/data sections) or expose us certain symbols in other device address
178  * (e.g. their trace buffer).
179  *
180  * This function is a helper function with which we can go over the allocated
181  * carveouts and translate specific device addresses to kernel virtual addresses
182  * so we can access the referenced memory. This function also allows to perform
183  * translations on the internal remoteproc memory regions through a platform
184  * implementation specific da_to_va ops, if present.
185  *
186  * The function returns a valid kernel address on success or NULL on failure.
187  *
188  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
189  * but only on kernel direct mapped RAM memory. Instead, we're just using
190  * here the output of the DMA API for the carveouts, which should be more
191  * correct.
192  */
193 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
194 {
195 	struct rproc_mem_entry *carveout;
196 	void *ptr = NULL;
197 
198 	if (rproc->ops->da_to_va) {
199 		ptr = rproc->ops->da_to_va(rproc, da, len);
200 		if (ptr)
201 			goto out;
202 	}
203 
204 	list_for_each_entry(carveout, &rproc->carveouts, node) {
205 		int offset = da - carveout->da;
206 
207 		/* try next carveout if da is too small */
208 		if (offset < 0)
209 			continue;
210 
211 		/* try next carveout if da is too large */
212 		if (offset + len > carveout->len)
213 			continue;
214 
215 		ptr = carveout->va + offset;
216 
217 		break;
218 	}
219 
220 out:
221 	return ptr;
222 }
223 EXPORT_SYMBOL(rproc_da_to_va);
224 
225 /**
226  * rproc_find_carveout_by_name() - lookup the carveout region by a name
227  * @rproc: handle of a remote processor
228  * @name,..: carveout name to find (standard printf format)
229  *
230  * Platform driver has the capability to register some pre-allacoted carveout
231  * (physically contiguous memory regions) before rproc firmware loading and
232  * associated resource table analysis. These regions may be dedicated memory
233  * regions internal to the coprocessor or specified DDR region with specific
234  * attributes
235  *
236  * This function is a helper function with which we can go over the
237  * allocated carveouts and return associated region characteristics like
238  * coprocessor address, length or processor virtual address.
239  *
240  * Return: a valid pointer on carveout entry on success or NULL on failure.
241  */
242 struct rproc_mem_entry *
243 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
244 {
245 	va_list args;
246 	char _name[32];
247 	struct rproc_mem_entry *carveout, *mem = NULL;
248 
249 	if (!name)
250 		return NULL;
251 
252 	va_start(args, name);
253 	vsnprintf(_name, sizeof(_name), name, args);
254 	va_end(args);
255 
256 	list_for_each_entry(carveout, &rproc->carveouts, node) {
257 		/* Compare carveout and requested names */
258 		if (!strcmp(carveout->name, _name)) {
259 			mem = carveout;
260 			break;
261 		}
262 	}
263 
264 	return mem;
265 }
266 
267 /**
268  * rproc_check_carveout_da() - Check specified carveout da configuration
269  * @rproc: handle of a remote processor
270  * @mem: pointer on carveout to check
271  * @da: area device address
272  * @len: associated area size
273  *
274  * This function is a helper function to verify requested device area (couple
275  * da, len) is part of specified carevout.
276  *
277  * Return: 0 if carveout match request else -ENOMEM
278  */
279 int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem,
280 			    u32 da, u32 len)
281 {
282 	struct device *dev = &rproc->dev;
283 	int delta = 0;
284 
285 	/* Check requested resource length */
286 	if (len > mem->len) {
287 		dev_err(dev, "Registered carveout doesn't fit len request\n");
288 		return -ENOMEM;
289 	}
290 
291 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
292 		/* Update existing carveout da */
293 		mem->da = da;
294 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
295 		delta = da - mem->da;
296 
297 		/* Check requested resource belongs to registered carveout */
298 		if (delta < 0) {
299 			dev_err(dev,
300 				"Registered carveout doesn't fit da request\n");
301 			return -ENOMEM;
302 		}
303 
304 		if (delta + len > mem->len) {
305 			dev_err(dev,
306 				"Registered carveout doesn't fit len request\n");
307 			return -ENOMEM;
308 		}
309 	}
310 
311 	return 0;
312 }
313 
314 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
315 {
316 	struct rproc *rproc = rvdev->rproc;
317 	struct device *dev = &rproc->dev;
318 	struct rproc_vring *rvring = &rvdev->vring[i];
319 	struct fw_rsc_vdev *rsc;
320 	int ret, size, notifyid;
321 	struct rproc_mem_entry *mem;
322 
323 	/* actual size of vring (in bytes) */
324 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
325 
326 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
327 
328 	/* Search for pre-registered carveout */
329 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
330 					  i);
331 	if (mem) {
332 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
333 			return -ENOMEM;
334 	} else {
335 		/* Register carveout in in list */
336 		mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
337 					   rproc_alloc_carveout,
338 					   rproc_release_carveout,
339 					   "vdev%dvring%d",
340 					   rvdev->index, i);
341 		if (!mem) {
342 			dev_err(dev, "Can't allocate memory entry structure\n");
343 			return -ENOMEM;
344 		}
345 
346 		rproc_add_carveout(rproc, mem);
347 	}
348 
349 	/*
350 	 * Assign an rproc-wide unique index for this vring
351 	 * TODO: assign a notifyid for rvdev updates as well
352 	 * TODO: support predefined notifyids (via resource table)
353 	 */
354 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
355 	if (ret < 0) {
356 		dev_err(dev, "idr_alloc failed: %d\n", ret);
357 		return ret;
358 	}
359 	notifyid = ret;
360 
361 	/* Potentially bump max_notifyid */
362 	if (notifyid > rproc->max_notifyid)
363 		rproc->max_notifyid = notifyid;
364 
365 	rvring->notifyid = notifyid;
366 
367 	/* Let the rproc know the notifyid of this vring.*/
368 	rsc->vring[i].notifyid = notifyid;
369 	return 0;
370 }
371 
372 static int
373 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
374 {
375 	struct rproc *rproc = rvdev->rproc;
376 	struct device *dev = &rproc->dev;
377 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
378 	struct rproc_vring *rvring = &rvdev->vring[i];
379 
380 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
381 		i, vring->da, vring->num, vring->align);
382 
383 	/* verify queue size and vring alignment are sane */
384 	if (!vring->num || !vring->align) {
385 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
386 			vring->num, vring->align);
387 		return -EINVAL;
388 	}
389 
390 	rvring->len = vring->num;
391 	rvring->align = vring->align;
392 	rvring->rvdev = rvdev;
393 
394 	return 0;
395 }
396 
397 void rproc_free_vring(struct rproc_vring *rvring)
398 {
399 	struct rproc *rproc = rvring->rvdev->rproc;
400 	int idx = rvring->rvdev->vring - rvring;
401 	struct fw_rsc_vdev *rsc;
402 
403 	idr_remove(&rproc->notifyids, rvring->notifyid);
404 
405 	/* reset resource entry info */
406 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
407 	rsc->vring[idx].da = 0;
408 	rsc->vring[idx].notifyid = -1;
409 }
410 
411 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
412 {
413 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
414 
415 	return rproc_add_virtio_dev(rvdev, rvdev->id);
416 }
417 
418 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
419 {
420 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
421 
422 	rproc_remove_virtio_dev(rvdev);
423 }
424 
425 /**
426  * rproc_handle_vdev() - handle a vdev fw resource
427  * @rproc: the remote processor
428  * @rsc: the vring resource descriptor
429  * @avail: size of available data (for sanity checking the image)
430  *
431  * This resource entry requests the host to statically register a virtio
432  * device (vdev), and setup everything needed to support it. It contains
433  * everything needed to make it possible: the virtio device id, virtio
434  * device features, vrings information, virtio config space, etc...
435  *
436  * Before registering the vdev, the vrings are allocated from non-cacheable
437  * physically contiguous memory. Currently we only support two vrings per
438  * remote processor (temporary limitation). We might also want to consider
439  * doing the vring allocation only later when ->find_vqs() is invoked, and
440  * then release them upon ->del_vqs().
441  *
442  * Note: @da is currently not really handled correctly: we dynamically
443  * allocate it using the DMA API, ignoring requested hard coded addresses,
444  * and we don't take care of any required IOMMU programming. This is all
445  * going to be taken care of when the generic iommu-based DMA API will be
446  * merged. Meanwhile, statically-addressed iommu-based firmware images should
447  * use RSC_DEVMEM resource entries to map their required @da to the physical
448  * address of their base CMA region (ouch, hacky!).
449  *
450  * Returns 0 on success, or an appropriate error code otherwise
451  */
452 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
453 			     int offset, int avail)
454 {
455 	struct device *dev = &rproc->dev;
456 	struct rproc_vdev *rvdev;
457 	int i, ret;
458 
459 	/* make sure resource isn't truncated */
460 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
461 			+ rsc->config_len > avail) {
462 		dev_err(dev, "vdev rsc is truncated\n");
463 		return -EINVAL;
464 	}
465 
466 	/* make sure reserved bytes are zeroes */
467 	if (rsc->reserved[0] || rsc->reserved[1]) {
468 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
469 		return -EINVAL;
470 	}
471 
472 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
473 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
474 
475 	/* we currently support only two vrings per rvdev */
476 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
477 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
478 		return -EINVAL;
479 	}
480 
481 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
482 	if (!rvdev)
483 		return -ENOMEM;
484 
485 	kref_init(&rvdev->refcount);
486 
487 	rvdev->id = rsc->id;
488 	rvdev->rproc = rproc;
489 	rvdev->index = rproc->nb_vdev++;
490 
491 	/* parse the vrings */
492 	for (i = 0; i < rsc->num_of_vrings; i++) {
493 		ret = rproc_parse_vring(rvdev, rsc, i);
494 		if (ret)
495 			goto free_rvdev;
496 	}
497 
498 	/* remember the resource offset*/
499 	rvdev->rsc_offset = offset;
500 
501 	/* allocate the vring resources */
502 	for (i = 0; i < rsc->num_of_vrings; i++) {
503 		ret = rproc_alloc_vring(rvdev, i);
504 		if (ret)
505 			goto unwind_vring_allocations;
506 	}
507 
508 	list_add_tail(&rvdev->node, &rproc->rvdevs);
509 
510 	rvdev->subdev.start = rproc_vdev_do_start;
511 	rvdev->subdev.stop = rproc_vdev_do_stop;
512 
513 	rproc_add_subdev(rproc, &rvdev->subdev);
514 
515 	return 0;
516 
517 unwind_vring_allocations:
518 	for (i--; i >= 0; i--)
519 		rproc_free_vring(&rvdev->vring[i]);
520 free_rvdev:
521 	kfree(rvdev);
522 	return ret;
523 }
524 
525 void rproc_vdev_release(struct kref *ref)
526 {
527 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
528 	struct rproc_vring *rvring;
529 	struct rproc *rproc = rvdev->rproc;
530 	int id;
531 
532 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
533 		rvring = &rvdev->vring[id];
534 		rproc_free_vring(rvring);
535 	}
536 
537 	rproc_remove_subdev(rproc, &rvdev->subdev);
538 	list_del(&rvdev->node);
539 	kfree(rvdev);
540 }
541 
542 /**
543  * rproc_handle_trace() - handle a shared trace buffer resource
544  * @rproc: the remote processor
545  * @rsc: the trace resource descriptor
546  * @avail: size of available data (for sanity checking the image)
547  *
548  * In case the remote processor dumps trace logs into memory,
549  * export it via debugfs.
550  *
551  * Currently, the 'da' member of @rsc should contain the device address
552  * where the remote processor is dumping the traces. Later we could also
553  * support dynamically allocating this address using the generic
554  * DMA API (but currently there isn't a use case for that).
555  *
556  * Returns 0 on success, or an appropriate error code otherwise
557  */
558 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
559 			      int offset, int avail)
560 {
561 	struct rproc_mem_entry *trace;
562 	struct device *dev = &rproc->dev;
563 	void *ptr;
564 	char name[15];
565 
566 	if (sizeof(*rsc) > avail) {
567 		dev_err(dev, "trace rsc is truncated\n");
568 		return -EINVAL;
569 	}
570 
571 	/* make sure reserved bytes are zeroes */
572 	if (rsc->reserved) {
573 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
574 		return -EINVAL;
575 	}
576 
577 	/* what's the kernel address of this resource ? */
578 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
579 	if (!ptr) {
580 		dev_err(dev, "erroneous trace resource entry\n");
581 		return -EINVAL;
582 	}
583 
584 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
585 	if (!trace)
586 		return -ENOMEM;
587 
588 	/* set the trace buffer dma properties */
589 	trace->len = rsc->len;
590 	trace->va = ptr;
591 
592 	/* make sure snprintf always null terminates, even if truncating */
593 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
594 
595 	/* create the debugfs entry */
596 	trace->priv = rproc_create_trace_file(name, rproc, trace);
597 	if (!trace->priv) {
598 		trace->va = NULL;
599 		kfree(trace);
600 		return -EINVAL;
601 	}
602 
603 	list_add_tail(&trace->node, &rproc->traces);
604 
605 	rproc->num_traces++;
606 
607 	dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
608 		name, ptr, rsc->da, rsc->len);
609 
610 	return 0;
611 }
612 
613 /**
614  * rproc_handle_devmem() - handle devmem resource entry
615  * @rproc: remote processor handle
616  * @rsc: the devmem resource entry
617  * @avail: size of available data (for sanity checking the image)
618  *
619  * Remote processors commonly need to access certain on-chip peripherals.
620  *
621  * Some of these remote processors access memory via an iommu device,
622  * and might require us to configure their iommu before they can access
623  * the on-chip peripherals they need.
624  *
625  * This resource entry is a request to map such a peripheral device.
626  *
627  * These devmem entries will contain the physical address of the device in
628  * the 'pa' member. If a specific device address is expected, then 'da' will
629  * contain it (currently this is the only use case supported). 'len' will
630  * contain the size of the physical region we need to map.
631  *
632  * Currently we just "trust" those devmem entries to contain valid physical
633  * addresses, but this is going to change: we want the implementations to
634  * tell us ranges of physical addresses the firmware is allowed to request,
635  * and not allow firmwares to request access to physical addresses that
636  * are outside those ranges.
637  */
638 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
639 			       int offset, int avail)
640 {
641 	struct rproc_mem_entry *mapping;
642 	struct device *dev = &rproc->dev;
643 	int ret;
644 
645 	/* no point in handling this resource without a valid iommu domain */
646 	if (!rproc->domain)
647 		return -EINVAL;
648 
649 	if (sizeof(*rsc) > avail) {
650 		dev_err(dev, "devmem rsc is truncated\n");
651 		return -EINVAL;
652 	}
653 
654 	/* make sure reserved bytes are zeroes */
655 	if (rsc->reserved) {
656 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
657 		return -EINVAL;
658 	}
659 
660 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
661 	if (!mapping)
662 		return -ENOMEM;
663 
664 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
665 	if (ret) {
666 		dev_err(dev, "failed to map devmem: %d\n", ret);
667 		goto out;
668 	}
669 
670 	/*
671 	 * We'll need this info later when we'll want to unmap everything
672 	 * (e.g. on shutdown).
673 	 *
674 	 * We can't trust the remote processor not to change the resource
675 	 * table, so we must maintain this info independently.
676 	 */
677 	mapping->da = rsc->da;
678 	mapping->len = rsc->len;
679 	list_add_tail(&mapping->node, &rproc->mappings);
680 
681 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
682 		rsc->pa, rsc->da, rsc->len);
683 
684 	return 0;
685 
686 out:
687 	kfree(mapping);
688 	return ret;
689 }
690 
691 /**
692  * rproc_alloc_carveout() - allocated specified carveout
693  * @rproc: rproc handle
694  * @mem: the memory entry to allocate
695  *
696  * This function allocate specified memory entry @mem using
697  * dma_alloc_coherent() as default allocator
698  */
699 static int rproc_alloc_carveout(struct rproc *rproc,
700 				struct rproc_mem_entry *mem)
701 {
702 	struct rproc_mem_entry *mapping = NULL;
703 	struct device *dev = &rproc->dev;
704 	dma_addr_t dma;
705 	void *va;
706 	int ret;
707 
708 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
709 	if (!va) {
710 		dev_err(dev->parent,
711 			"failed to allocate dma memory: len 0x%x\n", mem->len);
712 		return -ENOMEM;
713 	}
714 
715 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
716 		va, &dma, mem->len);
717 
718 	/*
719 	 * Ok, this is non-standard.
720 	 *
721 	 * Sometimes we can't rely on the generic iommu-based DMA API
722 	 * to dynamically allocate the device address and then set the IOMMU
723 	 * tables accordingly, because some remote processors might
724 	 * _require_ us to use hard coded device addresses that their
725 	 * firmware was compiled with.
726 	 *
727 	 * In this case, we must use the IOMMU API directly and map
728 	 * the memory to the device address as expected by the remote
729 	 * processor.
730 	 *
731 	 * Obviously such remote processor devices should not be configured
732 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
733 	 * physical address in this case.
734 	 */
735 
736 	if (mem->da != FW_RSC_ADDR_ANY) {
737 		if (!rproc->domain) {
738 			dev_err(dev->parent,
739 				"Bad carveout rsc configuration\n");
740 			ret = -ENOMEM;
741 			goto dma_free;
742 		}
743 
744 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
745 		if (!mapping) {
746 			ret = -ENOMEM;
747 			goto dma_free;
748 		}
749 
750 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
751 				mem->flags);
752 		if (ret) {
753 			dev_err(dev, "iommu_map failed: %d\n", ret);
754 			goto free_mapping;
755 		}
756 
757 		/*
758 		 * We'll need this info later when we'll want to unmap
759 		 * everything (e.g. on shutdown).
760 		 *
761 		 * We can't trust the remote processor not to change the
762 		 * resource table, so we must maintain this info independently.
763 		 */
764 		mapping->da = mem->da;
765 		mapping->len = mem->len;
766 		list_add_tail(&mapping->node, &rproc->mappings);
767 
768 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
769 			mem->da, &dma);
770 	} else {
771 		mem->da = (u32)dma;
772 	}
773 
774 	mem->dma = (u32)dma;
775 	mem->va = va;
776 
777 	return 0;
778 
779 free_mapping:
780 	kfree(mapping);
781 dma_free:
782 	dma_free_coherent(dev->parent, mem->len, va, dma);
783 	return ret;
784 }
785 
786 /**
787  * rproc_release_carveout() - release acquired carveout
788  * @rproc: rproc handle
789  * @mem: the memory entry to release
790  *
791  * This function releases specified memory entry @mem allocated via
792  * rproc_alloc_carveout() function by @rproc.
793  */
794 static int rproc_release_carveout(struct rproc *rproc,
795 				  struct rproc_mem_entry *mem)
796 {
797 	struct device *dev = &rproc->dev;
798 
799 	/* clean up carveout allocations */
800 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
801 	return 0;
802 }
803 
804 /**
805  * rproc_handle_carveout() - handle phys contig memory allocation requests
806  * @rproc: rproc handle
807  * @rsc: the resource entry
808  * @avail: size of available data (for image validation)
809  *
810  * This function will handle firmware requests for allocation of physically
811  * contiguous memory regions.
812  *
813  * These request entries should come first in the firmware's resource table,
814  * as other firmware entries might request placing other data objects inside
815  * these memory regions (e.g. data/code segments, trace resource entries, ...).
816  *
817  * Allocating memory this way helps utilizing the reserved physical memory
818  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820  * pressure is important; it may have a substantial impact on performance.
821  */
822 static int rproc_handle_carveout(struct rproc *rproc,
823 				 struct fw_rsc_carveout *rsc,
824 				 int offset, int avail)
825 {
826 	struct rproc_mem_entry *carveout;
827 	struct device *dev = &rproc->dev;
828 
829 	if (sizeof(*rsc) > avail) {
830 		dev_err(dev, "carveout rsc is truncated\n");
831 		return -EINVAL;
832 	}
833 
834 	/* make sure reserved bytes are zeroes */
835 	if (rsc->reserved) {
836 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
837 		return -EINVAL;
838 	}
839 
840 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
841 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
842 
843 	/*
844 	 * Check carveout rsc already part of a registered carveout,
845 	 * Search by name, then check the da and length
846 	 */
847 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
848 
849 	if (carveout) {
850 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
851 			dev_err(dev,
852 				"Carveout already associated to resource table\n");
853 			return -ENOMEM;
854 		}
855 
856 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
857 			return -ENOMEM;
858 
859 		/* Update memory carveout with resource table info */
860 		carveout->rsc_offset = offset;
861 		carveout->flags = rsc->flags;
862 
863 		return 0;
864 	}
865 
866 	/* Register carveout in in list */
867 	carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
868 					rproc_alloc_carveout,
869 					rproc_release_carveout, rsc->name);
870 	if (!carveout) {
871 		dev_err(dev, "Can't allocate memory entry structure\n");
872 		return -ENOMEM;
873 	}
874 
875 	carveout->flags = rsc->flags;
876 	carveout->rsc_offset = offset;
877 	rproc_add_carveout(rproc, carveout);
878 
879 	return 0;
880 }
881 
882 /**
883  * rproc_add_carveout() - register an allocated carveout region
884  * @rproc: rproc handle
885  * @mem: memory entry to register
886  *
887  * This function registers specified memory entry in @rproc carveouts list.
888  * Specified carveout should have been allocated before registering.
889  */
890 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
891 {
892 	list_add_tail(&mem->node, &rproc->carveouts);
893 }
894 EXPORT_SYMBOL(rproc_add_carveout);
895 
896 /**
897  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
898  * @dev: pointer on device struct
899  * @va: virtual address
900  * @dma: dma address
901  * @len: memory carveout length
902  * @da: device address
903  * @release: memory carveout function
904  * @name: carveout name
905  *
906  * This function allocates a rproc_mem_entry struct and fill it with parameters
907  * provided by client.
908  */
909 struct rproc_mem_entry *
910 rproc_mem_entry_init(struct device *dev,
911 		     void *va, dma_addr_t dma, int len, u32 da,
912 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
913 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
914 		     const char *name, ...)
915 {
916 	struct rproc_mem_entry *mem;
917 	va_list args;
918 
919 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
920 	if (!mem)
921 		return mem;
922 
923 	mem->va = va;
924 	mem->dma = dma;
925 	mem->da = da;
926 	mem->len = len;
927 	mem->alloc = alloc;
928 	mem->release = release;
929 	mem->rsc_offset = FW_RSC_ADDR_ANY;
930 	mem->of_resm_idx = -1;
931 
932 	va_start(args, name);
933 	vsnprintf(mem->name, sizeof(mem->name), name, args);
934 	va_end(args);
935 
936 	return mem;
937 }
938 EXPORT_SYMBOL(rproc_mem_entry_init);
939 
940 /**
941  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
942  * from a reserved memory phandle
943  * @dev: pointer on device struct
944  * @of_resm_idx: reserved memory phandle index in "memory-region"
945  * @len: memory carveout length
946  * @da: device address
947  * @name: carveout name
948  *
949  * This function allocates a rproc_mem_entry struct and fill it with parameters
950  * provided by client.
951  */
952 struct rproc_mem_entry *
953 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
954 			     u32 da, const char *name, ...)
955 {
956 	struct rproc_mem_entry *mem;
957 	va_list args;
958 
959 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
960 	if (!mem)
961 		return mem;
962 
963 	mem->da = da;
964 	mem->len = len;
965 	mem->rsc_offset = FW_RSC_ADDR_ANY;
966 	mem->of_resm_idx = of_resm_idx;
967 
968 	va_start(args, name);
969 	vsnprintf(mem->name, sizeof(mem->name), name, args);
970 	va_end(args);
971 
972 	return mem;
973 }
974 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
975 
976 /**
977  * A lookup table for resource handlers. The indices are defined in
978  * enum fw_resource_type.
979  */
980 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
981 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
982 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
983 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
984 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
985 };
986 
987 /* handle firmware resource entries before booting the remote processor */
988 static int rproc_handle_resources(struct rproc *rproc,
989 				  rproc_handle_resource_t handlers[RSC_LAST])
990 {
991 	struct device *dev = &rproc->dev;
992 	rproc_handle_resource_t handler;
993 	int ret = 0, i;
994 
995 	if (!rproc->table_ptr)
996 		return 0;
997 
998 	for (i = 0; i < rproc->table_ptr->num; i++) {
999 		int offset = rproc->table_ptr->offset[i];
1000 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1001 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1002 		void *rsc = (void *)hdr + sizeof(*hdr);
1003 
1004 		/* make sure table isn't truncated */
1005 		if (avail < 0) {
1006 			dev_err(dev, "rsc table is truncated\n");
1007 			return -EINVAL;
1008 		}
1009 
1010 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1011 
1012 		if (hdr->type >= RSC_LAST) {
1013 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1014 			continue;
1015 		}
1016 
1017 		handler = handlers[hdr->type];
1018 		if (!handler)
1019 			continue;
1020 
1021 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1022 		if (ret)
1023 			break;
1024 	}
1025 
1026 	return ret;
1027 }
1028 
1029 static int rproc_prepare_subdevices(struct rproc *rproc)
1030 {
1031 	struct rproc_subdev *subdev;
1032 	int ret;
1033 
1034 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1035 		if (subdev->prepare) {
1036 			ret = subdev->prepare(subdev);
1037 			if (ret)
1038 				goto unroll_preparation;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 
1044 unroll_preparation:
1045 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1046 		if (subdev->unprepare)
1047 			subdev->unprepare(subdev);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 static int rproc_start_subdevices(struct rproc *rproc)
1054 {
1055 	struct rproc_subdev *subdev;
1056 	int ret;
1057 
1058 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1059 		if (subdev->start) {
1060 			ret = subdev->start(subdev);
1061 			if (ret)
1062 				goto unroll_registration;
1063 		}
1064 	}
1065 
1066 	return 0;
1067 
1068 unroll_registration:
1069 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1070 		if (subdev->stop)
1071 			subdev->stop(subdev, true);
1072 	}
1073 
1074 	return ret;
1075 }
1076 
1077 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1078 {
1079 	struct rproc_subdev *subdev;
1080 
1081 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1082 		if (subdev->stop)
1083 			subdev->stop(subdev, crashed);
1084 	}
1085 }
1086 
1087 static void rproc_unprepare_subdevices(struct rproc *rproc)
1088 {
1089 	struct rproc_subdev *subdev;
1090 
1091 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1092 		if (subdev->unprepare)
1093 			subdev->unprepare(subdev);
1094 	}
1095 }
1096 
1097 /**
1098  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1099  * in the list
1100  * @rproc: the remote processor handle
1101  *
1102  * This function parses registered carveout list, performs allocation
1103  * if alloc() ops registered and updates resource table information
1104  * if rsc_offset set.
1105  *
1106  * Return: 0 on success
1107  */
1108 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1109 {
1110 	struct rproc_mem_entry *entry, *tmp;
1111 	struct fw_rsc_carveout *rsc;
1112 	struct device *dev = &rproc->dev;
1113 	int ret;
1114 
1115 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1116 		if (entry->alloc) {
1117 			ret = entry->alloc(rproc, entry);
1118 			if (ret) {
1119 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1120 					entry->name, ret);
1121 				return -ENOMEM;
1122 			}
1123 		}
1124 
1125 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1126 			/* update resource table */
1127 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1128 
1129 			/*
1130 			 * Some remote processors might need to know the pa
1131 			 * even though they are behind an IOMMU. E.g., OMAP4's
1132 			 * remote M3 processor needs this so it can control
1133 			 * on-chip hardware accelerators that are not behind
1134 			 * the IOMMU, and therefor must know the pa.
1135 			 *
1136 			 * Generally we don't want to expose physical addresses
1137 			 * if we don't have to (remote processors are generally
1138 			 * _not_ trusted), so we might want to do this only for
1139 			 * remote processor that _must_ have this (e.g. OMAP4's
1140 			 * dual M3 subsystem).
1141 			 *
1142 			 * Non-IOMMU processors might also want to have this info.
1143 			 * In this case, the device address and the physical address
1144 			 * are the same.
1145 			 */
1146 
1147 			/* Use va if defined else dma to generate pa */
1148 			if (entry->va)
1149 				rsc->pa = (u32)rproc_va_to_pa(entry->va);
1150 			else
1151 				rsc->pa = (u32)entry->dma;
1152 
1153 			rsc->da = entry->da;
1154 			rsc->len = entry->len;
1155 		}
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 /**
1162  * rproc_coredump_cleanup() - clean up dump_segments list
1163  * @rproc: the remote processor handle
1164  */
1165 static void rproc_coredump_cleanup(struct rproc *rproc)
1166 {
1167 	struct rproc_dump_segment *entry, *tmp;
1168 
1169 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1170 		list_del(&entry->node);
1171 		kfree(entry);
1172 	}
1173 }
1174 
1175 /**
1176  * rproc_resource_cleanup() - clean up and free all acquired resources
1177  * @rproc: rproc handle
1178  *
1179  * This function will free all resources acquired for @rproc, and it
1180  * is called whenever @rproc either shuts down or fails to boot.
1181  */
1182 static void rproc_resource_cleanup(struct rproc *rproc)
1183 {
1184 	struct rproc_mem_entry *entry, *tmp;
1185 	struct rproc_vdev *rvdev, *rvtmp;
1186 	struct device *dev = &rproc->dev;
1187 
1188 	/* clean up debugfs trace entries */
1189 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
1190 		rproc_remove_trace_file(entry->priv);
1191 		rproc->num_traces--;
1192 		list_del(&entry->node);
1193 		kfree(entry);
1194 	}
1195 
1196 	/* clean up iommu mapping entries */
1197 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1198 		size_t unmapped;
1199 
1200 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1201 		if (unmapped != entry->len) {
1202 			/* nothing much to do besides complaining */
1203 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1204 				unmapped);
1205 		}
1206 
1207 		list_del(&entry->node);
1208 		kfree(entry);
1209 	}
1210 
1211 	/* clean up carveout allocations */
1212 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1213 		if (entry->release)
1214 			entry->release(rproc, entry);
1215 		list_del(&entry->node);
1216 		kfree(entry);
1217 	}
1218 
1219 	/* clean up remote vdev entries */
1220 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1221 		kref_put(&rvdev->refcount, rproc_vdev_release);
1222 
1223 	rproc_coredump_cleanup(rproc);
1224 }
1225 
1226 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1227 {
1228 	struct resource_table *loaded_table;
1229 	struct device *dev = &rproc->dev;
1230 	int ret;
1231 
1232 	/* load the ELF segments to memory */
1233 	ret = rproc_load_segments(rproc, fw);
1234 	if (ret) {
1235 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1236 		return ret;
1237 	}
1238 
1239 	/*
1240 	 * The starting device has been given the rproc->cached_table as the
1241 	 * resource table. The address of the vring along with the other
1242 	 * allocated resources (carveouts etc) is stored in cached_table.
1243 	 * In order to pass this information to the remote device we must copy
1244 	 * this information to device memory. We also update the table_ptr so
1245 	 * that any subsequent changes will be applied to the loaded version.
1246 	 */
1247 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1248 	if (loaded_table) {
1249 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1250 		rproc->table_ptr = loaded_table;
1251 	}
1252 
1253 	ret = rproc_prepare_subdevices(rproc);
1254 	if (ret) {
1255 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1256 			rproc->name, ret);
1257 		goto reset_table_ptr;
1258 	}
1259 
1260 	/* power up the remote processor */
1261 	ret = rproc->ops->start(rproc);
1262 	if (ret) {
1263 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1264 		goto unprepare_subdevices;
1265 	}
1266 
1267 	/* Start any subdevices for the remote processor */
1268 	ret = rproc_start_subdevices(rproc);
1269 	if (ret) {
1270 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1271 			rproc->name, ret);
1272 		goto stop_rproc;
1273 	}
1274 
1275 	rproc->state = RPROC_RUNNING;
1276 
1277 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1278 
1279 	return 0;
1280 
1281 stop_rproc:
1282 	rproc->ops->stop(rproc);
1283 unprepare_subdevices:
1284 	rproc_unprepare_subdevices(rproc);
1285 reset_table_ptr:
1286 	rproc->table_ptr = rproc->cached_table;
1287 
1288 	return ret;
1289 }
1290 
1291 /*
1292  * take a firmware and boot a remote processor with it.
1293  */
1294 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1295 {
1296 	struct device *dev = &rproc->dev;
1297 	const char *name = rproc->firmware;
1298 	int ret;
1299 
1300 	ret = rproc_fw_sanity_check(rproc, fw);
1301 	if (ret)
1302 		return ret;
1303 
1304 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1305 
1306 	/*
1307 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1308 	 * just a nop
1309 	 */
1310 	ret = rproc_enable_iommu(rproc);
1311 	if (ret) {
1312 		dev_err(dev, "can't enable iommu: %d\n", ret);
1313 		return ret;
1314 	}
1315 
1316 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1317 
1318 	/* Load resource table, core dump segment list etc from the firmware */
1319 	ret = rproc_parse_fw(rproc, fw);
1320 	if (ret)
1321 		goto disable_iommu;
1322 
1323 	/* reset max_notifyid */
1324 	rproc->max_notifyid = -1;
1325 
1326 	/* reset handled vdev */
1327 	rproc->nb_vdev = 0;
1328 
1329 	/* handle fw resources which are required to boot rproc */
1330 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1331 	if (ret) {
1332 		dev_err(dev, "Failed to process resources: %d\n", ret);
1333 		goto clean_up_resources;
1334 	}
1335 
1336 	/* Allocate carveout resources associated to rproc */
1337 	ret = rproc_alloc_registered_carveouts(rproc);
1338 	if (ret) {
1339 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1340 			ret);
1341 		goto clean_up_resources;
1342 	}
1343 
1344 	ret = rproc_start(rproc, fw);
1345 	if (ret)
1346 		goto clean_up_resources;
1347 
1348 	return 0;
1349 
1350 clean_up_resources:
1351 	rproc_resource_cleanup(rproc);
1352 	kfree(rproc->cached_table);
1353 	rproc->cached_table = NULL;
1354 	rproc->table_ptr = NULL;
1355 disable_iommu:
1356 	rproc_disable_iommu(rproc);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * take a firmware and boot it up.
1362  *
1363  * Note: this function is called asynchronously upon registration of the
1364  * remote processor (so we must wait until it completes before we try
1365  * to unregister the device. one other option is just to use kref here,
1366  * that might be cleaner).
1367  */
1368 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1369 {
1370 	struct rproc *rproc = context;
1371 
1372 	rproc_boot(rproc);
1373 
1374 	release_firmware(fw);
1375 }
1376 
1377 static int rproc_trigger_auto_boot(struct rproc *rproc)
1378 {
1379 	int ret;
1380 
1381 	/*
1382 	 * We're initiating an asynchronous firmware loading, so we can
1383 	 * be built-in kernel code, without hanging the boot process.
1384 	 */
1385 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1386 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1387 				      rproc, rproc_auto_boot_callback);
1388 	if (ret < 0)
1389 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1390 
1391 	return ret;
1392 }
1393 
1394 static int rproc_stop(struct rproc *rproc, bool crashed)
1395 {
1396 	struct device *dev = &rproc->dev;
1397 	int ret;
1398 
1399 	/* Stop any subdevices for the remote processor */
1400 	rproc_stop_subdevices(rproc, crashed);
1401 
1402 	/* the installed resource table is no longer accessible */
1403 	rproc->table_ptr = rproc->cached_table;
1404 
1405 	/* power off the remote processor */
1406 	ret = rproc->ops->stop(rproc);
1407 	if (ret) {
1408 		dev_err(dev, "can't stop rproc: %d\n", ret);
1409 		return ret;
1410 	}
1411 
1412 	rproc_unprepare_subdevices(rproc);
1413 
1414 	rproc->state = RPROC_OFFLINE;
1415 
1416 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1417 
1418 	return 0;
1419 }
1420 
1421 /**
1422  * rproc_coredump_add_segment() - add segment of device memory to coredump
1423  * @rproc:	handle of a remote processor
1424  * @da:		device address
1425  * @size:	size of segment
1426  *
1427  * Add device memory to the list of segments to be included in a coredump for
1428  * the remoteproc.
1429  *
1430  * Return: 0 on success, negative errno on error.
1431  */
1432 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1433 {
1434 	struct rproc_dump_segment *segment;
1435 
1436 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1437 	if (!segment)
1438 		return -ENOMEM;
1439 
1440 	segment->da = da;
1441 	segment->size = size;
1442 
1443 	list_add_tail(&segment->node, &rproc->dump_segments);
1444 
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(rproc_coredump_add_segment);
1448 
1449 /**
1450  * rproc_coredump_add_custom_segment() - add custom coredump segment
1451  * @rproc:	handle of a remote processor
1452  * @da:		device address
1453  * @size:	size of segment
1454  * @dumpfn:	custom dump function called for each segment during coredump
1455  * @priv:	private data
1456  *
1457  * Add device memory to the list of segments to be included in the coredump
1458  * and associate the segment with the given custom dump function and private
1459  * data.
1460  *
1461  * Return: 0 on success, negative errno on error.
1462  */
1463 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1464 				      dma_addr_t da, size_t size,
1465 				      void (*dumpfn)(struct rproc *rproc,
1466 						     struct rproc_dump_segment *segment,
1467 						     void *dest),
1468 				      void *priv)
1469 {
1470 	struct rproc_dump_segment *segment;
1471 
1472 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1473 	if (!segment)
1474 		return -ENOMEM;
1475 
1476 	segment->da = da;
1477 	segment->size = size;
1478 	segment->priv = priv;
1479 	segment->dump = dumpfn;
1480 
1481 	list_add_tail(&segment->node, &rproc->dump_segments);
1482 
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1486 
1487 /**
1488  * rproc_coredump() - perform coredump
1489  * @rproc:	rproc handle
1490  *
1491  * This function will generate an ELF header for the registered segments
1492  * and create a devcoredump device associated with rproc.
1493  */
1494 static void rproc_coredump(struct rproc *rproc)
1495 {
1496 	struct rproc_dump_segment *segment;
1497 	struct elf32_phdr *phdr;
1498 	struct elf32_hdr *ehdr;
1499 	size_t data_size;
1500 	size_t offset;
1501 	void *data;
1502 	void *ptr;
1503 	int phnum = 0;
1504 
1505 	if (list_empty(&rproc->dump_segments))
1506 		return;
1507 
1508 	data_size = sizeof(*ehdr);
1509 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1510 		data_size += sizeof(*phdr) + segment->size;
1511 
1512 		phnum++;
1513 	}
1514 
1515 	data = vmalloc(data_size);
1516 	if (!data)
1517 		return;
1518 
1519 	ehdr = data;
1520 
1521 	memset(ehdr, 0, sizeof(*ehdr));
1522 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1523 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1524 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1525 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1526 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1527 	ehdr->e_type = ET_CORE;
1528 	ehdr->e_machine = EM_NONE;
1529 	ehdr->e_version = EV_CURRENT;
1530 	ehdr->e_entry = rproc->bootaddr;
1531 	ehdr->e_phoff = sizeof(*ehdr);
1532 	ehdr->e_ehsize = sizeof(*ehdr);
1533 	ehdr->e_phentsize = sizeof(*phdr);
1534 	ehdr->e_phnum = phnum;
1535 
1536 	phdr = data + ehdr->e_phoff;
1537 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1538 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1539 		memset(phdr, 0, sizeof(*phdr));
1540 		phdr->p_type = PT_LOAD;
1541 		phdr->p_offset = offset;
1542 		phdr->p_vaddr = segment->da;
1543 		phdr->p_paddr = segment->da;
1544 		phdr->p_filesz = segment->size;
1545 		phdr->p_memsz = segment->size;
1546 		phdr->p_flags = PF_R | PF_W | PF_X;
1547 		phdr->p_align = 0;
1548 
1549 		if (segment->dump) {
1550 			segment->dump(rproc, segment, data + offset);
1551 		} else {
1552 			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1553 			if (!ptr) {
1554 				dev_err(&rproc->dev,
1555 					"invalid coredump segment (%pad, %zu)\n",
1556 					&segment->da, segment->size);
1557 				memset(data + offset, 0xff, segment->size);
1558 			} else {
1559 				memcpy(data + offset, ptr, segment->size);
1560 			}
1561 		}
1562 
1563 		offset += phdr->p_filesz;
1564 		phdr++;
1565 	}
1566 
1567 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1568 }
1569 
1570 /**
1571  * rproc_trigger_recovery() - recover a remoteproc
1572  * @rproc: the remote processor
1573  *
1574  * The recovery is done by resetting all the virtio devices, that way all the
1575  * rpmsg drivers will be reseted along with the remote processor making the
1576  * remoteproc functional again.
1577  *
1578  * This function can sleep, so it cannot be called from atomic context.
1579  */
1580 int rproc_trigger_recovery(struct rproc *rproc)
1581 {
1582 	const struct firmware *firmware_p;
1583 	struct device *dev = &rproc->dev;
1584 	int ret;
1585 
1586 	dev_err(dev, "recovering %s\n", rproc->name);
1587 
1588 	ret = mutex_lock_interruptible(&rproc->lock);
1589 	if (ret)
1590 		return ret;
1591 
1592 	ret = rproc_stop(rproc, true);
1593 	if (ret)
1594 		goto unlock_mutex;
1595 
1596 	/* generate coredump */
1597 	rproc_coredump(rproc);
1598 
1599 	/* load firmware */
1600 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1601 	if (ret < 0) {
1602 		dev_err(dev, "request_firmware failed: %d\n", ret);
1603 		goto unlock_mutex;
1604 	}
1605 
1606 	/* boot the remote processor up again */
1607 	ret = rproc_start(rproc, firmware_p);
1608 
1609 	release_firmware(firmware_p);
1610 
1611 unlock_mutex:
1612 	mutex_unlock(&rproc->lock);
1613 	return ret;
1614 }
1615 
1616 /**
1617  * rproc_crash_handler_work() - handle a crash
1618  *
1619  * This function needs to handle everything related to a crash, like cpu
1620  * registers and stack dump, information to help to debug the fatal error, etc.
1621  */
1622 static void rproc_crash_handler_work(struct work_struct *work)
1623 {
1624 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1625 	struct device *dev = &rproc->dev;
1626 
1627 	dev_dbg(dev, "enter %s\n", __func__);
1628 
1629 	mutex_lock(&rproc->lock);
1630 
1631 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1632 		/* handle only the first crash detected */
1633 		mutex_unlock(&rproc->lock);
1634 		return;
1635 	}
1636 
1637 	rproc->state = RPROC_CRASHED;
1638 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1639 		rproc->name);
1640 
1641 	mutex_unlock(&rproc->lock);
1642 
1643 	if (!rproc->recovery_disabled)
1644 		rproc_trigger_recovery(rproc);
1645 }
1646 
1647 /**
1648  * rproc_boot() - boot a remote processor
1649  * @rproc: handle of a remote processor
1650  *
1651  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1652  *
1653  * If the remote processor is already powered on, this function immediately
1654  * returns (successfully).
1655  *
1656  * Returns 0 on success, and an appropriate error value otherwise.
1657  */
1658 int rproc_boot(struct rproc *rproc)
1659 {
1660 	const struct firmware *firmware_p;
1661 	struct device *dev;
1662 	int ret;
1663 
1664 	if (!rproc) {
1665 		pr_err("invalid rproc handle\n");
1666 		return -EINVAL;
1667 	}
1668 
1669 	dev = &rproc->dev;
1670 
1671 	ret = mutex_lock_interruptible(&rproc->lock);
1672 	if (ret) {
1673 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1674 		return ret;
1675 	}
1676 
1677 	if (rproc->state == RPROC_DELETED) {
1678 		ret = -ENODEV;
1679 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1680 		goto unlock_mutex;
1681 	}
1682 
1683 	/* skip the boot process if rproc is already powered up */
1684 	if (atomic_inc_return(&rproc->power) > 1) {
1685 		ret = 0;
1686 		goto unlock_mutex;
1687 	}
1688 
1689 	dev_info(dev, "powering up %s\n", rproc->name);
1690 
1691 	/* load firmware */
1692 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1693 	if (ret < 0) {
1694 		dev_err(dev, "request_firmware failed: %d\n", ret);
1695 		goto downref_rproc;
1696 	}
1697 
1698 	ret = rproc_fw_boot(rproc, firmware_p);
1699 
1700 	release_firmware(firmware_p);
1701 
1702 downref_rproc:
1703 	if (ret)
1704 		atomic_dec(&rproc->power);
1705 unlock_mutex:
1706 	mutex_unlock(&rproc->lock);
1707 	return ret;
1708 }
1709 EXPORT_SYMBOL(rproc_boot);
1710 
1711 /**
1712  * rproc_shutdown() - power off the remote processor
1713  * @rproc: the remote processor
1714  *
1715  * Power off a remote processor (previously booted with rproc_boot()).
1716  *
1717  * In case @rproc is still being used by an additional user(s), then
1718  * this function will just decrement the power refcount and exit,
1719  * without really powering off the device.
1720  *
1721  * Every call to rproc_boot() must (eventually) be accompanied by a call
1722  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1723  *
1724  * Notes:
1725  * - we're not decrementing the rproc's refcount, only the power refcount.
1726  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1727  *   returns, and users can still use it with a subsequent rproc_boot(), if
1728  *   needed.
1729  */
1730 void rproc_shutdown(struct rproc *rproc)
1731 {
1732 	struct device *dev = &rproc->dev;
1733 	int ret;
1734 
1735 	ret = mutex_lock_interruptible(&rproc->lock);
1736 	if (ret) {
1737 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1738 		return;
1739 	}
1740 
1741 	/* if the remote proc is still needed, bail out */
1742 	if (!atomic_dec_and_test(&rproc->power))
1743 		goto out;
1744 
1745 	ret = rproc_stop(rproc, false);
1746 	if (ret) {
1747 		atomic_inc(&rproc->power);
1748 		goto out;
1749 	}
1750 
1751 	/* clean up all acquired resources */
1752 	rproc_resource_cleanup(rproc);
1753 
1754 	rproc_disable_iommu(rproc);
1755 
1756 	/* Free the copy of the resource table */
1757 	kfree(rproc->cached_table);
1758 	rproc->cached_table = NULL;
1759 	rproc->table_ptr = NULL;
1760 out:
1761 	mutex_unlock(&rproc->lock);
1762 }
1763 EXPORT_SYMBOL(rproc_shutdown);
1764 
1765 /**
1766  * rproc_get_by_phandle() - find a remote processor by phandle
1767  * @phandle: phandle to the rproc
1768  *
1769  * Finds an rproc handle using the remote processor's phandle, and then
1770  * return a handle to the rproc.
1771  *
1772  * This function increments the remote processor's refcount, so always
1773  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1774  *
1775  * Returns the rproc handle on success, and NULL on failure.
1776  */
1777 #ifdef CONFIG_OF
1778 struct rproc *rproc_get_by_phandle(phandle phandle)
1779 {
1780 	struct rproc *rproc = NULL, *r;
1781 	struct device_node *np;
1782 
1783 	np = of_find_node_by_phandle(phandle);
1784 	if (!np)
1785 		return NULL;
1786 
1787 	mutex_lock(&rproc_list_mutex);
1788 	list_for_each_entry(r, &rproc_list, node) {
1789 		if (r->dev.parent && r->dev.parent->of_node == np) {
1790 			/* prevent underlying implementation from being removed */
1791 			if (!try_module_get(r->dev.parent->driver->owner)) {
1792 				dev_err(&r->dev, "can't get owner\n");
1793 				break;
1794 			}
1795 
1796 			rproc = r;
1797 			get_device(&rproc->dev);
1798 			break;
1799 		}
1800 	}
1801 	mutex_unlock(&rproc_list_mutex);
1802 
1803 	of_node_put(np);
1804 
1805 	return rproc;
1806 }
1807 #else
1808 struct rproc *rproc_get_by_phandle(phandle phandle)
1809 {
1810 	return NULL;
1811 }
1812 #endif
1813 EXPORT_SYMBOL(rproc_get_by_phandle);
1814 
1815 /**
1816  * rproc_add() - register a remote processor
1817  * @rproc: the remote processor handle to register
1818  *
1819  * Registers @rproc with the remoteproc framework, after it has been
1820  * allocated with rproc_alloc().
1821  *
1822  * This is called by the platform-specific rproc implementation, whenever
1823  * a new remote processor device is probed.
1824  *
1825  * Returns 0 on success and an appropriate error code otherwise.
1826  *
1827  * Note: this function initiates an asynchronous firmware loading
1828  * context, which will look for virtio devices supported by the rproc's
1829  * firmware.
1830  *
1831  * If found, those virtio devices will be created and added, so as a result
1832  * of registering this remote processor, additional virtio drivers might be
1833  * probed.
1834  */
1835 int rproc_add(struct rproc *rproc)
1836 {
1837 	struct device *dev = &rproc->dev;
1838 	int ret;
1839 
1840 	ret = device_add(dev);
1841 	if (ret < 0)
1842 		return ret;
1843 
1844 	dev_info(dev, "%s is available\n", rproc->name);
1845 
1846 	/* create debugfs entries */
1847 	rproc_create_debug_dir(rproc);
1848 
1849 	/* if rproc is marked always-on, request it to boot */
1850 	if (rproc->auto_boot) {
1851 		ret = rproc_trigger_auto_boot(rproc);
1852 		if (ret < 0)
1853 			return ret;
1854 	}
1855 
1856 	/* expose to rproc_get_by_phandle users */
1857 	mutex_lock(&rproc_list_mutex);
1858 	list_add(&rproc->node, &rproc_list);
1859 	mutex_unlock(&rproc_list_mutex);
1860 
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(rproc_add);
1864 
1865 /**
1866  * rproc_type_release() - release a remote processor instance
1867  * @dev: the rproc's device
1868  *
1869  * This function should _never_ be called directly.
1870  *
1871  * It will be called by the driver core when no one holds a valid pointer
1872  * to @dev anymore.
1873  */
1874 static void rproc_type_release(struct device *dev)
1875 {
1876 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1877 
1878 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1879 
1880 	idr_destroy(&rproc->notifyids);
1881 
1882 	if (rproc->index >= 0)
1883 		ida_simple_remove(&rproc_dev_index, rproc->index);
1884 
1885 	kfree(rproc->firmware);
1886 	kfree(rproc->ops);
1887 	kfree(rproc);
1888 }
1889 
1890 static const struct device_type rproc_type = {
1891 	.name		= "remoteproc",
1892 	.release	= rproc_type_release,
1893 };
1894 
1895 /**
1896  * rproc_alloc() - allocate a remote processor handle
1897  * @dev: the underlying device
1898  * @name: name of this remote processor
1899  * @ops: platform-specific handlers (mainly start/stop)
1900  * @firmware: name of firmware file to load, can be NULL
1901  * @len: length of private data needed by the rproc driver (in bytes)
1902  *
1903  * Allocates a new remote processor handle, but does not register
1904  * it yet. if @firmware is NULL, a default name is used.
1905  *
1906  * This function should be used by rproc implementations during initialization
1907  * of the remote processor.
1908  *
1909  * After creating an rproc handle using this function, and when ready,
1910  * implementations should then call rproc_add() to complete
1911  * the registration of the remote processor.
1912  *
1913  * On success the new rproc is returned, and on failure, NULL.
1914  *
1915  * Note: _never_ directly deallocate @rproc, even if it was not registered
1916  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1917  */
1918 struct rproc *rproc_alloc(struct device *dev, const char *name,
1919 			  const struct rproc_ops *ops,
1920 			  const char *firmware, int len)
1921 {
1922 	struct rproc *rproc;
1923 	char *p, *template = "rproc-%s-fw";
1924 	int name_len;
1925 
1926 	if (!dev || !name || !ops)
1927 		return NULL;
1928 
1929 	if (!firmware) {
1930 		/*
1931 		 * If the caller didn't pass in a firmware name then
1932 		 * construct a default name.
1933 		 */
1934 		name_len = strlen(name) + strlen(template) - 2 + 1;
1935 		p = kmalloc(name_len, GFP_KERNEL);
1936 		if (!p)
1937 			return NULL;
1938 		snprintf(p, name_len, template, name);
1939 	} else {
1940 		p = kstrdup(firmware, GFP_KERNEL);
1941 		if (!p)
1942 			return NULL;
1943 	}
1944 
1945 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1946 	if (!rproc) {
1947 		kfree(p);
1948 		return NULL;
1949 	}
1950 
1951 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1952 	if (!rproc->ops) {
1953 		kfree(p);
1954 		kfree(rproc);
1955 		return NULL;
1956 	}
1957 
1958 	rproc->firmware = p;
1959 	rproc->name = name;
1960 	rproc->priv = &rproc[1];
1961 	rproc->auto_boot = true;
1962 
1963 	device_initialize(&rproc->dev);
1964 	rproc->dev.parent = dev;
1965 	rproc->dev.type = &rproc_type;
1966 	rproc->dev.class = &rproc_class;
1967 	rproc->dev.driver_data = rproc;
1968 
1969 	/* Assign a unique device index and name */
1970 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1971 	if (rproc->index < 0) {
1972 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1973 		put_device(&rproc->dev);
1974 		return NULL;
1975 	}
1976 
1977 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1978 
1979 	atomic_set(&rproc->power, 0);
1980 
1981 	/* Default to ELF loader if no load function is specified */
1982 	if (!rproc->ops->load) {
1983 		rproc->ops->load = rproc_elf_load_segments;
1984 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1985 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1986 		rproc->ops->sanity_check = rproc_elf_sanity_check;
1987 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1988 	}
1989 
1990 	mutex_init(&rproc->lock);
1991 
1992 	idr_init(&rproc->notifyids);
1993 
1994 	INIT_LIST_HEAD(&rproc->carveouts);
1995 	INIT_LIST_HEAD(&rproc->mappings);
1996 	INIT_LIST_HEAD(&rproc->traces);
1997 	INIT_LIST_HEAD(&rproc->rvdevs);
1998 	INIT_LIST_HEAD(&rproc->subdevs);
1999 	INIT_LIST_HEAD(&rproc->dump_segments);
2000 
2001 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2002 
2003 	rproc->state = RPROC_OFFLINE;
2004 
2005 	return rproc;
2006 }
2007 EXPORT_SYMBOL(rproc_alloc);
2008 
2009 /**
2010  * rproc_free() - unroll rproc_alloc()
2011  * @rproc: the remote processor handle
2012  *
2013  * This function decrements the rproc dev refcount.
2014  *
2015  * If no one holds any reference to rproc anymore, then its refcount would
2016  * now drop to zero, and it would be freed.
2017  */
2018 void rproc_free(struct rproc *rproc)
2019 {
2020 	put_device(&rproc->dev);
2021 }
2022 EXPORT_SYMBOL(rproc_free);
2023 
2024 /**
2025  * rproc_put() - release rproc reference
2026  * @rproc: the remote processor handle
2027  *
2028  * This function decrements the rproc dev refcount.
2029  *
2030  * If no one holds any reference to rproc anymore, then its refcount would
2031  * now drop to zero, and it would be freed.
2032  */
2033 void rproc_put(struct rproc *rproc)
2034 {
2035 	module_put(rproc->dev.parent->driver->owner);
2036 	put_device(&rproc->dev);
2037 }
2038 EXPORT_SYMBOL(rproc_put);
2039 
2040 /**
2041  * rproc_del() - unregister a remote processor
2042  * @rproc: rproc handle to unregister
2043  *
2044  * This function should be called when the platform specific rproc
2045  * implementation decides to remove the rproc device. it should
2046  * _only_ be called if a previous invocation of rproc_add()
2047  * has completed successfully.
2048  *
2049  * After rproc_del() returns, @rproc isn't freed yet, because
2050  * of the outstanding reference created by rproc_alloc. To decrement that
2051  * one last refcount, one still needs to call rproc_free().
2052  *
2053  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2054  */
2055 int rproc_del(struct rproc *rproc)
2056 {
2057 	if (!rproc)
2058 		return -EINVAL;
2059 
2060 	/* if rproc is marked always-on, rproc_add() booted it */
2061 	/* TODO: make sure this works with rproc->power > 1 */
2062 	if (rproc->auto_boot)
2063 		rproc_shutdown(rproc);
2064 
2065 	mutex_lock(&rproc->lock);
2066 	rproc->state = RPROC_DELETED;
2067 	mutex_unlock(&rproc->lock);
2068 
2069 	rproc_delete_debug_dir(rproc);
2070 
2071 	/* the rproc is downref'ed as soon as it's removed from the klist */
2072 	mutex_lock(&rproc_list_mutex);
2073 	list_del(&rproc->node);
2074 	mutex_unlock(&rproc_list_mutex);
2075 
2076 	device_del(&rproc->dev);
2077 
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL(rproc_del);
2081 
2082 /**
2083  * rproc_add_subdev() - add a subdevice to a remoteproc
2084  * @rproc: rproc handle to add the subdevice to
2085  * @subdev: subdev handle to register
2086  *
2087  * Caller is responsible for populating optional subdevice function pointers.
2088  */
2089 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2090 {
2091 	list_add_tail(&subdev->node, &rproc->subdevs);
2092 }
2093 EXPORT_SYMBOL(rproc_add_subdev);
2094 
2095 /**
2096  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2097  * @rproc: rproc handle to remove the subdevice from
2098  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2099  */
2100 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2101 {
2102 	list_del(&subdev->node);
2103 }
2104 EXPORT_SYMBOL(rproc_remove_subdev);
2105 
2106 /**
2107  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2108  * @dev:	child device to find ancestor of
2109  *
2110  * Returns the ancestor rproc instance, or NULL if not found.
2111  */
2112 struct rproc *rproc_get_by_child(struct device *dev)
2113 {
2114 	for (dev = dev->parent; dev; dev = dev->parent) {
2115 		if (dev->type == &rproc_type)
2116 			return dev->driver_data;
2117 	}
2118 
2119 	return NULL;
2120 }
2121 EXPORT_SYMBOL(rproc_get_by_child);
2122 
2123 /**
2124  * rproc_report_crash() - rproc crash reporter function
2125  * @rproc: remote processor
2126  * @type: crash type
2127  *
2128  * This function must be called every time a crash is detected by the low-level
2129  * drivers implementing a specific remoteproc. This should not be called from a
2130  * non-remoteproc driver.
2131  *
2132  * This function can be called from atomic/interrupt context.
2133  */
2134 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2135 {
2136 	if (!rproc) {
2137 		pr_err("NULL rproc pointer\n");
2138 		return;
2139 	}
2140 
2141 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2142 		rproc->name, rproc_crash_to_string(type));
2143 
2144 	/* create a new task to handle the error */
2145 	schedule_work(&rproc->crash_handler);
2146 }
2147 EXPORT_SYMBOL(rproc_report_crash);
2148 
2149 static int __init remoteproc_init(void)
2150 {
2151 	rproc_init_sysfs();
2152 	rproc_init_debugfs();
2153 
2154 	return 0;
2155 }
2156 module_init(remoteproc_init);
2157 
2158 static void __exit remoteproc_exit(void)
2159 {
2160 	ida_destroy(&rproc_dev_index);
2161 
2162 	rproc_exit_debugfs();
2163 	rproc_exit_sysfs();
2164 }
2165 module_exit(remoteproc_exit);
2166 
2167 MODULE_LICENSE("GPL v2");
2168 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2169