1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/slab.h> 25 #include <linux/mutex.h> 26 #include <linux/dma-map-ops.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */ 29 #include <linux/firmware.h> 30 #include <linux/string.h> 31 #include <linux/debugfs.h> 32 #include <linux/rculist.h> 33 #include <linux/remoteproc.h> 34 #include <linux/iommu.h> 35 #include <linux/idr.h> 36 #include <linux/elf.h> 37 #include <linux/crc32.h> 38 #include <linux/of_reserved_mem.h> 39 #include <linux/virtio_ids.h> 40 #include <linux/virtio_ring.h> 41 #include <asm/byteorder.h> 42 #include <linux/platform_device.h> 43 44 #include "remoteproc_internal.h" 45 46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 47 48 static DEFINE_MUTEX(rproc_list_mutex); 49 static LIST_HEAD(rproc_list); 50 static struct notifier_block rproc_panic_nb; 51 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 static int rproc_alloc_carveout(struct rproc *rproc, 56 struct rproc_mem_entry *mem); 57 static int rproc_release_carveout(struct rproc *rproc, 58 struct rproc_mem_entry *mem); 59 60 /* Unique indices for remoteproc devices */ 61 static DEFINE_IDA(rproc_dev_index); 62 63 static const char * const rproc_crash_names[] = { 64 [RPROC_MMUFAULT] = "mmufault", 65 [RPROC_WATCHDOG] = "watchdog", 66 [RPROC_FATAL_ERROR] = "fatal error", 67 }; 68 69 /* translate rproc_crash_type to string */ 70 static const char *rproc_crash_to_string(enum rproc_crash_type type) 71 { 72 if (type < ARRAY_SIZE(rproc_crash_names)) 73 return rproc_crash_names[type]; 74 return "unknown"; 75 } 76 77 /* 78 * This is the IOMMU fault handler we register with the IOMMU API 79 * (when relevant; not all remote processors access memory through 80 * an IOMMU). 81 * 82 * IOMMU core will invoke this handler whenever the remote processor 83 * will try to access an unmapped device address. 84 */ 85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 86 unsigned long iova, int flags, void *token) 87 { 88 struct rproc *rproc = token; 89 90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 91 92 rproc_report_crash(rproc, RPROC_MMUFAULT); 93 94 /* 95 * Let the iommu core know we're not really handling this fault; 96 * we just used it as a recovery trigger. 97 */ 98 return -ENOSYS; 99 } 100 101 static int rproc_enable_iommu(struct rproc *rproc) 102 { 103 struct iommu_domain *domain; 104 struct device *dev = rproc->dev.parent; 105 int ret; 106 107 if (!rproc->has_iommu) { 108 dev_dbg(dev, "iommu not present\n"); 109 return 0; 110 } 111 112 domain = iommu_domain_alloc(dev->bus); 113 if (!domain) { 114 dev_err(dev, "can't alloc iommu domain\n"); 115 return -ENOMEM; 116 } 117 118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 119 120 ret = iommu_attach_device(domain, dev); 121 if (ret) { 122 dev_err(dev, "can't attach iommu device: %d\n", ret); 123 goto free_domain; 124 } 125 126 rproc->domain = domain; 127 128 return 0; 129 130 free_domain: 131 iommu_domain_free(domain); 132 return ret; 133 } 134 135 static void rproc_disable_iommu(struct rproc *rproc) 136 { 137 struct iommu_domain *domain = rproc->domain; 138 struct device *dev = rproc->dev.parent; 139 140 if (!domain) 141 return; 142 143 iommu_detach_device(domain, dev); 144 iommu_domain_free(domain); 145 } 146 147 phys_addr_t rproc_va_to_pa(void *cpu_addr) 148 { 149 /* 150 * Return physical address according to virtual address location 151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 152 * - in kernel: if region allocated in generic dma memory pool 153 */ 154 if (is_vmalloc_addr(cpu_addr)) { 155 return page_to_phys(vmalloc_to_page(cpu_addr)) + 156 offset_in_page(cpu_addr); 157 } 158 159 WARN_ON(!virt_addr_valid(cpu_addr)); 160 return virt_to_phys(cpu_addr); 161 } 162 EXPORT_SYMBOL(rproc_va_to_pa); 163 164 /** 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 166 * @rproc: handle of a remote processor 167 * @da: remoteproc device address to translate 168 * @len: length of the memory region @da is pointing to 169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory 170 * 171 * Some remote processors will ask us to allocate them physically contiguous 172 * memory regions (which we call "carveouts"), and map them to specific 173 * device addresses (which are hardcoded in the firmware). They may also have 174 * dedicated memory regions internal to the processors, and use them either 175 * exclusively or alongside carveouts. 176 * 177 * They may then ask us to copy objects into specific device addresses (e.g. 178 * code/data sections) or expose us certain symbols in other device address 179 * (e.g. their trace buffer). 180 * 181 * This function is a helper function with which we can go over the allocated 182 * carveouts and translate specific device addresses to kernel virtual addresses 183 * so we can access the referenced memory. This function also allows to perform 184 * translations on the internal remoteproc memory regions through a platform 185 * implementation specific da_to_va ops, if present. 186 * 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 188 * but only on kernel direct mapped RAM memory. Instead, we're just using 189 * here the output of the DMA API for the carveouts, which should be more 190 * correct. 191 * 192 * Return: a valid kernel address on success or NULL on failure 193 */ 194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 195 { 196 struct rproc_mem_entry *carveout; 197 void *ptr = NULL; 198 199 if (rproc->ops->da_to_va) { 200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 201 if (ptr) 202 goto out; 203 } 204 205 list_for_each_entry(carveout, &rproc->carveouts, node) { 206 int offset = da - carveout->da; 207 208 /* Verify that carveout is allocated */ 209 if (!carveout->va) 210 continue; 211 212 /* try next carveout if da is too small */ 213 if (offset < 0) 214 continue; 215 216 /* try next carveout if da is too large */ 217 if (offset + len > carveout->len) 218 continue; 219 220 ptr = carveout->va + offset; 221 222 if (is_iomem) 223 *is_iomem = carveout->is_iomem; 224 225 break; 226 } 227 228 out: 229 return ptr; 230 } 231 EXPORT_SYMBOL(rproc_da_to_va); 232 233 /** 234 * rproc_find_carveout_by_name() - lookup the carveout region by a name 235 * @rproc: handle of a remote processor 236 * @name: carveout name to find (format string) 237 * @...: optional parameters matching @name string 238 * 239 * Platform driver has the capability to register some pre-allacoted carveout 240 * (physically contiguous memory regions) before rproc firmware loading and 241 * associated resource table analysis. These regions may be dedicated memory 242 * regions internal to the coprocessor or specified DDR region with specific 243 * attributes 244 * 245 * This function is a helper function with which we can go over the 246 * allocated carveouts and return associated region characteristics like 247 * coprocessor address, length or processor virtual address. 248 * 249 * Return: a valid pointer on carveout entry on success or NULL on failure. 250 */ 251 __printf(2, 3) 252 struct rproc_mem_entry * 253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 254 { 255 va_list args; 256 char _name[32]; 257 struct rproc_mem_entry *carveout, *mem = NULL; 258 259 if (!name) 260 return NULL; 261 262 va_start(args, name); 263 vsnprintf(_name, sizeof(_name), name, args); 264 va_end(args); 265 266 list_for_each_entry(carveout, &rproc->carveouts, node) { 267 /* Compare carveout and requested names */ 268 if (!strcmp(carveout->name, _name)) { 269 mem = carveout; 270 break; 271 } 272 } 273 274 return mem; 275 } 276 277 /** 278 * rproc_check_carveout_da() - Check specified carveout da configuration 279 * @rproc: handle of a remote processor 280 * @mem: pointer on carveout to check 281 * @da: area device address 282 * @len: associated area size 283 * 284 * This function is a helper function to verify requested device area (couple 285 * da, len) is part of specified carveout. 286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 287 * checked. 288 * 289 * Return: 0 if carveout matches request else error 290 */ 291 static int rproc_check_carveout_da(struct rproc *rproc, 292 struct rproc_mem_entry *mem, u32 da, u32 len) 293 { 294 struct device *dev = &rproc->dev; 295 int delta; 296 297 /* Check requested resource length */ 298 if (len > mem->len) { 299 dev_err(dev, "Registered carveout doesn't fit len request\n"); 300 return -EINVAL; 301 } 302 303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 304 /* Address doesn't match registered carveout configuration */ 305 return -EINVAL; 306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 307 delta = da - mem->da; 308 309 /* Check requested resource belongs to registered carveout */ 310 if (delta < 0) { 311 dev_err(dev, 312 "Registered carveout doesn't fit da request\n"); 313 return -EINVAL; 314 } 315 316 if (delta + len > mem->len) { 317 dev_err(dev, 318 "Registered carveout doesn't fit len request\n"); 319 return -EINVAL; 320 } 321 } 322 323 return 0; 324 } 325 326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 327 { 328 struct rproc *rproc = rvdev->rproc; 329 struct device *dev = &rproc->dev; 330 struct rproc_vring *rvring = &rvdev->vring[i]; 331 struct fw_rsc_vdev *rsc; 332 int ret, notifyid; 333 struct rproc_mem_entry *mem; 334 size_t size; 335 336 /* actual size of vring (in bytes) */ 337 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 338 339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 340 341 /* Search for pre-registered carveout */ 342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 343 i); 344 if (mem) { 345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 346 return -ENOMEM; 347 } else { 348 /* Register carveout in in list */ 349 mem = rproc_mem_entry_init(dev, NULL, 0, 350 size, rsc->vring[i].da, 351 rproc_alloc_carveout, 352 rproc_release_carveout, 353 "vdev%dvring%d", 354 rvdev->index, i); 355 if (!mem) { 356 dev_err(dev, "Can't allocate memory entry structure\n"); 357 return -ENOMEM; 358 } 359 360 rproc_add_carveout(rproc, mem); 361 } 362 363 /* 364 * Assign an rproc-wide unique index for this vring 365 * TODO: assign a notifyid for rvdev updates as well 366 * TODO: support predefined notifyids (via resource table) 367 */ 368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 369 if (ret < 0) { 370 dev_err(dev, "idr_alloc failed: %d\n", ret); 371 return ret; 372 } 373 notifyid = ret; 374 375 /* Potentially bump max_notifyid */ 376 if (notifyid > rproc->max_notifyid) 377 rproc->max_notifyid = notifyid; 378 379 rvring->notifyid = notifyid; 380 381 /* Let the rproc know the notifyid of this vring.*/ 382 rsc->vring[i].notifyid = notifyid; 383 return 0; 384 } 385 386 static int 387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 388 { 389 struct rproc *rproc = rvdev->rproc; 390 struct device *dev = &rproc->dev; 391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 392 struct rproc_vring *rvring = &rvdev->vring[i]; 393 394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 395 i, vring->da, vring->num, vring->align); 396 397 /* verify queue size and vring alignment are sane */ 398 if (!vring->num || !vring->align) { 399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 400 vring->num, vring->align); 401 return -EINVAL; 402 } 403 404 rvring->len = vring->num; 405 rvring->align = vring->align; 406 rvring->rvdev = rvdev; 407 408 return 0; 409 } 410 411 void rproc_free_vring(struct rproc_vring *rvring) 412 { 413 struct rproc *rproc = rvring->rvdev->rproc; 414 int idx = rvring - rvring->rvdev->vring; 415 struct fw_rsc_vdev *rsc; 416 417 idr_remove(&rproc->notifyids, rvring->notifyid); 418 419 /* 420 * At this point rproc_stop() has been called and the installed resource 421 * table in the remote processor memory may no longer be accessible. As 422 * such and as per rproc_stop(), rproc->table_ptr points to the cached 423 * resource table (rproc->cached_table). The cached resource table is 424 * only available when a remote processor has been booted by the 425 * remoteproc core, otherwise it is NULL. 426 * 427 * Based on the above, reset the virtio device section in the cached 428 * resource table only if there is one to work with. 429 */ 430 if (rproc->table_ptr) { 431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 432 rsc->vring[idx].da = 0; 433 rsc->vring[idx].notifyid = -1; 434 } 435 } 436 437 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 438 { 439 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 440 441 return rproc_add_virtio_dev(rvdev, rvdev->id); 442 } 443 444 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 445 { 446 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 447 int ret; 448 449 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 450 if (ret) 451 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 452 } 453 454 /** 455 * rproc_rvdev_release() - release the existence of a rvdev 456 * 457 * @dev: the subdevice's dev 458 */ 459 static void rproc_rvdev_release(struct device *dev) 460 { 461 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 462 463 of_reserved_mem_device_release(dev); 464 465 kfree(rvdev); 466 } 467 468 static int copy_dma_range_map(struct device *to, struct device *from) 469 { 470 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; 471 int num_ranges = 0; 472 473 if (!map) 474 return 0; 475 476 for (r = map; r->size; r++) 477 num_ranges++; 478 479 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), 480 GFP_KERNEL); 481 if (!new_map) 482 return -ENOMEM; 483 to->dma_range_map = new_map; 484 return 0; 485 } 486 487 /** 488 * rproc_handle_vdev() - handle a vdev fw resource 489 * @rproc: the remote processor 490 * @ptr: the vring resource descriptor 491 * @offset: offset of the resource entry 492 * @avail: size of available data (for sanity checking the image) 493 * 494 * This resource entry requests the host to statically register a virtio 495 * device (vdev), and setup everything needed to support it. It contains 496 * everything needed to make it possible: the virtio device id, virtio 497 * device features, vrings information, virtio config space, etc... 498 * 499 * Before registering the vdev, the vrings are allocated from non-cacheable 500 * physically contiguous memory. Currently we only support two vrings per 501 * remote processor (temporary limitation). We might also want to consider 502 * doing the vring allocation only later when ->find_vqs() is invoked, and 503 * then release them upon ->del_vqs(). 504 * 505 * Note: @da is currently not really handled correctly: we dynamically 506 * allocate it using the DMA API, ignoring requested hard coded addresses, 507 * and we don't take care of any required IOMMU programming. This is all 508 * going to be taken care of when the generic iommu-based DMA API will be 509 * merged. Meanwhile, statically-addressed iommu-based firmware images should 510 * use RSC_DEVMEM resource entries to map their required @da to the physical 511 * address of their base CMA region (ouch, hacky!). 512 * 513 * Return: 0 on success, or an appropriate error code otherwise 514 */ 515 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 516 int offset, int avail) 517 { 518 struct fw_rsc_vdev *rsc = ptr; 519 struct device *dev = &rproc->dev; 520 struct rproc_vdev *rvdev; 521 int i, ret; 522 char name[16]; 523 524 /* make sure resource isn't truncated */ 525 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 526 avail) { 527 dev_err(dev, "vdev rsc is truncated\n"); 528 return -EINVAL; 529 } 530 531 /* make sure reserved bytes are zeroes */ 532 if (rsc->reserved[0] || rsc->reserved[1]) { 533 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 534 return -EINVAL; 535 } 536 537 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 538 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 539 540 /* we currently support only two vrings per rvdev */ 541 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 542 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 543 return -EINVAL; 544 } 545 546 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 547 if (!rvdev) 548 return -ENOMEM; 549 550 kref_init(&rvdev->refcount); 551 552 rvdev->id = rsc->id; 553 rvdev->rproc = rproc; 554 rvdev->index = rproc->nb_vdev++; 555 556 /* Initialise vdev subdevice */ 557 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 558 rvdev->dev.parent = &rproc->dev; 559 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); 560 if (ret) 561 return ret; 562 rvdev->dev.release = rproc_rvdev_release; 563 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 564 dev_set_drvdata(&rvdev->dev, rvdev); 565 566 ret = device_register(&rvdev->dev); 567 if (ret) { 568 put_device(&rvdev->dev); 569 return ret; 570 } 571 /* Make device dma capable by inheriting from parent's capabilities */ 572 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 573 574 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 575 dma_get_mask(rproc->dev.parent)); 576 if (ret) { 577 dev_warn(dev, 578 "Failed to set DMA mask %llx. Trying to continue... %x\n", 579 dma_get_mask(rproc->dev.parent), ret); 580 } 581 582 /* parse the vrings */ 583 for (i = 0; i < rsc->num_of_vrings; i++) { 584 ret = rproc_parse_vring(rvdev, rsc, i); 585 if (ret) 586 goto free_rvdev; 587 } 588 589 /* remember the resource offset*/ 590 rvdev->rsc_offset = offset; 591 592 /* allocate the vring resources */ 593 for (i = 0; i < rsc->num_of_vrings; i++) { 594 ret = rproc_alloc_vring(rvdev, i); 595 if (ret) 596 goto unwind_vring_allocations; 597 } 598 599 list_add_tail(&rvdev->node, &rproc->rvdevs); 600 601 rvdev->subdev.start = rproc_vdev_do_start; 602 rvdev->subdev.stop = rproc_vdev_do_stop; 603 604 rproc_add_subdev(rproc, &rvdev->subdev); 605 606 return 0; 607 608 unwind_vring_allocations: 609 for (i--; i >= 0; i--) 610 rproc_free_vring(&rvdev->vring[i]); 611 free_rvdev: 612 device_unregister(&rvdev->dev); 613 return ret; 614 } 615 616 void rproc_vdev_release(struct kref *ref) 617 { 618 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 619 struct rproc_vring *rvring; 620 struct rproc *rproc = rvdev->rproc; 621 int id; 622 623 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 624 rvring = &rvdev->vring[id]; 625 rproc_free_vring(rvring); 626 } 627 628 rproc_remove_subdev(rproc, &rvdev->subdev); 629 list_del(&rvdev->node); 630 device_unregister(&rvdev->dev); 631 } 632 633 /** 634 * rproc_handle_trace() - handle a shared trace buffer resource 635 * @rproc: the remote processor 636 * @ptr: the trace resource descriptor 637 * @offset: offset of the resource entry 638 * @avail: size of available data (for sanity checking the image) 639 * 640 * In case the remote processor dumps trace logs into memory, 641 * export it via debugfs. 642 * 643 * Currently, the 'da' member of @rsc should contain the device address 644 * where the remote processor is dumping the traces. Later we could also 645 * support dynamically allocating this address using the generic 646 * DMA API (but currently there isn't a use case for that). 647 * 648 * Return: 0 on success, or an appropriate error code otherwise 649 */ 650 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 651 int offset, int avail) 652 { 653 struct fw_rsc_trace *rsc = ptr; 654 struct rproc_debug_trace *trace; 655 struct device *dev = &rproc->dev; 656 char name[15]; 657 658 if (sizeof(*rsc) > avail) { 659 dev_err(dev, "trace rsc is truncated\n"); 660 return -EINVAL; 661 } 662 663 /* make sure reserved bytes are zeroes */ 664 if (rsc->reserved) { 665 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 666 return -EINVAL; 667 } 668 669 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 670 if (!trace) 671 return -ENOMEM; 672 673 /* set the trace buffer dma properties */ 674 trace->trace_mem.len = rsc->len; 675 trace->trace_mem.da = rsc->da; 676 677 /* set pointer on rproc device */ 678 trace->rproc = rproc; 679 680 /* make sure snprintf always null terminates, even if truncating */ 681 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 682 683 /* create the debugfs entry */ 684 trace->tfile = rproc_create_trace_file(name, rproc, trace); 685 if (!trace->tfile) { 686 kfree(trace); 687 return -EINVAL; 688 } 689 690 list_add_tail(&trace->node, &rproc->traces); 691 692 rproc->num_traces++; 693 694 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 695 name, rsc->da, rsc->len); 696 697 return 0; 698 } 699 700 /** 701 * rproc_handle_devmem() - handle devmem resource entry 702 * @rproc: remote processor handle 703 * @ptr: the devmem resource entry 704 * @offset: offset of the resource entry 705 * @avail: size of available data (for sanity checking the image) 706 * 707 * Remote processors commonly need to access certain on-chip peripherals. 708 * 709 * Some of these remote processors access memory via an iommu device, 710 * and might require us to configure their iommu before they can access 711 * the on-chip peripherals they need. 712 * 713 * This resource entry is a request to map such a peripheral device. 714 * 715 * These devmem entries will contain the physical address of the device in 716 * the 'pa' member. If a specific device address is expected, then 'da' will 717 * contain it (currently this is the only use case supported). 'len' will 718 * contain the size of the physical region we need to map. 719 * 720 * Currently we just "trust" those devmem entries to contain valid physical 721 * addresses, but this is going to change: we want the implementations to 722 * tell us ranges of physical addresses the firmware is allowed to request, 723 * and not allow firmwares to request access to physical addresses that 724 * are outside those ranges. 725 * 726 * Return: 0 on success, or an appropriate error code otherwise 727 */ 728 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 729 int offset, int avail) 730 { 731 struct fw_rsc_devmem *rsc = ptr; 732 struct rproc_mem_entry *mapping; 733 struct device *dev = &rproc->dev; 734 int ret; 735 736 /* no point in handling this resource without a valid iommu domain */ 737 if (!rproc->domain) 738 return -EINVAL; 739 740 if (sizeof(*rsc) > avail) { 741 dev_err(dev, "devmem rsc is truncated\n"); 742 return -EINVAL; 743 } 744 745 /* make sure reserved bytes are zeroes */ 746 if (rsc->reserved) { 747 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 748 return -EINVAL; 749 } 750 751 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 752 if (!mapping) 753 return -ENOMEM; 754 755 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 756 if (ret) { 757 dev_err(dev, "failed to map devmem: %d\n", ret); 758 goto out; 759 } 760 761 /* 762 * We'll need this info later when we'll want to unmap everything 763 * (e.g. on shutdown). 764 * 765 * We can't trust the remote processor not to change the resource 766 * table, so we must maintain this info independently. 767 */ 768 mapping->da = rsc->da; 769 mapping->len = rsc->len; 770 list_add_tail(&mapping->node, &rproc->mappings); 771 772 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 773 rsc->pa, rsc->da, rsc->len); 774 775 return 0; 776 777 out: 778 kfree(mapping); 779 return ret; 780 } 781 782 /** 783 * rproc_alloc_carveout() - allocated specified carveout 784 * @rproc: rproc handle 785 * @mem: the memory entry to allocate 786 * 787 * This function allocate specified memory entry @mem using 788 * dma_alloc_coherent() as default allocator 789 * 790 * Return: 0 on success, or an appropriate error code otherwise 791 */ 792 static int rproc_alloc_carveout(struct rproc *rproc, 793 struct rproc_mem_entry *mem) 794 { 795 struct rproc_mem_entry *mapping = NULL; 796 struct device *dev = &rproc->dev; 797 dma_addr_t dma; 798 void *va; 799 int ret; 800 801 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 802 if (!va) { 803 dev_err(dev->parent, 804 "failed to allocate dma memory: len 0x%zx\n", 805 mem->len); 806 return -ENOMEM; 807 } 808 809 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 810 va, &dma, mem->len); 811 812 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 813 /* 814 * Check requested da is equal to dma address 815 * and print a warn message in case of missalignment. 816 * Don't stop rproc_start sequence as coprocessor may 817 * build pa to da translation on its side. 818 */ 819 if (mem->da != (u32)dma) 820 dev_warn(dev->parent, 821 "Allocated carveout doesn't fit device address request\n"); 822 } 823 824 /* 825 * Ok, this is non-standard. 826 * 827 * Sometimes we can't rely on the generic iommu-based DMA API 828 * to dynamically allocate the device address and then set the IOMMU 829 * tables accordingly, because some remote processors might 830 * _require_ us to use hard coded device addresses that their 831 * firmware was compiled with. 832 * 833 * In this case, we must use the IOMMU API directly and map 834 * the memory to the device address as expected by the remote 835 * processor. 836 * 837 * Obviously such remote processor devices should not be configured 838 * to use the iommu-based DMA API: we expect 'dma' to contain the 839 * physical address in this case. 840 */ 841 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 842 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 843 if (!mapping) { 844 ret = -ENOMEM; 845 goto dma_free; 846 } 847 848 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 849 mem->flags); 850 if (ret) { 851 dev_err(dev, "iommu_map failed: %d\n", ret); 852 goto free_mapping; 853 } 854 855 /* 856 * We'll need this info later when we'll want to unmap 857 * everything (e.g. on shutdown). 858 * 859 * We can't trust the remote processor not to change the 860 * resource table, so we must maintain this info independently. 861 */ 862 mapping->da = mem->da; 863 mapping->len = mem->len; 864 list_add_tail(&mapping->node, &rproc->mappings); 865 866 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 867 mem->da, &dma); 868 } 869 870 if (mem->da == FW_RSC_ADDR_ANY) { 871 /* Update device address as undefined by requester */ 872 if ((u64)dma & HIGH_BITS_MASK) 873 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 874 875 mem->da = (u32)dma; 876 } 877 878 mem->dma = dma; 879 mem->va = va; 880 881 return 0; 882 883 free_mapping: 884 kfree(mapping); 885 dma_free: 886 dma_free_coherent(dev->parent, mem->len, va, dma); 887 return ret; 888 } 889 890 /** 891 * rproc_release_carveout() - release acquired carveout 892 * @rproc: rproc handle 893 * @mem: the memory entry to release 894 * 895 * This function releases specified memory entry @mem allocated via 896 * rproc_alloc_carveout() function by @rproc. 897 * 898 * Return: 0 on success, or an appropriate error code otherwise 899 */ 900 static int rproc_release_carveout(struct rproc *rproc, 901 struct rproc_mem_entry *mem) 902 { 903 struct device *dev = &rproc->dev; 904 905 /* clean up carveout allocations */ 906 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 907 return 0; 908 } 909 910 /** 911 * rproc_handle_carveout() - handle phys contig memory allocation requests 912 * @rproc: rproc handle 913 * @ptr: the resource entry 914 * @offset: offset of the resource entry 915 * @avail: size of available data (for image validation) 916 * 917 * This function will handle firmware requests for allocation of physically 918 * contiguous memory regions. 919 * 920 * These request entries should come first in the firmware's resource table, 921 * as other firmware entries might request placing other data objects inside 922 * these memory regions (e.g. data/code segments, trace resource entries, ...). 923 * 924 * Allocating memory this way helps utilizing the reserved physical memory 925 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 926 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 927 * pressure is important; it may have a substantial impact on performance. 928 * 929 * Return: 0 on success, or an appropriate error code otherwise 930 */ 931 static int rproc_handle_carveout(struct rproc *rproc, 932 void *ptr, int offset, int avail) 933 { 934 struct fw_rsc_carveout *rsc = ptr; 935 struct rproc_mem_entry *carveout; 936 struct device *dev = &rproc->dev; 937 938 if (sizeof(*rsc) > avail) { 939 dev_err(dev, "carveout rsc is truncated\n"); 940 return -EINVAL; 941 } 942 943 /* make sure reserved bytes are zeroes */ 944 if (rsc->reserved) { 945 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 946 return -EINVAL; 947 } 948 949 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 950 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 951 952 /* 953 * Check carveout rsc already part of a registered carveout, 954 * Search by name, then check the da and length 955 */ 956 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 957 958 if (carveout) { 959 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 960 dev_err(dev, 961 "Carveout already associated to resource table\n"); 962 return -ENOMEM; 963 } 964 965 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 966 return -ENOMEM; 967 968 /* Update memory carveout with resource table info */ 969 carveout->rsc_offset = offset; 970 carveout->flags = rsc->flags; 971 972 return 0; 973 } 974 975 /* Register carveout in in list */ 976 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 977 rproc_alloc_carveout, 978 rproc_release_carveout, rsc->name); 979 if (!carveout) { 980 dev_err(dev, "Can't allocate memory entry structure\n"); 981 return -ENOMEM; 982 } 983 984 carveout->flags = rsc->flags; 985 carveout->rsc_offset = offset; 986 rproc_add_carveout(rproc, carveout); 987 988 return 0; 989 } 990 991 /** 992 * rproc_add_carveout() - register an allocated carveout region 993 * @rproc: rproc handle 994 * @mem: memory entry to register 995 * 996 * This function registers specified memory entry in @rproc carveouts list. 997 * Specified carveout should have been allocated before registering. 998 */ 999 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 1000 { 1001 list_add_tail(&mem->node, &rproc->carveouts); 1002 } 1003 EXPORT_SYMBOL(rproc_add_carveout); 1004 1005 /** 1006 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1007 * @dev: pointer on device struct 1008 * @va: virtual address 1009 * @dma: dma address 1010 * @len: memory carveout length 1011 * @da: device address 1012 * @alloc: memory carveout allocation function 1013 * @release: memory carveout release function 1014 * @name: carveout name 1015 * 1016 * This function allocates a rproc_mem_entry struct and fill it with parameters 1017 * provided by client. 1018 * 1019 * Return: a valid pointer on success, or NULL on failure 1020 */ 1021 __printf(8, 9) 1022 struct rproc_mem_entry * 1023 rproc_mem_entry_init(struct device *dev, 1024 void *va, dma_addr_t dma, size_t len, u32 da, 1025 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 1026 int (*release)(struct rproc *, struct rproc_mem_entry *), 1027 const char *name, ...) 1028 { 1029 struct rproc_mem_entry *mem; 1030 va_list args; 1031 1032 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1033 if (!mem) 1034 return mem; 1035 1036 mem->va = va; 1037 mem->dma = dma; 1038 mem->da = da; 1039 mem->len = len; 1040 mem->alloc = alloc; 1041 mem->release = release; 1042 mem->rsc_offset = FW_RSC_ADDR_ANY; 1043 mem->of_resm_idx = -1; 1044 1045 va_start(args, name); 1046 vsnprintf(mem->name, sizeof(mem->name), name, args); 1047 va_end(args); 1048 1049 return mem; 1050 } 1051 EXPORT_SYMBOL(rproc_mem_entry_init); 1052 1053 /** 1054 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1055 * from a reserved memory phandle 1056 * @dev: pointer on device struct 1057 * @of_resm_idx: reserved memory phandle index in "memory-region" 1058 * @len: memory carveout length 1059 * @da: device address 1060 * @name: carveout name 1061 * 1062 * This function allocates a rproc_mem_entry struct and fill it with parameters 1063 * provided by client. 1064 * 1065 * Return: a valid pointer on success, or NULL on failure 1066 */ 1067 __printf(5, 6) 1068 struct rproc_mem_entry * 1069 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1070 u32 da, const char *name, ...) 1071 { 1072 struct rproc_mem_entry *mem; 1073 va_list args; 1074 1075 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1076 if (!mem) 1077 return mem; 1078 1079 mem->da = da; 1080 mem->len = len; 1081 mem->rsc_offset = FW_RSC_ADDR_ANY; 1082 mem->of_resm_idx = of_resm_idx; 1083 1084 va_start(args, name); 1085 vsnprintf(mem->name, sizeof(mem->name), name, args); 1086 va_end(args); 1087 1088 return mem; 1089 } 1090 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1091 1092 /** 1093 * rproc_of_parse_firmware() - parse and return the firmware-name 1094 * @dev: pointer on device struct representing a rproc 1095 * @index: index to use for the firmware-name retrieval 1096 * @fw_name: pointer to a character string, in which the firmware 1097 * name is returned on success and unmodified otherwise. 1098 * 1099 * This is an OF helper function that parses a device's DT node for 1100 * the "firmware-name" property and returns the firmware name pointer 1101 * in @fw_name on success. 1102 * 1103 * Return: 0 on success, or an appropriate failure. 1104 */ 1105 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1106 { 1107 int ret; 1108 1109 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1110 index, fw_name); 1111 return ret ? ret : 0; 1112 } 1113 EXPORT_SYMBOL(rproc_of_parse_firmware); 1114 1115 /* 1116 * A lookup table for resource handlers. The indices are defined in 1117 * enum fw_resource_type. 1118 */ 1119 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1120 [RSC_CARVEOUT] = rproc_handle_carveout, 1121 [RSC_DEVMEM] = rproc_handle_devmem, 1122 [RSC_TRACE] = rproc_handle_trace, 1123 [RSC_VDEV] = rproc_handle_vdev, 1124 }; 1125 1126 /* handle firmware resource entries before booting the remote processor */ 1127 static int rproc_handle_resources(struct rproc *rproc, 1128 rproc_handle_resource_t handlers[RSC_LAST]) 1129 { 1130 struct device *dev = &rproc->dev; 1131 rproc_handle_resource_t handler; 1132 int ret = 0, i; 1133 1134 if (!rproc->table_ptr) 1135 return 0; 1136 1137 for (i = 0; i < rproc->table_ptr->num; i++) { 1138 int offset = rproc->table_ptr->offset[i]; 1139 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1140 int avail = rproc->table_sz - offset - sizeof(*hdr); 1141 void *rsc = (void *)hdr + sizeof(*hdr); 1142 1143 /* make sure table isn't truncated */ 1144 if (avail < 0) { 1145 dev_err(dev, "rsc table is truncated\n"); 1146 return -EINVAL; 1147 } 1148 1149 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1150 1151 if (hdr->type >= RSC_VENDOR_START && 1152 hdr->type <= RSC_VENDOR_END) { 1153 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1154 offset + sizeof(*hdr), avail); 1155 if (ret == RSC_HANDLED) 1156 continue; 1157 else if (ret < 0) 1158 break; 1159 1160 dev_warn(dev, "unsupported vendor resource %d\n", 1161 hdr->type); 1162 continue; 1163 } 1164 1165 if (hdr->type >= RSC_LAST) { 1166 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1167 continue; 1168 } 1169 1170 handler = handlers[hdr->type]; 1171 if (!handler) 1172 continue; 1173 1174 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1175 if (ret) 1176 break; 1177 } 1178 1179 return ret; 1180 } 1181 1182 static int rproc_prepare_subdevices(struct rproc *rproc) 1183 { 1184 struct rproc_subdev *subdev; 1185 int ret; 1186 1187 list_for_each_entry(subdev, &rproc->subdevs, node) { 1188 if (subdev->prepare) { 1189 ret = subdev->prepare(subdev); 1190 if (ret) 1191 goto unroll_preparation; 1192 } 1193 } 1194 1195 return 0; 1196 1197 unroll_preparation: 1198 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1199 if (subdev->unprepare) 1200 subdev->unprepare(subdev); 1201 } 1202 1203 return ret; 1204 } 1205 1206 static int rproc_start_subdevices(struct rproc *rproc) 1207 { 1208 struct rproc_subdev *subdev; 1209 int ret; 1210 1211 list_for_each_entry(subdev, &rproc->subdevs, node) { 1212 if (subdev->start) { 1213 ret = subdev->start(subdev); 1214 if (ret) 1215 goto unroll_registration; 1216 } 1217 } 1218 1219 return 0; 1220 1221 unroll_registration: 1222 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1223 if (subdev->stop) 1224 subdev->stop(subdev, true); 1225 } 1226 1227 return ret; 1228 } 1229 1230 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1231 { 1232 struct rproc_subdev *subdev; 1233 1234 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1235 if (subdev->stop) 1236 subdev->stop(subdev, crashed); 1237 } 1238 } 1239 1240 static void rproc_unprepare_subdevices(struct rproc *rproc) 1241 { 1242 struct rproc_subdev *subdev; 1243 1244 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1245 if (subdev->unprepare) 1246 subdev->unprepare(subdev); 1247 } 1248 } 1249 1250 /** 1251 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1252 * in the list 1253 * @rproc: the remote processor handle 1254 * 1255 * This function parses registered carveout list, performs allocation 1256 * if alloc() ops registered and updates resource table information 1257 * if rsc_offset set. 1258 * 1259 * Return: 0 on success 1260 */ 1261 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1262 { 1263 struct rproc_mem_entry *entry, *tmp; 1264 struct fw_rsc_carveout *rsc; 1265 struct device *dev = &rproc->dev; 1266 u64 pa; 1267 int ret; 1268 1269 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1270 if (entry->alloc) { 1271 ret = entry->alloc(rproc, entry); 1272 if (ret) { 1273 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1274 entry->name, ret); 1275 return -ENOMEM; 1276 } 1277 } 1278 1279 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1280 /* update resource table */ 1281 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1282 1283 /* 1284 * Some remote processors might need to know the pa 1285 * even though they are behind an IOMMU. E.g., OMAP4's 1286 * remote M3 processor needs this so it can control 1287 * on-chip hardware accelerators that are not behind 1288 * the IOMMU, and therefor must know the pa. 1289 * 1290 * Generally we don't want to expose physical addresses 1291 * if we don't have to (remote processors are generally 1292 * _not_ trusted), so we might want to do this only for 1293 * remote processor that _must_ have this (e.g. OMAP4's 1294 * dual M3 subsystem). 1295 * 1296 * Non-IOMMU processors might also want to have this info. 1297 * In this case, the device address and the physical address 1298 * are the same. 1299 */ 1300 1301 /* Use va if defined else dma to generate pa */ 1302 if (entry->va) 1303 pa = (u64)rproc_va_to_pa(entry->va); 1304 else 1305 pa = (u64)entry->dma; 1306 1307 if (((u64)pa) & HIGH_BITS_MASK) 1308 dev_warn(dev, 1309 "Physical address cast in 32bit to fit resource table format\n"); 1310 1311 rsc->pa = (u32)pa; 1312 rsc->da = entry->da; 1313 rsc->len = entry->len; 1314 } 1315 } 1316 1317 return 0; 1318 } 1319 1320 1321 /** 1322 * rproc_resource_cleanup() - clean up and free all acquired resources 1323 * @rproc: rproc handle 1324 * 1325 * This function will free all resources acquired for @rproc, and it 1326 * is called whenever @rproc either shuts down or fails to boot. 1327 */ 1328 void rproc_resource_cleanup(struct rproc *rproc) 1329 { 1330 struct rproc_mem_entry *entry, *tmp; 1331 struct rproc_debug_trace *trace, *ttmp; 1332 struct rproc_vdev *rvdev, *rvtmp; 1333 struct device *dev = &rproc->dev; 1334 1335 /* clean up debugfs trace entries */ 1336 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1337 rproc_remove_trace_file(trace->tfile); 1338 rproc->num_traces--; 1339 list_del(&trace->node); 1340 kfree(trace); 1341 } 1342 1343 /* clean up iommu mapping entries */ 1344 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1345 size_t unmapped; 1346 1347 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1348 if (unmapped != entry->len) { 1349 /* nothing much to do besides complaining */ 1350 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1351 unmapped); 1352 } 1353 1354 list_del(&entry->node); 1355 kfree(entry); 1356 } 1357 1358 /* clean up carveout allocations */ 1359 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1360 if (entry->release) 1361 entry->release(rproc, entry); 1362 list_del(&entry->node); 1363 kfree(entry); 1364 } 1365 1366 /* clean up remote vdev entries */ 1367 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1368 kref_put(&rvdev->refcount, rproc_vdev_release); 1369 1370 rproc_coredump_cleanup(rproc); 1371 } 1372 EXPORT_SYMBOL(rproc_resource_cleanup); 1373 1374 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1375 { 1376 struct resource_table *loaded_table; 1377 struct device *dev = &rproc->dev; 1378 int ret; 1379 1380 /* load the ELF segments to memory */ 1381 ret = rproc_load_segments(rproc, fw); 1382 if (ret) { 1383 dev_err(dev, "Failed to load program segments: %d\n", ret); 1384 return ret; 1385 } 1386 1387 /* 1388 * The starting device has been given the rproc->cached_table as the 1389 * resource table. The address of the vring along with the other 1390 * allocated resources (carveouts etc) is stored in cached_table. 1391 * In order to pass this information to the remote device we must copy 1392 * this information to device memory. We also update the table_ptr so 1393 * that any subsequent changes will be applied to the loaded version. 1394 */ 1395 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1396 if (loaded_table) { 1397 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1398 rproc->table_ptr = loaded_table; 1399 } 1400 1401 ret = rproc_prepare_subdevices(rproc); 1402 if (ret) { 1403 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1404 rproc->name, ret); 1405 goto reset_table_ptr; 1406 } 1407 1408 /* power up the remote processor */ 1409 ret = rproc->ops->start(rproc); 1410 if (ret) { 1411 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1412 goto unprepare_subdevices; 1413 } 1414 1415 /* Start any subdevices for the remote processor */ 1416 ret = rproc_start_subdevices(rproc); 1417 if (ret) { 1418 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1419 rproc->name, ret); 1420 goto stop_rproc; 1421 } 1422 1423 rproc->state = RPROC_RUNNING; 1424 1425 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1426 1427 return 0; 1428 1429 stop_rproc: 1430 rproc->ops->stop(rproc); 1431 unprepare_subdevices: 1432 rproc_unprepare_subdevices(rproc); 1433 reset_table_ptr: 1434 rproc->table_ptr = rproc->cached_table; 1435 1436 return ret; 1437 } 1438 1439 static int __rproc_attach(struct rproc *rproc) 1440 { 1441 struct device *dev = &rproc->dev; 1442 int ret; 1443 1444 ret = rproc_prepare_subdevices(rproc); 1445 if (ret) { 1446 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1447 rproc->name, ret); 1448 goto out; 1449 } 1450 1451 /* Attach to the remote processor */ 1452 ret = rproc_attach_device(rproc); 1453 if (ret) { 1454 dev_err(dev, "can't attach to rproc %s: %d\n", 1455 rproc->name, ret); 1456 goto unprepare_subdevices; 1457 } 1458 1459 /* Start any subdevices for the remote processor */ 1460 ret = rproc_start_subdevices(rproc); 1461 if (ret) { 1462 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1463 rproc->name, ret); 1464 goto stop_rproc; 1465 } 1466 1467 rproc->state = RPROC_ATTACHED; 1468 1469 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1470 1471 return 0; 1472 1473 stop_rproc: 1474 rproc->ops->stop(rproc); 1475 unprepare_subdevices: 1476 rproc_unprepare_subdevices(rproc); 1477 out: 1478 return ret; 1479 } 1480 1481 /* 1482 * take a firmware and boot a remote processor with it. 1483 */ 1484 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1485 { 1486 struct device *dev = &rproc->dev; 1487 const char *name = rproc->firmware; 1488 int ret; 1489 1490 ret = rproc_fw_sanity_check(rproc, fw); 1491 if (ret) 1492 return ret; 1493 1494 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1495 1496 /* 1497 * if enabling an IOMMU isn't relevant for this rproc, this is 1498 * just a nop 1499 */ 1500 ret = rproc_enable_iommu(rproc); 1501 if (ret) { 1502 dev_err(dev, "can't enable iommu: %d\n", ret); 1503 return ret; 1504 } 1505 1506 /* Prepare rproc for firmware loading if needed */ 1507 ret = rproc_prepare_device(rproc); 1508 if (ret) { 1509 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1510 goto disable_iommu; 1511 } 1512 1513 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1514 1515 /* Load resource table, core dump segment list etc from the firmware */ 1516 ret = rproc_parse_fw(rproc, fw); 1517 if (ret) 1518 goto unprepare_rproc; 1519 1520 /* reset max_notifyid */ 1521 rproc->max_notifyid = -1; 1522 1523 /* reset handled vdev */ 1524 rproc->nb_vdev = 0; 1525 1526 /* handle fw resources which are required to boot rproc */ 1527 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1528 if (ret) { 1529 dev_err(dev, "Failed to process resources: %d\n", ret); 1530 goto clean_up_resources; 1531 } 1532 1533 /* Allocate carveout resources associated to rproc */ 1534 ret = rproc_alloc_registered_carveouts(rproc); 1535 if (ret) { 1536 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1537 ret); 1538 goto clean_up_resources; 1539 } 1540 1541 ret = rproc_start(rproc, fw); 1542 if (ret) 1543 goto clean_up_resources; 1544 1545 return 0; 1546 1547 clean_up_resources: 1548 rproc_resource_cleanup(rproc); 1549 kfree(rproc->cached_table); 1550 rproc->cached_table = NULL; 1551 rproc->table_ptr = NULL; 1552 unprepare_rproc: 1553 /* release HW resources if needed */ 1554 rproc_unprepare_device(rproc); 1555 disable_iommu: 1556 rproc_disable_iommu(rproc); 1557 return ret; 1558 } 1559 1560 static int rproc_set_rsc_table(struct rproc *rproc) 1561 { 1562 struct resource_table *table_ptr; 1563 struct device *dev = &rproc->dev; 1564 size_t table_sz; 1565 int ret; 1566 1567 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1568 if (!table_ptr) { 1569 /* Not having a resource table is acceptable */ 1570 return 0; 1571 } 1572 1573 if (IS_ERR(table_ptr)) { 1574 ret = PTR_ERR(table_ptr); 1575 dev_err(dev, "can't load resource table: %d\n", ret); 1576 return ret; 1577 } 1578 1579 /* 1580 * If it is possible to detach the remote processor, keep an untouched 1581 * copy of the resource table. That way we can start fresh again when 1582 * the remote processor is re-attached, that is: 1583 * 1584 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1585 * 1586 * Free'd in rproc_reset_rsc_table_on_detach() and 1587 * rproc_reset_rsc_table_on_stop(). 1588 */ 1589 if (rproc->ops->detach) { 1590 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1591 if (!rproc->clean_table) 1592 return -ENOMEM; 1593 } else { 1594 rproc->clean_table = NULL; 1595 } 1596 1597 rproc->cached_table = NULL; 1598 rproc->table_ptr = table_ptr; 1599 rproc->table_sz = table_sz; 1600 1601 return 0; 1602 } 1603 1604 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1605 { 1606 struct resource_table *table_ptr; 1607 1608 /* A resource table was never retrieved, nothing to do here */ 1609 if (!rproc->table_ptr) 1610 return 0; 1611 1612 /* 1613 * If we made it to this point a clean_table _must_ have been 1614 * allocated in rproc_set_rsc_table(). If one isn't present 1615 * something went really wrong and we must complain. 1616 */ 1617 if (WARN_ON(!rproc->clean_table)) 1618 return -EINVAL; 1619 1620 /* Remember where the external entity installed the resource table */ 1621 table_ptr = rproc->table_ptr; 1622 1623 /* 1624 * If we made it here the remote processor was started by another 1625 * entity and a cache table doesn't exist. As such make a copy of 1626 * the resource table currently used by the remote processor and 1627 * use that for the rest of the shutdown process. The memory 1628 * allocated here is free'd in rproc_detach(). 1629 */ 1630 rproc->cached_table = kmemdup(rproc->table_ptr, 1631 rproc->table_sz, GFP_KERNEL); 1632 if (!rproc->cached_table) 1633 return -ENOMEM; 1634 1635 /* 1636 * Use a copy of the resource table for the remainder of the 1637 * shutdown process. 1638 */ 1639 rproc->table_ptr = rproc->cached_table; 1640 1641 /* 1642 * Reset the memory area where the firmware loaded the resource table 1643 * to its original value. That way when we re-attach the remote 1644 * processor the resource table is clean and ready to be used again. 1645 */ 1646 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1647 1648 /* 1649 * The clean resource table is no longer needed. Allocated in 1650 * rproc_set_rsc_table(). 1651 */ 1652 kfree(rproc->clean_table); 1653 1654 return 0; 1655 } 1656 1657 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1658 { 1659 /* A resource table was never retrieved, nothing to do here */ 1660 if (!rproc->table_ptr) 1661 return 0; 1662 1663 /* 1664 * If a cache table exists the remote processor was started by 1665 * the remoteproc core. That cache table should be used for 1666 * the rest of the shutdown process. 1667 */ 1668 if (rproc->cached_table) 1669 goto out; 1670 1671 /* 1672 * If we made it here the remote processor was started by another 1673 * entity and a cache table doesn't exist. As such make a copy of 1674 * the resource table currently used by the remote processor and 1675 * use that for the rest of the shutdown process. The memory 1676 * allocated here is free'd in rproc_shutdown(). 1677 */ 1678 rproc->cached_table = kmemdup(rproc->table_ptr, 1679 rproc->table_sz, GFP_KERNEL); 1680 if (!rproc->cached_table) 1681 return -ENOMEM; 1682 1683 /* 1684 * Since the remote processor is being switched off the clean table 1685 * won't be needed. Allocated in rproc_set_rsc_table(). 1686 */ 1687 kfree(rproc->clean_table); 1688 1689 out: 1690 /* 1691 * Use a copy of the resource table for the remainder of the 1692 * shutdown process. 1693 */ 1694 rproc->table_ptr = rproc->cached_table; 1695 return 0; 1696 } 1697 1698 /* 1699 * Attach to remote processor - similar to rproc_fw_boot() but without 1700 * the steps that deal with the firmware image. 1701 */ 1702 static int rproc_attach(struct rproc *rproc) 1703 { 1704 struct device *dev = &rproc->dev; 1705 int ret; 1706 1707 /* 1708 * if enabling an IOMMU isn't relevant for this rproc, this is 1709 * just a nop 1710 */ 1711 ret = rproc_enable_iommu(rproc); 1712 if (ret) { 1713 dev_err(dev, "can't enable iommu: %d\n", ret); 1714 return ret; 1715 } 1716 1717 /* Do anything that is needed to boot the remote processor */ 1718 ret = rproc_prepare_device(rproc); 1719 if (ret) { 1720 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1721 goto disable_iommu; 1722 } 1723 1724 ret = rproc_set_rsc_table(rproc); 1725 if (ret) { 1726 dev_err(dev, "can't load resource table: %d\n", ret); 1727 goto unprepare_device; 1728 } 1729 1730 /* reset max_notifyid */ 1731 rproc->max_notifyid = -1; 1732 1733 /* reset handled vdev */ 1734 rproc->nb_vdev = 0; 1735 1736 /* 1737 * Handle firmware resources required to attach to a remote processor. 1738 * Because we are attaching rather than booting the remote processor, 1739 * we expect the platform driver to properly set rproc->table_ptr. 1740 */ 1741 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1742 if (ret) { 1743 dev_err(dev, "Failed to process resources: %d\n", ret); 1744 goto unprepare_device; 1745 } 1746 1747 /* Allocate carveout resources associated to rproc */ 1748 ret = rproc_alloc_registered_carveouts(rproc); 1749 if (ret) { 1750 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1751 ret); 1752 goto clean_up_resources; 1753 } 1754 1755 ret = __rproc_attach(rproc); 1756 if (ret) 1757 goto clean_up_resources; 1758 1759 return 0; 1760 1761 clean_up_resources: 1762 rproc_resource_cleanup(rproc); 1763 unprepare_device: 1764 /* release HW resources if needed */ 1765 rproc_unprepare_device(rproc); 1766 disable_iommu: 1767 rproc_disable_iommu(rproc); 1768 return ret; 1769 } 1770 1771 /* 1772 * take a firmware and boot it up. 1773 * 1774 * Note: this function is called asynchronously upon registration of the 1775 * remote processor (so we must wait until it completes before we try 1776 * to unregister the device. one other option is just to use kref here, 1777 * that might be cleaner). 1778 */ 1779 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1780 { 1781 struct rproc *rproc = context; 1782 1783 rproc_boot(rproc); 1784 1785 release_firmware(fw); 1786 } 1787 1788 static int rproc_trigger_auto_boot(struct rproc *rproc) 1789 { 1790 int ret; 1791 1792 /* 1793 * Since the remote processor is in a detached state, it has already 1794 * been booted by another entity. As such there is no point in waiting 1795 * for a firmware image to be loaded, we can simply initiate the process 1796 * of attaching to it immediately. 1797 */ 1798 if (rproc->state == RPROC_DETACHED) 1799 return rproc_boot(rproc); 1800 1801 /* 1802 * We're initiating an asynchronous firmware loading, so we can 1803 * be built-in kernel code, without hanging the boot process. 1804 */ 1805 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 1806 rproc->firmware, &rproc->dev, GFP_KERNEL, 1807 rproc, rproc_auto_boot_callback); 1808 if (ret < 0) 1809 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1810 1811 return ret; 1812 } 1813 1814 static int rproc_stop(struct rproc *rproc, bool crashed) 1815 { 1816 struct device *dev = &rproc->dev; 1817 int ret; 1818 1819 /* No need to continue if a stop() operation has not been provided */ 1820 if (!rproc->ops->stop) 1821 return -EINVAL; 1822 1823 /* Stop any subdevices for the remote processor */ 1824 rproc_stop_subdevices(rproc, crashed); 1825 1826 /* the installed resource table is no longer accessible */ 1827 ret = rproc_reset_rsc_table_on_stop(rproc); 1828 if (ret) { 1829 dev_err(dev, "can't reset resource table: %d\n", ret); 1830 return ret; 1831 } 1832 1833 1834 /* power off the remote processor */ 1835 ret = rproc->ops->stop(rproc); 1836 if (ret) { 1837 dev_err(dev, "can't stop rproc: %d\n", ret); 1838 return ret; 1839 } 1840 1841 rproc_unprepare_subdevices(rproc); 1842 1843 rproc->state = RPROC_OFFLINE; 1844 1845 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1846 1847 return 0; 1848 } 1849 1850 /* 1851 * __rproc_detach(): Does the opposite of __rproc_attach() 1852 */ 1853 static int __rproc_detach(struct rproc *rproc) 1854 { 1855 struct device *dev = &rproc->dev; 1856 int ret; 1857 1858 /* No need to continue if a detach() operation has not been provided */ 1859 if (!rproc->ops->detach) 1860 return -EINVAL; 1861 1862 /* Stop any subdevices for the remote processor */ 1863 rproc_stop_subdevices(rproc, false); 1864 1865 /* the installed resource table is no longer accessible */ 1866 ret = rproc_reset_rsc_table_on_detach(rproc); 1867 if (ret) { 1868 dev_err(dev, "can't reset resource table: %d\n", ret); 1869 return ret; 1870 } 1871 1872 /* Tell the remote processor the core isn't available anymore */ 1873 ret = rproc->ops->detach(rproc); 1874 if (ret) { 1875 dev_err(dev, "can't detach from rproc: %d\n", ret); 1876 return ret; 1877 } 1878 1879 rproc_unprepare_subdevices(rproc); 1880 1881 rproc->state = RPROC_DETACHED; 1882 1883 dev_info(dev, "detached remote processor %s\n", rproc->name); 1884 1885 return 0; 1886 } 1887 1888 /** 1889 * rproc_trigger_recovery() - recover a remoteproc 1890 * @rproc: the remote processor 1891 * 1892 * The recovery is done by resetting all the virtio devices, that way all the 1893 * rpmsg drivers will be reseted along with the remote processor making the 1894 * remoteproc functional again. 1895 * 1896 * This function can sleep, so it cannot be called from atomic context. 1897 * 1898 * Return: 0 on success or a negative value upon failure 1899 */ 1900 int rproc_trigger_recovery(struct rproc *rproc) 1901 { 1902 const struct firmware *firmware_p; 1903 struct device *dev = &rproc->dev; 1904 int ret; 1905 1906 ret = mutex_lock_interruptible(&rproc->lock); 1907 if (ret) 1908 return ret; 1909 1910 /* State could have changed before we got the mutex */ 1911 if (rproc->state != RPROC_CRASHED) 1912 goto unlock_mutex; 1913 1914 dev_err(dev, "recovering %s\n", rproc->name); 1915 1916 ret = rproc_stop(rproc, true); 1917 if (ret) 1918 goto unlock_mutex; 1919 1920 /* generate coredump */ 1921 rproc->ops->coredump(rproc); 1922 1923 /* load firmware */ 1924 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1925 if (ret < 0) { 1926 dev_err(dev, "request_firmware failed: %d\n", ret); 1927 goto unlock_mutex; 1928 } 1929 1930 /* boot the remote processor up again */ 1931 ret = rproc_start(rproc, firmware_p); 1932 1933 release_firmware(firmware_p); 1934 1935 unlock_mutex: 1936 mutex_unlock(&rproc->lock); 1937 return ret; 1938 } 1939 1940 /** 1941 * rproc_crash_handler_work() - handle a crash 1942 * @work: work treating the crash 1943 * 1944 * This function needs to handle everything related to a crash, like cpu 1945 * registers and stack dump, information to help to debug the fatal error, etc. 1946 */ 1947 static void rproc_crash_handler_work(struct work_struct *work) 1948 { 1949 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1950 struct device *dev = &rproc->dev; 1951 1952 dev_dbg(dev, "enter %s\n", __func__); 1953 1954 mutex_lock(&rproc->lock); 1955 1956 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1957 /* handle only the first crash detected */ 1958 mutex_unlock(&rproc->lock); 1959 return; 1960 } 1961 1962 rproc->state = RPROC_CRASHED; 1963 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1964 rproc->name); 1965 1966 mutex_unlock(&rproc->lock); 1967 1968 if (!rproc->recovery_disabled) 1969 rproc_trigger_recovery(rproc); 1970 1971 pm_relax(rproc->dev.parent); 1972 } 1973 1974 /** 1975 * rproc_boot() - boot a remote processor 1976 * @rproc: handle of a remote processor 1977 * 1978 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1979 * 1980 * If the remote processor is already powered on, this function immediately 1981 * returns (successfully). 1982 * 1983 * Return: 0 on success, and an appropriate error value otherwise 1984 */ 1985 int rproc_boot(struct rproc *rproc) 1986 { 1987 const struct firmware *firmware_p; 1988 struct device *dev; 1989 int ret; 1990 1991 if (!rproc) { 1992 pr_err("invalid rproc handle\n"); 1993 return -EINVAL; 1994 } 1995 1996 dev = &rproc->dev; 1997 1998 ret = mutex_lock_interruptible(&rproc->lock); 1999 if (ret) { 2000 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2001 return ret; 2002 } 2003 2004 if (rproc->state == RPROC_DELETED) { 2005 ret = -ENODEV; 2006 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 2007 goto unlock_mutex; 2008 } 2009 2010 /* skip the boot or attach process if rproc is already powered up */ 2011 if (atomic_inc_return(&rproc->power) > 1) { 2012 ret = 0; 2013 goto unlock_mutex; 2014 } 2015 2016 if (rproc->state == RPROC_DETACHED) { 2017 dev_info(dev, "attaching to %s\n", rproc->name); 2018 2019 ret = rproc_attach(rproc); 2020 } else { 2021 dev_info(dev, "powering up %s\n", rproc->name); 2022 2023 /* load firmware */ 2024 ret = request_firmware(&firmware_p, rproc->firmware, dev); 2025 if (ret < 0) { 2026 dev_err(dev, "request_firmware failed: %d\n", ret); 2027 goto downref_rproc; 2028 } 2029 2030 ret = rproc_fw_boot(rproc, firmware_p); 2031 2032 release_firmware(firmware_p); 2033 } 2034 2035 downref_rproc: 2036 if (ret) 2037 atomic_dec(&rproc->power); 2038 unlock_mutex: 2039 mutex_unlock(&rproc->lock); 2040 return ret; 2041 } 2042 EXPORT_SYMBOL(rproc_boot); 2043 2044 /** 2045 * rproc_shutdown() - power off the remote processor 2046 * @rproc: the remote processor 2047 * 2048 * Power off a remote processor (previously booted with rproc_boot()). 2049 * 2050 * In case @rproc is still being used by an additional user(s), then 2051 * this function will just decrement the power refcount and exit, 2052 * without really powering off the device. 2053 * 2054 * Every call to rproc_boot() must (eventually) be accompanied by a call 2055 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 2056 * 2057 * Notes: 2058 * - we're not decrementing the rproc's refcount, only the power refcount. 2059 * which means that the @rproc handle stays valid even after rproc_shutdown() 2060 * returns, and users can still use it with a subsequent rproc_boot(), if 2061 * needed. 2062 */ 2063 void rproc_shutdown(struct rproc *rproc) 2064 { 2065 struct device *dev = &rproc->dev; 2066 int ret; 2067 2068 ret = mutex_lock_interruptible(&rproc->lock); 2069 if (ret) { 2070 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2071 return; 2072 } 2073 2074 /* if the remote proc is still needed, bail out */ 2075 if (!atomic_dec_and_test(&rproc->power)) 2076 goto out; 2077 2078 ret = rproc_stop(rproc, false); 2079 if (ret) { 2080 atomic_inc(&rproc->power); 2081 goto out; 2082 } 2083 2084 /* clean up all acquired resources */ 2085 rproc_resource_cleanup(rproc); 2086 2087 /* release HW resources if needed */ 2088 rproc_unprepare_device(rproc); 2089 2090 rproc_disable_iommu(rproc); 2091 2092 /* Free the copy of the resource table */ 2093 kfree(rproc->cached_table); 2094 rproc->cached_table = NULL; 2095 rproc->table_ptr = NULL; 2096 out: 2097 mutex_unlock(&rproc->lock); 2098 } 2099 EXPORT_SYMBOL(rproc_shutdown); 2100 2101 /** 2102 * rproc_detach() - Detach the remote processor from the 2103 * remoteproc core 2104 * 2105 * @rproc: the remote processor 2106 * 2107 * Detach a remote processor (previously attached to with rproc_attach()). 2108 * 2109 * In case @rproc is still being used by an additional user(s), then 2110 * this function will just decrement the power refcount and exit, 2111 * without disconnecting the device. 2112 * 2113 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2114 * processor know that services provided by the application processor are 2115 * no longer available. From there it should be possible to remove the 2116 * platform driver and even power cycle the application processor (if the HW 2117 * supports it) without needing to switch off the remote processor. 2118 * 2119 * Return: 0 on success, and an appropriate error value otherwise 2120 */ 2121 int rproc_detach(struct rproc *rproc) 2122 { 2123 struct device *dev = &rproc->dev; 2124 int ret; 2125 2126 ret = mutex_lock_interruptible(&rproc->lock); 2127 if (ret) { 2128 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2129 return ret; 2130 } 2131 2132 /* if the remote proc is still needed, bail out */ 2133 if (!atomic_dec_and_test(&rproc->power)) { 2134 ret = 0; 2135 goto out; 2136 } 2137 2138 ret = __rproc_detach(rproc); 2139 if (ret) { 2140 atomic_inc(&rproc->power); 2141 goto out; 2142 } 2143 2144 /* clean up all acquired resources */ 2145 rproc_resource_cleanup(rproc); 2146 2147 /* release HW resources if needed */ 2148 rproc_unprepare_device(rproc); 2149 2150 rproc_disable_iommu(rproc); 2151 2152 /* Free the copy of the resource table */ 2153 kfree(rproc->cached_table); 2154 rproc->cached_table = NULL; 2155 rproc->table_ptr = NULL; 2156 out: 2157 mutex_unlock(&rproc->lock); 2158 return ret; 2159 } 2160 EXPORT_SYMBOL(rproc_detach); 2161 2162 /** 2163 * rproc_get_by_phandle() - find a remote processor by phandle 2164 * @phandle: phandle to the rproc 2165 * 2166 * Finds an rproc handle using the remote processor's phandle, and then 2167 * return a handle to the rproc. 2168 * 2169 * This function increments the remote processor's refcount, so always 2170 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2171 * 2172 * Return: rproc handle on success, and NULL on failure 2173 */ 2174 #ifdef CONFIG_OF 2175 struct rproc *rproc_get_by_phandle(phandle phandle) 2176 { 2177 struct rproc *rproc = NULL, *r; 2178 struct device_node *np; 2179 2180 np = of_find_node_by_phandle(phandle); 2181 if (!np) 2182 return NULL; 2183 2184 rcu_read_lock(); 2185 list_for_each_entry_rcu(r, &rproc_list, node) { 2186 if (r->dev.parent && r->dev.parent->of_node == np) { 2187 /* prevent underlying implementation from being removed */ 2188 if (!try_module_get(r->dev.parent->driver->owner)) { 2189 dev_err(&r->dev, "can't get owner\n"); 2190 break; 2191 } 2192 2193 rproc = r; 2194 get_device(&rproc->dev); 2195 break; 2196 } 2197 } 2198 rcu_read_unlock(); 2199 2200 of_node_put(np); 2201 2202 return rproc; 2203 } 2204 #else 2205 struct rproc *rproc_get_by_phandle(phandle phandle) 2206 { 2207 return NULL; 2208 } 2209 #endif 2210 EXPORT_SYMBOL(rproc_get_by_phandle); 2211 2212 /** 2213 * rproc_set_firmware() - assign a new firmware 2214 * @rproc: rproc handle to which the new firmware is being assigned 2215 * @fw_name: new firmware name to be assigned 2216 * 2217 * This function allows remoteproc drivers or clients to configure a custom 2218 * firmware name that is different from the default name used during remoteproc 2219 * registration. The function does not trigger a remote processor boot, 2220 * only sets the firmware name used for a subsequent boot. This function 2221 * should also be called only when the remote processor is offline. 2222 * 2223 * This allows either the userspace to configure a different name through 2224 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2225 * a specific firmware when it is controlling the boot and shutdown of the 2226 * remote processor. 2227 * 2228 * Return: 0 on success or a negative value upon failure 2229 */ 2230 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2231 { 2232 struct device *dev; 2233 int ret, len; 2234 char *p; 2235 2236 if (!rproc || !fw_name) 2237 return -EINVAL; 2238 2239 dev = rproc->dev.parent; 2240 2241 ret = mutex_lock_interruptible(&rproc->lock); 2242 if (ret) { 2243 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2244 return -EINVAL; 2245 } 2246 2247 if (rproc->state != RPROC_OFFLINE) { 2248 dev_err(dev, "can't change firmware while running\n"); 2249 ret = -EBUSY; 2250 goto out; 2251 } 2252 2253 len = strcspn(fw_name, "\n"); 2254 if (!len) { 2255 dev_err(dev, "can't provide empty string for firmware name\n"); 2256 ret = -EINVAL; 2257 goto out; 2258 } 2259 2260 p = kstrndup(fw_name, len, GFP_KERNEL); 2261 if (!p) { 2262 ret = -ENOMEM; 2263 goto out; 2264 } 2265 2266 kfree_const(rproc->firmware); 2267 rproc->firmware = p; 2268 2269 out: 2270 mutex_unlock(&rproc->lock); 2271 return ret; 2272 } 2273 EXPORT_SYMBOL(rproc_set_firmware); 2274 2275 static int rproc_validate(struct rproc *rproc) 2276 { 2277 switch (rproc->state) { 2278 case RPROC_OFFLINE: 2279 /* 2280 * An offline processor without a start() 2281 * function makes no sense. 2282 */ 2283 if (!rproc->ops->start) 2284 return -EINVAL; 2285 break; 2286 case RPROC_DETACHED: 2287 /* 2288 * A remote processor in a detached state without an 2289 * attach() function makes not sense. 2290 */ 2291 if (!rproc->ops->attach) 2292 return -EINVAL; 2293 /* 2294 * When attaching to a remote processor the device memory 2295 * is already available and as such there is no need to have a 2296 * cached table. 2297 */ 2298 if (rproc->cached_table) 2299 return -EINVAL; 2300 break; 2301 default: 2302 /* 2303 * When adding a remote processor, the state of the device 2304 * can be offline or detached, nothing else. 2305 */ 2306 return -EINVAL; 2307 } 2308 2309 return 0; 2310 } 2311 2312 /** 2313 * rproc_add() - register a remote processor 2314 * @rproc: the remote processor handle to register 2315 * 2316 * Registers @rproc with the remoteproc framework, after it has been 2317 * allocated with rproc_alloc(). 2318 * 2319 * This is called by the platform-specific rproc implementation, whenever 2320 * a new remote processor device is probed. 2321 * 2322 * Note: this function initiates an asynchronous firmware loading 2323 * context, which will look for virtio devices supported by the rproc's 2324 * firmware. 2325 * 2326 * If found, those virtio devices will be created and added, so as a result 2327 * of registering this remote processor, additional virtio drivers might be 2328 * probed. 2329 * 2330 * Return: 0 on success and an appropriate error code otherwise 2331 */ 2332 int rproc_add(struct rproc *rproc) 2333 { 2334 struct device *dev = &rproc->dev; 2335 int ret; 2336 2337 ret = rproc_validate(rproc); 2338 if (ret < 0) 2339 return ret; 2340 2341 /* add char device for this remoteproc */ 2342 ret = rproc_char_device_add(rproc); 2343 if (ret < 0) 2344 return ret; 2345 2346 ret = device_add(dev); 2347 if (ret < 0) { 2348 put_device(dev); 2349 goto rproc_remove_cdev; 2350 } 2351 2352 dev_info(dev, "%s is available\n", rproc->name); 2353 2354 /* create debugfs entries */ 2355 rproc_create_debug_dir(rproc); 2356 2357 /* if rproc is marked always-on, request it to boot */ 2358 if (rproc->auto_boot) { 2359 ret = rproc_trigger_auto_boot(rproc); 2360 if (ret < 0) 2361 goto rproc_remove_dev; 2362 } 2363 2364 /* expose to rproc_get_by_phandle users */ 2365 mutex_lock(&rproc_list_mutex); 2366 list_add_rcu(&rproc->node, &rproc_list); 2367 mutex_unlock(&rproc_list_mutex); 2368 2369 return 0; 2370 2371 rproc_remove_dev: 2372 rproc_delete_debug_dir(rproc); 2373 device_del(dev); 2374 rproc_remove_cdev: 2375 rproc_char_device_remove(rproc); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL(rproc_add); 2379 2380 static void devm_rproc_remove(void *rproc) 2381 { 2382 rproc_del(rproc); 2383 } 2384 2385 /** 2386 * devm_rproc_add() - resource managed rproc_add() 2387 * @dev: the underlying device 2388 * @rproc: the remote processor handle to register 2389 * 2390 * This function performs like rproc_add() but the registered rproc device will 2391 * automatically be removed on driver detach. 2392 * 2393 * Return: 0 on success, negative errno on failure 2394 */ 2395 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2396 { 2397 int err; 2398 2399 err = rproc_add(rproc); 2400 if (err) 2401 return err; 2402 2403 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2404 } 2405 EXPORT_SYMBOL(devm_rproc_add); 2406 2407 /** 2408 * rproc_type_release() - release a remote processor instance 2409 * @dev: the rproc's device 2410 * 2411 * This function should _never_ be called directly. 2412 * 2413 * It will be called by the driver core when no one holds a valid pointer 2414 * to @dev anymore. 2415 */ 2416 static void rproc_type_release(struct device *dev) 2417 { 2418 struct rproc *rproc = container_of(dev, struct rproc, dev); 2419 2420 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2421 2422 idr_destroy(&rproc->notifyids); 2423 2424 if (rproc->index >= 0) 2425 ida_simple_remove(&rproc_dev_index, rproc->index); 2426 2427 kfree_const(rproc->firmware); 2428 kfree_const(rproc->name); 2429 kfree(rproc->ops); 2430 kfree(rproc); 2431 } 2432 2433 static const struct device_type rproc_type = { 2434 .name = "remoteproc", 2435 .release = rproc_type_release, 2436 }; 2437 2438 static int rproc_alloc_firmware(struct rproc *rproc, 2439 const char *name, const char *firmware) 2440 { 2441 const char *p; 2442 2443 /* 2444 * Allocate a firmware name if the caller gave us one to work 2445 * with. Otherwise construct a new one using a default pattern. 2446 */ 2447 if (firmware) 2448 p = kstrdup_const(firmware, GFP_KERNEL); 2449 else 2450 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2451 2452 if (!p) 2453 return -ENOMEM; 2454 2455 rproc->firmware = p; 2456 2457 return 0; 2458 } 2459 2460 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2461 { 2462 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2463 if (!rproc->ops) 2464 return -ENOMEM; 2465 2466 /* Default to rproc_coredump if no coredump function is specified */ 2467 if (!rproc->ops->coredump) 2468 rproc->ops->coredump = rproc_coredump; 2469 2470 if (rproc->ops->load) 2471 return 0; 2472 2473 /* Default to ELF loader if no load function is specified */ 2474 rproc->ops->load = rproc_elf_load_segments; 2475 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2476 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2477 rproc->ops->sanity_check = rproc_elf_sanity_check; 2478 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2479 2480 return 0; 2481 } 2482 2483 /** 2484 * rproc_alloc() - allocate a remote processor handle 2485 * @dev: the underlying device 2486 * @name: name of this remote processor 2487 * @ops: platform-specific handlers (mainly start/stop) 2488 * @firmware: name of firmware file to load, can be NULL 2489 * @len: length of private data needed by the rproc driver (in bytes) 2490 * 2491 * Allocates a new remote processor handle, but does not register 2492 * it yet. if @firmware is NULL, a default name is used. 2493 * 2494 * This function should be used by rproc implementations during initialization 2495 * of the remote processor. 2496 * 2497 * After creating an rproc handle using this function, and when ready, 2498 * implementations should then call rproc_add() to complete 2499 * the registration of the remote processor. 2500 * 2501 * Note: _never_ directly deallocate @rproc, even if it was not registered 2502 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2503 * 2504 * Return: new rproc pointer on success, and NULL on failure 2505 */ 2506 struct rproc *rproc_alloc(struct device *dev, const char *name, 2507 const struct rproc_ops *ops, 2508 const char *firmware, int len) 2509 { 2510 struct rproc *rproc; 2511 2512 if (!dev || !name || !ops) 2513 return NULL; 2514 2515 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2516 if (!rproc) 2517 return NULL; 2518 2519 rproc->priv = &rproc[1]; 2520 rproc->auto_boot = true; 2521 rproc->elf_class = ELFCLASSNONE; 2522 rproc->elf_machine = EM_NONE; 2523 2524 device_initialize(&rproc->dev); 2525 rproc->dev.parent = dev; 2526 rproc->dev.type = &rproc_type; 2527 rproc->dev.class = &rproc_class; 2528 rproc->dev.driver_data = rproc; 2529 idr_init(&rproc->notifyids); 2530 2531 rproc->name = kstrdup_const(name, GFP_KERNEL); 2532 if (!rproc->name) 2533 goto put_device; 2534 2535 if (rproc_alloc_firmware(rproc, name, firmware)) 2536 goto put_device; 2537 2538 if (rproc_alloc_ops(rproc, ops)) 2539 goto put_device; 2540 2541 /* Assign a unique device index and name */ 2542 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2543 if (rproc->index < 0) { 2544 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2545 goto put_device; 2546 } 2547 2548 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2549 2550 atomic_set(&rproc->power, 0); 2551 2552 mutex_init(&rproc->lock); 2553 2554 INIT_LIST_HEAD(&rproc->carveouts); 2555 INIT_LIST_HEAD(&rproc->mappings); 2556 INIT_LIST_HEAD(&rproc->traces); 2557 INIT_LIST_HEAD(&rproc->rvdevs); 2558 INIT_LIST_HEAD(&rproc->subdevs); 2559 INIT_LIST_HEAD(&rproc->dump_segments); 2560 2561 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2562 2563 rproc->state = RPROC_OFFLINE; 2564 2565 return rproc; 2566 2567 put_device: 2568 put_device(&rproc->dev); 2569 return NULL; 2570 } 2571 EXPORT_SYMBOL(rproc_alloc); 2572 2573 /** 2574 * rproc_free() - unroll rproc_alloc() 2575 * @rproc: the remote processor handle 2576 * 2577 * This function decrements the rproc dev refcount. 2578 * 2579 * If no one holds any reference to rproc anymore, then its refcount would 2580 * now drop to zero, and it would be freed. 2581 */ 2582 void rproc_free(struct rproc *rproc) 2583 { 2584 put_device(&rproc->dev); 2585 } 2586 EXPORT_SYMBOL(rproc_free); 2587 2588 /** 2589 * rproc_put() - release rproc reference 2590 * @rproc: the remote processor handle 2591 * 2592 * This function decrements the rproc dev refcount. 2593 * 2594 * If no one holds any reference to rproc anymore, then its refcount would 2595 * now drop to zero, and it would be freed. 2596 */ 2597 void rproc_put(struct rproc *rproc) 2598 { 2599 module_put(rproc->dev.parent->driver->owner); 2600 put_device(&rproc->dev); 2601 } 2602 EXPORT_SYMBOL(rproc_put); 2603 2604 /** 2605 * rproc_del() - unregister a remote processor 2606 * @rproc: rproc handle to unregister 2607 * 2608 * This function should be called when the platform specific rproc 2609 * implementation decides to remove the rproc device. it should 2610 * _only_ be called if a previous invocation of rproc_add() 2611 * has completed successfully. 2612 * 2613 * After rproc_del() returns, @rproc isn't freed yet, because 2614 * of the outstanding reference created by rproc_alloc. To decrement that 2615 * one last refcount, one still needs to call rproc_free(). 2616 * 2617 * Return: 0 on success and -EINVAL if @rproc isn't valid 2618 */ 2619 int rproc_del(struct rproc *rproc) 2620 { 2621 if (!rproc) 2622 return -EINVAL; 2623 2624 /* TODO: make sure this works with rproc->power > 1 */ 2625 rproc_shutdown(rproc); 2626 2627 mutex_lock(&rproc->lock); 2628 rproc->state = RPROC_DELETED; 2629 mutex_unlock(&rproc->lock); 2630 2631 rproc_delete_debug_dir(rproc); 2632 2633 /* the rproc is downref'ed as soon as it's removed from the klist */ 2634 mutex_lock(&rproc_list_mutex); 2635 list_del_rcu(&rproc->node); 2636 mutex_unlock(&rproc_list_mutex); 2637 2638 /* Ensure that no readers of rproc_list are still active */ 2639 synchronize_rcu(); 2640 2641 device_del(&rproc->dev); 2642 rproc_char_device_remove(rproc); 2643 2644 return 0; 2645 } 2646 EXPORT_SYMBOL(rproc_del); 2647 2648 static void devm_rproc_free(struct device *dev, void *res) 2649 { 2650 rproc_free(*(struct rproc **)res); 2651 } 2652 2653 /** 2654 * devm_rproc_alloc() - resource managed rproc_alloc() 2655 * @dev: the underlying device 2656 * @name: name of this remote processor 2657 * @ops: platform-specific handlers (mainly start/stop) 2658 * @firmware: name of firmware file to load, can be NULL 2659 * @len: length of private data needed by the rproc driver (in bytes) 2660 * 2661 * This function performs like rproc_alloc() but the acquired rproc device will 2662 * automatically be released on driver detach. 2663 * 2664 * Return: new rproc instance, or NULL on failure 2665 */ 2666 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2667 const struct rproc_ops *ops, 2668 const char *firmware, int len) 2669 { 2670 struct rproc **ptr, *rproc; 2671 2672 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2673 if (!ptr) 2674 return NULL; 2675 2676 rproc = rproc_alloc(dev, name, ops, firmware, len); 2677 if (rproc) { 2678 *ptr = rproc; 2679 devres_add(dev, ptr); 2680 } else { 2681 devres_free(ptr); 2682 } 2683 2684 return rproc; 2685 } 2686 EXPORT_SYMBOL(devm_rproc_alloc); 2687 2688 /** 2689 * rproc_add_subdev() - add a subdevice to a remoteproc 2690 * @rproc: rproc handle to add the subdevice to 2691 * @subdev: subdev handle to register 2692 * 2693 * Caller is responsible for populating optional subdevice function pointers. 2694 */ 2695 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2696 { 2697 list_add_tail(&subdev->node, &rproc->subdevs); 2698 } 2699 EXPORT_SYMBOL(rproc_add_subdev); 2700 2701 /** 2702 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2703 * @rproc: rproc handle to remove the subdevice from 2704 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2705 */ 2706 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2707 { 2708 list_del(&subdev->node); 2709 } 2710 EXPORT_SYMBOL(rproc_remove_subdev); 2711 2712 /** 2713 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2714 * @dev: child device to find ancestor of 2715 * 2716 * Return: the ancestor rproc instance, or NULL if not found 2717 */ 2718 struct rproc *rproc_get_by_child(struct device *dev) 2719 { 2720 for (dev = dev->parent; dev; dev = dev->parent) { 2721 if (dev->type == &rproc_type) 2722 return dev->driver_data; 2723 } 2724 2725 return NULL; 2726 } 2727 EXPORT_SYMBOL(rproc_get_by_child); 2728 2729 /** 2730 * rproc_report_crash() - rproc crash reporter function 2731 * @rproc: remote processor 2732 * @type: crash type 2733 * 2734 * This function must be called every time a crash is detected by the low-level 2735 * drivers implementing a specific remoteproc. This should not be called from a 2736 * non-remoteproc driver. 2737 * 2738 * This function can be called from atomic/interrupt context. 2739 */ 2740 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2741 { 2742 if (!rproc) { 2743 pr_err("NULL rproc pointer\n"); 2744 return; 2745 } 2746 2747 /* Prevent suspend while the remoteproc is being recovered */ 2748 pm_stay_awake(rproc->dev.parent); 2749 2750 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2751 rproc->name, rproc_crash_to_string(type)); 2752 2753 /* Have a worker handle the error; ensure system is not suspended */ 2754 queue_work(system_freezable_wq, &rproc->crash_handler); 2755 } 2756 EXPORT_SYMBOL(rproc_report_crash); 2757 2758 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2759 void *ptr) 2760 { 2761 unsigned int longest = 0; 2762 struct rproc *rproc; 2763 unsigned int d; 2764 2765 rcu_read_lock(); 2766 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2767 if (!rproc->ops->panic) 2768 continue; 2769 2770 if (rproc->state != RPROC_RUNNING && 2771 rproc->state != RPROC_ATTACHED) 2772 continue; 2773 2774 d = rproc->ops->panic(rproc); 2775 longest = max(longest, d); 2776 } 2777 rcu_read_unlock(); 2778 2779 /* 2780 * Delay for the longest requested duration before returning. This can 2781 * be used by the remoteproc drivers to give the remote processor time 2782 * to perform any requested operations (such as flush caches), when 2783 * it's not possible to signal the Linux side due to the panic. 2784 */ 2785 mdelay(longest); 2786 2787 return NOTIFY_DONE; 2788 } 2789 2790 static void __init rproc_init_panic(void) 2791 { 2792 rproc_panic_nb.notifier_call = rproc_panic_handler; 2793 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2794 } 2795 2796 static void __exit rproc_exit_panic(void) 2797 { 2798 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2799 } 2800 2801 static int __init remoteproc_init(void) 2802 { 2803 rproc_init_sysfs(); 2804 rproc_init_debugfs(); 2805 rproc_init_cdev(); 2806 rproc_init_panic(); 2807 2808 return 0; 2809 } 2810 subsys_initcall(remoteproc_init); 2811 2812 static void __exit remoteproc_exit(void) 2813 { 2814 ida_destroy(&rproc_dev_index); 2815 2816 rproc_exit_panic(); 2817 rproc_exit_debugfs(); 2818 rproc_exit_sysfs(); 2819 } 2820 module_exit(remoteproc_exit); 2821 2822 MODULE_LICENSE("GPL v2"); 2823 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2824