1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/virtio_ids.h>
41 #include <linux/virtio_ring.h>
42 #include <asm/byteorder.h>
43 
44 #include "remoteproc_internal.h"
45 
46 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 				struct resource_table *table, int len);
48 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49 
50 /* Unique indices for remoteproc devices */
51 static DEFINE_IDA(rproc_dev_index);
52 
53 static const char * const rproc_crash_names[] = {
54 	[RPROC_MMUFAULT]	= "mmufault",
55 };
56 
57 /* translate rproc_crash_type to string */
58 static const char *rproc_crash_to_string(enum rproc_crash_type type)
59 {
60 	if (type < ARRAY_SIZE(rproc_crash_names))
61 		return rproc_crash_names[type];
62 	return "unkown";
63 }
64 
65 /*
66  * This is the IOMMU fault handler we register with the IOMMU API
67  * (when relevant; not all remote processors access memory through
68  * an IOMMU).
69  *
70  * IOMMU core will invoke this handler whenever the remote processor
71  * will try to access an unmapped device address.
72  */
73 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
74 		unsigned long iova, int flags, void *token)
75 {
76 	struct rproc *rproc = token;
77 
78 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
79 
80 	rproc_report_crash(rproc, RPROC_MMUFAULT);
81 
82 	/*
83 	 * Let the iommu core know we're not really handling this fault;
84 	 * we just used it as a recovery trigger.
85 	 */
86 	return -ENOSYS;
87 }
88 
89 static int rproc_enable_iommu(struct rproc *rproc)
90 {
91 	struct iommu_domain *domain;
92 	struct device *dev = rproc->dev.parent;
93 	int ret;
94 
95 	/*
96 	 * We currently use iommu_present() to decide if an IOMMU
97 	 * setup is needed.
98 	 *
99 	 * This works for simple cases, but will easily fail with
100 	 * platforms that do have an IOMMU, but not for this specific
101 	 * rproc.
102 	 *
103 	 * This will be easily solved by introducing hw capabilities
104 	 * that will be set by the remoteproc driver.
105 	 */
106 	if (!iommu_present(dev->bus)) {
107 		dev_dbg(dev, "iommu not found\n");
108 		return 0;
109 	}
110 
111 	domain = iommu_domain_alloc(dev->bus);
112 	if (!domain) {
113 		dev_err(dev, "can't alloc iommu domain\n");
114 		return -ENOMEM;
115 	}
116 
117 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 
119 	ret = iommu_attach_device(domain, dev);
120 	if (ret) {
121 		dev_err(dev, "can't attach iommu device: %d\n", ret);
122 		goto free_domain;
123 	}
124 
125 	rproc->domain = domain;
126 
127 	return 0;
128 
129 free_domain:
130 	iommu_domain_free(domain);
131 	return ret;
132 }
133 
134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 	struct iommu_domain *domain = rproc->domain;
137 	struct device *dev = rproc->dev.parent;
138 
139 	if (!domain)
140 		return;
141 
142 	iommu_detach_device(domain, dev);
143 	iommu_domain_free(domain);
144 
145 	return;
146 }
147 
148 /*
149  * Some remote processors will ask us to allocate them physically contiguous
150  * memory regions (which we call "carveouts"), and map them to specific
151  * device addresses (which are hardcoded in the firmware).
152  *
153  * They may then ask us to copy objects into specific device addresses (e.g.
154  * code/data sections) or expose us certain symbols in other device address
155  * (e.g. their trace buffer).
156  *
157  * This function is an internal helper with which we can go over the allocated
158  * carveouts and translate specific device address to kernel virtual addresses
159  * so we can access the referenced memory.
160  *
161  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
162  * but only on kernel direct mapped RAM memory. Instead, we're just using
163  * here the output of the DMA API, which should be more correct.
164  */
165 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
166 {
167 	struct rproc_mem_entry *carveout;
168 	void *ptr = NULL;
169 
170 	list_for_each_entry(carveout, &rproc->carveouts, node) {
171 		int offset = da - carveout->da;
172 
173 		/* try next carveout if da is too small */
174 		if (offset < 0)
175 			continue;
176 
177 		/* try next carveout if da is too large */
178 		if (offset + len > carveout->len)
179 			continue;
180 
181 		ptr = carveout->va + offset;
182 
183 		break;
184 	}
185 
186 	return ptr;
187 }
188 EXPORT_SYMBOL(rproc_da_to_va);
189 
190 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
191 {
192 	struct rproc *rproc = rvdev->rproc;
193 	struct device *dev = &rproc->dev;
194 	struct rproc_vring *rvring = &rvdev->vring[i];
195 	dma_addr_t dma;
196 	void *va;
197 	int ret, size, notifyid;
198 
199 	/* actual size of vring (in bytes) */
200 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
201 
202 	/*
203 	 * Allocate non-cacheable memory for the vring. In the future
204 	 * this call will also configure the IOMMU for us
205 	 * TODO: let the rproc know the da of this vring
206 	 */
207 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
208 	if (!va) {
209 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
210 		return -EINVAL;
211 	}
212 
213 	/*
214 	 * Assign an rproc-wide unique index for this vring
215 	 * TODO: assign a notifyid for rvdev updates as well
216 	 * TODO: let the rproc know the notifyid of this vring
217 	 * TODO: support predefined notifyids (via resource table)
218 	 */
219 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
220 	if (ret) {
221 		dev_err(dev, "idr_alloc failed: %d\n", ret);
222 		dma_free_coherent(dev->parent, size, va, dma);
223 		return ret;
224 	}
225 	notifyid = ret;
226 
227 	/* Store largest notifyid */
228 	rproc->max_notifyid = max(rproc->max_notifyid, notifyid);
229 
230 	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
231 				(unsigned long long)dma, size, notifyid);
232 
233 	rvring->va = va;
234 	rvring->dma = dma;
235 	rvring->notifyid = notifyid;
236 
237 	return 0;
238 }
239 
240 static int
241 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
242 {
243 	struct rproc *rproc = rvdev->rproc;
244 	struct device *dev = &rproc->dev;
245 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
246 	struct rproc_vring *rvring = &rvdev->vring[i];
247 
248 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
249 				i, vring->da, vring->num, vring->align);
250 
251 	/* make sure reserved bytes are zeroes */
252 	if (vring->reserved) {
253 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
254 		return -EINVAL;
255 	}
256 
257 	/* verify queue size and vring alignment are sane */
258 	if (!vring->num || !vring->align) {
259 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
260 						vring->num, vring->align);
261 		return -EINVAL;
262 	}
263 
264 	rvring->len = vring->num;
265 	rvring->align = vring->align;
266 	rvring->rvdev = rvdev;
267 
268 	return 0;
269 }
270 
271 static int rproc_max_notifyid(int id, void *p, void *data)
272 {
273 	int *maxid = data;
274 	*maxid = max(*maxid, id);
275 	return 0;
276 }
277 
278 void rproc_free_vring(struct rproc_vring *rvring)
279 {
280 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
281 	struct rproc *rproc = rvring->rvdev->rproc;
282 	int maxid = 0;
283 
284 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
285 	idr_remove(&rproc->notifyids, rvring->notifyid);
286 
287 	/* Find the largest remaining notifyid */
288 	idr_for_each(&rproc->notifyids, rproc_max_notifyid, &maxid);
289 	rproc->max_notifyid = maxid;
290 }
291 
292 /**
293  * rproc_handle_vdev() - handle a vdev fw resource
294  * @rproc: the remote processor
295  * @rsc: the vring resource descriptor
296  * @avail: size of available data (for sanity checking the image)
297  *
298  * This resource entry requests the host to statically register a virtio
299  * device (vdev), and setup everything needed to support it. It contains
300  * everything needed to make it possible: the virtio device id, virtio
301  * device features, vrings information, virtio config space, etc...
302  *
303  * Before registering the vdev, the vrings are allocated from non-cacheable
304  * physically contiguous memory. Currently we only support two vrings per
305  * remote processor (temporary limitation). We might also want to consider
306  * doing the vring allocation only later when ->find_vqs() is invoked, and
307  * then release them upon ->del_vqs().
308  *
309  * Note: @da is currently not really handled correctly: we dynamically
310  * allocate it using the DMA API, ignoring requested hard coded addresses,
311  * and we don't take care of any required IOMMU programming. This is all
312  * going to be taken care of when the generic iommu-based DMA API will be
313  * merged. Meanwhile, statically-addressed iommu-based firmware images should
314  * use RSC_DEVMEM resource entries to map their required @da to the physical
315  * address of their base CMA region (ouch, hacky!).
316  *
317  * Returns 0 on success, or an appropriate error code otherwise
318  */
319 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
320 								int avail)
321 {
322 	struct device *dev = &rproc->dev;
323 	struct rproc_vdev *rvdev;
324 	int i, ret;
325 
326 	/* make sure resource isn't truncated */
327 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
328 			+ rsc->config_len > avail) {
329 		dev_err(dev, "vdev rsc is truncated\n");
330 		return -EINVAL;
331 	}
332 
333 	/* make sure reserved bytes are zeroes */
334 	if (rsc->reserved[0] || rsc->reserved[1]) {
335 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
336 		return -EINVAL;
337 	}
338 
339 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
340 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
341 
342 	/* we currently support only two vrings per rvdev */
343 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
344 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
345 		return -EINVAL;
346 	}
347 
348 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
349 	if (!rvdev)
350 		return -ENOMEM;
351 
352 	rvdev->rproc = rproc;
353 
354 	/* parse the vrings */
355 	for (i = 0; i < rsc->num_of_vrings; i++) {
356 		ret = rproc_parse_vring(rvdev, rsc, i);
357 		if (ret)
358 			goto free_rvdev;
359 	}
360 
361 	/* remember the device features */
362 	rvdev->dfeatures = rsc->dfeatures;
363 
364 	list_add_tail(&rvdev->node, &rproc->rvdevs);
365 
366 	/* it is now safe to add the virtio device */
367 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
368 	if (ret)
369 		goto free_rvdev;
370 
371 	return 0;
372 
373 free_rvdev:
374 	kfree(rvdev);
375 	return ret;
376 }
377 
378 /**
379  * rproc_handle_trace() - handle a shared trace buffer resource
380  * @rproc: the remote processor
381  * @rsc: the trace resource descriptor
382  * @avail: size of available data (for sanity checking the image)
383  *
384  * In case the remote processor dumps trace logs into memory,
385  * export it via debugfs.
386  *
387  * Currently, the 'da' member of @rsc should contain the device address
388  * where the remote processor is dumping the traces. Later we could also
389  * support dynamically allocating this address using the generic
390  * DMA API (but currently there isn't a use case for that).
391  *
392  * Returns 0 on success, or an appropriate error code otherwise
393  */
394 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
395 								int avail)
396 {
397 	struct rproc_mem_entry *trace;
398 	struct device *dev = &rproc->dev;
399 	void *ptr;
400 	char name[15];
401 
402 	if (sizeof(*rsc) > avail) {
403 		dev_err(dev, "trace rsc is truncated\n");
404 		return -EINVAL;
405 	}
406 
407 	/* make sure reserved bytes are zeroes */
408 	if (rsc->reserved) {
409 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
410 		return -EINVAL;
411 	}
412 
413 	/* what's the kernel address of this resource ? */
414 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
415 	if (!ptr) {
416 		dev_err(dev, "erroneous trace resource entry\n");
417 		return -EINVAL;
418 	}
419 
420 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
421 	if (!trace) {
422 		dev_err(dev, "kzalloc trace failed\n");
423 		return -ENOMEM;
424 	}
425 
426 	/* set the trace buffer dma properties */
427 	trace->len = rsc->len;
428 	trace->va = ptr;
429 
430 	/* make sure snprintf always null terminates, even if truncating */
431 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
432 
433 	/* create the debugfs entry */
434 	trace->priv = rproc_create_trace_file(name, rproc, trace);
435 	if (!trace->priv) {
436 		trace->va = NULL;
437 		kfree(trace);
438 		return -EINVAL;
439 	}
440 
441 	list_add_tail(&trace->node, &rproc->traces);
442 
443 	rproc->num_traces++;
444 
445 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
446 						rsc->da, rsc->len);
447 
448 	return 0;
449 }
450 
451 /**
452  * rproc_handle_devmem() - handle devmem resource entry
453  * @rproc: remote processor handle
454  * @rsc: the devmem resource entry
455  * @avail: size of available data (for sanity checking the image)
456  *
457  * Remote processors commonly need to access certain on-chip peripherals.
458  *
459  * Some of these remote processors access memory via an iommu device,
460  * and might require us to configure their iommu before they can access
461  * the on-chip peripherals they need.
462  *
463  * This resource entry is a request to map such a peripheral device.
464  *
465  * These devmem entries will contain the physical address of the device in
466  * the 'pa' member. If a specific device address is expected, then 'da' will
467  * contain it (currently this is the only use case supported). 'len' will
468  * contain the size of the physical region we need to map.
469  *
470  * Currently we just "trust" those devmem entries to contain valid physical
471  * addresses, but this is going to change: we want the implementations to
472  * tell us ranges of physical addresses the firmware is allowed to request,
473  * and not allow firmwares to request access to physical addresses that
474  * are outside those ranges.
475  */
476 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
477 								int avail)
478 {
479 	struct rproc_mem_entry *mapping;
480 	struct device *dev = &rproc->dev;
481 	int ret;
482 
483 	/* no point in handling this resource without a valid iommu domain */
484 	if (!rproc->domain)
485 		return -EINVAL;
486 
487 	if (sizeof(*rsc) > avail) {
488 		dev_err(dev, "devmem rsc is truncated\n");
489 		return -EINVAL;
490 	}
491 
492 	/* make sure reserved bytes are zeroes */
493 	if (rsc->reserved) {
494 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
495 		return -EINVAL;
496 	}
497 
498 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
499 	if (!mapping) {
500 		dev_err(dev, "kzalloc mapping failed\n");
501 		return -ENOMEM;
502 	}
503 
504 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
505 	if (ret) {
506 		dev_err(dev, "failed to map devmem: %d\n", ret);
507 		goto out;
508 	}
509 
510 	/*
511 	 * We'll need this info later when we'll want to unmap everything
512 	 * (e.g. on shutdown).
513 	 *
514 	 * We can't trust the remote processor not to change the resource
515 	 * table, so we must maintain this info independently.
516 	 */
517 	mapping->da = rsc->da;
518 	mapping->len = rsc->len;
519 	list_add_tail(&mapping->node, &rproc->mappings);
520 
521 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
522 					rsc->pa, rsc->da, rsc->len);
523 
524 	return 0;
525 
526 out:
527 	kfree(mapping);
528 	return ret;
529 }
530 
531 /**
532  * rproc_handle_carveout() - handle phys contig memory allocation requests
533  * @rproc: rproc handle
534  * @rsc: the resource entry
535  * @avail: size of available data (for image validation)
536  *
537  * This function will handle firmware requests for allocation of physically
538  * contiguous memory regions.
539  *
540  * These request entries should come first in the firmware's resource table,
541  * as other firmware entries might request placing other data objects inside
542  * these memory regions (e.g. data/code segments, trace resource entries, ...).
543  *
544  * Allocating memory this way helps utilizing the reserved physical memory
545  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
546  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
547  * pressure is important; it may have a substantial impact on performance.
548  */
549 static int rproc_handle_carveout(struct rproc *rproc,
550 				struct fw_rsc_carveout *rsc, int avail)
551 {
552 	struct rproc_mem_entry *carveout, *mapping;
553 	struct device *dev = &rproc->dev;
554 	dma_addr_t dma;
555 	void *va;
556 	int ret;
557 
558 	if (sizeof(*rsc) > avail) {
559 		dev_err(dev, "carveout rsc is truncated\n");
560 		return -EINVAL;
561 	}
562 
563 	/* make sure reserved bytes are zeroes */
564 	if (rsc->reserved) {
565 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
566 		return -EINVAL;
567 	}
568 
569 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
570 			rsc->da, rsc->pa, rsc->len, rsc->flags);
571 
572 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
573 	if (!carveout) {
574 		dev_err(dev, "kzalloc carveout failed\n");
575 		return -ENOMEM;
576 	}
577 
578 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
579 	if (!va) {
580 		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
581 		ret = -ENOMEM;
582 		goto free_carv;
583 	}
584 
585 	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
586 					(unsigned long long)dma, rsc->len);
587 
588 	/*
589 	 * Ok, this is non-standard.
590 	 *
591 	 * Sometimes we can't rely on the generic iommu-based DMA API
592 	 * to dynamically allocate the device address and then set the IOMMU
593 	 * tables accordingly, because some remote processors might
594 	 * _require_ us to use hard coded device addresses that their
595 	 * firmware was compiled with.
596 	 *
597 	 * In this case, we must use the IOMMU API directly and map
598 	 * the memory to the device address as expected by the remote
599 	 * processor.
600 	 *
601 	 * Obviously such remote processor devices should not be configured
602 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
603 	 * physical address in this case.
604 	 */
605 	if (rproc->domain) {
606 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
607 		if (!mapping) {
608 			dev_err(dev, "kzalloc mapping failed\n");
609 			ret = -ENOMEM;
610 			goto dma_free;
611 		}
612 
613 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
614 								rsc->flags);
615 		if (ret) {
616 			dev_err(dev, "iommu_map failed: %d\n", ret);
617 			goto free_mapping;
618 		}
619 
620 		/*
621 		 * We'll need this info later when we'll want to unmap
622 		 * everything (e.g. on shutdown).
623 		 *
624 		 * We can't trust the remote processor not to change the
625 		 * resource table, so we must maintain this info independently.
626 		 */
627 		mapping->da = rsc->da;
628 		mapping->len = rsc->len;
629 		list_add_tail(&mapping->node, &rproc->mappings);
630 
631 		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
632 					rsc->da, (unsigned long long)dma);
633 	}
634 
635 	/*
636 	 * Some remote processors might need to know the pa
637 	 * even though they are behind an IOMMU. E.g., OMAP4's
638 	 * remote M3 processor needs this so it can control
639 	 * on-chip hardware accelerators that are not behind
640 	 * the IOMMU, and therefor must know the pa.
641 	 *
642 	 * Generally we don't want to expose physical addresses
643 	 * if we don't have to (remote processors are generally
644 	 * _not_ trusted), so we might want to do this only for
645 	 * remote processor that _must_ have this (e.g. OMAP4's
646 	 * dual M3 subsystem).
647 	 *
648 	 * Non-IOMMU processors might also want to have this info.
649 	 * In this case, the device address and the physical address
650 	 * are the same.
651 	 */
652 	rsc->pa = dma;
653 
654 	carveout->va = va;
655 	carveout->len = rsc->len;
656 	carveout->dma = dma;
657 	carveout->da = rsc->da;
658 
659 	list_add_tail(&carveout->node, &rproc->carveouts);
660 
661 	return 0;
662 
663 free_mapping:
664 	kfree(mapping);
665 dma_free:
666 	dma_free_coherent(dev->parent, rsc->len, va, dma);
667 free_carv:
668 	kfree(carveout);
669 	return ret;
670 }
671 
672 /*
673  * A lookup table for resource handlers. The indices are defined in
674  * enum fw_resource_type.
675  */
676 static rproc_handle_resource_t rproc_handle_rsc[] = {
677 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
678 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
679 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
680 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
681 };
682 
683 /* handle firmware resource entries before booting the remote processor */
684 static int
685 rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
686 {
687 	struct device *dev = &rproc->dev;
688 	rproc_handle_resource_t handler;
689 	int ret = 0, i;
690 
691 	for (i = 0; i < table->num; i++) {
692 		int offset = table->offset[i];
693 		struct fw_rsc_hdr *hdr = (void *)table + offset;
694 		int avail = len - offset - sizeof(*hdr);
695 		void *rsc = (void *)hdr + sizeof(*hdr);
696 
697 		/* make sure table isn't truncated */
698 		if (avail < 0) {
699 			dev_err(dev, "rsc table is truncated\n");
700 			return -EINVAL;
701 		}
702 
703 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
704 
705 		if (hdr->type >= RSC_LAST) {
706 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
707 			continue;
708 		}
709 
710 		handler = rproc_handle_rsc[hdr->type];
711 		if (!handler)
712 			continue;
713 
714 		ret = handler(rproc, rsc, avail);
715 		if (ret)
716 			break;
717 	}
718 
719 	return ret;
720 }
721 
722 /* handle firmware resource entries while registering the remote processor */
723 static int
724 rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
725 {
726 	struct device *dev = &rproc->dev;
727 	int ret = 0, i;
728 
729 	for (i = 0; i < table->num; i++) {
730 		int offset = table->offset[i];
731 		struct fw_rsc_hdr *hdr = (void *)table + offset;
732 		int avail = len - offset - sizeof(*hdr);
733 		struct fw_rsc_vdev *vrsc;
734 
735 		/* make sure table isn't truncated */
736 		if (avail < 0) {
737 			dev_err(dev, "rsc table is truncated\n");
738 			return -EINVAL;
739 		}
740 
741 		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
742 
743 		if (hdr->type != RSC_VDEV)
744 			continue;
745 
746 		vrsc = (struct fw_rsc_vdev *)hdr->data;
747 
748 		ret = rproc_handle_vdev(rproc, vrsc, avail);
749 		if (ret)
750 			break;
751 	}
752 
753 	return ret;
754 }
755 
756 /**
757  * rproc_resource_cleanup() - clean up and free all acquired resources
758  * @rproc: rproc handle
759  *
760  * This function will free all resources acquired for @rproc, and it
761  * is called whenever @rproc either shuts down or fails to boot.
762  */
763 static void rproc_resource_cleanup(struct rproc *rproc)
764 {
765 	struct rproc_mem_entry *entry, *tmp;
766 	struct device *dev = &rproc->dev;
767 
768 	/* clean up debugfs trace entries */
769 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
770 		rproc_remove_trace_file(entry->priv);
771 		rproc->num_traces--;
772 		list_del(&entry->node);
773 		kfree(entry);
774 	}
775 
776 	/* clean up carveout allocations */
777 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
778 		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
779 		list_del(&entry->node);
780 		kfree(entry);
781 	}
782 
783 	/* clean up iommu mapping entries */
784 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
785 		size_t unmapped;
786 
787 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
788 		if (unmapped != entry->len) {
789 			/* nothing much to do besides complaining */
790 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
791 								unmapped);
792 		}
793 
794 		list_del(&entry->node);
795 		kfree(entry);
796 	}
797 }
798 
799 /*
800  * take a firmware and boot a remote processor with it.
801  */
802 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
803 {
804 	struct device *dev = &rproc->dev;
805 	const char *name = rproc->firmware;
806 	struct resource_table *table;
807 	int ret, tablesz;
808 
809 	ret = rproc_fw_sanity_check(rproc, fw);
810 	if (ret)
811 		return ret;
812 
813 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
814 
815 	/*
816 	 * if enabling an IOMMU isn't relevant for this rproc, this is
817 	 * just a nop
818 	 */
819 	ret = rproc_enable_iommu(rproc);
820 	if (ret) {
821 		dev_err(dev, "can't enable iommu: %d\n", ret);
822 		return ret;
823 	}
824 
825 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
826 
827 	/* look for the resource table */
828 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
829 	if (!table) {
830 		ret = -EINVAL;
831 		goto clean_up;
832 	}
833 
834 	/* handle fw resources which are required to boot rproc */
835 	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
836 	if (ret) {
837 		dev_err(dev, "Failed to process resources: %d\n", ret);
838 		goto clean_up;
839 	}
840 
841 	/* load the ELF segments to memory */
842 	ret = rproc_load_segments(rproc, fw);
843 	if (ret) {
844 		dev_err(dev, "Failed to load program segments: %d\n", ret);
845 		goto clean_up;
846 	}
847 
848 	/* power up the remote processor */
849 	ret = rproc->ops->start(rproc);
850 	if (ret) {
851 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
852 		goto clean_up;
853 	}
854 
855 	rproc->state = RPROC_RUNNING;
856 
857 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
858 
859 	return 0;
860 
861 clean_up:
862 	rproc_resource_cleanup(rproc);
863 	rproc_disable_iommu(rproc);
864 	return ret;
865 }
866 
867 /*
868  * take a firmware and look for virtio devices to register.
869  *
870  * Note: this function is called asynchronously upon registration of the
871  * remote processor (so we must wait until it completes before we try
872  * to unregister the device. one other option is just to use kref here,
873  * that might be cleaner).
874  */
875 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
876 {
877 	struct rproc *rproc = context;
878 	struct resource_table *table;
879 	int ret, tablesz;
880 
881 	if (rproc_fw_sanity_check(rproc, fw) < 0)
882 		goto out;
883 
884 	/* look for the resource table */
885 	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
886 	if (!table)
887 		goto out;
888 
889 	/* look for virtio devices and register them */
890 	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
891 	if (ret)
892 		goto out;
893 
894 out:
895 	release_firmware(fw);
896 	/* allow rproc_del() contexts, if any, to proceed */
897 	complete_all(&rproc->firmware_loading_complete);
898 }
899 
900 static int rproc_add_virtio_devices(struct rproc *rproc)
901 {
902 	int ret;
903 
904 	/* rproc_del() calls must wait until async loader completes */
905 	init_completion(&rproc->firmware_loading_complete);
906 
907 	/*
908 	 * We must retrieve early virtio configuration info from
909 	 * the firmware (e.g. whether to register a virtio device,
910 	 * what virtio features does it support, ...).
911 	 *
912 	 * We're initiating an asynchronous firmware loading, so we can
913 	 * be built-in kernel code, without hanging the boot process.
914 	 */
915 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
916 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
917 				      rproc, rproc_fw_config_virtio);
918 	if (ret < 0) {
919 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
920 		complete_all(&rproc->firmware_loading_complete);
921 	}
922 
923 	return ret;
924 }
925 
926 /**
927  * rproc_trigger_recovery() - recover a remoteproc
928  * @rproc: the remote processor
929  *
930  * The recovery is done by reseting all the virtio devices, that way all the
931  * rpmsg drivers will be reseted along with the remote processor making the
932  * remoteproc functional again.
933  *
934  * This function can sleep, so it cannot be called from atomic context.
935  */
936 int rproc_trigger_recovery(struct rproc *rproc)
937 {
938 	struct rproc_vdev *rvdev, *rvtmp;
939 
940 	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
941 
942 	init_completion(&rproc->crash_comp);
943 
944 	/* clean up remote vdev entries */
945 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
946 		rproc_remove_virtio_dev(rvdev);
947 
948 	/* wait until there is no more rproc users */
949 	wait_for_completion(&rproc->crash_comp);
950 
951 	return rproc_add_virtio_devices(rproc);
952 }
953 
954 /**
955  * rproc_crash_handler_work() - handle a crash
956  *
957  * This function needs to handle everything related to a crash, like cpu
958  * registers and stack dump, information to help to debug the fatal error, etc.
959  */
960 static void rproc_crash_handler_work(struct work_struct *work)
961 {
962 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
963 	struct device *dev = &rproc->dev;
964 
965 	dev_dbg(dev, "enter %s\n", __func__);
966 
967 	mutex_lock(&rproc->lock);
968 
969 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
970 		/* handle only the first crash detected */
971 		mutex_unlock(&rproc->lock);
972 		return;
973 	}
974 
975 	rproc->state = RPROC_CRASHED;
976 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
977 		rproc->name);
978 
979 	mutex_unlock(&rproc->lock);
980 
981 	if (!rproc->recovery_disabled)
982 		rproc_trigger_recovery(rproc);
983 }
984 
985 /**
986  * rproc_boot() - boot a remote processor
987  * @rproc: handle of a remote processor
988  *
989  * Boot a remote processor (i.e. load its firmware, power it on, ...).
990  *
991  * If the remote processor is already powered on, this function immediately
992  * returns (successfully).
993  *
994  * Returns 0 on success, and an appropriate error value otherwise.
995  */
996 int rproc_boot(struct rproc *rproc)
997 {
998 	const struct firmware *firmware_p;
999 	struct device *dev;
1000 	int ret;
1001 
1002 	if (!rproc) {
1003 		pr_err("invalid rproc handle\n");
1004 		return -EINVAL;
1005 	}
1006 
1007 	dev = &rproc->dev;
1008 
1009 	ret = mutex_lock_interruptible(&rproc->lock);
1010 	if (ret) {
1011 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1012 		return ret;
1013 	}
1014 
1015 	/* loading a firmware is required */
1016 	if (!rproc->firmware) {
1017 		dev_err(dev, "%s: no firmware to load\n", __func__);
1018 		ret = -EINVAL;
1019 		goto unlock_mutex;
1020 	}
1021 
1022 	/* prevent underlying implementation from being removed */
1023 	if (!try_module_get(dev->parent->driver->owner)) {
1024 		dev_err(dev, "%s: can't get owner\n", __func__);
1025 		ret = -EINVAL;
1026 		goto unlock_mutex;
1027 	}
1028 
1029 	/* skip the boot process if rproc is already powered up */
1030 	if (atomic_inc_return(&rproc->power) > 1) {
1031 		ret = 0;
1032 		goto unlock_mutex;
1033 	}
1034 
1035 	dev_info(dev, "powering up %s\n", rproc->name);
1036 
1037 	/* load firmware */
1038 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1039 	if (ret < 0) {
1040 		dev_err(dev, "request_firmware failed: %d\n", ret);
1041 		goto downref_rproc;
1042 	}
1043 
1044 	ret = rproc_fw_boot(rproc, firmware_p);
1045 
1046 	release_firmware(firmware_p);
1047 
1048 downref_rproc:
1049 	if (ret) {
1050 		module_put(dev->parent->driver->owner);
1051 		atomic_dec(&rproc->power);
1052 	}
1053 unlock_mutex:
1054 	mutex_unlock(&rproc->lock);
1055 	return ret;
1056 }
1057 EXPORT_SYMBOL(rproc_boot);
1058 
1059 /**
1060  * rproc_shutdown() - power off the remote processor
1061  * @rproc: the remote processor
1062  *
1063  * Power off a remote processor (previously booted with rproc_boot()).
1064  *
1065  * In case @rproc is still being used by an additional user(s), then
1066  * this function will just decrement the power refcount and exit,
1067  * without really powering off the device.
1068  *
1069  * Every call to rproc_boot() must (eventually) be accompanied by a call
1070  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1071  *
1072  * Notes:
1073  * - we're not decrementing the rproc's refcount, only the power refcount.
1074  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1075  *   returns, and users can still use it with a subsequent rproc_boot(), if
1076  *   needed.
1077  */
1078 void rproc_shutdown(struct rproc *rproc)
1079 {
1080 	struct device *dev = &rproc->dev;
1081 	int ret;
1082 
1083 	ret = mutex_lock_interruptible(&rproc->lock);
1084 	if (ret) {
1085 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1086 		return;
1087 	}
1088 
1089 	/* if the remote proc is still needed, bail out */
1090 	if (!atomic_dec_and_test(&rproc->power))
1091 		goto out;
1092 
1093 	/* power off the remote processor */
1094 	ret = rproc->ops->stop(rproc);
1095 	if (ret) {
1096 		atomic_inc(&rproc->power);
1097 		dev_err(dev, "can't stop rproc: %d\n", ret);
1098 		goto out;
1099 	}
1100 
1101 	/* clean up all acquired resources */
1102 	rproc_resource_cleanup(rproc);
1103 
1104 	rproc_disable_iommu(rproc);
1105 
1106 	/* if in crash state, unlock crash handler */
1107 	if (rproc->state == RPROC_CRASHED)
1108 		complete_all(&rproc->crash_comp);
1109 
1110 	rproc->state = RPROC_OFFLINE;
1111 
1112 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1113 
1114 out:
1115 	mutex_unlock(&rproc->lock);
1116 	if (!ret)
1117 		module_put(dev->parent->driver->owner);
1118 }
1119 EXPORT_SYMBOL(rproc_shutdown);
1120 
1121 /**
1122  * rproc_add() - register a remote processor
1123  * @rproc: the remote processor handle to register
1124  *
1125  * Registers @rproc with the remoteproc framework, after it has been
1126  * allocated with rproc_alloc().
1127  *
1128  * This is called by the platform-specific rproc implementation, whenever
1129  * a new remote processor device is probed.
1130  *
1131  * Returns 0 on success and an appropriate error code otherwise.
1132  *
1133  * Note: this function initiates an asynchronous firmware loading
1134  * context, which will look for virtio devices supported by the rproc's
1135  * firmware.
1136  *
1137  * If found, those virtio devices will be created and added, so as a result
1138  * of registering this remote processor, additional virtio drivers might be
1139  * probed.
1140  */
1141 int rproc_add(struct rproc *rproc)
1142 {
1143 	struct device *dev = &rproc->dev;
1144 	int ret;
1145 
1146 	ret = device_add(dev);
1147 	if (ret < 0)
1148 		return ret;
1149 
1150 	dev_info(dev, "%s is available\n", rproc->name);
1151 
1152 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1153 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1154 
1155 	/* create debugfs entries */
1156 	rproc_create_debug_dir(rproc);
1157 
1158 	return rproc_add_virtio_devices(rproc);
1159 }
1160 EXPORT_SYMBOL(rproc_add);
1161 
1162 /**
1163  * rproc_type_release() - release a remote processor instance
1164  * @dev: the rproc's device
1165  *
1166  * This function should _never_ be called directly.
1167  *
1168  * It will be called by the driver core when no one holds a valid pointer
1169  * to @dev anymore.
1170  */
1171 static void rproc_type_release(struct device *dev)
1172 {
1173 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1174 
1175 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1176 
1177 	rproc_delete_debug_dir(rproc);
1178 
1179 	idr_destroy(&rproc->notifyids);
1180 
1181 	if (rproc->index >= 0)
1182 		ida_simple_remove(&rproc_dev_index, rproc->index);
1183 
1184 	kfree(rproc);
1185 }
1186 
1187 static struct device_type rproc_type = {
1188 	.name		= "remoteproc",
1189 	.release	= rproc_type_release,
1190 };
1191 
1192 /**
1193  * rproc_alloc() - allocate a remote processor handle
1194  * @dev: the underlying device
1195  * @name: name of this remote processor
1196  * @ops: platform-specific handlers (mainly start/stop)
1197  * @firmware: name of firmware file to load
1198  * @len: length of private data needed by the rproc driver (in bytes)
1199  *
1200  * Allocates a new remote processor handle, but does not register
1201  * it yet.
1202  *
1203  * This function should be used by rproc implementations during initialization
1204  * of the remote processor.
1205  *
1206  * After creating an rproc handle using this function, and when ready,
1207  * implementations should then call rproc_add() to complete
1208  * the registration of the remote processor.
1209  *
1210  * On success the new rproc is returned, and on failure, NULL.
1211  *
1212  * Note: _never_ directly deallocate @rproc, even if it was not registered
1213  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1214  */
1215 struct rproc *rproc_alloc(struct device *dev, const char *name,
1216 				const struct rproc_ops *ops,
1217 				const char *firmware, int len)
1218 {
1219 	struct rproc *rproc;
1220 
1221 	if (!dev || !name || !ops)
1222 		return NULL;
1223 
1224 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1225 	if (!rproc) {
1226 		dev_err(dev, "%s: kzalloc failed\n", __func__);
1227 		return NULL;
1228 	}
1229 
1230 	rproc->name = name;
1231 	rproc->ops = ops;
1232 	rproc->firmware = firmware;
1233 	rproc->priv = &rproc[1];
1234 
1235 	device_initialize(&rproc->dev);
1236 	rproc->dev.parent = dev;
1237 	rproc->dev.type = &rproc_type;
1238 
1239 	/* Assign a unique device index and name */
1240 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1241 	if (rproc->index < 0) {
1242 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1243 		put_device(&rproc->dev);
1244 		return NULL;
1245 	}
1246 
1247 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1248 
1249 	atomic_set(&rproc->power, 0);
1250 
1251 	/* Set ELF as the default fw_ops handler */
1252 	rproc->fw_ops = &rproc_elf_fw_ops;
1253 
1254 	mutex_init(&rproc->lock);
1255 
1256 	idr_init(&rproc->notifyids);
1257 
1258 	INIT_LIST_HEAD(&rproc->carveouts);
1259 	INIT_LIST_HEAD(&rproc->mappings);
1260 	INIT_LIST_HEAD(&rproc->traces);
1261 	INIT_LIST_HEAD(&rproc->rvdevs);
1262 
1263 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1264 	init_completion(&rproc->crash_comp);
1265 
1266 	rproc->state = RPROC_OFFLINE;
1267 
1268 	return rproc;
1269 }
1270 EXPORT_SYMBOL(rproc_alloc);
1271 
1272 /**
1273  * rproc_put() - unroll rproc_alloc()
1274  * @rproc: the remote processor handle
1275  *
1276  * This function decrements the rproc dev refcount.
1277  *
1278  * If no one holds any reference to rproc anymore, then its refcount would
1279  * now drop to zero, and it would be freed.
1280  */
1281 void rproc_put(struct rproc *rproc)
1282 {
1283 	put_device(&rproc->dev);
1284 }
1285 EXPORT_SYMBOL(rproc_put);
1286 
1287 /**
1288  * rproc_del() - unregister a remote processor
1289  * @rproc: rproc handle to unregister
1290  *
1291  * This function should be called when the platform specific rproc
1292  * implementation decides to remove the rproc device. it should
1293  * _only_ be called if a previous invocation of rproc_add()
1294  * has completed successfully.
1295  *
1296  * After rproc_del() returns, @rproc isn't freed yet, because
1297  * of the outstanding reference created by rproc_alloc. To decrement that
1298  * one last refcount, one still needs to call rproc_put().
1299  *
1300  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1301  */
1302 int rproc_del(struct rproc *rproc)
1303 {
1304 	struct rproc_vdev *rvdev, *tmp;
1305 
1306 	if (!rproc)
1307 		return -EINVAL;
1308 
1309 	/* if rproc is just being registered, wait */
1310 	wait_for_completion(&rproc->firmware_loading_complete);
1311 
1312 	/* clean up remote vdev entries */
1313 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1314 		rproc_remove_virtio_dev(rvdev);
1315 
1316 	device_del(&rproc->dev);
1317 
1318 	return 0;
1319 }
1320 EXPORT_SYMBOL(rproc_del);
1321 
1322 /**
1323  * rproc_report_crash() - rproc crash reporter function
1324  * @rproc: remote processor
1325  * @type: crash type
1326  *
1327  * This function must be called every time a crash is detected by the low-level
1328  * drivers implementing a specific remoteproc. This should not be called from a
1329  * non-remoteproc driver.
1330  *
1331  * This function can be called from atomic/interrupt context.
1332  */
1333 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1334 {
1335 	if (!rproc) {
1336 		pr_err("NULL rproc pointer\n");
1337 		return;
1338 	}
1339 
1340 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1341 		rproc->name, rproc_crash_to_string(type));
1342 
1343 	/* create a new task to handle the error */
1344 	schedule_work(&rproc->crash_handler);
1345 }
1346 EXPORT_SYMBOL(rproc_report_crash);
1347 
1348 static int __init remoteproc_init(void)
1349 {
1350 	rproc_init_debugfs();
1351 
1352 	return 0;
1353 }
1354 module_init(remoteproc_init);
1355 
1356 static void __exit remoteproc_exit(void)
1357 {
1358 	rproc_exit_debugfs();
1359 }
1360 module_exit(remoteproc_exit);
1361 
1362 MODULE_LICENSE("GPL v2");
1363 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1364