1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/virtio_ids.h>
43 #include <linux/virtio_ring.h>
44 #include <asm/byteorder.h>
45 
46 #include "remoteproc_internal.h"
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 
51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
52 				struct resource_table *table, int len);
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 				 void *, int offset, int avail);
55 
56 /* Unique indices for remoteproc devices */
57 static DEFINE_IDA(rproc_dev_index);
58 
59 static const char * const rproc_crash_names[] = {
60 	[RPROC_MMUFAULT]	= "mmufault",
61 	[RPROC_WATCHDOG]	= "watchdog",
62 	[RPROC_FATAL_ERROR]	= "fatal error",
63 };
64 
65 /* translate rproc_crash_type to string */
66 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 {
68 	if (type < ARRAY_SIZE(rproc_crash_names))
69 		return rproc_crash_names[type];
70 	return "unknown";
71 }
72 
73 /*
74  * This is the IOMMU fault handler we register with the IOMMU API
75  * (when relevant; not all remote processors access memory through
76  * an IOMMU).
77  *
78  * IOMMU core will invoke this handler whenever the remote processor
79  * will try to access an unmapped device address.
80  */
81 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
82 			     unsigned long iova, int flags, void *token)
83 {
84 	struct rproc *rproc = token;
85 
86 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 
88 	rproc_report_crash(rproc, RPROC_MMUFAULT);
89 
90 	/*
91 	 * Let the iommu core know we're not really handling this fault;
92 	 * we just used it as a recovery trigger.
93 	 */
94 	return -ENOSYS;
95 }
96 
97 static int rproc_enable_iommu(struct rproc *rproc)
98 {
99 	struct iommu_domain *domain;
100 	struct device *dev = rproc->dev.parent;
101 	int ret;
102 
103 	if (!rproc->has_iommu) {
104 		dev_dbg(dev, "iommu not present\n");
105 		return 0;
106 	}
107 
108 	domain = iommu_domain_alloc(dev->bus);
109 	if (!domain) {
110 		dev_err(dev, "can't alloc iommu domain\n");
111 		return -ENOMEM;
112 	}
113 
114 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 
116 	ret = iommu_attach_device(domain, dev);
117 	if (ret) {
118 		dev_err(dev, "can't attach iommu device: %d\n", ret);
119 		goto free_domain;
120 	}
121 
122 	rproc->domain = domain;
123 
124 	return 0;
125 
126 free_domain:
127 	iommu_domain_free(domain);
128 	return ret;
129 }
130 
131 static void rproc_disable_iommu(struct rproc *rproc)
132 {
133 	struct iommu_domain *domain = rproc->domain;
134 	struct device *dev = rproc->dev.parent;
135 
136 	if (!domain)
137 		return;
138 
139 	iommu_detach_device(domain, dev);
140 	iommu_domain_free(domain);
141 }
142 
143 /**
144  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
145  * @rproc: handle of a remote processor
146  * @da: remoteproc device address to translate
147  * @len: length of the memory region @da is pointing to
148  *
149  * Some remote processors will ask us to allocate them physically contiguous
150  * memory regions (which we call "carveouts"), and map them to specific
151  * device addresses (which are hardcoded in the firmware). They may also have
152  * dedicated memory regions internal to the processors, and use them either
153  * exclusively or alongside carveouts.
154  *
155  * They may then ask us to copy objects into specific device addresses (e.g.
156  * code/data sections) or expose us certain symbols in other device address
157  * (e.g. their trace buffer).
158  *
159  * This function is a helper function with which we can go over the allocated
160  * carveouts and translate specific device addresses to kernel virtual addresses
161  * so we can access the referenced memory. This function also allows to perform
162  * translations on the internal remoteproc memory regions through a platform
163  * implementation specific da_to_va ops, if present.
164  *
165  * The function returns a valid kernel address on success or NULL on failure.
166  *
167  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
168  * but only on kernel direct mapped RAM memory. Instead, we're just using
169  * here the output of the DMA API for the carveouts, which should be more
170  * correct.
171  */
172 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
173 {
174 	struct rproc_mem_entry *carveout;
175 	void *ptr = NULL;
176 
177 	if (rproc->ops->da_to_va) {
178 		ptr = rproc->ops->da_to_va(rproc, da, len);
179 		if (ptr)
180 			goto out;
181 	}
182 
183 	list_for_each_entry(carveout, &rproc->carveouts, node) {
184 		int offset = da - carveout->da;
185 
186 		/* try next carveout if da is too small */
187 		if (offset < 0)
188 			continue;
189 
190 		/* try next carveout if da is too large */
191 		if (offset + len > carveout->len)
192 			continue;
193 
194 		ptr = carveout->va + offset;
195 
196 		break;
197 	}
198 
199 out:
200 	return ptr;
201 }
202 EXPORT_SYMBOL(rproc_da_to_va);
203 
204 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
205 {
206 	struct rproc *rproc = rvdev->rproc;
207 	struct device *dev = &rproc->dev;
208 	struct rproc_vring *rvring = &rvdev->vring[i];
209 	struct fw_rsc_vdev *rsc;
210 	dma_addr_t dma;
211 	void *va;
212 	int ret, size, notifyid;
213 
214 	/* actual size of vring (in bytes) */
215 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
216 
217 	/*
218 	 * Allocate non-cacheable memory for the vring. In the future
219 	 * this call will also configure the IOMMU for us
220 	 */
221 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
222 	if (!va) {
223 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
224 		return -EINVAL;
225 	}
226 
227 	/*
228 	 * Assign an rproc-wide unique index for this vring
229 	 * TODO: assign a notifyid for rvdev updates as well
230 	 * TODO: support predefined notifyids (via resource table)
231 	 */
232 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
233 	if (ret < 0) {
234 		dev_err(dev, "idr_alloc failed: %d\n", ret);
235 		dma_free_coherent(dev->parent, size, va, dma);
236 		return ret;
237 	}
238 	notifyid = ret;
239 
240 	/* Potentially bump max_notifyid */
241 	if (notifyid > rproc->max_notifyid)
242 		rproc->max_notifyid = notifyid;
243 
244 	dev_dbg(dev, "vring%d: va %pK dma %pad size 0x%x idr %d\n",
245 		i, va, &dma, size, notifyid);
246 
247 	rvring->va = va;
248 	rvring->dma = dma;
249 	rvring->notifyid = notifyid;
250 
251 	/*
252 	 * Let the rproc know the notifyid and da of this vring.
253 	 * Not all platforms use dma_alloc_coherent to automatically
254 	 * set up the iommu. In this case the device address (da) will
255 	 * hold the physical address and not the device address.
256 	 */
257 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
258 	rsc->vring[i].da = dma;
259 	rsc->vring[i].notifyid = notifyid;
260 	return 0;
261 }
262 
263 static int
264 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
265 {
266 	struct rproc *rproc = rvdev->rproc;
267 	struct device *dev = &rproc->dev;
268 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
269 	struct rproc_vring *rvring = &rvdev->vring[i];
270 
271 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
272 		i, vring->da, vring->num, vring->align);
273 
274 	/* verify queue size and vring alignment are sane */
275 	if (!vring->num || !vring->align) {
276 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
277 			vring->num, vring->align);
278 		return -EINVAL;
279 	}
280 
281 	rvring->len = vring->num;
282 	rvring->align = vring->align;
283 	rvring->rvdev = rvdev;
284 
285 	return 0;
286 }
287 
288 void rproc_free_vring(struct rproc_vring *rvring)
289 {
290 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
291 	struct rproc *rproc = rvring->rvdev->rproc;
292 	int idx = rvring->rvdev->vring - rvring;
293 	struct fw_rsc_vdev *rsc;
294 
295 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
296 	idr_remove(&rproc->notifyids, rvring->notifyid);
297 
298 	/* reset resource entry info */
299 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
300 	rsc->vring[idx].da = 0;
301 	rsc->vring[idx].notifyid = -1;
302 }
303 
304 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
305 {
306 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
307 
308 	return rproc_add_virtio_dev(rvdev, rvdev->id);
309 }
310 
311 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
312 {
313 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
314 
315 	rproc_remove_virtio_dev(rvdev);
316 }
317 
318 /**
319  * rproc_handle_vdev() - handle a vdev fw resource
320  * @rproc: the remote processor
321  * @rsc: the vring resource descriptor
322  * @avail: size of available data (for sanity checking the image)
323  *
324  * This resource entry requests the host to statically register a virtio
325  * device (vdev), and setup everything needed to support it. It contains
326  * everything needed to make it possible: the virtio device id, virtio
327  * device features, vrings information, virtio config space, etc...
328  *
329  * Before registering the vdev, the vrings are allocated from non-cacheable
330  * physically contiguous memory. Currently we only support two vrings per
331  * remote processor (temporary limitation). We might also want to consider
332  * doing the vring allocation only later when ->find_vqs() is invoked, and
333  * then release them upon ->del_vqs().
334  *
335  * Note: @da is currently not really handled correctly: we dynamically
336  * allocate it using the DMA API, ignoring requested hard coded addresses,
337  * and we don't take care of any required IOMMU programming. This is all
338  * going to be taken care of when the generic iommu-based DMA API will be
339  * merged. Meanwhile, statically-addressed iommu-based firmware images should
340  * use RSC_DEVMEM resource entries to map their required @da to the physical
341  * address of their base CMA region (ouch, hacky!).
342  *
343  * Returns 0 on success, or an appropriate error code otherwise
344  */
345 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
346 			     int offset, int avail)
347 {
348 	struct device *dev = &rproc->dev;
349 	struct rproc_vdev *rvdev;
350 	int i, ret;
351 
352 	/* make sure resource isn't truncated */
353 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
354 			+ rsc->config_len > avail) {
355 		dev_err(dev, "vdev rsc is truncated\n");
356 		return -EINVAL;
357 	}
358 
359 	/* make sure reserved bytes are zeroes */
360 	if (rsc->reserved[0] || rsc->reserved[1]) {
361 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
362 		return -EINVAL;
363 	}
364 
365 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
366 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
367 
368 	/* we currently support only two vrings per rvdev */
369 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
370 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
371 		return -EINVAL;
372 	}
373 
374 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
375 	if (!rvdev)
376 		return -ENOMEM;
377 
378 	kref_init(&rvdev->refcount);
379 
380 	rvdev->id = rsc->id;
381 	rvdev->rproc = rproc;
382 
383 	/* parse the vrings */
384 	for (i = 0; i < rsc->num_of_vrings; i++) {
385 		ret = rproc_parse_vring(rvdev, rsc, i);
386 		if (ret)
387 			goto free_rvdev;
388 	}
389 
390 	/* remember the resource offset*/
391 	rvdev->rsc_offset = offset;
392 
393 	/* allocate the vring resources */
394 	for (i = 0; i < rsc->num_of_vrings; i++) {
395 		ret = rproc_alloc_vring(rvdev, i);
396 		if (ret)
397 			goto unwind_vring_allocations;
398 	}
399 
400 	list_add_tail(&rvdev->node, &rproc->rvdevs);
401 
402 	rvdev->subdev.start = rproc_vdev_do_start;
403 	rvdev->subdev.stop = rproc_vdev_do_stop;
404 
405 	rproc_add_subdev(rproc, &rvdev->subdev);
406 
407 	return 0;
408 
409 unwind_vring_allocations:
410 	for (i--; i >= 0; i--)
411 		rproc_free_vring(&rvdev->vring[i]);
412 free_rvdev:
413 	kfree(rvdev);
414 	return ret;
415 }
416 
417 void rproc_vdev_release(struct kref *ref)
418 {
419 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
420 	struct rproc_vring *rvring;
421 	struct rproc *rproc = rvdev->rproc;
422 	int id;
423 
424 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
425 		rvring = &rvdev->vring[id];
426 		if (!rvring->va)
427 			continue;
428 
429 		rproc_free_vring(rvring);
430 	}
431 
432 	rproc_remove_subdev(rproc, &rvdev->subdev);
433 	list_del(&rvdev->node);
434 	kfree(rvdev);
435 }
436 
437 /**
438  * rproc_handle_trace() - handle a shared trace buffer resource
439  * @rproc: the remote processor
440  * @rsc: the trace resource descriptor
441  * @avail: size of available data (for sanity checking the image)
442  *
443  * In case the remote processor dumps trace logs into memory,
444  * export it via debugfs.
445  *
446  * Currently, the 'da' member of @rsc should contain the device address
447  * where the remote processor is dumping the traces. Later we could also
448  * support dynamically allocating this address using the generic
449  * DMA API (but currently there isn't a use case for that).
450  *
451  * Returns 0 on success, or an appropriate error code otherwise
452  */
453 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
454 			      int offset, int avail)
455 {
456 	struct rproc_mem_entry *trace;
457 	struct device *dev = &rproc->dev;
458 	void *ptr;
459 	char name[15];
460 
461 	if (sizeof(*rsc) > avail) {
462 		dev_err(dev, "trace rsc is truncated\n");
463 		return -EINVAL;
464 	}
465 
466 	/* make sure reserved bytes are zeroes */
467 	if (rsc->reserved) {
468 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
469 		return -EINVAL;
470 	}
471 
472 	/* what's the kernel address of this resource ? */
473 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
474 	if (!ptr) {
475 		dev_err(dev, "erroneous trace resource entry\n");
476 		return -EINVAL;
477 	}
478 
479 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
480 	if (!trace)
481 		return -ENOMEM;
482 
483 	/* set the trace buffer dma properties */
484 	trace->len = rsc->len;
485 	trace->va = ptr;
486 
487 	/* make sure snprintf always null terminates, even if truncating */
488 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
489 
490 	/* create the debugfs entry */
491 	trace->priv = rproc_create_trace_file(name, rproc, trace);
492 	if (!trace->priv) {
493 		trace->va = NULL;
494 		kfree(trace);
495 		return -EINVAL;
496 	}
497 
498 	list_add_tail(&trace->node, &rproc->traces);
499 
500 	rproc->num_traces++;
501 
502 	dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
503 		name, ptr, rsc->da, rsc->len);
504 
505 	return 0;
506 }
507 
508 /**
509  * rproc_handle_devmem() - handle devmem resource entry
510  * @rproc: remote processor handle
511  * @rsc: the devmem resource entry
512  * @avail: size of available data (for sanity checking the image)
513  *
514  * Remote processors commonly need to access certain on-chip peripherals.
515  *
516  * Some of these remote processors access memory via an iommu device,
517  * and might require us to configure their iommu before they can access
518  * the on-chip peripherals they need.
519  *
520  * This resource entry is a request to map such a peripheral device.
521  *
522  * These devmem entries will contain the physical address of the device in
523  * the 'pa' member. If a specific device address is expected, then 'da' will
524  * contain it (currently this is the only use case supported). 'len' will
525  * contain the size of the physical region we need to map.
526  *
527  * Currently we just "trust" those devmem entries to contain valid physical
528  * addresses, but this is going to change: we want the implementations to
529  * tell us ranges of physical addresses the firmware is allowed to request,
530  * and not allow firmwares to request access to physical addresses that
531  * are outside those ranges.
532  */
533 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
534 			       int offset, int avail)
535 {
536 	struct rproc_mem_entry *mapping;
537 	struct device *dev = &rproc->dev;
538 	int ret;
539 
540 	/* no point in handling this resource without a valid iommu domain */
541 	if (!rproc->domain)
542 		return -EINVAL;
543 
544 	if (sizeof(*rsc) > avail) {
545 		dev_err(dev, "devmem rsc is truncated\n");
546 		return -EINVAL;
547 	}
548 
549 	/* make sure reserved bytes are zeroes */
550 	if (rsc->reserved) {
551 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
552 		return -EINVAL;
553 	}
554 
555 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
556 	if (!mapping)
557 		return -ENOMEM;
558 
559 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
560 	if (ret) {
561 		dev_err(dev, "failed to map devmem: %d\n", ret);
562 		goto out;
563 	}
564 
565 	/*
566 	 * We'll need this info later when we'll want to unmap everything
567 	 * (e.g. on shutdown).
568 	 *
569 	 * We can't trust the remote processor not to change the resource
570 	 * table, so we must maintain this info independently.
571 	 */
572 	mapping->da = rsc->da;
573 	mapping->len = rsc->len;
574 	list_add_tail(&mapping->node, &rproc->mappings);
575 
576 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
577 		rsc->pa, rsc->da, rsc->len);
578 
579 	return 0;
580 
581 out:
582 	kfree(mapping);
583 	return ret;
584 }
585 
586 /**
587  * rproc_handle_carveout() - handle phys contig memory allocation requests
588  * @rproc: rproc handle
589  * @rsc: the resource entry
590  * @avail: size of available data (for image validation)
591  *
592  * This function will handle firmware requests for allocation of physically
593  * contiguous memory regions.
594  *
595  * These request entries should come first in the firmware's resource table,
596  * as other firmware entries might request placing other data objects inside
597  * these memory regions (e.g. data/code segments, trace resource entries, ...).
598  *
599  * Allocating memory this way helps utilizing the reserved physical memory
600  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
601  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
602  * pressure is important; it may have a substantial impact on performance.
603  */
604 static int rproc_handle_carveout(struct rproc *rproc,
605 				 struct fw_rsc_carveout *rsc,
606 				 int offset, int avail)
607 {
608 	struct rproc_mem_entry *carveout, *mapping;
609 	struct device *dev = &rproc->dev;
610 	dma_addr_t dma;
611 	void *va;
612 	int ret;
613 
614 	if (sizeof(*rsc) > avail) {
615 		dev_err(dev, "carveout rsc is truncated\n");
616 		return -EINVAL;
617 	}
618 
619 	/* make sure reserved bytes are zeroes */
620 	if (rsc->reserved) {
621 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
622 		return -EINVAL;
623 	}
624 
625 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
626 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
627 
628 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
629 	if (!carveout)
630 		return -ENOMEM;
631 
632 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
633 	if (!va) {
634 		dev_err(dev->parent,
635 			"failed to allocate dma memory: len 0x%x\n", rsc->len);
636 		ret = -ENOMEM;
637 		goto free_carv;
638 	}
639 
640 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
641 		va, &dma, rsc->len);
642 
643 	/*
644 	 * Ok, this is non-standard.
645 	 *
646 	 * Sometimes we can't rely on the generic iommu-based DMA API
647 	 * to dynamically allocate the device address and then set the IOMMU
648 	 * tables accordingly, because some remote processors might
649 	 * _require_ us to use hard coded device addresses that their
650 	 * firmware was compiled with.
651 	 *
652 	 * In this case, we must use the IOMMU API directly and map
653 	 * the memory to the device address as expected by the remote
654 	 * processor.
655 	 *
656 	 * Obviously such remote processor devices should not be configured
657 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
658 	 * physical address in this case.
659 	 */
660 	if (rproc->domain) {
661 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
662 		if (!mapping) {
663 			ret = -ENOMEM;
664 			goto dma_free;
665 		}
666 
667 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
668 				rsc->flags);
669 		if (ret) {
670 			dev_err(dev, "iommu_map failed: %d\n", ret);
671 			goto free_mapping;
672 		}
673 
674 		/*
675 		 * We'll need this info later when we'll want to unmap
676 		 * everything (e.g. on shutdown).
677 		 *
678 		 * We can't trust the remote processor not to change the
679 		 * resource table, so we must maintain this info independently.
680 		 */
681 		mapping->da = rsc->da;
682 		mapping->len = rsc->len;
683 		list_add_tail(&mapping->node, &rproc->mappings);
684 
685 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
686 			rsc->da, &dma);
687 	}
688 
689 	/*
690 	 * Some remote processors might need to know the pa
691 	 * even though they are behind an IOMMU. E.g., OMAP4's
692 	 * remote M3 processor needs this so it can control
693 	 * on-chip hardware accelerators that are not behind
694 	 * the IOMMU, and therefor must know the pa.
695 	 *
696 	 * Generally we don't want to expose physical addresses
697 	 * if we don't have to (remote processors are generally
698 	 * _not_ trusted), so we might want to do this only for
699 	 * remote processor that _must_ have this (e.g. OMAP4's
700 	 * dual M3 subsystem).
701 	 *
702 	 * Non-IOMMU processors might also want to have this info.
703 	 * In this case, the device address and the physical address
704 	 * are the same.
705 	 */
706 	rsc->pa = dma;
707 
708 	carveout->va = va;
709 	carveout->len = rsc->len;
710 	carveout->dma = dma;
711 	carveout->da = rsc->da;
712 
713 	list_add_tail(&carveout->node, &rproc->carveouts);
714 
715 	return 0;
716 
717 free_mapping:
718 	kfree(mapping);
719 dma_free:
720 	dma_free_coherent(dev->parent, rsc->len, va, dma);
721 free_carv:
722 	kfree(carveout);
723 	return ret;
724 }
725 
726 /*
727  * A lookup table for resource handlers. The indices are defined in
728  * enum fw_resource_type.
729  */
730 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
731 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
732 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
733 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
734 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
735 };
736 
737 /* handle firmware resource entries before booting the remote processor */
738 static int rproc_handle_resources(struct rproc *rproc,
739 				  rproc_handle_resource_t handlers[RSC_LAST])
740 {
741 	struct device *dev = &rproc->dev;
742 	rproc_handle_resource_t handler;
743 	int ret = 0, i;
744 
745 	if (!rproc->table_ptr)
746 		return 0;
747 
748 	for (i = 0; i < rproc->table_ptr->num; i++) {
749 		int offset = rproc->table_ptr->offset[i];
750 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
751 		int avail = rproc->table_sz - offset - sizeof(*hdr);
752 		void *rsc = (void *)hdr + sizeof(*hdr);
753 
754 		/* make sure table isn't truncated */
755 		if (avail < 0) {
756 			dev_err(dev, "rsc table is truncated\n");
757 			return -EINVAL;
758 		}
759 
760 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
761 
762 		if (hdr->type >= RSC_LAST) {
763 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
764 			continue;
765 		}
766 
767 		handler = handlers[hdr->type];
768 		if (!handler)
769 			continue;
770 
771 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
772 		if (ret)
773 			break;
774 	}
775 
776 	return ret;
777 }
778 
779 static int rproc_prepare_subdevices(struct rproc *rproc)
780 {
781 	struct rproc_subdev *subdev;
782 	int ret;
783 
784 	list_for_each_entry(subdev, &rproc->subdevs, node) {
785 		if (subdev->prepare) {
786 			ret = subdev->prepare(subdev);
787 			if (ret)
788 				goto unroll_preparation;
789 		}
790 	}
791 
792 	return 0;
793 
794 unroll_preparation:
795 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
796 		if (subdev->unprepare)
797 			subdev->unprepare(subdev);
798 	}
799 
800 	return ret;
801 }
802 
803 static int rproc_start_subdevices(struct rproc *rproc)
804 {
805 	struct rproc_subdev *subdev;
806 	int ret;
807 
808 	list_for_each_entry(subdev, &rproc->subdevs, node) {
809 		if (subdev->start) {
810 			ret = subdev->start(subdev);
811 			if (ret)
812 				goto unroll_registration;
813 		}
814 	}
815 
816 	return 0;
817 
818 unroll_registration:
819 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
820 		if (subdev->stop)
821 			subdev->stop(subdev, true);
822 	}
823 
824 	return ret;
825 }
826 
827 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
828 {
829 	struct rproc_subdev *subdev;
830 
831 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
832 		if (subdev->stop)
833 			subdev->stop(subdev, crashed);
834 	}
835 }
836 
837 static void rproc_unprepare_subdevices(struct rproc *rproc)
838 {
839 	struct rproc_subdev *subdev;
840 
841 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
842 		if (subdev->unprepare)
843 			subdev->unprepare(subdev);
844 	}
845 }
846 
847 /**
848  * rproc_coredump_cleanup() - clean up dump_segments list
849  * @rproc: the remote processor handle
850  */
851 static void rproc_coredump_cleanup(struct rproc *rproc)
852 {
853 	struct rproc_dump_segment *entry, *tmp;
854 
855 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
856 		list_del(&entry->node);
857 		kfree(entry);
858 	}
859 }
860 
861 /**
862  * rproc_resource_cleanup() - clean up and free all acquired resources
863  * @rproc: rproc handle
864  *
865  * This function will free all resources acquired for @rproc, and it
866  * is called whenever @rproc either shuts down or fails to boot.
867  */
868 static void rproc_resource_cleanup(struct rproc *rproc)
869 {
870 	struct rproc_mem_entry *entry, *tmp;
871 	struct rproc_vdev *rvdev, *rvtmp;
872 	struct device *dev = &rproc->dev;
873 
874 	/* clean up debugfs trace entries */
875 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
876 		rproc_remove_trace_file(entry->priv);
877 		rproc->num_traces--;
878 		list_del(&entry->node);
879 		kfree(entry);
880 	}
881 
882 	/* clean up iommu mapping entries */
883 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
884 		size_t unmapped;
885 
886 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
887 		if (unmapped != entry->len) {
888 			/* nothing much to do besides complaining */
889 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
890 				unmapped);
891 		}
892 
893 		list_del(&entry->node);
894 		kfree(entry);
895 	}
896 
897 	/* clean up carveout allocations */
898 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
899 		dma_free_coherent(dev->parent, entry->len, entry->va,
900 				  entry->dma);
901 		list_del(&entry->node);
902 		kfree(entry);
903 	}
904 
905 	/* clean up remote vdev entries */
906 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
907 		kref_put(&rvdev->refcount, rproc_vdev_release);
908 
909 	rproc_coredump_cleanup(rproc);
910 }
911 
912 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
913 {
914 	struct resource_table *loaded_table;
915 	struct device *dev = &rproc->dev;
916 	int ret;
917 
918 	/* load the ELF segments to memory */
919 	ret = rproc_load_segments(rproc, fw);
920 	if (ret) {
921 		dev_err(dev, "Failed to load program segments: %d\n", ret);
922 		return ret;
923 	}
924 
925 	/*
926 	 * The starting device has been given the rproc->cached_table as the
927 	 * resource table. The address of the vring along with the other
928 	 * allocated resources (carveouts etc) is stored in cached_table.
929 	 * In order to pass this information to the remote device we must copy
930 	 * this information to device memory. We also update the table_ptr so
931 	 * that any subsequent changes will be applied to the loaded version.
932 	 */
933 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
934 	if (loaded_table) {
935 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
936 		rproc->table_ptr = loaded_table;
937 	}
938 
939 	ret = rproc_prepare_subdevices(rproc);
940 	if (ret) {
941 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
942 			rproc->name, ret);
943 		goto reset_table_ptr;
944 	}
945 
946 	/* power up the remote processor */
947 	ret = rproc->ops->start(rproc);
948 	if (ret) {
949 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
950 		goto unprepare_subdevices;
951 	}
952 
953 	/* Start any subdevices for the remote processor */
954 	ret = rproc_start_subdevices(rproc);
955 	if (ret) {
956 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
957 			rproc->name, ret);
958 		goto stop_rproc;
959 	}
960 
961 	rproc->state = RPROC_RUNNING;
962 
963 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
964 
965 	return 0;
966 
967 stop_rproc:
968 	rproc->ops->stop(rproc);
969 unprepare_subdevices:
970 	rproc_unprepare_subdevices(rproc);
971 reset_table_ptr:
972 	rproc->table_ptr = rproc->cached_table;
973 
974 	return ret;
975 }
976 
977 /*
978  * take a firmware and boot a remote processor with it.
979  */
980 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
981 {
982 	struct device *dev = &rproc->dev;
983 	const char *name = rproc->firmware;
984 	int ret;
985 
986 	ret = rproc_fw_sanity_check(rproc, fw);
987 	if (ret)
988 		return ret;
989 
990 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
991 
992 	/*
993 	 * if enabling an IOMMU isn't relevant for this rproc, this is
994 	 * just a nop
995 	 */
996 	ret = rproc_enable_iommu(rproc);
997 	if (ret) {
998 		dev_err(dev, "can't enable iommu: %d\n", ret);
999 		return ret;
1000 	}
1001 
1002 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1003 
1004 	/* Load resource table, core dump segment list etc from the firmware */
1005 	ret = rproc_parse_fw(rproc, fw);
1006 	if (ret)
1007 		goto disable_iommu;
1008 
1009 	/* reset max_notifyid */
1010 	rproc->max_notifyid = -1;
1011 
1012 	/* handle fw resources which are required to boot rproc */
1013 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1014 	if (ret) {
1015 		dev_err(dev, "Failed to process resources: %d\n", ret);
1016 		goto clean_up_resources;
1017 	}
1018 
1019 	ret = rproc_start(rproc, fw);
1020 	if (ret)
1021 		goto clean_up_resources;
1022 
1023 	return 0;
1024 
1025 clean_up_resources:
1026 	rproc_resource_cleanup(rproc);
1027 	kfree(rproc->cached_table);
1028 	rproc->cached_table = NULL;
1029 	rproc->table_ptr = NULL;
1030 disable_iommu:
1031 	rproc_disable_iommu(rproc);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * take a firmware and boot it up.
1037  *
1038  * Note: this function is called asynchronously upon registration of the
1039  * remote processor (so we must wait until it completes before we try
1040  * to unregister the device. one other option is just to use kref here,
1041  * that might be cleaner).
1042  */
1043 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1044 {
1045 	struct rproc *rproc = context;
1046 
1047 	rproc_boot(rproc);
1048 
1049 	release_firmware(fw);
1050 }
1051 
1052 static int rproc_trigger_auto_boot(struct rproc *rproc)
1053 {
1054 	int ret;
1055 
1056 	/*
1057 	 * We're initiating an asynchronous firmware loading, so we can
1058 	 * be built-in kernel code, without hanging the boot process.
1059 	 */
1060 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1061 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1062 				      rproc, rproc_auto_boot_callback);
1063 	if (ret < 0)
1064 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1065 
1066 	return ret;
1067 }
1068 
1069 static int rproc_stop(struct rproc *rproc, bool crashed)
1070 {
1071 	struct device *dev = &rproc->dev;
1072 	int ret;
1073 
1074 	/* Stop any subdevices for the remote processor */
1075 	rproc_stop_subdevices(rproc, crashed);
1076 
1077 	/* the installed resource table is no longer accessible */
1078 	rproc->table_ptr = rproc->cached_table;
1079 
1080 	/* power off the remote processor */
1081 	ret = rproc->ops->stop(rproc);
1082 	if (ret) {
1083 		dev_err(dev, "can't stop rproc: %d\n", ret);
1084 		return ret;
1085 	}
1086 
1087 	rproc_unprepare_subdevices(rproc);
1088 
1089 	rproc->state = RPROC_OFFLINE;
1090 
1091 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * rproc_coredump_add_segment() - add segment of device memory to coredump
1098  * @rproc:	handle of a remote processor
1099  * @da:		device address
1100  * @size:	size of segment
1101  *
1102  * Add device memory to the list of segments to be included in a coredump for
1103  * the remoteproc.
1104  *
1105  * Return: 0 on success, negative errno on error.
1106  */
1107 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1108 {
1109 	struct rproc_dump_segment *segment;
1110 
1111 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1112 	if (!segment)
1113 		return -ENOMEM;
1114 
1115 	segment->da = da;
1116 	segment->size = size;
1117 
1118 	list_add_tail(&segment->node, &rproc->dump_segments);
1119 
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL(rproc_coredump_add_segment);
1123 
1124 /**
1125  * rproc_coredump() - perform coredump
1126  * @rproc:	rproc handle
1127  *
1128  * This function will generate an ELF header for the registered segments
1129  * and create a devcoredump device associated with rproc.
1130  */
1131 static void rproc_coredump(struct rproc *rproc)
1132 {
1133 	struct rproc_dump_segment *segment;
1134 	struct elf32_phdr *phdr;
1135 	struct elf32_hdr *ehdr;
1136 	size_t data_size;
1137 	size_t offset;
1138 	void *data;
1139 	void *ptr;
1140 	int phnum = 0;
1141 
1142 	if (list_empty(&rproc->dump_segments))
1143 		return;
1144 
1145 	data_size = sizeof(*ehdr);
1146 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1147 		data_size += sizeof(*phdr) + segment->size;
1148 
1149 		phnum++;
1150 	}
1151 
1152 	data = vmalloc(data_size);
1153 	if (!data)
1154 		return;
1155 
1156 	ehdr = data;
1157 
1158 	memset(ehdr, 0, sizeof(*ehdr));
1159 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1160 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1161 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1162 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1163 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1164 	ehdr->e_type = ET_CORE;
1165 	ehdr->e_machine = EM_NONE;
1166 	ehdr->e_version = EV_CURRENT;
1167 	ehdr->e_entry = rproc->bootaddr;
1168 	ehdr->e_phoff = sizeof(*ehdr);
1169 	ehdr->e_ehsize = sizeof(*ehdr);
1170 	ehdr->e_phentsize = sizeof(*phdr);
1171 	ehdr->e_phnum = phnum;
1172 
1173 	phdr = data + ehdr->e_phoff;
1174 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1175 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1176 		memset(phdr, 0, sizeof(*phdr));
1177 		phdr->p_type = PT_LOAD;
1178 		phdr->p_offset = offset;
1179 		phdr->p_vaddr = segment->da;
1180 		phdr->p_paddr = segment->da;
1181 		phdr->p_filesz = segment->size;
1182 		phdr->p_memsz = segment->size;
1183 		phdr->p_flags = PF_R | PF_W | PF_X;
1184 		phdr->p_align = 0;
1185 
1186 		ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1187 		if (!ptr) {
1188 			dev_err(&rproc->dev,
1189 				"invalid coredump segment (%pad, %zu)\n",
1190 				&segment->da, segment->size);
1191 			memset(data + offset, 0xff, segment->size);
1192 		} else {
1193 			memcpy(data + offset, ptr, segment->size);
1194 		}
1195 
1196 		offset += phdr->p_filesz;
1197 		phdr++;
1198 	}
1199 
1200 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1201 }
1202 
1203 /**
1204  * rproc_trigger_recovery() - recover a remoteproc
1205  * @rproc: the remote processor
1206  *
1207  * The recovery is done by resetting all the virtio devices, that way all the
1208  * rpmsg drivers will be reseted along with the remote processor making the
1209  * remoteproc functional again.
1210  *
1211  * This function can sleep, so it cannot be called from atomic context.
1212  */
1213 int rproc_trigger_recovery(struct rproc *rproc)
1214 {
1215 	const struct firmware *firmware_p;
1216 	struct device *dev = &rproc->dev;
1217 	int ret;
1218 
1219 	dev_err(dev, "recovering %s\n", rproc->name);
1220 
1221 	ret = mutex_lock_interruptible(&rproc->lock);
1222 	if (ret)
1223 		return ret;
1224 
1225 	ret = rproc_stop(rproc, true);
1226 	if (ret)
1227 		goto unlock_mutex;
1228 
1229 	/* generate coredump */
1230 	rproc_coredump(rproc);
1231 
1232 	/* load firmware */
1233 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1234 	if (ret < 0) {
1235 		dev_err(dev, "request_firmware failed: %d\n", ret);
1236 		goto unlock_mutex;
1237 	}
1238 
1239 	/* boot the remote processor up again */
1240 	ret = rproc_start(rproc, firmware_p);
1241 
1242 	release_firmware(firmware_p);
1243 
1244 unlock_mutex:
1245 	mutex_unlock(&rproc->lock);
1246 	return ret;
1247 }
1248 
1249 /**
1250  * rproc_crash_handler_work() - handle a crash
1251  *
1252  * This function needs to handle everything related to a crash, like cpu
1253  * registers and stack dump, information to help to debug the fatal error, etc.
1254  */
1255 static void rproc_crash_handler_work(struct work_struct *work)
1256 {
1257 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1258 	struct device *dev = &rproc->dev;
1259 
1260 	dev_dbg(dev, "enter %s\n", __func__);
1261 
1262 	mutex_lock(&rproc->lock);
1263 
1264 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1265 		/* handle only the first crash detected */
1266 		mutex_unlock(&rproc->lock);
1267 		return;
1268 	}
1269 
1270 	rproc->state = RPROC_CRASHED;
1271 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1272 		rproc->name);
1273 
1274 	mutex_unlock(&rproc->lock);
1275 
1276 	if (!rproc->recovery_disabled)
1277 		rproc_trigger_recovery(rproc);
1278 }
1279 
1280 /**
1281  * rproc_boot() - boot a remote processor
1282  * @rproc: handle of a remote processor
1283  *
1284  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1285  *
1286  * If the remote processor is already powered on, this function immediately
1287  * returns (successfully).
1288  *
1289  * Returns 0 on success, and an appropriate error value otherwise.
1290  */
1291 int rproc_boot(struct rproc *rproc)
1292 {
1293 	const struct firmware *firmware_p;
1294 	struct device *dev;
1295 	int ret;
1296 
1297 	if (!rproc) {
1298 		pr_err("invalid rproc handle\n");
1299 		return -EINVAL;
1300 	}
1301 
1302 	dev = &rproc->dev;
1303 
1304 	ret = mutex_lock_interruptible(&rproc->lock);
1305 	if (ret) {
1306 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1307 		return ret;
1308 	}
1309 
1310 	if (rproc->state == RPROC_DELETED) {
1311 		ret = -ENODEV;
1312 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1313 		goto unlock_mutex;
1314 	}
1315 
1316 	/* skip the boot process if rproc is already powered up */
1317 	if (atomic_inc_return(&rproc->power) > 1) {
1318 		ret = 0;
1319 		goto unlock_mutex;
1320 	}
1321 
1322 	dev_info(dev, "powering up %s\n", rproc->name);
1323 
1324 	/* load firmware */
1325 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1326 	if (ret < 0) {
1327 		dev_err(dev, "request_firmware failed: %d\n", ret);
1328 		goto downref_rproc;
1329 	}
1330 
1331 	ret = rproc_fw_boot(rproc, firmware_p);
1332 
1333 	release_firmware(firmware_p);
1334 
1335 downref_rproc:
1336 	if (ret)
1337 		atomic_dec(&rproc->power);
1338 unlock_mutex:
1339 	mutex_unlock(&rproc->lock);
1340 	return ret;
1341 }
1342 EXPORT_SYMBOL(rproc_boot);
1343 
1344 /**
1345  * rproc_shutdown() - power off the remote processor
1346  * @rproc: the remote processor
1347  *
1348  * Power off a remote processor (previously booted with rproc_boot()).
1349  *
1350  * In case @rproc is still being used by an additional user(s), then
1351  * this function will just decrement the power refcount and exit,
1352  * without really powering off the device.
1353  *
1354  * Every call to rproc_boot() must (eventually) be accompanied by a call
1355  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1356  *
1357  * Notes:
1358  * - we're not decrementing the rproc's refcount, only the power refcount.
1359  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1360  *   returns, and users can still use it with a subsequent rproc_boot(), if
1361  *   needed.
1362  */
1363 void rproc_shutdown(struct rproc *rproc)
1364 {
1365 	struct device *dev = &rproc->dev;
1366 	int ret;
1367 
1368 	ret = mutex_lock_interruptible(&rproc->lock);
1369 	if (ret) {
1370 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1371 		return;
1372 	}
1373 
1374 	/* if the remote proc is still needed, bail out */
1375 	if (!atomic_dec_and_test(&rproc->power))
1376 		goto out;
1377 
1378 	ret = rproc_stop(rproc, false);
1379 	if (ret) {
1380 		atomic_inc(&rproc->power);
1381 		goto out;
1382 	}
1383 
1384 	/* clean up all acquired resources */
1385 	rproc_resource_cleanup(rproc);
1386 
1387 	rproc_disable_iommu(rproc);
1388 
1389 	/* Free the copy of the resource table */
1390 	kfree(rproc->cached_table);
1391 	rproc->cached_table = NULL;
1392 	rproc->table_ptr = NULL;
1393 out:
1394 	mutex_unlock(&rproc->lock);
1395 }
1396 EXPORT_SYMBOL(rproc_shutdown);
1397 
1398 /**
1399  * rproc_get_by_phandle() - find a remote processor by phandle
1400  * @phandle: phandle to the rproc
1401  *
1402  * Finds an rproc handle using the remote processor's phandle, and then
1403  * return a handle to the rproc.
1404  *
1405  * This function increments the remote processor's refcount, so always
1406  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1407  *
1408  * Returns the rproc handle on success, and NULL on failure.
1409  */
1410 #ifdef CONFIG_OF
1411 struct rproc *rproc_get_by_phandle(phandle phandle)
1412 {
1413 	struct rproc *rproc = NULL, *r;
1414 	struct device_node *np;
1415 
1416 	np = of_find_node_by_phandle(phandle);
1417 	if (!np)
1418 		return NULL;
1419 
1420 	mutex_lock(&rproc_list_mutex);
1421 	list_for_each_entry(r, &rproc_list, node) {
1422 		if (r->dev.parent && r->dev.parent->of_node == np) {
1423 			/* prevent underlying implementation from being removed */
1424 			if (!try_module_get(r->dev.parent->driver->owner)) {
1425 				dev_err(&r->dev, "can't get owner\n");
1426 				break;
1427 			}
1428 
1429 			rproc = r;
1430 			get_device(&rproc->dev);
1431 			break;
1432 		}
1433 	}
1434 	mutex_unlock(&rproc_list_mutex);
1435 
1436 	of_node_put(np);
1437 
1438 	return rproc;
1439 }
1440 #else
1441 struct rproc *rproc_get_by_phandle(phandle phandle)
1442 {
1443 	return NULL;
1444 }
1445 #endif
1446 EXPORT_SYMBOL(rproc_get_by_phandle);
1447 
1448 /**
1449  * rproc_add() - register a remote processor
1450  * @rproc: the remote processor handle to register
1451  *
1452  * Registers @rproc with the remoteproc framework, after it has been
1453  * allocated with rproc_alloc().
1454  *
1455  * This is called by the platform-specific rproc implementation, whenever
1456  * a new remote processor device is probed.
1457  *
1458  * Returns 0 on success and an appropriate error code otherwise.
1459  *
1460  * Note: this function initiates an asynchronous firmware loading
1461  * context, which will look for virtio devices supported by the rproc's
1462  * firmware.
1463  *
1464  * If found, those virtio devices will be created and added, so as a result
1465  * of registering this remote processor, additional virtio drivers might be
1466  * probed.
1467  */
1468 int rproc_add(struct rproc *rproc)
1469 {
1470 	struct device *dev = &rproc->dev;
1471 	int ret;
1472 
1473 	ret = device_add(dev);
1474 	if (ret < 0)
1475 		return ret;
1476 
1477 	dev_info(dev, "%s is available\n", rproc->name);
1478 
1479 	/* create debugfs entries */
1480 	rproc_create_debug_dir(rproc);
1481 
1482 	/* if rproc is marked always-on, request it to boot */
1483 	if (rproc->auto_boot) {
1484 		ret = rproc_trigger_auto_boot(rproc);
1485 		if (ret < 0)
1486 			return ret;
1487 	}
1488 
1489 	/* expose to rproc_get_by_phandle users */
1490 	mutex_lock(&rproc_list_mutex);
1491 	list_add(&rproc->node, &rproc_list);
1492 	mutex_unlock(&rproc_list_mutex);
1493 
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL(rproc_add);
1497 
1498 /**
1499  * rproc_type_release() - release a remote processor instance
1500  * @dev: the rproc's device
1501  *
1502  * This function should _never_ be called directly.
1503  *
1504  * It will be called by the driver core when no one holds a valid pointer
1505  * to @dev anymore.
1506  */
1507 static void rproc_type_release(struct device *dev)
1508 {
1509 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1510 
1511 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1512 
1513 	idr_destroy(&rproc->notifyids);
1514 
1515 	if (rproc->index >= 0)
1516 		ida_simple_remove(&rproc_dev_index, rproc->index);
1517 
1518 	kfree(rproc->firmware);
1519 	kfree(rproc->ops);
1520 	kfree(rproc);
1521 }
1522 
1523 static const struct device_type rproc_type = {
1524 	.name		= "remoteproc",
1525 	.release	= rproc_type_release,
1526 };
1527 
1528 /**
1529  * rproc_alloc() - allocate a remote processor handle
1530  * @dev: the underlying device
1531  * @name: name of this remote processor
1532  * @ops: platform-specific handlers (mainly start/stop)
1533  * @firmware: name of firmware file to load, can be NULL
1534  * @len: length of private data needed by the rproc driver (in bytes)
1535  *
1536  * Allocates a new remote processor handle, but does not register
1537  * it yet. if @firmware is NULL, a default name is used.
1538  *
1539  * This function should be used by rproc implementations during initialization
1540  * of the remote processor.
1541  *
1542  * After creating an rproc handle using this function, and when ready,
1543  * implementations should then call rproc_add() to complete
1544  * the registration of the remote processor.
1545  *
1546  * On success the new rproc is returned, and on failure, NULL.
1547  *
1548  * Note: _never_ directly deallocate @rproc, even if it was not registered
1549  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1550  */
1551 struct rproc *rproc_alloc(struct device *dev, const char *name,
1552 			  const struct rproc_ops *ops,
1553 			  const char *firmware, int len)
1554 {
1555 	struct rproc *rproc;
1556 	char *p, *template = "rproc-%s-fw";
1557 	int name_len;
1558 
1559 	if (!dev || !name || !ops)
1560 		return NULL;
1561 
1562 	if (!firmware) {
1563 		/*
1564 		 * If the caller didn't pass in a firmware name then
1565 		 * construct a default name.
1566 		 */
1567 		name_len = strlen(name) + strlen(template) - 2 + 1;
1568 		p = kmalloc(name_len, GFP_KERNEL);
1569 		if (!p)
1570 			return NULL;
1571 		snprintf(p, name_len, template, name);
1572 	} else {
1573 		p = kstrdup(firmware, GFP_KERNEL);
1574 		if (!p)
1575 			return NULL;
1576 	}
1577 
1578 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1579 	if (!rproc) {
1580 		kfree(p);
1581 		return NULL;
1582 	}
1583 
1584 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1585 	if (!rproc->ops) {
1586 		kfree(p);
1587 		kfree(rproc);
1588 		return NULL;
1589 	}
1590 
1591 	rproc->firmware = p;
1592 	rproc->name = name;
1593 	rproc->priv = &rproc[1];
1594 	rproc->auto_boot = true;
1595 
1596 	device_initialize(&rproc->dev);
1597 	rproc->dev.parent = dev;
1598 	rproc->dev.type = &rproc_type;
1599 	rproc->dev.class = &rproc_class;
1600 	rproc->dev.driver_data = rproc;
1601 
1602 	/* Assign a unique device index and name */
1603 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1604 	if (rproc->index < 0) {
1605 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1606 		put_device(&rproc->dev);
1607 		return NULL;
1608 	}
1609 
1610 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1611 
1612 	atomic_set(&rproc->power, 0);
1613 
1614 	/* Default to ELF loader if no load function is specified */
1615 	if (!rproc->ops->load) {
1616 		rproc->ops->load = rproc_elf_load_segments;
1617 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1618 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1619 		rproc->ops->sanity_check = rproc_elf_sanity_check;
1620 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1621 	}
1622 
1623 	mutex_init(&rproc->lock);
1624 
1625 	idr_init(&rproc->notifyids);
1626 
1627 	INIT_LIST_HEAD(&rproc->carveouts);
1628 	INIT_LIST_HEAD(&rproc->mappings);
1629 	INIT_LIST_HEAD(&rproc->traces);
1630 	INIT_LIST_HEAD(&rproc->rvdevs);
1631 	INIT_LIST_HEAD(&rproc->subdevs);
1632 	INIT_LIST_HEAD(&rproc->dump_segments);
1633 
1634 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1635 
1636 	rproc->state = RPROC_OFFLINE;
1637 
1638 	return rproc;
1639 }
1640 EXPORT_SYMBOL(rproc_alloc);
1641 
1642 /**
1643  * rproc_free() - unroll rproc_alloc()
1644  * @rproc: the remote processor handle
1645  *
1646  * This function decrements the rproc dev refcount.
1647  *
1648  * If no one holds any reference to rproc anymore, then its refcount would
1649  * now drop to zero, and it would be freed.
1650  */
1651 void rproc_free(struct rproc *rproc)
1652 {
1653 	put_device(&rproc->dev);
1654 }
1655 EXPORT_SYMBOL(rproc_free);
1656 
1657 /**
1658  * rproc_put() - release rproc reference
1659  * @rproc: the remote processor handle
1660  *
1661  * This function decrements the rproc dev refcount.
1662  *
1663  * If no one holds any reference to rproc anymore, then its refcount would
1664  * now drop to zero, and it would be freed.
1665  */
1666 void rproc_put(struct rproc *rproc)
1667 {
1668 	module_put(rproc->dev.parent->driver->owner);
1669 	put_device(&rproc->dev);
1670 }
1671 EXPORT_SYMBOL(rproc_put);
1672 
1673 /**
1674  * rproc_del() - unregister a remote processor
1675  * @rproc: rproc handle to unregister
1676  *
1677  * This function should be called when the platform specific rproc
1678  * implementation decides to remove the rproc device. it should
1679  * _only_ be called if a previous invocation of rproc_add()
1680  * has completed successfully.
1681  *
1682  * After rproc_del() returns, @rproc isn't freed yet, because
1683  * of the outstanding reference created by rproc_alloc. To decrement that
1684  * one last refcount, one still needs to call rproc_free().
1685  *
1686  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1687  */
1688 int rproc_del(struct rproc *rproc)
1689 {
1690 	if (!rproc)
1691 		return -EINVAL;
1692 
1693 	/* if rproc is marked always-on, rproc_add() booted it */
1694 	/* TODO: make sure this works with rproc->power > 1 */
1695 	if (rproc->auto_boot)
1696 		rproc_shutdown(rproc);
1697 
1698 	mutex_lock(&rproc->lock);
1699 	rproc->state = RPROC_DELETED;
1700 	mutex_unlock(&rproc->lock);
1701 
1702 	rproc_delete_debug_dir(rproc);
1703 
1704 	/* the rproc is downref'ed as soon as it's removed from the klist */
1705 	mutex_lock(&rproc_list_mutex);
1706 	list_del(&rproc->node);
1707 	mutex_unlock(&rproc_list_mutex);
1708 
1709 	device_del(&rproc->dev);
1710 
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL(rproc_del);
1714 
1715 /**
1716  * rproc_add_subdev() - add a subdevice to a remoteproc
1717  * @rproc: rproc handle to add the subdevice to
1718  * @subdev: subdev handle to register
1719  *
1720  * Caller is responsible for populating optional subdevice function pointers.
1721  */
1722 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1723 {
1724 	list_add_tail(&subdev->node, &rproc->subdevs);
1725 }
1726 EXPORT_SYMBOL(rproc_add_subdev);
1727 
1728 /**
1729  * rproc_remove_subdev() - remove a subdevice from a remoteproc
1730  * @rproc: rproc handle to remove the subdevice from
1731  * @subdev: subdev handle, previously registered with rproc_add_subdev()
1732  */
1733 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1734 {
1735 	list_del(&subdev->node);
1736 }
1737 EXPORT_SYMBOL(rproc_remove_subdev);
1738 
1739 /**
1740  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1741  * @dev:	child device to find ancestor of
1742  *
1743  * Returns the ancestor rproc instance, or NULL if not found.
1744  */
1745 struct rproc *rproc_get_by_child(struct device *dev)
1746 {
1747 	for (dev = dev->parent; dev; dev = dev->parent) {
1748 		if (dev->type == &rproc_type)
1749 			return dev->driver_data;
1750 	}
1751 
1752 	return NULL;
1753 }
1754 EXPORT_SYMBOL(rproc_get_by_child);
1755 
1756 /**
1757  * rproc_report_crash() - rproc crash reporter function
1758  * @rproc: remote processor
1759  * @type: crash type
1760  *
1761  * This function must be called every time a crash is detected by the low-level
1762  * drivers implementing a specific remoteproc. This should not be called from a
1763  * non-remoteproc driver.
1764  *
1765  * This function can be called from atomic/interrupt context.
1766  */
1767 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1768 {
1769 	if (!rproc) {
1770 		pr_err("NULL rproc pointer\n");
1771 		return;
1772 	}
1773 
1774 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1775 		rproc->name, rproc_crash_to_string(type));
1776 
1777 	/* create a new task to handle the error */
1778 	schedule_work(&rproc->crash_handler);
1779 }
1780 EXPORT_SYMBOL(rproc_report_crash);
1781 
1782 static int __init remoteproc_init(void)
1783 {
1784 	rproc_init_sysfs();
1785 	rproc_init_debugfs();
1786 
1787 	return 0;
1788 }
1789 module_init(remoteproc_init);
1790 
1791 static void __exit remoteproc_exit(void)
1792 {
1793 	ida_destroy(&rproc_dev_index);
1794 
1795 	rproc_exit_debugfs();
1796 	rproc_exit_sysfs();
1797 }
1798 module_exit(remoteproc_exit);
1799 
1800 MODULE_LICENSE("GPL v2");
1801 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1802