1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/remoteproc.h> 37 #include <linux/iommu.h> 38 #include <linux/idr.h> 39 #include <linux/elf.h> 40 #include <linux/crc32.h> 41 #include <linux/virtio_ids.h> 42 #include <linux/virtio_ring.h> 43 #include <asm/byteorder.h> 44 45 #include "remoteproc_internal.h" 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 51 struct resource_table *table, int len); 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 /* Unique indices for remoteproc devices */ 56 static DEFINE_IDA(rproc_dev_index); 57 58 static const char * const rproc_crash_names[] = { 59 [RPROC_MMUFAULT] = "mmufault", 60 [RPROC_WATCHDOG] = "watchdog", 61 [RPROC_FATAL_ERROR] = "fatal error", 62 }; 63 64 /* translate rproc_crash_type to string */ 65 static const char *rproc_crash_to_string(enum rproc_crash_type type) 66 { 67 if (type < ARRAY_SIZE(rproc_crash_names)) 68 return rproc_crash_names[type]; 69 return "unknown"; 70 } 71 72 /* 73 * This is the IOMMU fault handler we register with the IOMMU API 74 * (when relevant; not all remote processors access memory through 75 * an IOMMU). 76 * 77 * IOMMU core will invoke this handler whenever the remote processor 78 * will try to access an unmapped device address. 79 */ 80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 81 unsigned long iova, int flags, void *token) 82 { 83 struct rproc *rproc = token; 84 85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 86 87 rproc_report_crash(rproc, RPROC_MMUFAULT); 88 89 /* 90 * Let the iommu core know we're not really handling this fault; 91 * we just used it as a recovery trigger. 92 */ 93 return -ENOSYS; 94 } 95 96 static int rproc_enable_iommu(struct rproc *rproc) 97 { 98 struct iommu_domain *domain; 99 struct device *dev = rproc->dev.parent; 100 int ret; 101 102 if (!rproc->has_iommu) { 103 dev_dbg(dev, "iommu not present\n"); 104 return 0; 105 } 106 107 domain = iommu_domain_alloc(dev->bus); 108 if (!domain) { 109 dev_err(dev, "can't alloc iommu domain\n"); 110 return -ENOMEM; 111 } 112 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 114 115 ret = iommu_attach_device(domain, dev); 116 if (ret) { 117 dev_err(dev, "can't attach iommu device: %d\n", ret); 118 goto free_domain; 119 } 120 121 rproc->domain = domain; 122 123 return 0; 124 125 free_domain: 126 iommu_domain_free(domain); 127 return ret; 128 } 129 130 static void rproc_disable_iommu(struct rproc *rproc) 131 { 132 struct iommu_domain *domain = rproc->domain; 133 struct device *dev = rproc->dev.parent; 134 135 if (!domain) 136 return; 137 138 iommu_detach_device(domain, dev); 139 iommu_domain_free(domain); 140 } 141 142 /** 143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 144 * @rproc: handle of a remote processor 145 * @da: remoteproc device address to translate 146 * @len: length of the memory region @da is pointing to 147 * 148 * Some remote processors will ask us to allocate them physically contiguous 149 * memory regions (which we call "carveouts"), and map them to specific 150 * device addresses (which are hardcoded in the firmware). They may also have 151 * dedicated memory regions internal to the processors, and use them either 152 * exclusively or alongside carveouts. 153 * 154 * They may then ask us to copy objects into specific device addresses (e.g. 155 * code/data sections) or expose us certain symbols in other device address 156 * (e.g. their trace buffer). 157 * 158 * This function is a helper function with which we can go over the allocated 159 * carveouts and translate specific device addresses to kernel virtual addresses 160 * so we can access the referenced memory. This function also allows to perform 161 * translations on the internal remoteproc memory regions through a platform 162 * implementation specific da_to_va ops, if present. 163 * 164 * The function returns a valid kernel address on success or NULL on failure. 165 * 166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 167 * but only on kernel direct mapped RAM memory. Instead, we're just using 168 * here the output of the DMA API for the carveouts, which should be more 169 * correct. 170 */ 171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 172 { 173 struct rproc_mem_entry *carveout; 174 void *ptr = NULL; 175 176 if (rproc->ops->da_to_va) { 177 ptr = rproc->ops->da_to_va(rproc, da, len); 178 if (ptr) 179 goto out; 180 } 181 182 list_for_each_entry(carveout, &rproc->carveouts, node) { 183 int offset = da - carveout->da; 184 185 /* try next carveout if da is too small */ 186 if (offset < 0) 187 continue; 188 189 /* try next carveout if da is too large */ 190 if (offset + len > carveout->len) 191 continue; 192 193 ptr = carveout->va + offset; 194 195 break; 196 } 197 198 out: 199 return ptr; 200 } 201 EXPORT_SYMBOL(rproc_da_to_va); 202 203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 204 { 205 struct rproc *rproc = rvdev->rproc; 206 struct device *dev = &rproc->dev; 207 struct rproc_vring *rvring = &rvdev->vring[i]; 208 struct fw_rsc_vdev *rsc; 209 dma_addr_t dma; 210 void *va; 211 int ret, size, notifyid; 212 213 /* actual size of vring (in bytes) */ 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 215 216 /* 217 * Allocate non-cacheable memory for the vring. In the future 218 * this call will also configure the IOMMU for us 219 */ 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); 221 if (!va) { 222 dev_err(dev->parent, "dma_alloc_coherent failed\n"); 223 return -EINVAL; 224 } 225 226 /* 227 * Assign an rproc-wide unique index for this vring 228 * TODO: assign a notifyid for rvdev updates as well 229 * TODO: support predefined notifyids (via resource table) 230 */ 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 232 if (ret < 0) { 233 dev_err(dev, "idr_alloc failed: %d\n", ret); 234 dma_free_coherent(dev->parent, size, va, dma); 235 return ret; 236 } 237 notifyid = ret; 238 239 /* Potentially bump max_notifyid */ 240 if (notifyid > rproc->max_notifyid) 241 rproc->max_notifyid = notifyid; 242 243 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n", 244 i, va, &dma, size, notifyid); 245 246 rvring->va = va; 247 rvring->dma = dma; 248 rvring->notifyid = notifyid; 249 250 /* 251 * Let the rproc know the notifyid and da of this vring. 252 * Not all platforms use dma_alloc_coherent to automatically 253 * set up the iommu. In this case the device address (da) will 254 * hold the physical address and not the device address. 255 */ 256 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 257 rsc->vring[i].da = dma; 258 rsc->vring[i].notifyid = notifyid; 259 return 0; 260 } 261 262 static int 263 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 264 { 265 struct rproc *rproc = rvdev->rproc; 266 struct device *dev = &rproc->dev; 267 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 268 struct rproc_vring *rvring = &rvdev->vring[i]; 269 270 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 271 i, vring->da, vring->num, vring->align); 272 273 /* verify queue size and vring alignment are sane */ 274 if (!vring->num || !vring->align) { 275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 276 vring->num, vring->align); 277 return -EINVAL; 278 } 279 280 rvring->len = vring->num; 281 rvring->align = vring->align; 282 rvring->rvdev = rvdev; 283 284 return 0; 285 } 286 287 void rproc_free_vring(struct rproc_vring *rvring) 288 { 289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 290 struct rproc *rproc = rvring->rvdev->rproc; 291 int idx = rvring->rvdev->vring - rvring; 292 struct fw_rsc_vdev *rsc; 293 294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); 295 idr_remove(&rproc->notifyids, rvring->notifyid); 296 297 /* reset resource entry info */ 298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 299 rsc->vring[idx].da = 0; 300 rsc->vring[idx].notifyid = -1; 301 } 302 303 static int rproc_vdev_do_probe(struct rproc_subdev *subdev) 304 { 305 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 306 307 return rproc_add_virtio_dev(rvdev, rvdev->id); 308 } 309 310 static void rproc_vdev_do_remove(struct rproc_subdev *subdev) 311 { 312 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 313 314 rproc_remove_virtio_dev(rvdev); 315 } 316 317 /** 318 * rproc_handle_vdev() - handle a vdev fw resource 319 * @rproc: the remote processor 320 * @rsc: the vring resource descriptor 321 * @avail: size of available data (for sanity checking the image) 322 * 323 * This resource entry requests the host to statically register a virtio 324 * device (vdev), and setup everything needed to support it. It contains 325 * everything needed to make it possible: the virtio device id, virtio 326 * device features, vrings information, virtio config space, etc... 327 * 328 * Before registering the vdev, the vrings are allocated from non-cacheable 329 * physically contiguous memory. Currently we only support two vrings per 330 * remote processor (temporary limitation). We might also want to consider 331 * doing the vring allocation only later when ->find_vqs() is invoked, and 332 * then release them upon ->del_vqs(). 333 * 334 * Note: @da is currently not really handled correctly: we dynamically 335 * allocate it using the DMA API, ignoring requested hard coded addresses, 336 * and we don't take care of any required IOMMU programming. This is all 337 * going to be taken care of when the generic iommu-based DMA API will be 338 * merged. Meanwhile, statically-addressed iommu-based firmware images should 339 * use RSC_DEVMEM resource entries to map their required @da to the physical 340 * address of their base CMA region (ouch, hacky!). 341 * 342 * Returns 0 on success, or an appropriate error code otherwise 343 */ 344 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 345 int offset, int avail) 346 { 347 struct device *dev = &rproc->dev; 348 struct rproc_vdev *rvdev; 349 int i, ret; 350 351 /* make sure resource isn't truncated */ 352 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 353 + rsc->config_len > avail) { 354 dev_err(dev, "vdev rsc is truncated\n"); 355 return -EINVAL; 356 } 357 358 /* make sure reserved bytes are zeroes */ 359 if (rsc->reserved[0] || rsc->reserved[1]) { 360 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 361 return -EINVAL; 362 } 363 364 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 365 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 366 367 /* we currently support only two vrings per rvdev */ 368 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 369 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 370 return -EINVAL; 371 } 372 373 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 374 if (!rvdev) 375 return -ENOMEM; 376 377 kref_init(&rvdev->refcount); 378 379 rvdev->id = rsc->id; 380 rvdev->rproc = rproc; 381 382 /* parse the vrings */ 383 for (i = 0; i < rsc->num_of_vrings; i++) { 384 ret = rproc_parse_vring(rvdev, rsc, i); 385 if (ret) 386 goto free_rvdev; 387 } 388 389 /* remember the resource offset*/ 390 rvdev->rsc_offset = offset; 391 392 /* allocate the vring resources */ 393 for (i = 0; i < rsc->num_of_vrings; i++) { 394 ret = rproc_alloc_vring(rvdev, i); 395 if (ret) 396 goto unwind_vring_allocations; 397 } 398 399 list_add_tail(&rvdev->node, &rproc->rvdevs); 400 401 rproc_add_subdev(rproc, &rvdev->subdev, 402 rproc_vdev_do_probe, rproc_vdev_do_remove); 403 404 return 0; 405 406 unwind_vring_allocations: 407 for (i--; i >= 0; i--) 408 rproc_free_vring(&rvdev->vring[i]); 409 free_rvdev: 410 kfree(rvdev); 411 return ret; 412 } 413 414 void rproc_vdev_release(struct kref *ref) 415 { 416 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 417 struct rproc_vring *rvring; 418 struct rproc *rproc = rvdev->rproc; 419 int id; 420 421 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 422 rvring = &rvdev->vring[id]; 423 if (!rvring->va) 424 continue; 425 426 rproc_free_vring(rvring); 427 } 428 429 rproc_remove_subdev(rproc, &rvdev->subdev); 430 list_del(&rvdev->node); 431 kfree(rvdev); 432 } 433 434 /** 435 * rproc_handle_trace() - handle a shared trace buffer resource 436 * @rproc: the remote processor 437 * @rsc: the trace resource descriptor 438 * @avail: size of available data (for sanity checking the image) 439 * 440 * In case the remote processor dumps trace logs into memory, 441 * export it via debugfs. 442 * 443 * Currently, the 'da' member of @rsc should contain the device address 444 * where the remote processor is dumping the traces. Later we could also 445 * support dynamically allocating this address using the generic 446 * DMA API (but currently there isn't a use case for that). 447 * 448 * Returns 0 on success, or an appropriate error code otherwise 449 */ 450 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 451 int offset, int avail) 452 { 453 struct rproc_mem_entry *trace; 454 struct device *dev = &rproc->dev; 455 void *ptr; 456 char name[15]; 457 458 if (sizeof(*rsc) > avail) { 459 dev_err(dev, "trace rsc is truncated\n"); 460 return -EINVAL; 461 } 462 463 /* make sure reserved bytes are zeroes */ 464 if (rsc->reserved) { 465 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 466 return -EINVAL; 467 } 468 469 /* what's the kernel address of this resource ? */ 470 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 471 if (!ptr) { 472 dev_err(dev, "erroneous trace resource entry\n"); 473 return -EINVAL; 474 } 475 476 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 477 if (!trace) 478 return -ENOMEM; 479 480 /* set the trace buffer dma properties */ 481 trace->len = rsc->len; 482 trace->va = ptr; 483 484 /* make sure snprintf always null terminates, even if truncating */ 485 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 486 487 /* create the debugfs entry */ 488 trace->priv = rproc_create_trace_file(name, rproc, trace); 489 if (!trace->priv) { 490 trace->va = NULL; 491 kfree(trace); 492 return -EINVAL; 493 } 494 495 list_add_tail(&trace->node, &rproc->traces); 496 497 rproc->num_traces++; 498 499 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", 500 name, ptr, rsc->da, rsc->len); 501 502 return 0; 503 } 504 505 /** 506 * rproc_handle_devmem() - handle devmem resource entry 507 * @rproc: remote processor handle 508 * @rsc: the devmem resource entry 509 * @avail: size of available data (for sanity checking the image) 510 * 511 * Remote processors commonly need to access certain on-chip peripherals. 512 * 513 * Some of these remote processors access memory via an iommu device, 514 * and might require us to configure their iommu before they can access 515 * the on-chip peripherals they need. 516 * 517 * This resource entry is a request to map such a peripheral device. 518 * 519 * These devmem entries will contain the physical address of the device in 520 * the 'pa' member. If a specific device address is expected, then 'da' will 521 * contain it (currently this is the only use case supported). 'len' will 522 * contain the size of the physical region we need to map. 523 * 524 * Currently we just "trust" those devmem entries to contain valid physical 525 * addresses, but this is going to change: we want the implementations to 526 * tell us ranges of physical addresses the firmware is allowed to request, 527 * and not allow firmwares to request access to physical addresses that 528 * are outside those ranges. 529 */ 530 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 531 int offset, int avail) 532 { 533 struct rproc_mem_entry *mapping; 534 struct device *dev = &rproc->dev; 535 int ret; 536 537 /* no point in handling this resource without a valid iommu domain */ 538 if (!rproc->domain) 539 return -EINVAL; 540 541 if (sizeof(*rsc) > avail) { 542 dev_err(dev, "devmem rsc is truncated\n"); 543 return -EINVAL; 544 } 545 546 /* make sure reserved bytes are zeroes */ 547 if (rsc->reserved) { 548 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 549 return -EINVAL; 550 } 551 552 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 553 if (!mapping) 554 return -ENOMEM; 555 556 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 557 if (ret) { 558 dev_err(dev, "failed to map devmem: %d\n", ret); 559 goto out; 560 } 561 562 /* 563 * We'll need this info later when we'll want to unmap everything 564 * (e.g. on shutdown). 565 * 566 * We can't trust the remote processor not to change the resource 567 * table, so we must maintain this info independently. 568 */ 569 mapping->da = rsc->da; 570 mapping->len = rsc->len; 571 list_add_tail(&mapping->node, &rproc->mappings); 572 573 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 574 rsc->pa, rsc->da, rsc->len); 575 576 return 0; 577 578 out: 579 kfree(mapping); 580 return ret; 581 } 582 583 /** 584 * rproc_handle_carveout() - handle phys contig memory allocation requests 585 * @rproc: rproc handle 586 * @rsc: the resource entry 587 * @avail: size of available data (for image validation) 588 * 589 * This function will handle firmware requests for allocation of physically 590 * contiguous memory regions. 591 * 592 * These request entries should come first in the firmware's resource table, 593 * as other firmware entries might request placing other data objects inside 594 * these memory regions (e.g. data/code segments, trace resource entries, ...). 595 * 596 * Allocating memory this way helps utilizing the reserved physical memory 597 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 598 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 599 * pressure is important; it may have a substantial impact on performance. 600 */ 601 static int rproc_handle_carveout(struct rproc *rproc, 602 struct fw_rsc_carveout *rsc, 603 int offset, int avail) 604 { 605 struct rproc_mem_entry *carveout, *mapping; 606 struct device *dev = &rproc->dev; 607 dma_addr_t dma; 608 void *va; 609 int ret; 610 611 if (sizeof(*rsc) > avail) { 612 dev_err(dev, "carveout rsc is truncated\n"); 613 return -EINVAL; 614 } 615 616 /* make sure reserved bytes are zeroes */ 617 if (rsc->reserved) { 618 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 619 return -EINVAL; 620 } 621 622 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 623 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 624 625 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); 626 if (!carveout) 627 return -ENOMEM; 628 629 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); 630 if (!va) { 631 dev_err(dev->parent, 632 "failed to allocate dma memory: len 0x%x\n", rsc->len); 633 ret = -ENOMEM; 634 goto free_carv; 635 } 636 637 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n", 638 va, &dma, rsc->len); 639 640 /* 641 * Ok, this is non-standard. 642 * 643 * Sometimes we can't rely on the generic iommu-based DMA API 644 * to dynamically allocate the device address and then set the IOMMU 645 * tables accordingly, because some remote processors might 646 * _require_ us to use hard coded device addresses that their 647 * firmware was compiled with. 648 * 649 * In this case, we must use the IOMMU API directly and map 650 * the memory to the device address as expected by the remote 651 * processor. 652 * 653 * Obviously such remote processor devices should not be configured 654 * to use the iommu-based DMA API: we expect 'dma' to contain the 655 * physical address in this case. 656 */ 657 if (rproc->domain) { 658 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 659 if (!mapping) { 660 ret = -ENOMEM; 661 goto dma_free; 662 } 663 664 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, 665 rsc->flags); 666 if (ret) { 667 dev_err(dev, "iommu_map failed: %d\n", ret); 668 goto free_mapping; 669 } 670 671 /* 672 * We'll need this info later when we'll want to unmap 673 * everything (e.g. on shutdown). 674 * 675 * We can't trust the remote processor not to change the 676 * resource table, so we must maintain this info independently. 677 */ 678 mapping->da = rsc->da; 679 mapping->len = rsc->len; 680 list_add_tail(&mapping->node, &rproc->mappings); 681 682 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 683 rsc->da, &dma); 684 } 685 686 /* 687 * Some remote processors might need to know the pa 688 * even though they are behind an IOMMU. E.g., OMAP4's 689 * remote M3 processor needs this so it can control 690 * on-chip hardware accelerators that are not behind 691 * the IOMMU, and therefor must know the pa. 692 * 693 * Generally we don't want to expose physical addresses 694 * if we don't have to (remote processors are generally 695 * _not_ trusted), so we might want to do this only for 696 * remote processor that _must_ have this (e.g. OMAP4's 697 * dual M3 subsystem). 698 * 699 * Non-IOMMU processors might also want to have this info. 700 * In this case, the device address and the physical address 701 * are the same. 702 */ 703 rsc->pa = dma; 704 705 carveout->va = va; 706 carveout->len = rsc->len; 707 carveout->dma = dma; 708 carveout->da = rsc->da; 709 710 list_add_tail(&carveout->node, &rproc->carveouts); 711 712 return 0; 713 714 free_mapping: 715 kfree(mapping); 716 dma_free: 717 dma_free_coherent(dev->parent, rsc->len, va, dma); 718 free_carv: 719 kfree(carveout); 720 return ret; 721 } 722 723 /* 724 * A lookup table for resource handlers. The indices are defined in 725 * enum fw_resource_type. 726 */ 727 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 728 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 729 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 730 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 731 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 732 }; 733 734 /* handle firmware resource entries before booting the remote processor */ 735 static int rproc_handle_resources(struct rproc *rproc, int len, 736 rproc_handle_resource_t handlers[RSC_LAST]) 737 { 738 struct device *dev = &rproc->dev; 739 rproc_handle_resource_t handler; 740 int ret = 0, i; 741 742 for (i = 0; i < rproc->table_ptr->num; i++) { 743 int offset = rproc->table_ptr->offset[i]; 744 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 745 int avail = len - offset - sizeof(*hdr); 746 void *rsc = (void *)hdr + sizeof(*hdr); 747 748 /* make sure table isn't truncated */ 749 if (avail < 0) { 750 dev_err(dev, "rsc table is truncated\n"); 751 return -EINVAL; 752 } 753 754 dev_dbg(dev, "rsc: type %d\n", hdr->type); 755 756 if (hdr->type >= RSC_LAST) { 757 dev_warn(dev, "unsupported resource %d\n", hdr->type); 758 continue; 759 } 760 761 handler = handlers[hdr->type]; 762 if (!handler) 763 continue; 764 765 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 766 if (ret) 767 break; 768 } 769 770 return ret; 771 } 772 773 static int rproc_probe_subdevices(struct rproc *rproc) 774 { 775 struct rproc_subdev *subdev; 776 int ret; 777 778 list_for_each_entry(subdev, &rproc->subdevs, node) { 779 ret = subdev->probe(subdev); 780 if (ret) 781 goto unroll_registration; 782 } 783 784 return 0; 785 786 unroll_registration: 787 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) 788 subdev->remove(subdev); 789 790 return ret; 791 } 792 793 static void rproc_remove_subdevices(struct rproc *rproc) 794 { 795 struct rproc_subdev *subdev; 796 797 list_for_each_entry(subdev, &rproc->subdevs, node) 798 subdev->remove(subdev); 799 } 800 801 /** 802 * rproc_resource_cleanup() - clean up and free all acquired resources 803 * @rproc: rproc handle 804 * 805 * This function will free all resources acquired for @rproc, and it 806 * is called whenever @rproc either shuts down or fails to boot. 807 */ 808 static void rproc_resource_cleanup(struct rproc *rproc) 809 { 810 struct rproc_mem_entry *entry, *tmp; 811 struct rproc_vdev *rvdev, *rvtmp; 812 struct device *dev = &rproc->dev; 813 814 /* clean up debugfs trace entries */ 815 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 816 rproc_remove_trace_file(entry->priv); 817 rproc->num_traces--; 818 list_del(&entry->node); 819 kfree(entry); 820 } 821 822 /* clean up iommu mapping entries */ 823 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 824 size_t unmapped; 825 826 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 827 if (unmapped != entry->len) { 828 /* nothing much to do besides complaining */ 829 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 830 unmapped); 831 } 832 833 list_del(&entry->node); 834 kfree(entry); 835 } 836 837 /* clean up carveout allocations */ 838 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 839 dma_free_coherent(dev->parent, entry->len, entry->va, 840 entry->dma); 841 list_del(&entry->node); 842 kfree(entry); 843 } 844 845 /* clean up remote vdev entries */ 846 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 847 kref_put(&rvdev->refcount, rproc_vdev_release); 848 } 849 850 /* 851 * take a firmware and boot a remote processor with it. 852 */ 853 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 854 { 855 struct device *dev = &rproc->dev; 856 const char *name = rproc->firmware; 857 struct resource_table *table, *loaded_table; 858 int ret, tablesz; 859 860 ret = rproc_fw_sanity_check(rproc, fw); 861 if (ret) 862 return ret; 863 864 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 865 866 /* 867 * if enabling an IOMMU isn't relevant for this rproc, this is 868 * just a nop 869 */ 870 ret = rproc_enable_iommu(rproc); 871 if (ret) { 872 dev_err(dev, "can't enable iommu: %d\n", ret); 873 return ret; 874 } 875 876 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 877 ret = -EINVAL; 878 879 /* look for the resource table */ 880 table = rproc_find_rsc_table(rproc, fw, &tablesz); 881 if (!table) { 882 dev_err(dev, "Failed to find resource table\n"); 883 goto clean_up; 884 } 885 886 /* 887 * Create a copy of the resource table. When a virtio device starts 888 * and calls vring_new_virtqueue() the address of the allocated vring 889 * will be stored in the cached_table. Before the device is started, 890 * cached_table will be copied into device memory. 891 */ 892 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); 893 if (!rproc->cached_table) 894 goto clean_up; 895 896 rproc->table_ptr = rproc->cached_table; 897 898 /* reset max_notifyid */ 899 rproc->max_notifyid = -1; 900 901 /* handle fw resources which are required to boot rproc */ 902 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers); 903 if (ret) { 904 dev_err(dev, "Failed to process resources: %d\n", ret); 905 goto clean_up_resources; 906 } 907 908 /* load the ELF segments to memory */ 909 ret = rproc_load_segments(rproc, fw); 910 if (ret) { 911 dev_err(dev, "Failed to load program segments: %d\n", ret); 912 goto clean_up_resources; 913 } 914 915 /* 916 * The starting device has been given the rproc->cached_table as the 917 * resource table. The address of the vring along with the other 918 * allocated resources (carveouts etc) is stored in cached_table. 919 * In order to pass this information to the remote device we must copy 920 * this information to device memory. We also update the table_ptr so 921 * that any subsequent changes will be applied to the loaded version. 922 */ 923 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 924 if (loaded_table) { 925 memcpy(loaded_table, rproc->cached_table, tablesz); 926 rproc->table_ptr = loaded_table; 927 } 928 929 /* power up the remote processor */ 930 ret = rproc->ops->start(rproc); 931 if (ret) { 932 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 933 goto clean_up_resources; 934 } 935 936 /* probe any subdevices for the remote processor */ 937 ret = rproc_probe_subdevices(rproc); 938 if (ret) { 939 dev_err(dev, "failed to probe subdevices for %s: %d\n", 940 rproc->name, ret); 941 goto stop_rproc; 942 } 943 944 rproc->state = RPROC_RUNNING; 945 946 dev_info(dev, "remote processor %s is now up\n", rproc->name); 947 948 return 0; 949 950 stop_rproc: 951 rproc->ops->stop(rproc); 952 clean_up_resources: 953 rproc_resource_cleanup(rproc); 954 clean_up: 955 kfree(rproc->cached_table); 956 rproc->cached_table = NULL; 957 rproc->table_ptr = NULL; 958 959 rproc_disable_iommu(rproc); 960 return ret; 961 } 962 963 /* 964 * take a firmware and look for virtio devices to register. 965 * 966 * Note: this function is called asynchronously upon registration of the 967 * remote processor (so we must wait until it completes before we try 968 * to unregister the device. one other option is just to use kref here, 969 * that might be cleaner). 970 */ 971 static void rproc_fw_config_virtio(const struct firmware *fw, void *context) 972 { 973 struct rproc *rproc = context; 974 975 /* if rproc is marked always-on, request it to boot */ 976 if (rproc->auto_boot) 977 rproc_boot(rproc); 978 979 release_firmware(fw); 980 /* allow rproc_del() contexts, if any, to proceed */ 981 complete_all(&rproc->firmware_loading_complete); 982 } 983 984 static int rproc_add_virtio_devices(struct rproc *rproc) 985 { 986 int ret; 987 988 /* rproc_del() calls must wait until async loader completes */ 989 init_completion(&rproc->firmware_loading_complete); 990 991 /* 992 * We must retrieve early virtio configuration info from 993 * the firmware (e.g. whether to register a virtio device, 994 * what virtio features does it support, ...). 995 * 996 * We're initiating an asynchronous firmware loading, so we can 997 * be built-in kernel code, without hanging the boot process. 998 */ 999 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1000 rproc->firmware, &rproc->dev, GFP_KERNEL, 1001 rproc, rproc_fw_config_virtio); 1002 if (ret < 0) { 1003 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1004 complete_all(&rproc->firmware_loading_complete); 1005 } 1006 1007 return ret; 1008 } 1009 1010 /** 1011 * rproc_trigger_recovery() - recover a remoteproc 1012 * @rproc: the remote processor 1013 * 1014 * The recovery is done by resetting all the virtio devices, that way all the 1015 * rpmsg drivers will be reseted along with the remote processor making the 1016 * remoteproc functional again. 1017 * 1018 * This function can sleep, so it cannot be called from atomic context. 1019 */ 1020 int rproc_trigger_recovery(struct rproc *rproc) 1021 { 1022 dev_err(&rproc->dev, "recovering %s\n", rproc->name); 1023 1024 init_completion(&rproc->crash_comp); 1025 1026 /* shut down the remote */ 1027 /* TODO: make sure this works with rproc->power > 1 */ 1028 rproc_shutdown(rproc); 1029 1030 /* wait until there is no more rproc users */ 1031 wait_for_completion(&rproc->crash_comp); 1032 1033 /* 1034 * boot the remote processor up again 1035 */ 1036 rproc_boot(rproc); 1037 1038 return 0; 1039 } 1040 1041 /** 1042 * rproc_crash_handler_work() - handle a crash 1043 * 1044 * This function needs to handle everything related to a crash, like cpu 1045 * registers and stack dump, information to help to debug the fatal error, etc. 1046 */ 1047 static void rproc_crash_handler_work(struct work_struct *work) 1048 { 1049 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1050 struct device *dev = &rproc->dev; 1051 1052 dev_dbg(dev, "enter %s\n", __func__); 1053 1054 mutex_lock(&rproc->lock); 1055 1056 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1057 /* handle only the first crash detected */ 1058 mutex_unlock(&rproc->lock); 1059 return; 1060 } 1061 1062 rproc->state = RPROC_CRASHED; 1063 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1064 rproc->name); 1065 1066 mutex_unlock(&rproc->lock); 1067 1068 if (!rproc->recovery_disabled) 1069 rproc_trigger_recovery(rproc); 1070 } 1071 1072 /** 1073 * __rproc_boot() - boot a remote processor 1074 * @rproc: handle of a remote processor 1075 * 1076 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1077 * 1078 * If the remote processor is already powered on, this function immediately 1079 * returns (successfully). 1080 * 1081 * Returns 0 on success, and an appropriate error value otherwise. 1082 */ 1083 static int __rproc_boot(struct rproc *rproc) 1084 { 1085 const struct firmware *firmware_p; 1086 struct device *dev; 1087 int ret; 1088 1089 if (!rproc) { 1090 pr_err("invalid rproc handle\n"); 1091 return -EINVAL; 1092 } 1093 1094 dev = &rproc->dev; 1095 1096 ret = mutex_lock_interruptible(&rproc->lock); 1097 if (ret) { 1098 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1099 return ret; 1100 } 1101 1102 /* skip the boot process if rproc is already powered up */ 1103 if (atomic_inc_return(&rproc->power) > 1) { 1104 ret = 0; 1105 goto unlock_mutex; 1106 } 1107 1108 dev_info(dev, "powering up %s\n", rproc->name); 1109 1110 /* load firmware */ 1111 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1112 if (ret < 0) { 1113 dev_err(dev, "request_firmware failed: %d\n", ret); 1114 goto downref_rproc; 1115 } 1116 1117 ret = rproc_fw_boot(rproc, firmware_p); 1118 1119 release_firmware(firmware_p); 1120 1121 downref_rproc: 1122 if (ret) 1123 atomic_dec(&rproc->power); 1124 unlock_mutex: 1125 mutex_unlock(&rproc->lock); 1126 return ret; 1127 } 1128 1129 /** 1130 * rproc_boot() - boot a remote processor 1131 * @rproc: handle of a remote processor 1132 */ 1133 int rproc_boot(struct rproc *rproc) 1134 { 1135 return __rproc_boot(rproc); 1136 } 1137 EXPORT_SYMBOL(rproc_boot); 1138 1139 /** 1140 * rproc_shutdown() - power off the remote processor 1141 * @rproc: the remote processor 1142 * 1143 * Power off a remote processor (previously booted with rproc_boot()). 1144 * 1145 * In case @rproc is still being used by an additional user(s), then 1146 * this function will just decrement the power refcount and exit, 1147 * without really powering off the device. 1148 * 1149 * Every call to rproc_boot() must (eventually) be accompanied by a call 1150 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1151 * 1152 * Notes: 1153 * - we're not decrementing the rproc's refcount, only the power refcount. 1154 * which means that the @rproc handle stays valid even after rproc_shutdown() 1155 * returns, and users can still use it with a subsequent rproc_boot(), if 1156 * needed. 1157 */ 1158 void rproc_shutdown(struct rproc *rproc) 1159 { 1160 struct device *dev = &rproc->dev; 1161 int ret; 1162 1163 ret = mutex_lock_interruptible(&rproc->lock); 1164 if (ret) { 1165 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1166 return; 1167 } 1168 1169 /* if the remote proc is still needed, bail out */ 1170 if (!atomic_dec_and_test(&rproc->power)) 1171 goto out; 1172 1173 /* remove any subdevices for the remote processor */ 1174 rproc_remove_subdevices(rproc); 1175 1176 /* power off the remote processor */ 1177 ret = rproc->ops->stop(rproc); 1178 if (ret) { 1179 atomic_inc(&rproc->power); 1180 dev_err(dev, "can't stop rproc: %d\n", ret); 1181 goto out; 1182 } 1183 1184 /* clean up all acquired resources */ 1185 rproc_resource_cleanup(rproc); 1186 1187 rproc_disable_iommu(rproc); 1188 1189 /* Free the copy of the resource table */ 1190 kfree(rproc->cached_table); 1191 rproc->cached_table = NULL; 1192 rproc->table_ptr = NULL; 1193 1194 /* if in crash state, unlock crash handler */ 1195 if (rproc->state == RPROC_CRASHED) 1196 complete_all(&rproc->crash_comp); 1197 1198 rproc->state = RPROC_OFFLINE; 1199 1200 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1201 1202 out: 1203 mutex_unlock(&rproc->lock); 1204 } 1205 EXPORT_SYMBOL(rproc_shutdown); 1206 1207 /** 1208 * rproc_get_by_phandle() - find a remote processor by phandle 1209 * @phandle: phandle to the rproc 1210 * 1211 * Finds an rproc handle using the remote processor's phandle, and then 1212 * return a handle to the rproc. 1213 * 1214 * This function increments the remote processor's refcount, so always 1215 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1216 * 1217 * Returns the rproc handle on success, and NULL on failure. 1218 */ 1219 #ifdef CONFIG_OF 1220 struct rproc *rproc_get_by_phandle(phandle phandle) 1221 { 1222 struct rproc *rproc = NULL, *r; 1223 struct device_node *np; 1224 1225 np = of_find_node_by_phandle(phandle); 1226 if (!np) 1227 return NULL; 1228 1229 mutex_lock(&rproc_list_mutex); 1230 list_for_each_entry(r, &rproc_list, node) { 1231 if (r->dev.parent && r->dev.parent->of_node == np) { 1232 /* prevent underlying implementation from being removed */ 1233 if (!try_module_get(r->dev.parent->driver->owner)) { 1234 dev_err(&r->dev, "can't get owner\n"); 1235 break; 1236 } 1237 1238 rproc = r; 1239 get_device(&rproc->dev); 1240 break; 1241 } 1242 } 1243 mutex_unlock(&rproc_list_mutex); 1244 1245 of_node_put(np); 1246 1247 return rproc; 1248 } 1249 #else 1250 struct rproc *rproc_get_by_phandle(phandle phandle) 1251 { 1252 return NULL; 1253 } 1254 #endif 1255 EXPORT_SYMBOL(rproc_get_by_phandle); 1256 1257 /** 1258 * rproc_add() - register a remote processor 1259 * @rproc: the remote processor handle to register 1260 * 1261 * Registers @rproc with the remoteproc framework, after it has been 1262 * allocated with rproc_alloc(). 1263 * 1264 * This is called by the platform-specific rproc implementation, whenever 1265 * a new remote processor device is probed. 1266 * 1267 * Returns 0 on success and an appropriate error code otherwise. 1268 * 1269 * Note: this function initiates an asynchronous firmware loading 1270 * context, which will look for virtio devices supported by the rproc's 1271 * firmware. 1272 * 1273 * If found, those virtio devices will be created and added, so as a result 1274 * of registering this remote processor, additional virtio drivers might be 1275 * probed. 1276 */ 1277 int rproc_add(struct rproc *rproc) 1278 { 1279 struct device *dev = &rproc->dev; 1280 int ret; 1281 1282 ret = device_add(dev); 1283 if (ret < 0) 1284 return ret; 1285 1286 dev_info(dev, "%s is available\n", rproc->name); 1287 1288 /* create debugfs entries */ 1289 rproc_create_debug_dir(rproc); 1290 ret = rproc_add_virtio_devices(rproc); 1291 if (ret < 0) 1292 return ret; 1293 1294 /* expose to rproc_get_by_phandle users */ 1295 mutex_lock(&rproc_list_mutex); 1296 list_add(&rproc->node, &rproc_list); 1297 mutex_unlock(&rproc_list_mutex); 1298 1299 return 0; 1300 } 1301 EXPORT_SYMBOL(rproc_add); 1302 1303 /** 1304 * rproc_type_release() - release a remote processor instance 1305 * @dev: the rproc's device 1306 * 1307 * This function should _never_ be called directly. 1308 * 1309 * It will be called by the driver core when no one holds a valid pointer 1310 * to @dev anymore. 1311 */ 1312 static void rproc_type_release(struct device *dev) 1313 { 1314 struct rproc *rproc = container_of(dev, struct rproc, dev); 1315 1316 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1317 1318 rproc_delete_debug_dir(rproc); 1319 1320 idr_destroy(&rproc->notifyids); 1321 1322 if (rproc->index >= 0) 1323 ida_simple_remove(&rproc_dev_index, rproc->index); 1324 1325 kfree(rproc->firmware); 1326 kfree(rproc); 1327 } 1328 1329 static struct device_type rproc_type = { 1330 .name = "remoteproc", 1331 .release = rproc_type_release, 1332 }; 1333 1334 /** 1335 * rproc_alloc() - allocate a remote processor handle 1336 * @dev: the underlying device 1337 * @name: name of this remote processor 1338 * @ops: platform-specific handlers (mainly start/stop) 1339 * @firmware: name of firmware file to load, can be NULL 1340 * @len: length of private data needed by the rproc driver (in bytes) 1341 * 1342 * Allocates a new remote processor handle, but does not register 1343 * it yet. if @firmware is NULL, a default name is used. 1344 * 1345 * This function should be used by rproc implementations during initialization 1346 * of the remote processor. 1347 * 1348 * After creating an rproc handle using this function, and when ready, 1349 * implementations should then call rproc_add() to complete 1350 * the registration of the remote processor. 1351 * 1352 * On success the new rproc is returned, and on failure, NULL. 1353 * 1354 * Note: _never_ directly deallocate @rproc, even if it was not registered 1355 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1356 */ 1357 struct rproc *rproc_alloc(struct device *dev, const char *name, 1358 const struct rproc_ops *ops, 1359 const char *firmware, int len) 1360 { 1361 struct rproc *rproc; 1362 char *p, *template = "rproc-%s-fw"; 1363 int name_len; 1364 1365 if (!dev || !name || !ops) 1366 return NULL; 1367 1368 if (!firmware) { 1369 /* 1370 * If the caller didn't pass in a firmware name then 1371 * construct a default name. 1372 */ 1373 name_len = strlen(name) + strlen(template) - 2 + 1; 1374 p = kmalloc(name_len, GFP_KERNEL); 1375 if (!p) 1376 return NULL; 1377 snprintf(p, name_len, template, name); 1378 } else { 1379 p = kstrdup(firmware, GFP_KERNEL); 1380 if (!p) 1381 return NULL; 1382 } 1383 1384 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 1385 if (!rproc) { 1386 kfree(p); 1387 return NULL; 1388 } 1389 1390 rproc->firmware = p; 1391 rproc->name = name; 1392 rproc->ops = ops; 1393 rproc->priv = &rproc[1]; 1394 rproc->auto_boot = true; 1395 1396 device_initialize(&rproc->dev); 1397 rproc->dev.parent = dev; 1398 rproc->dev.type = &rproc_type; 1399 rproc->dev.class = &rproc_class; 1400 1401 /* Assign a unique device index and name */ 1402 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1403 if (rproc->index < 0) { 1404 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1405 put_device(&rproc->dev); 1406 return NULL; 1407 } 1408 1409 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1410 1411 atomic_set(&rproc->power, 0); 1412 1413 /* Set ELF as the default fw_ops handler */ 1414 rproc->fw_ops = &rproc_elf_fw_ops; 1415 1416 mutex_init(&rproc->lock); 1417 1418 idr_init(&rproc->notifyids); 1419 1420 INIT_LIST_HEAD(&rproc->carveouts); 1421 INIT_LIST_HEAD(&rproc->mappings); 1422 INIT_LIST_HEAD(&rproc->traces); 1423 INIT_LIST_HEAD(&rproc->rvdevs); 1424 INIT_LIST_HEAD(&rproc->subdevs); 1425 1426 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 1427 init_completion(&rproc->crash_comp); 1428 1429 rproc->state = RPROC_OFFLINE; 1430 1431 return rproc; 1432 } 1433 EXPORT_SYMBOL(rproc_alloc); 1434 1435 /** 1436 * rproc_free() - unroll rproc_alloc() 1437 * @rproc: the remote processor handle 1438 * 1439 * This function decrements the rproc dev refcount. 1440 * 1441 * If no one holds any reference to rproc anymore, then its refcount would 1442 * now drop to zero, and it would be freed. 1443 */ 1444 void rproc_free(struct rproc *rproc) 1445 { 1446 put_device(&rproc->dev); 1447 } 1448 EXPORT_SYMBOL(rproc_free); 1449 1450 /** 1451 * rproc_put() - release rproc reference 1452 * @rproc: the remote processor handle 1453 * 1454 * This function decrements the rproc dev refcount. 1455 * 1456 * If no one holds any reference to rproc anymore, then its refcount would 1457 * now drop to zero, and it would be freed. 1458 */ 1459 void rproc_put(struct rproc *rproc) 1460 { 1461 module_put(rproc->dev.parent->driver->owner); 1462 put_device(&rproc->dev); 1463 } 1464 EXPORT_SYMBOL(rproc_put); 1465 1466 /** 1467 * rproc_del() - unregister a remote processor 1468 * @rproc: rproc handle to unregister 1469 * 1470 * This function should be called when the platform specific rproc 1471 * implementation decides to remove the rproc device. it should 1472 * _only_ be called if a previous invocation of rproc_add() 1473 * has completed successfully. 1474 * 1475 * After rproc_del() returns, @rproc isn't freed yet, because 1476 * of the outstanding reference created by rproc_alloc. To decrement that 1477 * one last refcount, one still needs to call rproc_free(). 1478 * 1479 * Returns 0 on success and -EINVAL if @rproc isn't valid. 1480 */ 1481 int rproc_del(struct rproc *rproc) 1482 { 1483 if (!rproc) 1484 return -EINVAL; 1485 1486 /* if rproc is just being registered, wait */ 1487 wait_for_completion(&rproc->firmware_loading_complete); 1488 1489 /* if rproc is marked always-on, rproc_add() booted it */ 1490 /* TODO: make sure this works with rproc->power > 1 */ 1491 if (rproc->auto_boot) 1492 rproc_shutdown(rproc); 1493 1494 /* the rproc is downref'ed as soon as it's removed from the klist */ 1495 mutex_lock(&rproc_list_mutex); 1496 list_del(&rproc->node); 1497 mutex_unlock(&rproc_list_mutex); 1498 1499 device_del(&rproc->dev); 1500 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(rproc_del); 1504 1505 /** 1506 * rproc_add_subdev() - add a subdevice to a remoteproc 1507 * @rproc: rproc handle to add the subdevice to 1508 * @subdev: subdev handle to register 1509 * @probe: function to call when the rproc boots 1510 * @remove: function to call when the rproc shuts down 1511 */ 1512 void rproc_add_subdev(struct rproc *rproc, 1513 struct rproc_subdev *subdev, 1514 int (*probe)(struct rproc_subdev *subdev), 1515 void (*remove)(struct rproc_subdev *subdev)) 1516 { 1517 subdev->probe = probe; 1518 subdev->remove = remove; 1519 1520 list_add_tail(&subdev->node, &rproc->subdevs); 1521 } 1522 EXPORT_SYMBOL(rproc_add_subdev); 1523 1524 /** 1525 * rproc_remove_subdev() - remove a subdevice from a remoteproc 1526 * @rproc: rproc handle to remove the subdevice from 1527 * @subdev: subdev handle, previously registered with rproc_add_subdev() 1528 */ 1529 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 1530 { 1531 list_del(&subdev->node); 1532 } 1533 EXPORT_SYMBOL(rproc_remove_subdev); 1534 1535 /** 1536 * rproc_report_crash() - rproc crash reporter function 1537 * @rproc: remote processor 1538 * @type: crash type 1539 * 1540 * This function must be called every time a crash is detected by the low-level 1541 * drivers implementing a specific remoteproc. This should not be called from a 1542 * non-remoteproc driver. 1543 * 1544 * This function can be called from atomic/interrupt context. 1545 */ 1546 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 1547 { 1548 if (!rproc) { 1549 pr_err("NULL rproc pointer\n"); 1550 return; 1551 } 1552 1553 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 1554 rproc->name, rproc_crash_to_string(type)); 1555 1556 /* create a new task to handle the error */ 1557 schedule_work(&rproc->crash_handler); 1558 } 1559 EXPORT_SYMBOL(rproc_report_crash); 1560 1561 static int __init remoteproc_init(void) 1562 { 1563 rproc_init_sysfs(); 1564 rproc_init_debugfs(); 1565 1566 return 0; 1567 } 1568 module_init(remoteproc_init); 1569 1570 static void __exit remoteproc_exit(void) 1571 { 1572 ida_destroy(&rproc_dev_index); 1573 1574 rproc_exit_debugfs(); 1575 rproc_exit_sysfs(); 1576 } 1577 module_exit(remoteproc_exit); 1578 1579 MODULE_LICENSE("GPL v2"); 1580 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 1581