1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44 
45 #include "remoteproc_internal.h"
46 
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 				struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57 
58 static const char * const rproc_crash_names[] = {
59 	[RPROC_MMUFAULT]	= "mmufault",
60 	[RPROC_WATCHDOG]	= "watchdog",
61 	[RPROC_FATAL_ERROR]	= "fatal error",
62 };
63 
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
66 {
67 	if (type < ARRAY_SIZE(rproc_crash_names))
68 		return rproc_crash_names[type];
69 	return "unknown";
70 }
71 
72 /*
73  * This is the IOMMU fault handler we register with the IOMMU API
74  * (when relevant; not all remote processors access memory through
75  * an IOMMU).
76  *
77  * IOMMU core will invoke this handler whenever the remote processor
78  * will try to access an unmapped device address.
79  */
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 			     unsigned long iova, int flags, void *token)
82 {
83 	struct rproc *rproc = token;
84 
85 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86 
87 	rproc_report_crash(rproc, RPROC_MMUFAULT);
88 
89 	/*
90 	 * Let the iommu core know we're not really handling this fault;
91 	 * we just used it as a recovery trigger.
92 	 */
93 	return -ENOSYS;
94 }
95 
96 static int rproc_enable_iommu(struct rproc *rproc)
97 {
98 	struct iommu_domain *domain;
99 	struct device *dev = rproc->dev.parent;
100 	int ret;
101 
102 	if (!rproc->has_iommu) {
103 		dev_dbg(dev, "iommu not present\n");
104 		return 0;
105 	}
106 
107 	domain = iommu_domain_alloc(dev->bus);
108 	if (!domain) {
109 		dev_err(dev, "can't alloc iommu domain\n");
110 		return -ENOMEM;
111 	}
112 
113 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114 
115 	ret = iommu_attach_device(domain, dev);
116 	if (ret) {
117 		dev_err(dev, "can't attach iommu device: %d\n", ret);
118 		goto free_domain;
119 	}
120 
121 	rproc->domain = domain;
122 
123 	return 0;
124 
125 free_domain:
126 	iommu_domain_free(domain);
127 	return ret;
128 }
129 
130 static void rproc_disable_iommu(struct rproc *rproc)
131 {
132 	struct iommu_domain *domain = rproc->domain;
133 	struct device *dev = rproc->dev.parent;
134 
135 	if (!domain)
136 		return;
137 
138 	iommu_detach_device(domain, dev);
139 	iommu_domain_free(domain);
140 }
141 
142 /**
143  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144  * @rproc: handle of a remote processor
145  * @da: remoteproc device address to translate
146  * @len: length of the memory region @da is pointing to
147  *
148  * Some remote processors will ask us to allocate them physically contiguous
149  * memory regions (which we call "carveouts"), and map them to specific
150  * device addresses (which are hardcoded in the firmware). They may also have
151  * dedicated memory regions internal to the processors, and use them either
152  * exclusively or alongside carveouts.
153  *
154  * They may then ask us to copy objects into specific device addresses (e.g.
155  * code/data sections) or expose us certain symbols in other device address
156  * (e.g. their trace buffer).
157  *
158  * This function is a helper function with which we can go over the allocated
159  * carveouts and translate specific device addresses to kernel virtual addresses
160  * so we can access the referenced memory. This function also allows to perform
161  * translations on the internal remoteproc memory regions through a platform
162  * implementation specific da_to_va ops, if present.
163  *
164  * The function returns a valid kernel address on success or NULL on failure.
165  *
166  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167  * but only on kernel direct mapped RAM memory. Instead, we're just using
168  * here the output of the DMA API for the carveouts, which should be more
169  * correct.
170  */
171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 {
173 	struct rproc_mem_entry *carveout;
174 	void *ptr = NULL;
175 
176 	if (rproc->ops->da_to_va) {
177 		ptr = rproc->ops->da_to_va(rproc, da, len);
178 		if (ptr)
179 			goto out;
180 	}
181 
182 	list_for_each_entry(carveout, &rproc->carveouts, node) {
183 		int offset = da - carveout->da;
184 
185 		/* try next carveout if da is too small */
186 		if (offset < 0)
187 			continue;
188 
189 		/* try next carveout if da is too large */
190 		if (offset + len > carveout->len)
191 			continue;
192 
193 		ptr = carveout->va + offset;
194 
195 		break;
196 	}
197 
198 out:
199 	return ptr;
200 }
201 EXPORT_SYMBOL(rproc_da_to_va);
202 
203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204 {
205 	struct rproc *rproc = rvdev->rproc;
206 	struct device *dev = &rproc->dev;
207 	struct rproc_vring *rvring = &rvdev->vring[i];
208 	struct fw_rsc_vdev *rsc;
209 	dma_addr_t dma;
210 	void *va;
211 	int ret, size, notifyid;
212 
213 	/* actual size of vring (in bytes) */
214 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215 
216 	/*
217 	 * Allocate non-cacheable memory for the vring. In the future
218 	 * this call will also configure the IOMMU for us
219 	 */
220 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 	if (!va) {
222 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 		return -EINVAL;
224 	}
225 
226 	/*
227 	 * Assign an rproc-wide unique index for this vring
228 	 * TODO: assign a notifyid for rvdev updates as well
229 	 * TODO: support predefined notifyids (via resource table)
230 	 */
231 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 	if (ret < 0) {
233 		dev_err(dev, "idr_alloc failed: %d\n", ret);
234 		dma_free_coherent(dev->parent, size, va, dma);
235 		return ret;
236 	}
237 	notifyid = ret;
238 
239 	dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
240 		i, va, &dma, size, notifyid);
241 
242 	rvring->va = va;
243 	rvring->dma = dma;
244 	rvring->notifyid = notifyid;
245 
246 	/*
247 	 * Let the rproc know the notifyid and da of this vring.
248 	 * Not all platforms use dma_alloc_coherent to automatically
249 	 * set up the iommu. In this case the device address (da) will
250 	 * hold the physical address and not the device address.
251 	 */
252 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 	rsc->vring[i].da = dma;
254 	rsc->vring[i].notifyid = notifyid;
255 	return 0;
256 }
257 
258 static int
259 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
260 {
261 	struct rproc *rproc = rvdev->rproc;
262 	struct device *dev = &rproc->dev;
263 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 	struct rproc_vring *rvring = &rvdev->vring[i];
265 
266 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
267 		i, vring->da, vring->num, vring->align);
268 
269 	/* verify queue size and vring alignment are sane */
270 	if (!vring->num || !vring->align) {
271 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
272 			vring->num, vring->align);
273 		return -EINVAL;
274 	}
275 
276 	rvring->len = vring->num;
277 	rvring->align = vring->align;
278 	rvring->rvdev = rvdev;
279 
280 	return 0;
281 }
282 
283 void rproc_free_vring(struct rproc_vring *rvring)
284 {
285 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
286 	struct rproc *rproc = rvring->rvdev->rproc;
287 	int idx = rvring->rvdev->vring - rvring;
288 	struct fw_rsc_vdev *rsc;
289 
290 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
291 	idr_remove(&rproc->notifyids, rvring->notifyid);
292 
293 	/* reset resource entry info */
294 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
295 	rsc->vring[idx].da = 0;
296 	rsc->vring[idx].notifyid = -1;
297 }
298 
299 /**
300  * rproc_handle_vdev() - handle a vdev fw resource
301  * @rproc: the remote processor
302  * @rsc: the vring resource descriptor
303  * @avail: size of available data (for sanity checking the image)
304  *
305  * This resource entry requests the host to statically register a virtio
306  * device (vdev), and setup everything needed to support it. It contains
307  * everything needed to make it possible: the virtio device id, virtio
308  * device features, vrings information, virtio config space, etc...
309  *
310  * Before registering the vdev, the vrings are allocated from non-cacheable
311  * physically contiguous memory. Currently we only support two vrings per
312  * remote processor (temporary limitation). We might also want to consider
313  * doing the vring allocation only later when ->find_vqs() is invoked, and
314  * then release them upon ->del_vqs().
315  *
316  * Note: @da is currently not really handled correctly: we dynamically
317  * allocate it using the DMA API, ignoring requested hard coded addresses,
318  * and we don't take care of any required IOMMU programming. This is all
319  * going to be taken care of when the generic iommu-based DMA API will be
320  * merged. Meanwhile, statically-addressed iommu-based firmware images should
321  * use RSC_DEVMEM resource entries to map their required @da to the physical
322  * address of their base CMA region (ouch, hacky!).
323  *
324  * Returns 0 on success, or an appropriate error code otherwise
325  */
326 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
327 			     int offset, int avail)
328 {
329 	struct device *dev = &rproc->dev;
330 	struct rproc_vdev *rvdev;
331 	int i, ret;
332 
333 	/* make sure resource isn't truncated */
334 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
335 			+ rsc->config_len > avail) {
336 		dev_err(dev, "vdev rsc is truncated\n");
337 		return -EINVAL;
338 	}
339 
340 	/* make sure reserved bytes are zeroes */
341 	if (rsc->reserved[0] || rsc->reserved[1]) {
342 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
343 		return -EINVAL;
344 	}
345 
346 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
347 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
348 
349 	/* we currently support only two vrings per rvdev */
350 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
351 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
352 		return -EINVAL;
353 	}
354 
355 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
356 	if (!rvdev)
357 		return -ENOMEM;
358 
359 	rvdev->rproc = rproc;
360 
361 	/* parse the vrings */
362 	for (i = 0; i < rsc->num_of_vrings; i++) {
363 		ret = rproc_parse_vring(rvdev, rsc, i);
364 		if (ret)
365 			goto free_rvdev;
366 	}
367 
368 	/* remember the resource offset*/
369 	rvdev->rsc_offset = offset;
370 
371 	list_add_tail(&rvdev->node, &rproc->rvdevs);
372 
373 	/* it is now safe to add the virtio device */
374 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
375 	if (ret)
376 		goto remove_rvdev;
377 
378 	return 0;
379 
380 remove_rvdev:
381 	list_del(&rvdev->node);
382 free_rvdev:
383 	kfree(rvdev);
384 	return ret;
385 }
386 
387 /**
388  * rproc_handle_trace() - handle a shared trace buffer resource
389  * @rproc: the remote processor
390  * @rsc: the trace resource descriptor
391  * @avail: size of available data (for sanity checking the image)
392  *
393  * In case the remote processor dumps trace logs into memory,
394  * export it via debugfs.
395  *
396  * Currently, the 'da' member of @rsc should contain the device address
397  * where the remote processor is dumping the traces. Later we could also
398  * support dynamically allocating this address using the generic
399  * DMA API (but currently there isn't a use case for that).
400  *
401  * Returns 0 on success, or an appropriate error code otherwise
402  */
403 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
404 			      int offset, int avail)
405 {
406 	struct rproc_mem_entry *trace;
407 	struct device *dev = &rproc->dev;
408 	void *ptr;
409 	char name[15];
410 
411 	if (sizeof(*rsc) > avail) {
412 		dev_err(dev, "trace rsc is truncated\n");
413 		return -EINVAL;
414 	}
415 
416 	/* make sure reserved bytes are zeroes */
417 	if (rsc->reserved) {
418 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
419 		return -EINVAL;
420 	}
421 
422 	/* what's the kernel address of this resource ? */
423 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
424 	if (!ptr) {
425 		dev_err(dev, "erroneous trace resource entry\n");
426 		return -EINVAL;
427 	}
428 
429 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
430 	if (!trace)
431 		return -ENOMEM;
432 
433 	/* set the trace buffer dma properties */
434 	trace->len = rsc->len;
435 	trace->va = ptr;
436 
437 	/* make sure snprintf always null terminates, even if truncating */
438 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
439 
440 	/* create the debugfs entry */
441 	trace->priv = rproc_create_trace_file(name, rproc, trace);
442 	if (!trace->priv) {
443 		trace->va = NULL;
444 		kfree(trace);
445 		return -EINVAL;
446 	}
447 
448 	list_add_tail(&trace->node, &rproc->traces);
449 
450 	rproc->num_traces++;
451 
452 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
453 		name, ptr, rsc->da, rsc->len);
454 
455 	return 0;
456 }
457 
458 /**
459  * rproc_handle_devmem() - handle devmem resource entry
460  * @rproc: remote processor handle
461  * @rsc: the devmem resource entry
462  * @avail: size of available data (for sanity checking the image)
463  *
464  * Remote processors commonly need to access certain on-chip peripherals.
465  *
466  * Some of these remote processors access memory via an iommu device,
467  * and might require us to configure their iommu before they can access
468  * the on-chip peripherals they need.
469  *
470  * This resource entry is a request to map such a peripheral device.
471  *
472  * These devmem entries will contain the physical address of the device in
473  * the 'pa' member. If a specific device address is expected, then 'da' will
474  * contain it (currently this is the only use case supported). 'len' will
475  * contain the size of the physical region we need to map.
476  *
477  * Currently we just "trust" those devmem entries to contain valid physical
478  * addresses, but this is going to change: we want the implementations to
479  * tell us ranges of physical addresses the firmware is allowed to request,
480  * and not allow firmwares to request access to physical addresses that
481  * are outside those ranges.
482  */
483 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
484 			       int offset, int avail)
485 {
486 	struct rproc_mem_entry *mapping;
487 	struct device *dev = &rproc->dev;
488 	int ret;
489 
490 	/* no point in handling this resource without a valid iommu domain */
491 	if (!rproc->domain)
492 		return -EINVAL;
493 
494 	if (sizeof(*rsc) > avail) {
495 		dev_err(dev, "devmem rsc is truncated\n");
496 		return -EINVAL;
497 	}
498 
499 	/* make sure reserved bytes are zeroes */
500 	if (rsc->reserved) {
501 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
502 		return -EINVAL;
503 	}
504 
505 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
506 	if (!mapping)
507 		return -ENOMEM;
508 
509 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
510 	if (ret) {
511 		dev_err(dev, "failed to map devmem: %d\n", ret);
512 		goto out;
513 	}
514 
515 	/*
516 	 * We'll need this info later when we'll want to unmap everything
517 	 * (e.g. on shutdown).
518 	 *
519 	 * We can't trust the remote processor not to change the resource
520 	 * table, so we must maintain this info independently.
521 	 */
522 	mapping->da = rsc->da;
523 	mapping->len = rsc->len;
524 	list_add_tail(&mapping->node, &rproc->mappings);
525 
526 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
527 		rsc->pa, rsc->da, rsc->len);
528 
529 	return 0;
530 
531 out:
532 	kfree(mapping);
533 	return ret;
534 }
535 
536 /**
537  * rproc_handle_carveout() - handle phys contig memory allocation requests
538  * @rproc: rproc handle
539  * @rsc: the resource entry
540  * @avail: size of available data (for image validation)
541  *
542  * This function will handle firmware requests for allocation of physically
543  * contiguous memory regions.
544  *
545  * These request entries should come first in the firmware's resource table,
546  * as other firmware entries might request placing other data objects inside
547  * these memory regions (e.g. data/code segments, trace resource entries, ...).
548  *
549  * Allocating memory this way helps utilizing the reserved physical memory
550  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
551  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
552  * pressure is important; it may have a substantial impact on performance.
553  */
554 static int rproc_handle_carveout(struct rproc *rproc,
555 				 struct fw_rsc_carveout *rsc,
556 				 int offset, int avail)
557 {
558 	struct rproc_mem_entry *carveout, *mapping;
559 	struct device *dev = &rproc->dev;
560 	dma_addr_t dma;
561 	void *va;
562 	int ret;
563 
564 	if (sizeof(*rsc) > avail) {
565 		dev_err(dev, "carveout rsc is truncated\n");
566 		return -EINVAL;
567 	}
568 
569 	/* make sure reserved bytes are zeroes */
570 	if (rsc->reserved) {
571 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
572 		return -EINVAL;
573 	}
574 
575 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
576 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
577 
578 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
579 	if (!carveout)
580 		return -ENOMEM;
581 
582 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
583 	if (!va) {
584 		dev_err(dev->parent,
585 			"failed to allocate dma memory: len 0x%x\n", rsc->len);
586 		ret = -ENOMEM;
587 		goto free_carv;
588 	}
589 
590 	dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
591 		va, &dma, rsc->len);
592 
593 	/*
594 	 * Ok, this is non-standard.
595 	 *
596 	 * Sometimes we can't rely on the generic iommu-based DMA API
597 	 * to dynamically allocate the device address and then set the IOMMU
598 	 * tables accordingly, because some remote processors might
599 	 * _require_ us to use hard coded device addresses that their
600 	 * firmware was compiled with.
601 	 *
602 	 * In this case, we must use the IOMMU API directly and map
603 	 * the memory to the device address as expected by the remote
604 	 * processor.
605 	 *
606 	 * Obviously such remote processor devices should not be configured
607 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
608 	 * physical address in this case.
609 	 */
610 	if (rproc->domain) {
611 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
612 		if (!mapping) {
613 			ret = -ENOMEM;
614 			goto dma_free;
615 		}
616 
617 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
618 				rsc->flags);
619 		if (ret) {
620 			dev_err(dev, "iommu_map failed: %d\n", ret);
621 			goto free_mapping;
622 		}
623 
624 		/*
625 		 * We'll need this info later when we'll want to unmap
626 		 * everything (e.g. on shutdown).
627 		 *
628 		 * We can't trust the remote processor not to change the
629 		 * resource table, so we must maintain this info independently.
630 		 */
631 		mapping->da = rsc->da;
632 		mapping->len = rsc->len;
633 		list_add_tail(&mapping->node, &rproc->mappings);
634 
635 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
636 			rsc->da, &dma);
637 	}
638 
639 	/*
640 	 * Some remote processors might need to know the pa
641 	 * even though they are behind an IOMMU. E.g., OMAP4's
642 	 * remote M3 processor needs this so it can control
643 	 * on-chip hardware accelerators that are not behind
644 	 * the IOMMU, and therefor must know the pa.
645 	 *
646 	 * Generally we don't want to expose physical addresses
647 	 * if we don't have to (remote processors are generally
648 	 * _not_ trusted), so we might want to do this only for
649 	 * remote processor that _must_ have this (e.g. OMAP4's
650 	 * dual M3 subsystem).
651 	 *
652 	 * Non-IOMMU processors might also want to have this info.
653 	 * In this case, the device address and the physical address
654 	 * are the same.
655 	 */
656 	rsc->pa = dma;
657 
658 	carveout->va = va;
659 	carveout->len = rsc->len;
660 	carveout->dma = dma;
661 	carveout->da = rsc->da;
662 
663 	list_add_tail(&carveout->node, &rproc->carveouts);
664 
665 	return 0;
666 
667 free_mapping:
668 	kfree(mapping);
669 dma_free:
670 	dma_free_coherent(dev->parent, rsc->len, va, dma);
671 free_carv:
672 	kfree(carveout);
673 	return ret;
674 }
675 
676 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
677 			      int offset, int avail)
678 {
679 	/* Summarize the number of notification IDs */
680 	rproc->max_notifyid += rsc->num_of_vrings;
681 
682 	return 0;
683 }
684 
685 /*
686  * A lookup table for resource handlers. The indices are defined in
687  * enum fw_resource_type.
688  */
689 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
690 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
691 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
692 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
693 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
694 };
695 
696 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
697 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
698 };
699 
700 /* handle firmware resource entries before booting the remote processor */
701 static int rproc_handle_resources(struct rproc *rproc, int len,
702 				  rproc_handle_resource_t handlers[RSC_LAST])
703 {
704 	struct device *dev = &rproc->dev;
705 	rproc_handle_resource_t handler;
706 	int ret = 0, i;
707 
708 	for (i = 0; i < rproc->table_ptr->num; i++) {
709 		int offset = rproc->table_ptr->offset[i];
710 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
711 		int avail = len - offset - sizeof(*hdr);
712 		void *rsc = (void *)hdr + sizeof(*hdr);
713 
714 		/* make sure table isn't truncated */
715 		if (avail < 0) {
716 			dev_err(dev, "rsc table is truncated\n");
717 			return -EINVAL;
718 		}
719 
720 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
721 
722 		if (hdr->type >= RSC_LAST) {
723 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
724 			continue;
725 		}
726 
727 		handler = handlers[hdr->type];
728 		if (!handler)
729 			continue;
730 
731 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
732 		if (ret)
733 			break;
734 	}
735 
736 	return ret;
737 }
738 
739 /**
740  * rproc_resource_cleanup() - clean up and free all acquired resources
741  * @rproc: rproc handle
742  *
743  * This function will free all resources acquired for @rproc, and it
744  * is called whenever @rproc either shuts down or fails to boot.
745  */
746 static void rproc_resource_cleanup(struct rproc *rproc)
747 {
748 	struct rproc_mem_entry *entry, *tmp;
749 	struct rproc_vdev *rvdev, *rvtmp;
750 	struct device *dev = &rproc->dev;
751 
752 	/* clean up debugfs trace entries */
753 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
754 		rproc_remove_trace_file(entry->priv);
755 		rproc->num_traces--;
756 		list_del(&entry->node);
757 		kfree(entry);
758 	}
759 
760 	/* clean up iommu mapping entries */
761 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
762 		size_t unmapped;
763 
764 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
765 		if (unmapped != entry->len) {
766 			/* nothing much to do besides complaining */
767 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
768 				unmapped);
769 		}
770 
771 		list_del(&entry->node);
772 		kfree(entry);
773 	}
774 
775 	/* clean up carveout allocations */
776 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
777 		dma_free_coherent(dev->parent, entry->len, entry->va,
778 				  entry->dma);
779 		list_del(&entry->node);
780 		kfree(entry);
781 	}
782 
783 	/* clean up remote vdev entries */
784 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
785 		rproc_remove_virtio_dev(rvdev);
786 }
787 
788 /*
789  * take a firmware and boot a remote processor with it.
790  */
791 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
792 {
793 	struct device *dev = &rproc->dev;
794 	const char *name = rproc->firmware;
795 	struct resource_table *table, *loaded_table;
796 	int ret, tablesz;
797 
798 	ret = rproc_fw_sanity_check(rproc, fw);
799 	if (ret)
800 		return ret;
801 
802 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
803 
804 	/*
805 	 * if enabling an IOMMU isn't relevant for this rproc, this is
806 	 * just a nop
807 	 */
808 	ret = rproc_enable_iommu(rproc);
809 	if (ret) {
810 		dev_err(dev, "can't enable iommu: %d\n", ret);
811 		return ret;
812 	}
813 
814 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
815 	ret = -EINVAL;
816 
817 	/* look for the resource table */
818 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
819 	if (!table) {
820 		dev_err(dev, "Failed to find resource table\n");
821 		goto clean_up;
822 	}
823 
824 	/*
825 	 * Create a copy of the resource table. When a virtio device starts
826 	 * and calls vring_new_virtqueue() the address of the allocated vring
827 	 * will be stored in the cached_table. Before the device is started,
828 	 * cached_table will be copied into device memory.
829 	 */
830 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
831 	if (!rproc->cached_table)
832 		goto clean_up;
833 
834 	rproc->table_ptr = rproc->cached_table;
835 
836 	/* reset max_notifyid */
837 	rproc->max_notifyid = -1;
838 
839 	/* look for virtio devices and register them */
840 	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
841 	if (ret) {
842 		dev_err(dev, "Failed to handle vdev resources: %d\n", ret);
843 		goto clean_up;
844 	}
845 
846 	/* handle fw resources which are required to boot rproc */
847 	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
848 	if (ret) {
849 		dev_err(dev, "Failed to process resources: %d\n", ret);
850 		goto clean_up_resources;
851 	}
852 
853 	/* load the ELF segments to memory */
854 	ret = rproc_load_segments(rproc, fw);
855 	if (ret) {
856 		dev_err(dev, "Failed to load program segments: %d\n", ret);
857 		goto clean_up_resources;
858 	}
859 
860 	/*
861 	 * The starting device has been given the rproc->cached_table as the
862 	 * resource table. The address of the vring along with the other
863 	 * allocated resources (carveouts etc) is stored in cached_table.
864 	 * In order to pass this information to the remote device we must copy
865 	 * this information to device memory. We also update the table_ptr so
866 	 * that any subsequent changes will be applied to the loaded version.
867 	 */
868 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
869 	if (loaded_table) {
870 		memcpy(loaded_table, rproc->cached_table, tablesz);
871 		rproc->table_ptr = loaded_table;
872 	}
873 
874 	/* power up the remote processor */
875 	ret = rproc->ops->start(rproc);
876 	if (ret) {
877 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
878 		goto clean_up_resources;
879 	}
880 
881 	rproc->state = RPROC_RUNNING;
882 
883 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
884 
885 	return 0;
886 
887 clean_up_resources:
888 	rproc_resource_cleanup(rproc);
889 clean_up:
890 	kfree(rproc->cached_table);
891 	rproc->cached_table = NULL;
892 	rproc->table_ptr = NULL;
893 
894 	rproc_disable_iommu(rproc);
895 	return ret;
896 }
897 
898 /*
899  * take a firmware and look for virtio devices to register.
900  *
901  * Note: this function is called asynchronously upon registration of the
902  * remote processor (so we must wait until it completes before we try
903  * to unregister the device. one other option is just to use kref here,
904  * that might be cleaner).
905  */
906 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
907 {
908 	struct rproc *rproc = context;
909 
910 	/* if rproc is marked always-on, request it to boot */
911 	if (rproc->auto_boot)
912 		rproc_boot_nowait(rproc);
913 
914 	release_firmware(fw);
915 	/* allow rproc_del() contexts, if any, to proceed */
916 	complete_all(&rproc->firmware_loading_complete);
917 }
918 
919 static int rproc_add_virtio_devices(struct rproc *rproc)
920 {
921 	int ret;
922 
923 	/* rproc_del() calls must wait until async loader completes */
924 	init_completion(&rproc->firmware_loading_complete);
925 
926 	/*
927 	 * We must retrieve early virtio configuration info from
928 	 * the firmware (e.g. whether to register a virtio device,
929 	 * what virtio features does it support, ...).
930 	 *
931 	 * We're initiating an asynchronous firmware loading, so we can
932 	 * be built-in kernel code, without hanging the boot process.
933 	 */
934 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
935 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
936 				      rproc, rproc_fw_config_virtio);
937 	if (ret < 0) {
938 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
939 		complete_all(&rproc->firmware_loading_complete);
940 	}
941 
942 	return ret;
943 }
944 
945 /**
946  * rproc_trigger_recovery() - recover a remoteproc
947  * @rproc: the remote processor
948  *
949  * The recovery is done by resetting all the virtio devices, that way all the
950  * rpmsg drivers will be reseted along with the remote processor making the
951  * remoteproc functional again.
952  *
953  * This function can sleep, so it cannot be called from atomic context.
954  */
955 int rproc_trigger_recovery(struct rproc *rproc)
956 {
957 	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
958 
959 	init_completion(&rproc->crash_comp);
960 
961 	/* shut down the remote */
962 	/* TODO: make sure this works with rproc->power > 1 */
963 	rproc_shutdown(rproc);
964 
965 	/* wait until there is no more rproc users */
966 	wait_for_completion(&rproc->crash_comp);
967 
968 	/*
969 	 * boot the remote processor up again
970 	 */
971 	rproc_boot(rproc);
972 
973 	return 0;
974 }
975 
976 /**
977  * rproc_crash_handler_work() - handle a crash
978  *
979  * This function needs to handle everything related to a crash, like cpu
980  * registers and stack dump, information to help to debug the fatal error, etc.
981  */
982 static void rproc_crash_handler_work(struct work_struct *work)
983 {
984 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
985 	struct device *dev = &rproc->dev;
986 
987 	dev_dbg(dev, "enter %s\n", __func__);
988 
989 	mutex_lock(&rproc->lock);
990 
991 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
992 		/* handle only the first crash detected */
993 		mutex_unlock(&rproc->lock);
994 		return;
995 	}
996 
997 	rproc->state = RPROC_CRASHED;
998 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
999 		rproc->name);
1000 
1001 	mutex_unlock(&rproc->lock);
1002 
1003 	if (!rproc->recovery_disabled)
1004 		rproc_trigger_recovery(rproc);
1005 }
1006 
1007 /**
1008  * __rproc_boot() - boot a remote processor
1009  * @rproc: handle of a remote processor
1010  * @wait: wait for rproc registration completion
1011  *
1012  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1013  *
1014  * If the remote processor is already powered on, this function immediately
1015  * returns (successfully).
1016  *
1017  * Returns 0 on success, and an appropriate error value otherwise.
1018  */
1019 static int __rproc_boot(struct rproc *rproc, bool wait)
1020 {
1021 	const struct firmware *firmware_p;
1022 	struct device *dev;
1023 	int ret;
1024 
1025 	if (!rproc) {
1026 		pr_err("invalid rproc handle\n");
1027 		return -EINVAL;
1028 	}
1029 
1030 	dev = &rproc->dev;
1031 
1032 	ret = mutex_lock_interruptible(&rproc->lock);
1033 	if (ret) {
1034 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1035 		return ret;
1036 	}
1037 
1038 	/* skip the boot process if rproc is already powered up */
1039 	if (atomic_inc_return(&rproc->power) > 1) {
1040 		ret = 0;
1041 		goto unlock_mutex;
1042 	}
1043 
1044 	dev_info(dev, "powering up %s\n", rproc->name);
1045 
1046 	/* load firmware */
1047 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1048 	if (ret < 0) {
1049 		dev_err(dev, "request_firmware failed: %d\n", ret);
1050 		goto downref_rproc;
1051 	}
1052 
1053 	/* if rproc virtio is not yet configured, wait */
1054 	if (wait)
1055 		wait_for_completion(&rproc->firmware_loading_complete);
1056 
1057 	ret = rproc_fw_boot(rproc, firmware_p);
1058 
1059 	release_firmware(firmware_p);
1060 
1061 downref_rproc:
1062 	if (ret)
1063 		atomic_dec(&rproc->power);
1064 unlock_mutex:
1065 	mutex_unlock(&rproc->lock);
1066 	return ret;
1067 }
1068 
1069 /**
1070  * rproc_boot() - boot a remote processor
1071  * @rproc: handle of a remote processor
1072  */
1073 int rproc_boot(struct rproc *rproc)
1074 {
1075 	return __rproc_boot(rproc, true);
1076 }
1077 EXPORT_SYMBOL(rproc_boot);
1078 
1079 /**
1080  * rproc_boot_nowait() - boot a remote processor
1081  * @rproc: handle of a remote processor
1082  *
1083  * Same as rproc_boot() but don't wait for rproc registration completion
1084  */
1085 int rproc_boot_nowait(struct rproc *rproc)
1086 {
1087 	return __rproc_boot(rproc, false);
1088 }
1089 
1090 /**
1091  * rproc_shutdown() - power off the remote processor
1092  * @rproc: the remote processor
1093  *
1094  * Power off a remote processor (previously booted with rproc_boot()).
1095  *
1096  * In case @rproc is still being used by an additional user(s), then
1097  * this function will just decrement the power refcount and exit,
1098  * without really powering off the device.
1099  *
1100  * Every call to rproc_boot() must (eventually) be accompanied by a call
1101  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1102  *
1103  * Notes:
1104  * - we're not decrementing the rproc's refcount, only the power refcount.
1105  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1106  *   returns, and users can still use it with a subsequent rproc_boot(), if
1107  *   needed.
1108  */
1109 void rproc_shutdown(struct rproc *rproc)
1110 {
1111 	struct device *dev = &rproc->dev;
1112 	int ret;
1113 
1114 	ret = mutex_lock_interruptible(&rproc->lock);
1115 	if (ret) {
1116 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1117 		return;
1118 	}
1119 
1120 	/* if the remote proc is still needed, bail out */
1121 	if (!atomic_dec_and_test(&rproc->power))
1122 		goto out;
1123 
1124 	/* power off the remote processor */
1125 	ret = rproc->ops->stop(rproc);
1126 	if (ret) {
1127 		atomic_inc(&rproc->power);
1128 		dev_err(dev, "can't stop rproc: %d\n", ret);
1129 		goto out;
1130 	}
1131 
1132 	/* clean up all acquired resources */
1133 	rproc_resource_cleanup(rproc);
1134 
1135 	rproc_disable_iommu(rproc);
1136 
1137 	/* Free the copy of the resource table */
1138 	kfree(rproc->cached_table);
1139 	rproc->cached_table = NULL;
1140 	rproc->table_ptr = NULL;
1141 
1142 	/* if in crash state, unlock crash handler */
1143 	if (rproc->state == RPROC_CRASHED)
1144 		complete_all(&rproc->crash_comp);
1145 
1146 	rproc->state = RPROC_OFFLINE;
1147 
1148 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1149 
1150 out:
1151 	mutex_unlock(&rproc->lock);
1152 }
1153 EXPORT_SYMBOL(rproc_shutdown);
1154 
1155 /**
1156  * rproc_get_by_phandle() - find a remote processor by phandle
1157  * @phandle: phandle to the rproc
1158  *
1159  * Finds an rproc handle using the remote processor's phandle, and then
1160  * return a handle to the rproc.
1161  *
1162  * This function increments the remote processor's refcount, so always
1163  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1164  *
1165  * Returns the rproc handle on success, and NULL on failure.
1166  */
1167 #ifdef CONFIG_OF
1168 struct rproc *rproc_get_by_phandle(phandle phandle)
1169 {
1170 	struct rproc *rproc = NULL, *r;
1171 	struct device_node *np;
1172 
1173 	np = of_find_node_by_phandle(phandle);
1174 	if (!np)
1175 		return NULL;
1176 
1177 	mutex_lock(&rproc_list_mutex);
1178 	list_for_each_entry(r, &rproc_list, node) {
1179 		if (r->dev.parent && r->dev.parent->of_node == np) {
1180 			/* prevent underlying implementation from being removed */
1181 			if (!try_module_get(r->dev.parent->driver->owner)) {
1182 				dev_err(&r->dev, "can't get owner\n");
1183 				break;
1184 			}
1185 
1186 			rproc = r;
1187 			get_device(&rproc->dev);
1188 			break;
1189 		}
1190 	}
1191 	mutex_unlock(&rproc_list_mutex);
1192 
1193 	of_node_put(np);
1194 
1195 	return rproc;
1196 }
1197 #else
1198 struct rproc *rproc_get_by_phandle(phandle phandle)
1199 {
1200 	return NULL;
1201 }
1202 #endif
1203 EXPORT_SYMBOL(rproc_get_by_phandle);
1204 
1205 /**
1206  * rproc_add() - register a remote processor
1207  * @rproc: the remote processor handle to register
1208  *
1209  * Registers @rproc with the remoteproc framework, after it has been
1210  * allocated with rproc_alloc().
1211  *
1212  * This is called by the platform-specific rproc implementation, whenever
1213  * a new remote processor device is probed.
1214  *
1215  * Returns 0 on success and an appropriate error code otherwise.
1216  *
1217  * Note: this function initiates an asynchronous firmware loading
1218  * context, which will look for virtio devices supported by the rproc's
1219  * firmware.
1220  *
1221  * If found, those virtio devices will be created and added, so as a result
1222  * of registering this remote processor, additional virtio drivers might be
1223  * probed.
1224  */
1225 int rproc_add(struct rproc *rproc)
1226 {
1227 	struct device *dev = &rproc->dev;
1228 	int ret;
1229 
1230 	ret = device_add(dev);
1231 	if (ret < 0)
1232 		return ret;
1233 
1234 	dev_info(dev, "%s is available\n", rproc->name);
1235 
1236 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1237 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1238 
1239 	/* create debugfs entries */
1240 	rproc_create_debug_dir(rproc);
1241 	ret = rproc_add_virtio_devices(rproc);
1242 	if (ret < 0)
1243 		return ret;
1244 
1245 	/* expose to rproc_get_by_phandle users */
1246 	mutex_lock(&rproc_list_mutex);
1247 	list_add(&rproc->node, &rproc_list);
1248 	mutex_unlock(&rproc_list_mutex);
1249 
1250 	return 0;
1251 }
1252 EXPORT_SYMBOL(rproc_add);
1253 
1254 /**
1255  * rproc_type_release() - release a remote processor instance
1256  * @dev: the rproc's device
1257  *
1258  * This function should _never_ be called directly.
1259  *
1260  * It will be called by the driver core when no one holds a valid pointer
1261  * to @dev anymore.
1262  */
1263 static void rproc_type_release(struct device *dev)
1264 {
1265 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1266 
1267 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1268 
1269 	rproc_delete_debug_dir(rproc);
1270 
1271 	idr_destroy(&rproc->notifyids);
1272 
1273 	if (rproc->index >= 0)
1274 		ida_simple_remove(&rproc_dev_index, rproc->index);
1275 
1276 	kfree(rproc);
1277 }
1278 
1279 static struct device_type rproc_type = {
1280 	.name		= "remoteproc",
1281 	.release	= rproc_type_release,
1282 };
1283 
1284 /**
1285  * rproc_alloc() - allocate a remote processor handle
1286  * @dev: the underlying device
1287  * @name: name of this remote processor
1288  * @ops: platform-specific handlers (mainly start/stop)
1289  * @firmware: name of firmware file to load, can be NULL
1290  * @len: length of private data needed by the rproc driver (in bytes)
1291  *
1292  * Allocates a new remote processor handle, but does not register
1293  * it yet. if @firmware is NULL, a default name is used.
1294  *
1295  * This function should be used by rproc implementations during initialization
1296  * of the remote processor.
1297  *
1298  * After creating an rproc handle using this function, and when ready,
1299  * implementations should then call rproc_add() to complete
1300  * the registration of the remote processor.
1301  *
1302  * On success the new rproc is returned, and on failure, NULL.
1303  *
1304  * Note: _never_ directly deallocate @rproc, even if it was not registered
1305  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1306  */
1307 struct rproc *rproc_alloc(struct device *dev, const char *name,
1308 			  const struct rproc_ops *ops,
1309 			  const char *firmware, int len)
1310 {
1311 	struct rproc *rproc;
1312 	char *p, *template = "rproc-%s-fw";
1313 	int name_len = 0;
1314 
1315 	if (!dev || !name || !ops)
1316 		return NULL;
1317 
1318 	if (!firmware)
1319 		/*
1320 		 * Make room for default firmware name (minus %s plus '\0').
1321 		 * If the caller didn't pass in a firmware name then
1322 		 * construct a default name.  We're already glomming 'len'
1323 		 * bytes onto the end of the struct rproc allocation, so do
1324 		 * a few more for the default firmware name (but only if
1325 		 * the caller doesn't pass one).
1326 		 */
1327 		name_len = strlen(name) + strlen(template) - 2 + 1;
1328 
1329 	rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL);
1330 	if (!rproc)
1331 		return NULL;
1332 
1333 	if (!firmware) {
1334 		p = (char *)rproc + sizeof(struct rproc) + len;
1335 		snprintf(p, name_len, template, name);
1336 	} else {
1337 		p = (char *)firmware;
1338 	}
1339 
1340 	rproc->firmware = p;
1341 	rproc->name = name;
1342 	rproc->ops = ops;
1343 	rproc->priv = &rproc[1];
1344 	rproc->auto_boot = true;
1345 
1346 	device_initialize(&rproc->dev);
1347 	rproc->dev.parent = dev;
1348 	rproc->dev.type = &rproc_type;
1349 
1350 	/* Assign a unique device index and name */
1351 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1352 	if (rproc->index < 0) {
1353 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1354 		put_device(&rproc->dev);
1355 		return NULL;
1356 	}
1357 
1358 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1359 
1360 	atomic_set(&rproc->power, 0);
1361 
1362 	/* Set ELF as the default fw_ops handler */
1363 	rproc->fw_ops = &rproc_elf_fw_ops;
1364 
1365 	mutex_init(&rproc->lock);
1366 
1367 	idr_init(&rproc->notifyids);
1368 
1369 	INIT_LIST_HEAD(&rproc->carveouts);
1370 	INIT_LIST_HEAD(&rproc->mappings);
1371 	INIT_LIST_HEAD(&rproc->traces);
1372 	INIT_LIST_HEAD(&rproc->rvdevs);
1373 
1374 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1375 	init_completion(&rproc->crash_comp);
1376 
1377 	rproc->state = RPROC_OFFLINE;
1378 
1379 	return rproc;
1380 }
1381 EXPORT_SYMBOL(rproc_alloc);
1382 
1383 /**
1384  * rproc_free() - unroll rproc_alloc()
1385  * @rproc: the remote processor handle
1386  *
1387  * This function decrements the rproc dev refcount.
1388  *
1389  * If no one holds any reference to rproc anymore, then its refcount would
1390  * now drop to zero, and it would be freed.
1391  */
1392 void rproc_free(struct rproc *rproc)
1393 {
1394 	put_device(&rproc->dev);
1395 }
1396 EXPORT_SYMBOL(rproc_free);
1397 
1398 /**
1399  * rproc_put() - release rproc reference
1400  * @rproc: the remote processor handle
1401  *
1402  * This function decrements the rproc dev refcount.
1403  *
1404  * If no one holds any reference to rproc anymore, then its refcount would
1405  * now drop to zero, and it would be freed.
1406  */
1407 void rproc_put(struct rproc *rproc)
1408 {
1409 	module_put(rproc->dev.parent->driver->owner);
1410 	put_device(&rproc->dev);
1411 }
1412 EXPORT_SYMBOL(rproc_put);
1413 
1414 /**
1415  * rproc_del() - unregister a remote processor
1416  * @rproc: rproc handle to unregister
1417  *
1418  * This function should be called when the platform specific rproc
1419  * implementation decides to remove the rproc device. it should
1420  * _only_ be called if a previous invocation of rproc_add()
1421  * has completed successfully.
1422  *
1423  * After rproc_del() returns, @rproc isn't freed yet, because
1424  * of the outstanding reference created by rproc_alloc. To decrement that
1425  * one last refcount, one still needs to call rproc_free().
1426  *
1427  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1428  */
1429 int rproc_del(struct rproc *rproc)
1430 {
1431 	struct rproc_vdev *rvdev, *tmp;
1432 
1433 	if (!rproc)
1434 		return -EINVAL;
1435 
1436 	/* if rproc is just being registered, wait */
1437 	wait_for_completion(&rproc->firmware_loading_complete);
1438 
1439 	/* if rproc is marked always-on, rproc_add() booted it */
1440 	/* TODO: make sure this works with rproc->power > 1 */
1441 	if (rproc->auto_boot)
1442 		rproc_shutdown(rproc);
1443 
1444 	/* clean up remote vdev entries */
1445 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1446 		rproc_remove_virtio_dev(rvdev);
1447 
1448 	/* the rproc is downref'ed as soon as it's removed from the klist */
1449 	mutex_lock(&rproc_list_mutex);
1450 	list_del(&rproc->node);
1451 	mutex_unlock(&rproc_list_mutex);
1452 
1453 	device_del(&rproc->dev);
1454 
1455 	return 0;
1456 }
1457 EXPORT_SYMBOL(rproc_del);
1458 
1459 /**
1460  * rproc_report_crash() - rproc crash reporter function
1461  * @rproc: remote processor
1462  * @type: crash type
1463  *
1464  * This function must be called every time a crash is detected by the low-level
1465  * drivers implementing a specific remoteproc. This should not be called from a
1466  * non-remoteproc driver.
1467  *
1468  * This function can be called from atomic/interrupt context.
1469  */
1470 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1471 {
1472 	if (!rproc) {
1473 		pr_err("NULL rproc pointer\n");
1474 		return;
1475 	}
1476 
1477 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1478 		rproc->name, rproc_crash_to_string(type));
1479 
1480 	/* create a new task to handle the error */
1481 	schedule_work(&rproc->crash_handler);
1482 }
1483 EXPORT_SYMBOL(rproc_report_crash);
1484 
1485 static int __init remoteproc_init(void)
1486 {
1487 	rproc_init_debugfs();
1488 
1489 	return 0;
1490 }
1491 module_init(remoteproc_init);
1492 
1493 static void __exit remoteproc_exit(void)
1494 {
1495 	ida_destroy(&rproc_dev_index);
1496 
1497 	rproc_exit_debugfs();
1498 }
1499 module_exit(remoteproc_exit);
1500 
1501 MODULE_LICENSE("GPL v2");
1502 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1503