1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/remoteproc.h> 37 #include <linux/iommu.h> 38 #include <linux/idr.h> 39 #include <linux/elf.h> 40 #include <linux/crc32.h> 41 #include <linux/virtio_ids.h> 42 #include <linux/virtio_ring.h> 43 #include <asm/byteorder.h> 44 45 #include "remoteproc_internal.h" 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 51 struct resource_table *table, int len); 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 /* Unique indices for remoteproc devices */ 56 static DEFINE_IDA(rproc_dev_index); 57 58 static const char * const rproc_crash_names[] = { 59 [RPROC_MMUFAULT] = "mmufault", 60 [RPROC_WATCHDOG] = "watchdog", 61 [RPROC_FATAL_ERROR] = "fatal error", 62 }; 63 64 /* translate rproc_crash_type to string */ 65 static const char *rproc_crash_to_string(enum rproc_crash_type type) 66 { 67 if (type < ARRAY_SIZE(rproc_crash_names)) 68 return rproc_crash_names[type]; 69 return "unknown"; 70 } 71 72 /* 73 * This is the IOMMU fault handler we register with the IOMMU API 74 * (when relevant; not all remote processors access memory through 75 * an IOMMU). 76 * 77 * IOMMU core will invoke this handler whenever the remote processor 78 * will try to access an unmapped device address. 79 */ 80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 81 unsigned long iova, int flags, void *token) 82 { 83 struct rproc *rproc = token; 84 85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 86 87 rproc_report_crash(rproc, RPROC_MMUFAULT); 88 89 /* 90 * Let the iommu core know we're not really handling this fault; 91 * we just used it as a recovery trigger. 92 */ 93 return -ENOSYS; 94 } 95 96 static int rproc_enable_iommu(struct rproc *rproc) 97 { 98 struct iommu_domain *domain; 99 struct device *dev = rproc->dev.parent; 100 int ret; 101 102 if (!rproc->has_iommu) { 103 dev_dbg(dev, "iommu not present\n"); 104 return 0; 105 } 106 107 domain = iommu_domain_alloc(dev->bus); 108 if (!domain) { 109 dev_err(dev, "can't alloc iommu domain\n"); 110 return -ENOMEM; 111 } 112 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 114 115 ret = iommu_attach_device(domain, dev); 116 if (ret) { 117 dev_err(dev, "can't attach iommu device: %d\n", ret); 118 goto free_domain; 119 } 120 121 rproc->domain = domain; 122 123 return 0; 124 125 free_domain: 126 iommu_domain_free(domain); 127 return ret; 128 } 129 130 static void rproc_disable_iommu(struct rproc *rproc) 131 { 132 struct iommu_domain *domain = rproc->domain; 133 struct device *dev = rproc->dev.parent; 134 135 if (!domain) 136 return; 137 138 iommu_detach_device(domain, dev); 139 iommu_domain_free(domain); 140 } 141 142 /** 143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 144 * @rproc: handle of a remote processor 145 * @da: remoteproc device address to translate 146 * @len: length of the memory region @da is pointing to 147 * 148 * Some remote processors will ask us to allocate them physically contiguous 149 * memory regions (which we call "carveouts"), and map them to specific 150 * device addresses (which are hardcoded in the firmware). They may also have 151 * dedicated memory regions internal to the processors, and use them either 152 * exclusively or alongside carveouts. 153 * 154 * They may then ask us to copy objects into specific device addresses (e.g. 155 * code/data sections) or expose us certain symbols in other device address 156 * (e.g. their trace buffer). 157 * 158 * This function is a helper function with which we can go over the allocated 159 * carveouts and translate specific device addresses to kernel virtual addresses 160 * so we can access the referenced memory. This function also allows to perform 161 * translations on the internal remoteproc memory regions through a platform 162 * implementation specific da_to_va ops, if present. 163 * 164 * The function returns a valid kernel address on success or NULL on failure. 165 * 166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 167 * but only on kernel direct mapped RAM memory. Instead, we're just using 168 * here the output of the DMA API for the carveouts, which should be more 169 * correct. 170 */ 171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 172 { 173 struct rproc_mem_entry *carveout; 174 void *ptr = NULL; 175 176 if (rproc->ops->da_to_va) { 177 ptr = rproc->ops->da_to_va(rproc, da, len); 178 if (ptr) 179 goto out; 180 } 181 182 list_for_each_entry(carveout, &rproc->carveouts, node) { 183 int offset = da - carveout->da; 184 185 /* try next carveout if da is too small */ 186 if (offset < 0) 187 continue; 188 189 /* try next carveout if da is too large */ 190 if (offset + len > carveout->len) 191 continue; 192 193 ptr = carveout->va + offset; 194 195 break; 196 } 197 198 out: 199 return ptr; 200 } 201 EXPORT_SYMBOL(rproc_da_to_va); 202 203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 204 { 205 struct rproc *rproc = rvdev->rproc; 206 struct device *dev = &rproc->dev; 207 struct rproc_vring *rvring = &rvdev->vring[i]; 208 struct fw_rsc_vdev *rsc; 209 dma_addr_t dma; 210 void *va; 211 int ret, size, notifyid; 212 213 /* actual size of vring (in bytes) */ 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 215 216 /* 217 * Allocate non-cacheable memory for the vring. In the future 218 * this call will also configure the IOMMU for us 219 */ 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); 221 if (!va) { 222 dev_err(dev->parent, "dma_alloc_coherent failed\n"); 223 return -EINVAL; 224 } 225 226 /* 227 * Assign an rproc-wide unique index for this vring 228 * TODO: assign a notifyid for rvdev updates as well 229 * TODO: support predefined notifyids (via resource table) 230 */ 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 232 if (ret < 0) { 233 dev_err(dev, "idr_alloc failed: %d\n", ret); 234 dma_free_coherent(dev->parent, size, va, dma); 235 return ret; 236 } 237 notifyid = ret; 238 239 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n", 240 i, va, &dma, size, notifyid); 241 242 rvring->va = va; 243 rvring->dma = dma; 244 rvring->notifyid = notifyid; 245 246 /* 247 * Let the rproc know the notifyid and da of this vring. 248 * Not all platforms use dma_alloc_coherent to automatically 249 * set up the iommu. In this case the device address (da) will 250 * hold the physical address and not the device address. 251 */ 252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 253 rsc->vring[i].da = dma; 254 rsc->vring[i].notifyid = notifyid; 255 return 0; 256 } 257 258 static int 259 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 260 { 261 struct rproc *rproc = rvdev->rproc; 262 struct device *dev = &rproc->dev; 263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 264 struct rproc_vring *rvring = &rvdev->vring[i]; 265 266 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 267 i, vring->da, vring->num, vring->align); 268 269 /* verify queue size and vring alignment are sane */ 270 if (!vring->num || !vring->align) { 271 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 272 vring->num, vring->align); 273 return -EINVAL; 274 } 275 276 rvring->len = vring->num; 277 rvring->align = vring->align; 278 rvring->rvdev = rvdev; 279 280 return 0; 281 } 282 283 void rproc_free_vring(struct rproc_vring *rvring) 284 { 285 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 286 struct rproc *rproc = rvring->rvdev->rproc; 287 int idx = rvring->rvdev->vring - rvring; 288 struct fw_rsc_vdev *rsc; 289 290 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); 291 idr_remove(&rproc->notifyids, rvring->notifyid); 292 293 /* reset resource entry info */ 294 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 295 rsc->vring[idx].da = 0; 296 rsc->vring[idx].notifyid = -1; 297 } 298 299 /** 300 * rproc_handle_vdev() - handle a vdev fw resource 301 * @rproc: the remote processor 302 * @rsc: the vring resource descriptor 303 * @avail: size of available data (for sanity checking the image) 304 * 305 * This resource entry requests the host to statically register a virtio 306 * device (vdev), and setup everything needed to support it. It contains 307 * everything needed to make it possible: the virtio device id, virtio 308 * device features, vrings information, virtio config space, etc... 309 * 310 * Before registering the vdev, the vrings are allocated from non-cacheable 311 * physically contiguous memory. Currently we only support two vrings per 312 * remote processor (temporary limitation). We might also want to consider 313 * doing the vring allocation only later when ->find_vqs() is invoked, and 314 * then release them upon ->del_vqs(). 315 * 316 * Note: @da is currently not really handled correctly: we dynamically 317 * allocate it using the DMA API, ignoring requested hard coded addresses, 318 * and we don't take care of any required IOMMU programming. This is all 319 * going to be taken care of when the generic iommu-based DMA API will be 320 * merged. Meanwhile, statically-addressed iommu-based firmware images should 321 * use RSC_DEVMEM resource entries to map their required @da to the physical 322 * address of their base CMA region (ouch, hacky!). 323 * 324 * Returns 0 on success, or an appropriate error code otherwise 325 */ 326 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 327 int offset, int avail) 328 { 329 struct device *dev = &rproc->dev; 330 struct rproc_vdev *rvdev; 331 int i, ret; 332 333 /* make sure resource isn't truncated */ 334 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 335 + rsc->config_len > avail) { 336 dev_err(dev, "vdev rsc is truncated\n"); 337 return -EINVAL; 338 } 339 340 /* make sure reserved bytes are zeroes */ 341 if (rsc->reserved[0] || rsc->reserved[1]) { 342 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 343 return -EINVAL; 344 } 345 346 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 347 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 348 349 /* we currently support only two vrings per rvdev */ 350 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 351 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 352 return -EINVAL; 353 } 354 355 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 356 if (!rvdev) 357 return -ENOMEM; 358 359 rvdev->rproc = rproc; 360 361 /* parse the vrings */ 362 for (i = 0; i < rsc->num_of_vrings; i++) { 363 ret = rproc_parse_vring(rvdev, rsc, i); 364 if (ret) 365 goto free_rvdev; 366 } 367 368 /* remember the resource offset*/ 369 rvdev->rsc_offset = offset; 370 371 list_add_tail(&rvdev->node, &rproc->rvdevs); 372 373 /* it is now safe to add the virtio device */ 374 ret = rproc_add_virtio_dev(rvdev, rsc->id); 375 if (ret) 376 goto remove_rvdev; 377 378 return 0; 379 380 remove_rvdev: 381 list_del(&rvdev->node); 382 free_rvdev: 383 kfree(rvdev); 384 return ret; 385 } 386 387 /** 388 * rproc_handle_trace() - handle a shared trace buffer resource 389 * @rproc: the remote processor 390 * @rsc: the trace resource descriptor 391 * @avail: size of available data (for sanity checking the image) 392 * 393 * In case the remote processor dumps trace logs into memory, 394 * export it via debugfs. 395 * 396 * Currently, the 'da' member of @rsc should contain the device address 397 * where the remote processor is dumping the traces. Later we could also 398 * support dynamically allocating this address using the generic 399 * DMA API (but currently there isn't a use case for that). 400 * 401 * Returns 0 on success, or an appropriate error code otherwise 402 */ 403 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 404 int offset, int avail) 405 { 406 struct rproc_mem_entry *trace; 407 struct device *dev = &rproc->dev; 408 void *ptr; 409 char name[15]; 410 411 if (sizeof(*rsc) > avail) { 412 dev_err(dev, "trace rsc is truncated\n"); 413 return -EINVAL; 414 } 415 416 /* make sure reserved bytes are zeroes */ 417 if (rsc->reserved) { 418 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 419 return -EINVAL; 420 } 421 422 /* what's the kernel address of this resource ? */ 423 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 424 if (!ptr) { 425 dev_err(dev, "erroneous trace resource entry\n"); 426 return -EINVAL; 427 } 428 429 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 430 if (!trace) 431 return -ENOMEM; 432 433 /* set the trace buffer dma properties */ 434 trace->len = rsc->len; 435 trace->va = ptr; 436 437 /* make sure snprintf always null terminates, even if truncating */ 438 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 439 440 /* create the debugfs entry */ 441 trace->priv = rproc_create_trace_file(name, rproc, trace); 442 if (!trace->priv) { 443 trace->va = NULL; 444 kfree(trace); 445 return -EINVAL; 446 } 447 448 list_add_tail(&trace->node, &rproc->traces); 449 450 rproc->num_traces++; 451 452 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", 453 name, ptr, rsc->da, rsc->len); 454 455 return 0; 456 } 457 458 /** 459 * rproc_handle_devmem() - handle devmem resource entry 460 * @rproc: remote processor handle 461 * @rsc: the devmem resource entry 462 * @avail: size of available data (for sanity checking the image) 463 * 464 * Remote processors commonly need to access certain on-chip peripherals. 465 * 466 * Some of these remote processors access memory via an iommu device, 467 * and might require us to configure their iommu before they can access 468 * the on-chip peripherals they need. 469 * 470 * This resource entry is a request to map such a peripheral device. 471 * 472 * These devmem entries will contain the physical address of the device in 473 * the 'pa' member. If a specific device address is expected, then 'da' will 474 * contain it (currently this is the only use case supported). 'len' will 475 * contain the size of the physical region we need to map. 476 * 477 * Currently we just "trust" those devmem entries to contain valid physical 478 * addresses, but this is going to change: we want the implementations to 479 * tell us ranges of physical addresses the firmware is allowed to request, 480 * and not allow firmwares to request access to physical addresses that 481 * are outside those ranges. 482 */ 483 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 484 int offset, int avail) 485 { 486 struct rproc_mem_entry *mapping; 487 struct device *dev = &rproc->dev; 488 int ret; 489 490 /* no point in handling this resource without a valid iommu domain */ 491 if (!rproc->domain) 492 return -EINVAL; 493 494 if (sizeof(*rsc) > avail) { 495 dev_err(dev, "devmem rsc is truncated\n"); 496 return -EINVAL; 497 } 498 499 /* make sure reserved bytes are zeroes */ 500 if (rsc->reserved) { 501 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 502 return -EINVAL; 503 } 504 505 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 506 if (!mapping) 507 return -ENOMEM; 508 509 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 510 if (ret) { 511 dev_err(dev, "failed to map devmem: %d\n", ret); 512 goto out; 513 } 514 515 /* 516 * We'll need this info later when we'll want to unmap everything 517 * (e.g. on shutdown). 518 * 519 * We can't trust the remote processor not to change the resource 520 * table, so we must maintain this info independently. 521 */ 522 mapping->da = rsc->da; 523 mapping->len = rsc->len; 524 list_add_tail(&mapping->node, &rproc->mappings); 525 526 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 527 rsc->pa, rsc->da, rsc->len); 528 529 return 0; 530 531 out: 532 kfree(mapping); 533 return ret; 534 } 535 536 /** 537 * rproc_handle_carveout() - handle phys contig memory allocation requests 538 * @rproc: rproc handle 539 * @rsc: the resource entry 540 * @avail: size of available data (for image validation) 541 * 542 * This function will handle firmware requests for allocation of physically 543 * contiguous memory regions. 544 * 545 * These request entries should come first in the firmware's resource table, 546 * as other firmware entries might request placing other data objects inside 547 * these memory regions (e.g. data/code segments, trace resource entries, ...). 548 * 549 * Allocating memory this way helps utilizing the reserved physical memory 550 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 551 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 552 * pressure is important; it may have a substantial impact on performance. 553 */ 554 static int rproc_handle_carveout(struct rproc *rproc, 555 struct fw_rsc_carveout *rsc, 556 int offset, int avail) 557 { 558 struct rproc_mem_entry *carveout, *mapping; 559 struct device *dev = &rproc->dev; 560 dma_addr_t dma; 561 void *va; 562 int ret; 563 564 if (sizeof(*rsc) > avail) { 565 dev_err(dev, "carveout rsc is truncated\n"); 566 return -EINVAL; 567 } 568 569 /* make sure reserved bytes are zeroes */ 570 if (rsc->reserved) { 571 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 572 return -EINVAL; 573 } 574 575 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 576 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 577 578 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); 579 if (!carveout) 580 return -ENOMEM; 581 582 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); 583 if (!va) { 584 dev_err(dev->parent, 585 "failed to allocate dma memory: len 0x%x\n", rsc->len); 586 ret = -ENOMEM; 587 goto free_carv; 588 } 589 590 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n", 591 va, &dma, rsc->len); 592 593 /* 594 * Ok, this is non-standard. 595 * 596 * Sometimes we can't rely on the generic iommu-based DMA API 597 * to dynamically allocate the device address and then set the IOMMU 598 * tables accordingly, because some remote processors might 599 * _require_ us to use hard coded device addresses that their 600 * firmware was compiled with. 601 * 602 * In this case, we must use the IOMMU API directly and map 603 * the memory to the device address as expected by the remote 604 * processor. 605 * 606 * Obviously such remote processor devices should not be configured 607 * to use the iommu-based DMA API: we expect 'dma' to contain the 608 * physical address in this case. 609 */ 610 if (rproc->domain) { 611 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 612 if (!mapping) { 613 ret = -ENOMEM; 614 goto dma_free; 615 } 616 617 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, 618 rsc->flags); 619 if (ret) { 620 dev_err(dev, "iommu_map failed: %d\n", ret); 621 goto free_mapping; 622 } 623 624 /* 625 * We'll need this info later when we'll want to unmap 626 * everything (e.g. on shutdown). 627 * 628 * We can't trust the remote processor not to change the 629 * resource table, so we must maintain this info independently. 630 */ 631 mapping->da = rsc->da; 632 mapping->len = rsc->len; 633 list_add_tail(&mapping->node, &rproc->mappings); 634 635 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 636 rsc->da, &dma); 637 } 638 639 /* 640 * Some remote processors might need to know the pa 641 * even though they are behind an IOMMU. E.g., OMAP4's 642 * remote M3 processor needs this so it can control 643 * on-chip hardware accelerators that are not behind 644 * the IOMMU, and therefor must know the pa. 645 * 646 * Generally we don't want to expose physical addresses 647 * if we don't have to (remote processors are generally 648 * _not_ trusted), so we might want to do this only for 649 * remote processor that _must_ have this (e.g. OMAP4's 650 * dual M3 subsystem). 651 * 652 * Non-IOMMU processors might also want to have this info. 653 * In this case, the device address and the physical address 654 * are the same. 655 */ 656 rsc->pa = dma; 657 658 carveout->va = va; 659 carveout->len = rsc->len; 660 carveout->dma = dma; 661 carveout->da = rsc->da; 662 663 list_add_tail(&carveout->node, &rproc->carveouts); 664 665 return 0; 666 667 free_mapping: 668 kfree(mapping); 669 dma_free: 670 dma_free_coherent(dev->parent, rsc->len, va, dma); 671 free_carv: 672 kfree(carveout); 673 return ret; 674 } 675 676 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc, 677 int offset, int avail) 678 { 679 /* Summarize the number of notification IDs */ 680 rproc->max_notifyid += rsc->num_of_vrings; 681 682 return 0; 683 } 684 685 /* 686 * A lookup table for resource handlers. The indices are defined in 687 * enum fw_resource_type. 688 */ 689 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 690 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 691 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 692 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 693 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings, 694 }; 695 696 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = { 697 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 698 }; 699 700 /* handle firmware resource entries before booting the remote processor */ 701 static int rproc_handle_resources(struct rproc *rproc, int len, 702 rproc_handle_resource_t handlers[RSC_LAST]) 703 { 704 struct device *dev = &rproc->dev; 705 rproc_handle_resource_t handler; 706 int ret = 0, i; 707 708 for (i = 0; i < rproc->table_ptr->num; i++) { 709 int offset = rproc->table_ptr->offset[i]; 710 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 711 int avail = len - offset - sizeof(*hdr); 712 void *rsc = (void *)hdr + sizeof(*hdr); 713 714 /* make sure table isn't truncated */ 715 if (avail < 0) { 716 dev_err(dev, "rsc table is truncated\n"); 717 return -EINVAL; 718 } 719 720 dev_dbg(dev, "rsc: type %d\n", hdr->type); 721 722 if (hdr->type >= RSC_LAST) { 723 dev_warn(dev, "unsupported resource %d\n", hdr->type); 724 continue; 725 } 726 727 handler = handlers[hdr->type]; 728 if (!handler) 729 continue; 730 731 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 732 if (ret) 733 break; 734 } 735 736 return ret; 737 } 738 739 /** 740 * rproc_resource_cleanup() - clean up and free all acquired resources 741 * @rproc: rproc handle 742 * 743 * This function will free all resources acquired for @rproc, and it 744 * is called whenever @rproc either shuts down or fails to boot. 745 */ 746 static void rproc_resource_cleanup(struct rproc *rproc) 747 { 748 struct rproc_mem_entry *entry, *tmp; 749 struct rproc_vdev *rvdev, *rvtmp; 750 struct device *dev = &rproc->dev; 751 752 /* clean up debugfs trace entries */ 753 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 754 rproc_remove_trace_file(entry->priv); 755 rproc->num_traces--; 756 list_del(&entry->node); 757 kfree(entry); 758 } 759 760 /* clean up iommu mapping entries */ 761 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 762 size_t unmapped; 763 764 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 765 if (unmapped != entry->len) { 766 /* nothing much to do besides complaining */ 767 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 768 unmapped); 769 } 770 771 list_del(&entry->node); 772 kfree(entry); 773 } 774 775 /* clean up carveout allocations */ 776 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 777 dma_free_coherent(dev->parent, entry->len, entry->va, 778 entry->dma); 779 list_del(&entry->node); 780 kfree(entry); 781 } 782 783 /* clean up remote vdev entries */ 784 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 785 rproc_remove_virtio_dev(rvdev); 786 } 787 788 /* 789 * take a firmware and boot a remote processor with it. 790 */ 791 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 792 { 793 struct device *dev = &rproc->dev; 794 const char *name = rproc->firmware; 795 struct resource_table *table, *loaded_table; 796 int ret, tablesz; 797 798 ret = rproc_fw_sanity_check(rproc, fw); 799 if (ret) 800 return ret; 801 802 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 803 804 /* 805 * if enabling an IOMMU isn't relevant for this rproc, this is 806 * just a nop 807 */ 808 ret = rproc_enable_iommu(rproc); 809 if (ret) { 810 dev_err(dev, "can't enable iommu: %d\n", ret); 811 return ret; 812 } 813 814 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 815 ret = -EINVAL; 816 817 /* look for the resource table */ 818 table = rproc_find_rsc_table(rproc, fw, &tablesz); 819 if (!table) { 820 dev_err(dev, "Failed to find resource table\n"); 821 goto clean_up; 822 } 823 824 /* 825 * Create a copy of the resource table. When a virtio device starts 826 * and calls vring_new_virtqueue() the address of the allocated vring 827 * will be stored in the cached_table. Before the device is started, 828 * cached_table will be copied into device memory. 829 */ 830 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); 831 if (!rproc->cached_table) 832 goto clean_up; 833 834 rproc->table_ptr = rproc->cached_table; 835 836 /* reset max_notifyid */ 837 rproc->max_notifyid = -1; 838 839 /* look for virtio devices and register them */ 840 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler); 841 if (ret) { 842 dev_err(dev, "Failed to handle vdev resources: %d\n", ret); 843 goto clean_up; 844 } 845 846 /* handle fw resources which are required to boot rproc */ 847 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers); 848 if (ret) { 849 dev_err(dev, "Failed to process resources: %d\n", ret); 850 goto clean_up_resources; 851 } 852 853 /* load the ELF segments to memory */ 854 ret = rproc_load_segments(rproc, fw); 855 if (ret) { 856 dev_err(dev, "Failed to load program segments: %d\n", ret); 857 goto clean_up_resources; 858 } 859 860 /* 861 * The starting device has been given the rproc->cached_table as the 862 * resource table. The address of the vring along with the other 863 * allocated resources (carveouts etc) is stored in cached_table. 864 * In order to pass this information to the remote device we must copy 865 * this information to device memory. We also update the table_ptr so 866 * that any subsequent changes will be applied to the loaded version. 867 */ 868 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 869 if (loaded_table) { 870 memcpy(loaded_table, rproc->cached_table, tablesz); 871 rproc->table_ptr = loaded_table; 872 } 873 874 /* power up the remote processor */ 875 ret = rproc->ops->start(rproc); 876 if (ret) { 877 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 878 goto clean_up_resources; 879 } 880 881 rproc->state = RPROC_RUNNING; 882 883 dev_info(dev, "remote processor %s is now up\n", rproc->name); 884 885 return 0; 886 887 clean_up_resources: 888 rproc_resource_cleanup(rproc); 889 clean_up: 890 kfree(rproc->cached_table); 891 rproc->cached_table = NULL; 892 rproc->table_ptr = NULL; 893 894 rproc_disable_iommu(rproc); 895 return ret; 896 } 897 898 /* 899 * take a firmware and look for virtio devices to register. 900 * 901 * Note: this function is called asynchronously upon registration of the 902 * remote processor (so we must wait until it completes before we try 903 * to unregister the device. one other option is just to use kref here, 904 * that might be cleaner). 905 */ 906 static void rproc_fw_config_virtio(const struct firmware *fw, void *context) 907 { 908 struct rproc *rproc = context; 909 910 /* if rproc is marked always-on, request it to boot */ 911 if (rproc->auto_boot) 912 rproc_boot_nowait(rproc); 913 914 release_firmware(fw); 915 /* allow rproc_del() contexts, if any, to proceed */ 916 complete_all(&rproc->firmware_loading_complete); 917 } 918 919 static int rproc_add_virtio_devices(struct rproc *rproc) 920 { 921 int ret; 922 923 /* rproc_del() calls must wait until async loader completes */ 924 init_completion(&rproc->firmware_loading_complete); 925 926 /* 927 * We must retrieve early virtio configuration info from 928 * the firmware (e.g. whether to register a virtio device, 929 * what virtio features does it support, ...). 930 * 931 * We're initiating an asynchronous firmware loading, so we can 932 * be built-in kernel code, without hanging the boot process. 933 */ 934 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 935 rproc->firmware, &rproc->dev, GFP_KERNEL, 936 rproc, rproc_fw_config_virtio); 937 if (ret < 0) { 938 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 939 complete_all(&rproc->firmware_loading_complete); 940 } 941 942 return ret; 943 } 944 945 /** 946 * rproc_trigger_recovery() - recover a remoteproc 947 * @rproc: the remote processor 948 * 949 * The recovery is done by resetting all the virtio devices, that way all the 950 * rpmsg drivers will be reseted along with the remote processor making the 951 * remoteproc functional again. 952 * 953 * This function can sleep, so it cannot be called from atomic context. 954 */ 955 int rproc_trigger_recovery(struct rproc *rproc) 956 { 957 dev_err(&rproc->dev, "recovering %s\n", rproc->name); 958 959 init_completion(&rproc->crash_comp); 960 961 /* shut down the remote */ 962 /* TODO: make sure this works with rproc->power > 1 */ 963 rproc_shutdown(rproc); 964 965 /* wait until there is no more rproc users */ 966 wait_for_completion(&rproc->crash_comp); 967 968 /* 969 * boot the remote processor up again 970 */ 971 rproc_boot(rproc); 972 973 return 0; 974 } 975 976 /** 977 * rproc_crash_handler_work() - handle a crash 978 * 979 * This function needs to handle everything related to a crash, like cpu 980 * registers and stack dump, information to help to debug the fatal error, etc. 981 */ 982 static void rproc_crash_handler_work(struct work_struct *work) 983 { 984 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 985 struct device *dev = &rproc->dev; 986 987 dev_dbg(dev, "enter %s\n", __func__); 988 989 mutex_lock(&rproc->lock); 990 991 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 992 /* handle only the first crash detected */ 993 mutex_unlock(&rproc->lock); 994 return; 995 } 996 997 rproc->state = RPROC_CRASHED; 998 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 999 rproc->name); 1000 1001 mutex_unlock(&rproc->lock); 1002 1003 if (!rproc->recovery_disabled) 1004 rproc_trigger_recovery(rproc); 1005 } 1006 1007 /** 1008 * __rproc_boot() - boot a remote processor 1009 * @rproc: handle of a remote processor 1010 * @wait: wait for rproc registration completion 1011 * 1012 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1013 * 1014 * If the remote processor is already powered on, this function immediately 1015 * returns (successfully). 1016 * 1017 * Returns 0 on success, and an appropriate error value otherwise. 1018 */ 1019 static int __rproc_boot(struct rproc *rproc, bool wait) 1020 { 1021 const struct firmware *firmware_p; 1022 struct device *dev; 1023 int ret; 1024 1025 if (!rproc) { 1026 pr_err("invalid rproc handle\n"); 1027 return -EINVAL; 1028 } 1029 1030 dev = &rproc->dev; 1031 1032 ret = mutex_lock_interruptible(&rproc->lock); 1033 if (ret) { 1034 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1035 return ret; 1036 } 1037 1038 /* skip the boot process if rproc is already powered up */ 1039 if (atomic_inc_return(&rproc->power) > 1) { 1040 ret = 0; 1041 goto unlock_mutex; 1042 } 1043 1044 dev_info(dev, "powering up %s\n", rproc->name); 1045 1046 /* load firmware */ 1047 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1048 if (ret < 0) { 1049 dev_err(dev, "request_firmware failed: %d\n", ret); 1050 goto downref_rproc; 1051 } 1052 1053 /* if rproc virtio is not yet configured, wait */ 1054 if (wait) 1055 wait_for_completion(&rproc->firmware_loading_complete); 1056 1057 ret = rproc_fw_boot(rproc, firmware_p); 1058 1059 release_firmware(firmware_p); 1060 1061 downref_rproc: 1062 if (ret) 1063 atomic_dec(&rproc->power); 1064 unlock_mutex: 1065 mutex_unlock(&rproc->lock); 1066 return ret; 1067 } 1068 1069 /** 1070 * rproc_boot() - boot a remote processor 1071 * @rproc: handle of a remote processor 1072 */ 1073 int rproc_boot(struct rproc *rproc) 1074 { 1075 return __rproc_boot(rproc, true); 1076 } 1077 EXPORT_SYMBOL(rproc_boot); 1078 1079 /** 1080 * rproc_boot_nowait() - boot a remote processor 1081 * @rproc: handle of a remote processor 1082 * 1083 * Same as rproc_boot() but don't wait for rproc registration completion 1084 */ 1085 int rproc_boot_nowait(struct rproc *rproc) 1086 { 1087 return __rproc_boot(rproc, false); 1088 } 1089 1090 /** 1091 * rproc_shutdown() - power off the remote processor 1092 * @rproc: the remote processor 1093 * 1094 * Power off a remote processor (previously booted with rproc_boot()). 1095 * 1096 * In case @rproc is still being used by an additional user(s), then 1097 * this function will just decrement the power refcount and exit, 1098 * without really powering off the device. 1099 * 1100 * Every call to rproc_boot() must (eventually) be accompanied by a call 1101 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1102 * 1103 * Notes: 1104 * - we're not decrementing the rproc's refcount, only the power refcount. 1105 * which means that the @rproc handle stays valid even after rproc_shutdown() 1106 * returns, and users can still use it with a subsequent rproc_boot(), if 1107 * needed. 1108 */ 1109 void rproc_shutdown(struct rproc *rproc) 1110 { 1111 struct device *dev = &rproc->dev; 1112 int ret; 1113 1114 ret = mutex_lock_interruptible(&rproc->lock); 1115 if (ret) { 1116 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1117 return; 1118 } 1119 1120 /* if the remote proc is still needed, bail out */ 1121 if (!atomic_dec_and_test(&rproc->power)) 1122 goto out; 1123 1124 /* power off the remote processor */ 1125 ret = rproc->ops->stop(rproc); 1126 if (ret) { 1127 atomic_inc(&rproc->power); 1128 dev_err(dev, "can't stop rproc: %d\n", ret); 1129 goto out; 1130 } 1131 1132 /* clean up all acquired resources */ 1133 rproc_resource_cleanup(rproc); 1134 1135 rproc_disable_iommu(rproc); 1136 1137 /* Free the copy of the resource table */ 1138 kfree(rproc->cached_table); 1139 rproc->cached_table = NULL; 1140 rproc->table_ptr = NULL; 1141 1142 /* if in crash state, unlock crash handler */ 1143 if (rproc->state == RPROC_CRASHED) 1144 complete_all(&rproc->crash_comp); 1145 1146 rproc->state = RPROC_OFFLINE; 1147 1148 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1149 1150 out: 1151 mutex_unlock(&rproc->lock); 1152 } 1153 EXPORT_SYMBOL(rproc_shutdown); 1154 1155 /** 1156 * rproc_get_by_phandle() - find a remote processor by phandle 1157 * @phandle: phandle to the rproc 1158 * 1159 * Finds an rproc handle using the remote processor's phandle, and then 1160 * return a handle to the rproc. 1161 * 1162 * This function increments the remote processor's refcount, so always 1163 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1164 * 1165 * Returns the rproc handle on success, and NULL on failure. 1166 */ 1167 #ifdef CONFIG_OF 1168 struct rproc *rproc_get_by_phandle(phandle phandle) 1169 { 1170 struct rproc *rproc = NULL, *r; 1171 struct device_node *np; 1172 1173 np = of_find_node_by_phandle(phandle); 1174 if (!np) 1175 return NULL; 1176 1177 mutex_lock(&rproc_list_mutex); 1178 list_for_each_entry(r, &rproc_list, node) { 1179 if (r->dev.parent && r->dev.parent->of_node == np) { 1180 /* prevent underlying implementation from being removed */ 1181 if (!try_module_get(r->dev.parent->driver->owner)) { 1182 dev_err(&r->dev, "can't get owner\n"); 1183 break; 1184 } 1185 1186 rproc = r; 1187 get_device(&rproc->dev); 1188 break; 1189 } 1190 } 1191 mutex_unlock(&rproc_list_mutex); 1192 1193 of_node_put(np); 1194 1195 return rproc; 1196 } 1197 #else 1198 struct rproc *rproc_get_by_phandle(phandle phandle) 1199 { 1200 return NULL; 1201 } 1202 #endif 1203 EXPORT_SYMBOL(rproc_get_by_phandle); 1204 1205 /** 1206 * rproc_add() - register a remote processor 1207 * @rproc: the remote processor handle to register 1208 * 1209 * Registers @rproc with the remoteproc framework, after it has been 1210 * allocated with rproc_alloc(). 1211 * 1212 * This is called by the platform-specific rproc implementation, whenever 1213 * a new remote processor device is probed. 1214 * 1215 * Returns 0 on success and an appropriate error code otherwise. 1216 * 1217 * Note: this function initiates an asynchronous firmware loading 1218 * context, which will look for virtio devices supported by the rproc's 1219 * firmware. 1220 * 1221 * If found, those virtio devices will be created and added, so as a result 1222 * of registering this remote processor, additional virtio drivers might be 1223 * probed. 1224 */ 1225 int rproc_add(struct rproc *rproc) 1226 { 1227 struct device *dev = &rproc->dev; 1228 int ret; 1229 1230 ret = device_add(dev); 1231 if (ret < 0) 1232 return ret; 1233 1234 dev_info(dev, "%s is available\n", rproc->name); 1235 1236 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n"); 1237 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n"); 1238 1239 /* create debugfs entries */ 1240 rproc_create_debug_dir(rproc); 1241 ret = rproc_add_virtio_devices(rproc); 1242 if (ret < 0) 1243 return ret; 1244 1245 /* expose to rproc_get_by_phandle users */ 1246 mutex_lock(&rproc_list_mutex); 1247 list_add(&rproc->node, &rproc_list); 1248 mutex_unlock(&rproc_list_mutex); 1249 1250 return 0; 1251 } 1252 EXPORT_SYMBOL(rproc_add); 1253 1254 /** 1255 * rproc_type_release() - release a remote processor instance 1256 * @dev: the rproc's device 1257 * 1258 * This function should _never_ be called directly. 1259 * 1260 * It will be called by the driver core when no one holds a valid pointer 1261 * to @dev anymore. 1262 */ 1263 static void rproc_type_release(struct device *dev) 1264 { 1265 struct rproc *rproc = container_of(dev, struct rproc, dev); 1266 1267 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1268 1269 rproc_delete_debug_dir(rproc); 1270 1271 idr_destroy(&rproc->notifyids); 1272 1273 if (rproc->index >= 0) 1274 ida_simple_remove(&rproc_dev_index, rproc->index); 1275 1276 kfree(rproc); 1277 } 1278 1279 static struct device_type rproc_type = { 1280 .name = "remoteproc", 1281 .release = rproc_type_release, 1282 }; 1283 1284 /** 1285 * rproc_alloc() - allocate a remote processor handle 1286 * @dev: the underlying device 1287 * @name: name of this remote processor 1288 * @ops: platform-specific handlers (mainly start/stop) 1289 * @firmware: name of firmware file to load, can be NULL 1290 * @len: length of private data needed by the rproc driver (in bytes) 1291 * 1292 * Allocates a new remote processor handle, but does not register 1293 * it yet. if @firmware is NULL, a default name is used. 1294 * 1295 * This function should be used by rproc implementations during initialization 1296 * of the remote processor. 1297 * 1298 * After creating an rproc handle using this function, and when ready, 1299 * implementations should then call rproc_add() to complete 1300 * the registration of the remote processor. 1301 * 1302 * On success the new rproc is returned, and on failure, NULL. 1303 * 1304 * Note: _never_ directly deallocate @rproc, even if it was not registered 1305 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1306 */ 1307 struct rproc *rproc_alloc(struct device *dev, const char *name, 1308 const struct rproc_ops *ops, 1309 const char *firmware, int len) 1310 { 1311 struct rproc *rproc; 1312 char *p, *template = "rproc-%s-fw"; 1313 int name_len = 0; 1314 1315 if (!dev || !name || !ops) 1316 return NULL; 1317 1318 if (!firmware) 1319 /* 1320 * Make room for default firmware name (minus %s plus '\0'). 1321 * If the caller didn't pass in a firmware name then 1322 * construct a default name. We're already glomming 'len' 1323 * bytes onto the end of the struct rproc allocation, so do 1324 * a few more for the default firmware name (but only if 1325 * the caller doesn't pass one). 1326 */ 1327 name_len = strlen(name) + strlen(template) - 2 + 1; 1328 1329 rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL); 1330 if (!rproc) 1331 return NULL; 1332 1333 if (!firmware) { 1334 p = (char *)rproc + sizeof(struct rproc) + len; 1335 snprintf(p, name_len, template, name); 1336 } else { 1337 p = (char *)firmware; 1338 } 1339 1340 rproc->firmware = p; 1341 rproc->name = name; 1342 rproc->ops = ops; 1343 rproc->priv = &rproc[1]; 1344 rproc->auto_boot = true; 1345 1346 device_initialize(&rproc->dev); 1347 rproc->dev.parent = dev; 1348 rproc->dev.type = &rproc_type; 1349 1350 /* Assign a unique device index and name */ 1351 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1352 if (rproc->index < 0) { 1353 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1354 put_device(&rproc->dev); 1355 return NULL; 1356 } 1357 1358 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1359 1360 atomic_set(&rproc->power, 0); 1361 1362 /* Set ELF as the default fw_ops handler */ 1363 rproc->fw_ops = &rproc_elf_fw_ops; 1364 1365 mutex_init(&rproc->lock); 1366 1367 idr_init(&rproc->notifyids); 1368 1369 INIT_LIST_HEAD(&rproc->carveouts); 1370 INIT_LIST_HEAD(&rproc->mappings); 1371 INIT_LIST_HEAD(&rproc->traces); 1372 INIT_LIST_HEAD(&rproc->rvdevs); 1373 1374 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 1375 init_completion(&rproc->crash_comp); 1376 1377 rproc->state = RPROC_OFFLINE; 1378 1379 return rproc; 1380 } 1381 EXPORT_SYMBOL(rproc_alloc); 1382 1383 /** 1384 * rproc_free() - unroll rproc_alloc() 1385 * @rproc: the remote processor handle 1386 * 1387 * This function decrements the rproc dev refcount. 1388 * 1389 * If no one holds any reference to rproc anymore, then its refcount would 1390 * now drop to zero, and it would be freed. 1391 */ 1392 void rproc_free(struct rproc *rproc) 1393 { 1394 put_device(&rproc->dev); 1395 } 1396 EXPORT_SYMBOL(rproc_free); 1397 1398 /** 1399 * rproc_put() - release rproc reference 1400 * @rproc: the remote processor handle 1401 * 1402 * This function decrements the rproc dev refcount. 1403 * 1404 * If no one holds any reference to rproc anymore, then its refcount would 1405 * now drop to zero, and it would be freed. 1406 */ 1407 void rproc_put(struct rproc *rproc) 1408 { 1409 module_put(rproc->dev.parent->driver->owner); 1410 put_device(&rproc->dev); 1411 } 1412 EXPORT_SYMBOL(rproc_put); 1413 1414 /** 1415 * rproc_del() - unregister a remote processor 1416 * @rproc: rproc handle to unregister 1417 * 1418 * This function should be called when the platform specific rproc 1419 * implementation decides to remove the rproc device. it should 1420 * _only_ be called if a previous invocation of rproc_add() 1421 * has completed successfully. 1422 * 1423 * After rproc_del() returns, @rproc isn't freed yet, because 1424 * of the outstanding reference created by rproc_alloc. To decrement that 1425 * one last refcount, one still needs to call rproc_free(). 1426 * 1427 * Returns 0 on success and -EINVAL if @rproc isn't valid. 1428 */ 1429 int rproc_del(struct rproc *rproc) 1430 { 1431 struct rproc_vdev *rvdev, *tmp; 1432 1433 if (!rproc) 1434 return -EINVAL; 1435 1436 /* if rproc is just being registered, wait */ 1437 wait_for_completion(&rproc->firmware_loading_complete); 1438 1439 /* if rproc is marked always-on, rproc_add() booted it */ 1440 /* TODO: make sure this works with rproc->power > 1 */ 1441 if (rproc->auto_boot) 1442 rproc_shutdown(rproc); 1443 1444 /* clean up remote vdev entries */ 1445 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node) 1446 rproc_remove_virtio_dev(rvdev); 1447 1448 /* the rproc is downref'ed as soon as it's removed from the klist */ 1449 mutex_lock(&rproc_list_mutex); 1450 list_del(&rproc->node); 1451 mutex_unlock(&rproc_list_mutex); 1452 1453 device_del(&rproc->dev); 1454 1455 return 0; 1456 } 1457 EXPORT_SYMBOL(rproc_del); 1458 1459 /** 1460 * rproc_report_crash() - rproc crash reporter function 1461 * @rproc: remote processor 1462 * @type: crash type 1463 * 1464 * This function must be called every time a crash is detected by the low-level 1465 * drivers implementing a specific remoteproc. This should not be called from a 1466 * non-remoteproc driver. 1467 * 1468 * This function can be called from atomic/interrupt context. 1469 */ 1470 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 1471 { 1472 if (!rproc) { 1473 pr_err("NULL rproc pointer\n"); 1474 return; 1475 } 1476 1477 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 1478 rproc->name, rproc_crash_to_string(type)); 1479 1480 /* create a new task to handle the error */ 1481 schedule_work(&rproc->crash_handler); 1482 } 1483 EXPORT_SYMBOL(rproc_report_crash); 1484 1485 static int __init remoteproc_init(void) 1486 { 1487 rproc_init_debugfs(); 1488 1489 return 0; 1490 } 1491 module_init(remoteproc_init); 1492 1493 static void __exit remoteproc_exit(void) 1494 { 1495 ida_destroy(&rproc_dev_index); 1496 1497 rproc_exit_debugfs(); 1498 } 1499 module_exit(remoteproc_exit); 1500 1501 MODULE_LICENSE("GPL v2"); 1502 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 1503