1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/mutex.h> 25 #include <linux/dma-map-ops.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */ 28 #include <linux/firmware.h> 29 #include <linux/string.h> 30 #include <linux/debugfs.h> 31 #include <linux/rculist.h> 32 #include <linux/remoteproc.h> 33 #include <linux/iommu.h> 34 #include <linux/idr.h> 35 #include <linux/elf.h> 36 #include <linux/crc32.h> 37 #include <linux/of_reserved_mem.h> 38 #include <linux/virtio_ids.h> 39 #include <linux/virtio_ring.h> 40 #include <asm/byteorder.h> 41 #include <linux/platform_device.h> 42 43 #include "remoteproc_internal.h" 44 45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 static struct notifier_block rproc_panic_nb; 50 51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 52 void *, int offset, int avail); 53 54 static int rproc_alloc_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56 static int rproc_release_carveout(struct rproc *rproc, 57 struct rproc_mem_entry *mem); 58 59 /* Unique indices for remoteproc devices */ 60 static DEFINE_IDA(rproc_dev_index); 61 62 static const char * const rproc_crash_names[] = { 63 [RPROC_MMUFAULT] = "mmufault", 64 [RPROC_WATCHDOG] = "watchdog", 65 [RPROC_FATAL_ERROR] = "fatal error", 66 }; 67 68 /* translate rproc_crash_type to string */ 69 static const char *rproc_crash_to_string(enum rproc_crash_type type) 70 { 71 if (type < ARRAY_SIZE(rproc_crash_names)) 72 return rproc_crash_names[type]; 73 return "unknown"; 74 } 75 76 /* 77 * This is the IOMMU fault handler we register with the IOMMU API 78 * (when relevant; not all remote processors access memory through 79 * an IOMMU). 80 * 81 * IOMMU core will invoke this handler whenever the remote processor 82 * will try to access an unmapped device address. 83 */ 84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 85 unsigned long iova, int flags, void *token) 86 { 87 struct rproc *rproc = token; 88 89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 90 91 rproc_report_crash(rproc, RPROC_MMUFAULT); 92 93 /* 94 * Let the iommu core know we're not really handling this fault; 95 * we just used it as a recovery trigger. 96 */ 97 return -ENOSYS; 98 } 99 100 static int rproc_enable_iommu(struct rproc *rproc) 101 { 102 struct iommu_domain *domain; 103 struct device *dev = rproc->dev.parent; 104 int ret; 105 106 if (!rproc->has_iommu) { 107 dev_dbg(dev, "iommu not present\n"); 108 return 0; 109 } 110 111 domain = iommu_domain_alloc(dev->bus); 112 if (!domain) { 113 dev_err(dev, "can't alloc iommu domain\n"); 114 return -ENOMEM; 115 } 116 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 118 119 ret = iommu_attach_device(domain, dev); 120 if (ret) { 121 dev_err(dev, "can't attach iommu device: %d\n", ret); 122 goto free_domain; 123 } 124 125 rproc->domain = domain; 126 127 return 0; 128 129 free_domain: 130 iommu_domain_free(domain); 131 return ret; 132 } 133 134 static void rproc_disable_iommu(struct rproc *rproc) 135 { 136 struct iommu_domain *domain = rproc->domain; 137 struct device *dev = rproc->dev.parent; 138 139 if (!domain) 140 return; 141 142 iommu_detach_device(domain, dev); 143 iommu_domain_free(domain); 144 } 145 146 phys_addr_t rproc_va_to_pa(void *cpu_addr) 147 { 148 /* 149 * Return physical address according to virtual address location 150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 151 * - in kernel: if region allocated in generic dma memory pool 152 */ 153 if (is_vmalloc_addr(cpu_addr)) { 154 return page_to_phys(vmalloc_to_page(cpu_addr)) + 155 offset_in_page(cpu_addr); 156 } 157 158 WARN_ON(!virt_addr_valid(cpu_addr)); 159 return virt_to_phys(cpu_addr); 160 } 161 EXPORT_SYMBOL(rproc_va_to_pa); 162 163 /** 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 165 * @rproc: handle of a remote processor 166 * @da: remoteproc device address to translate 167 * @len: length of the memory region @da is pointing to 168 * 169 * Some remote processors will ask us to allocate them physically contiguous 170 * memory regions (which we call "carveouts"), and map them to specific 171 * device addresses (which are hardcoded in the firmware). They may also have 172 * dedicated memory regions internal to the processors, and use them either 173 * exclusively or alongside carveouts. 174 * 175 * They may then ask us to copy objects into specific device addresses (e.g. 176 * code/data sections) or expose us certain symbols in other device address 177 * (e.g. their trace buffer). 178 * 179 * This function is a helper function with which we can go over the allocated 180 * carveouts and translate specific device addresses to kernel virtual addresses 181 * so we can access the referenced memory. This function also allows to perform 182 * translations on the internal remoteproc memory regions through a platform 183 * implementation specific da_to_va ops, if present. 184 * 185 * The function returns a valid kernel address on success or NULL on failure. 186 * 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 188 * but only on kernel direct mapped RAM memory. Instead, we're just using 189 * here the output of the DMA API for the carveouts, which should be more 190 * correct. 191 */ 192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 193 { 194 struct rproc_mem_entry *carveout; 195 void *ptr = NULL; 196 197 if (rproc->ops->da_to_va) { 198 ptr = rproc->ops->da_to_va(rproc, da, len); 199 if (ptr) 200 goto out; 201 } 202 203 list_for_each_entry(carveout, &rproc->carveouts, node) { 204 int offset = da - carveout->da; 205 206 /* Verify that carveout is allocated */ 207 if (!carveout->va) 208 continue; 209 210 /* try next carveout if da is too small */ 211 if (offset < 0) 212 continue; 213 214 /* try next carveout if da is too large */ 215 if (offset + len > carveout->len) 216 continue; 217 218 ptr = carveout->va + offset; 219 220 break; 221 } 222 223 out: 224 return ptr; 225 } 226 EXPORT_SYMBOL(rproc_da_to_va); 227 228 /** 229 * rproc_find_carveout_by_name() - lookup the carveout region by a name 230 * @rproc: handle of a remote processor 231 * @name: carveout name to find (format string) 232 * @...: optional parameters matching @name string 233 * 234 * Platform driver has the capability to register some pre-allacoted carveout 235 * (physically contiguous memory regions) before rproc firmware loading and 236 * associated resource table analysis. These regions may be dedicated memory 237 * regions internal to the coprocessor or specified DDR region with specific 238 * attributes 239 * 240 * This function is a helper function with which we can go over the 241 * allocated carveouts and return associated region characteristics like 242 * coprocessor address, length or processor virtual address. 243 * 244 * Return: a valid pointer on carveout entry on success or NULL on failure. 245 */ 246 __printf(2, 3) 247 struct rproc_mem_entry * 248 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 249 { 250 va_list args; 251 char _name[32]; 252 struct rproc_mem_entry *carveout, *mem = NULL; 253 254 if (!name) 255 return NULL; 256 257 va_start(args, name); 258 vsnprintf(_name, sizeof(_name), name, args); 259 va_end(args); 260 261 list_for_each_entry(carveout, &rproc->carveouts, node) { 262 /* Compare carveout and requested names */ 263 if (!strcmp(carveout->name, _name)) { 264 mem = carveout; 265 break; 266 } 267 } 268 269 return mem; 270 } 271 272 /** 273 * rproc_check_carveout_da() - Check specified carveout da configuration 274 * @rproc: handle of a remote processor 275 * @mem: pointer on carveout to check 276 * @da: area device address 277 * @len: associated area size 278 * 279 * This function is a helper function to verify requested device area (couple 280 * da, len) is part of specified carveout. 281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 282 * checked. 283 * 284 * Return: 0 if carveout matches request else error 285 */ 286 static int rproc_check_carveout_da(struct rproc *rproc, 287 struct rproc_mem_entry *mem, u32 da, u32 len) 288 { 289 struct device *dev = &rproc->dev; 290 int delta; 291 292 /* Check requested resource length */ 293 if (len > mem->len) { 294 dev_err(dev, "Registered carveout doesn't fit len request\n"); 295 return -EINVAL; 296 } 297 298 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 299 /* Address doesn't match registered carveout configuration */ 300 return -EINVAL; 301 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 302 delta = da - mem->da; 303 304 /* Check requested resource belongs to registered carveout */ 305 if (delta < 0) { 306 dev_err(dev, 307 "Registered carveout doesn't fit da request\n"); 308 return -EINVAL; 309 } 310 311 if (delta + len > mem->len) { 312 dev_err(dev, 313 "Registered carveout doesn't fit len request\n"); 314 return -EINVAL; 315 } 316 } 317 318 return 0; 319 } 320 321 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 322 { 323 struct rproc *rproc = rvdev->rproc; 324 struct device *dev = &rproc->dev; 325 struct rproc_vring *rvring = &rvdev->vring[i]; 326 struct fw_rsc_vdev *rsc; 327 int ret, notifyid; 328 struct rproc_mem_entry *mem; 329 size_t size; 330 331 /* actual size of vring (in bytes) */ 332 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 333 334 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 335 336 /* Search for pre-registered carveout */ 337 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 338 i); 339 if (mem) { 340 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 341 return -ENOMEM; 342 } else { 343 /* Register carveout in in list */ 344 mem = rproc_mem_entry_init(dev, NULL, 0, 345 size, rsc->vring[i].da, 346 rproc_alloc_carveout, 347 rproc_release_carveout, 348 "vdev%dvring%d", 349 rvdev->index, i); 350 if (!mem) { 351 dev_err(dev, "Can't allocate memory entry structure\n"); 352 return -ENOMEM; 353 } 354 355 rproc_add_carveout(rproc, mem); 356 } 357 358 /* 359 * Assign an rproc-wide unique index for this vring 360 * TODO: assign a notifyid for rvdev updates as well 361 * TODO: support predefined notifyids (via resource table) 362 */ 363 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 364 if (ret < 0) { 365 dev_err(dev, "idr_alloc failed: %d\n", ret); 366 return ret; 367 } 368 notifyid = ret; 369 370 /* Potentially bump max_notifyid */ 371 if (notifyid > rproc->max_notifyid) 372 rproc->max_notifyid = notifyid; 373 374 rvring->notifyid = notifyid; 375 376 /* Let the rproc know the notifyid of this vring.*/ 377 rsc->vring[i].notifyid = notifyid; 378 return 0; 379 } 380 381 static int 382 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 383 { 384 struct rproc *rproc = rvdev->rproc; 385 struct device *dev = &rproc->dev; 386 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 387 struct rproc_vring *rvring = &rvdev->vring[i]; 388 389 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 390 i, vring->da, vring->num, vring->align); 391 392 /* verify queue size and vring alignment are sane */ 393 if (!vring->num || !vring->align) { 394 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 395 vring->num, vring->align); 396 return -EINVAL; 397 } 398 399 rvring->len = vring->num; 400 rvring->align = vring->align; 401 rvring->rvdev = rvdev; 402 403 return 0; 404 } 405 406 void rproc_free_vring(struct rproc_vring *rvring) 407 { 408 struct rproc *rproc = rvring->rvdev->rproc; 409 int idx = rvring - rvring->rvdev->vring; 410 struct fw_rsc_vdev *rsc; 411 412 idr_remove(&rproc->notifyids, rvring->notifyid); 413 414 /* 415 * At this point rproc_stop() has been called and the installed resource 416 * table in the remote processor memory may no longer be accessible. As 417 * such and as per rproc_stop(), rproc->table_ptr points to the cached 418 * resource table (rproc->cached_table). The cached resource table is 419 * only available when a remote processor has been booted by the 420 * remoteproc core, otherwise it is NULL. 421 * 422 * Based on the above, reset the virtio device section in the cached 423 * resource table only if there is one to work with. 424 */ 425 if (rproc->table_ptr) { 426 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 427 rsc->vring[idx].da = 0; 428 rsc->vring[idx].notifyid = -1; 429 } 430 } 431 432 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 433 { 434 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 435 436 return rproc_add_virtio_dev(rvdev, rvdev->id); 437 } 438 439 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 440 { 441 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 442 int ret; 443 444 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 445 if (ret) 446 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 447 } 448 449 /** 450 * rproc_rvdev_release() - release the existence of a rvdev 451 * 452 * @dev: the subdevice's dev 453 */ 454 static void rproc_rvdev_release(struct device *dev) 455 { 456 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 457 458 of_reserved_mem_device_release(dev); 459 460 kfree(rvdev); 461 } 462 463 static int copy_dma_range_map(struct device *to, struct device *from) 464 { 465 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; 466 int num_ranges = 0; 467 468 if (!map) 469 return 0; 470 471 for (r = map; r->size; r++) 472 num_ranges++; 473 474 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), 475 GFP_KERNEL); 476 if (!new_map) 477 return -ENOMEM; 478 to->dma_range_map = new_map; 479 return 0; 480 } 481 482 /** 483 * rproc_handle_vdev() - handle a vdev fw resource 484 * @rproc: the remote processor 485 * @rsc: the vring resource descriptor 486 * @offset: offset of the resource entry 487 * @avail: size of available data (for sanity checking the image) 488 * 489 * This resource entry requests the host to statically register a virtio 490 * device (vdev), and setup everything needed to support it. It contains 491 * everything needed to make it possible: the virtio device id, virtio 492 * device features, vrings information, virtio config space, etc... 493 * 494 * Before registering the vdev, the vrings are allocated from non-cacheable 495 * physically contiguous memory. Currently we only support two vrings per 496 * remote processor (temporary limitation). We might also want to consider 497 * doing the vring allocation only later when ->find_vqs() is invoked, and 498 * then release them upon ->del_vqs(). 499 * 500 * Note: @da is currently not really handled correctly: we dynamically 501 * allocate it using the DMA API, ignoring requested hard coded addresses, 502 * and we don't take care of any required IOMMU programming. This is all 503 * going to be taken care of when the generic iommu-based DMA API will be 504 * merged. Meanwhile, statically-addressed iommu-based firmware images should 505 * use RSC_DEVMEM resource entries to map their required @da to the physical 506 * address of their base CMA region (ouch, hacky!). 507 * 508 * Returns 0 on success, or an appropriate error code otherwise 509 */ 510 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 511 int offset, int avail) 512 { 513 struct device *dev = &rproc->dev; 514 struct rproc_vdev *rvdev; 515 int i, ret; 516 char name[16]; 517 518 /* make sure resource isn't truncated */ 519 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 520 avail) { 521 dev_err(dev, "vdev rsc is truncated\n"); 522 return -EINVAL; 523 } 524 525 /* make sure reserved bytes are zeroes */ 526 if (rsc->reserved[0] || rsc->reserved[1]) { 527 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 528 return -EINVAL; 529 } 530 531 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 532 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 533 534 /* we currently support only two vrings per rvdev */ 535 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 536 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 537 return -EINVAL; 538 } 539 540 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 541 if (!rvdev) 542 return -ENOMEM; 543 544 kref_init(&rvdev->refcount); 545 546 rvdev->id = rsc->id; 547 rvdev->rproc = rproc; 548 rvdev->index = rproc->nb_vdev++; 549 550 /* Initialise vdev subdevice */ 551 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 552 rvdev->dev.parent = &rproc->dev; 553 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); 554 if (ret) 555 return ret; 556 rvdev->dev.release = rproc_rvdev_release; 557 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 558 dev_set_drvdata(&rvdev->dev, rvdev); 559 560 ret = device_register(&rvdev->dev); 561 if (ret) { 562 put_device(&rvdev->dev); 563 return ret; 564 } 565 /* Make device dma capable by inheriting from parent's capabilities */ 566 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 567 568 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 569 dma_get_mask(rproc->dev.parent)); 570 if (ret) { 571 dev_warn(dev, 572 "Failed to set DMA mask %llx. Trying to continue... %x\n", 573 dma_get_mask(rproc->dev.parent), ret); 574 } 575 576 /* parse the vrings */ 577 for (i = 0; i < rsc->num_of_vrings; i++) { 578 ret = rproc_parse_vring(rvdev, rsc, i); 579 if (ret) 580 goto free_rvdev; 581 } 582 583 /* remember the resource offset*/ 584 rvdev->rsc_offset = offset; 585 586 /* allocate the vring resources */ 587 for (i = 0; i < rsc->num_of_vrings; i++) { 588 ret = rproc_alloc_vring(rvdev, i); 589 if (ret) 590 goto unwind_vring_allocations; 591 } 592 593 list_add_tail(&rvdev->node, &rproc->rvdevs); 594 595 rvdev->subdev.start = rproc_vdev_do_start; 596 rvdev->subdev.stop = rproc_vdev_do_stop; 597 598 rproc_add_subdev(rproc, &rvdev->subdev); 599 600 return 0; 601 602 unwind_vring_allocations: 603 for (i--; i >= 0; i--) 604 rproc_free_vring(&rvdev->vring[i]); 605 free_rvdev: 606 device_unregister(&rvdev->dev); 607 return ret; 608 } 609 610 void rproc_vdev_release(struct kref *ref) 611 { 612 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 613 struct rproc_vring *rvring; 614 struct rproc *rproc = rvdev->rproc; 615 int id; 616 617 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 618 rvring = &rvdev->vring[id]; 619 rproc_free_vring(rvring); 620 } 621 622 rproc_remove_subdev(rproc, &rvdev->subdev); 623 list_del(&rvdev->node); 624 device_unregister(&rvdev->dev); 625 } 626 627 /** 628 * rproc_handle_trace() - handle a shared trace buffer resource 629 * @rproc: the remote processor 630 * @rsc: the trace resource descriptor 631 * @offset: offset of the resource entry 632 * @avail: size of available data (for sanity checking the image) 633 * 634 * In case the remote processor dumps trace logs into memory, 635 * export it via debugfs. 636 * 637 * Currently, the 'da' member of @rsc should contain the device address 638 * where the remote processor is dumping the traces. Later we could also 639 * support dynamically allocating this address using the generic 640 * DMA API (but currently there isn't a use case for that). 641 * 642 * Returns 0 on success, or an appropriate error code otherwise 643 */ 644 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 645 int offset, int avail) 646 { 647 struct rproc_debug_trace *trace; 648 struct device *dev = &rproc->dev; 649 char name[15]; 650 651 if (sizeof(*rsc) > avail) { 652 dev_err(dev, "trace rsc is truncated\n"); 653 return -EINVAL; 654 } 655 656 /* make sure reserved bytes are zeroes */ 657 if (rsc->reserved) { 658 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 659 return -EINVAL; 660 } 661 662 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 663 if (!trace) 664 return -ENOMEM; 665 666 /* set the trace buffer dma properties */ 667 trace->trace_mem.len = rsc->len; 668 trace->trace_mem.da = rsc->da; 669 670 /* set pointer on rproc device */ 671 trace->rproc = rproc; 672 673 /* make sure snprintf always null terminates, even if truncating */ 674 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 675 676 /* create the debugfs entry */ 677 trace->tfile = rproc_create_trace_file(name, rproc, trace); 678 if (!trace->tfile) { 679 kfree(trace); 680 return -EINVAL; 681 } 682 683 list_add_tail(&trace->node, &rproc->traces); 684 685 rproc->num_traces++; 686 687 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 688 name, rsc->da, rsc->len); 689 690 return 0; 691 } 692 693 /** 694 * rproc_handle_devmem() - handle devmem resource entry 695 * @rproc: remote processor handle 696 * @rsc: the devmem resource entry 697 * @offset: offset of the resource entry 698 * @avail: size of available data (for sanity checking the image) 699 * 700 * Remote processors commonly need to access certain on-chip peripherals. 701 * 702 * Some of these remote processors access memory via an iommu device, 703 * and might require us to configure their iommu before they can access 704 * the on-chip peripherals they need. 705 * 706 * This resource entry is a request to map such a peripheral device. 707 * 708 * These devmem entries will contain the physical address of the device in 709 * the 'pa' member. If a specific device address is expected, then 'da' will 710 * contain it (currently this is the only use case supported). 'len' will 711 * contain the size of the physical region we need to map. 712 * 713 * Currently we just "trust" those devmem entries to contain valid physical 714 * addresses, but this is going to change: we want the implementations to 715 * tell us ranges of physical addresses the firmware is allowed to request, 716 * and not allow firmwares to request access to physical addresses that 717 * are outside those ranges. 718 */ 719 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 720 int offset, int avail) 721 { 722 struct rproc_mem_entry *mapping; 723 struct device *dev = &rproc->dev; 724 int ret; 725 726 /* no point in handling this resource without a valid iommu domain */ 727 if (!rproc->domain) 728 return -EINVAL; 729 730 if (sizeof(*rsc) > avail) { 731 dev_err(dev, "devmem rsc is truncated\n"); 732 return -EINVAL; 733 } 734 735 /* make sure reserved bytes are zeroes */ 736 if (rsc->reserved) { 737 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 738 return -EINVAL; 739 } 740 741 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 742 if (!mapping) 743 return -ENOMEM; 744 745 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 746 if (ret) { 747 dev_err(dev, "failed to map devmem: %d\n", ret); 748 goto out; 749 } 750 751 /* 752 * We'll need this info later when we'll want to unmap everything 753 * (e.g. on shutdown). 754 * 755 * We can't trust the remote processor not to change the resource 756 * table, so we must maintain this info independently. 757 */ 758 mapping->da = rsc->da; 759 mapping->len = rsc->len; 760 list_add_tail(&mapping->node, &rproc->mappings); 761 762 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 763 rsc->pa, rsc->da, rsc->len); 764 765 return 0; 766 767 out: 768 kfree(mapping); 769 return ret; 770 } 771 772 /** 773 * rproc_alloc_carveout() - allocated specified carveout 774 * @rproc: rproc handle 775 * @mem: the memory entry to allocate 776 * 777 * This function allocate specified memory entry @mem using 778 * dma_alloc_coherent() as default allocator 779 */ 780 static int rproc_alloc_carveout(struct rproc *rproc, 781 struct rproc_mem_entry *mem) 782 { 783 struct rproc_mem_entry *mapping = NULL; 784 struct device *dev = &rproc->dev; 785 dma_addr_t dma; 786 void *va; 787 int ret; 788 789 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 790 if (!va) { 791 dev_err(dev->parent, 792 "failed to allocate dma memory: len 0x%zx\n", 793 mem->len); 794 return -ENOMEM; 795 } 796 797 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 798 va, &dma, mem->len); 799 800 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 801 /* 802 * Check requested da is equal to dma address 803 * and print a warn message in case of missalignment. 804 * Don't stop rproc_start sequence as coprocessor may 805 * build pa to da translation on its side. 806 */ 807 if (mem->da != (u32)dma) 808 dev_warn(dev->parent, 809 "Allocated carveout doesn't fit device address request\n"); 810 } 811 812 /* 813 * Ok, this is non-standard. 814 * 815 * Sometimes we can't rely on the generic iommu-based DMA API 816 * to dynamically allocate the device address and then set the IOMMU 817 * tables accordingly, because some remote processors might 818 * _require_ us to use hard coded device addresses that their 819 * firmware was compiled with. 820 * 821 * In this case, we must use the IOMMU API directly and map 822 * the memory to the device address as expected by the remote 823 * processor. 824 * 825 * Obviously such remote processor devices should not be configured 826 * to use the iommu-based DMA API: we expect 'dma' to contain the 827 * physical address in this case. 828 */ 829 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 830 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 831 if (!mapping) { 832 ret = -ENOMEM; 833 goto dma_free; 834 } 835 836 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 837 mem->flags); 838 if (ret) { 839 dev_err(dev, "iommu_map failed: %d\n", ret); 840 goto free_mapping; 841 } 842 843 /* 844 * We'll need this info later when we'll want to unmap 845 * everything (e.g. on shutdown). 846 * 847 * We can't trust the remote processor not to change the 848 * resource table, so we must maintain this info independently. 849 */ 850 mapping->da = mem->da; 851 mapping->len = mem->len; 852 list_add_tail(&mapping->node, &rproc->mappings); 853 854 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 855 mem->da, &dma); 856 } 857 858 if (mem->da == FW_RSC_ADDR_ANY) { 859 /* Update device address as undefined by requester */ 860 if ((u64)dma & HIGH_BITS_MASK) 861 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 862 863 mem->da = (u32)dma; 864 } 865 866 mem->dma = dma; 867 mem->va = va; 868 869 return 0; 870 871 free_mapping: 872 kfree(mapping); 873 dma_free: 874 dma_free_coherent(dev->parent, mem->len, va, dma); 875 return ret; 876 } 877 878 /** 879 * rproc_release_carveout() - release acquired carveout 880 * @rproc: rproc handle 881 * @mem: the memory entry to release 882 * 883 * This function releases specified memory entry @mem allocated via 884 * rproc_alloc_carveout() function by @rproc. 885 */ 886 static int rproc_release_carveout(struct rproc *rproc, 887 struct rproc_mem_entry *mem) 888 { 889 struct device *dev = &rproc->dev; 890 891 /* clean up carveout allocations */ 892 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 893 return 0; 894 } 895 896 /** 897 * rproc_handle_carveout() - handle phys contig memory allocation requests 898 * @rproc: rproc handle 899 * @rsc: the resource entry 900 * @offset: offset of the resource entry 901 * @avail: size of available data (for image validation) 902 * 903 * This function will handle firmware requests for allocation of physically 904 * contiguous memory regions. 905 * 906 * These request entries should come first in the firmware's resource table, 907 * as other firmware entries might request placing other data objects inside 908 * these memory regions (e.g. data/code segments, trace resource entries, ...). 909 * 910 * Allocating memory this way helps utilizing the reserved physical memory 911 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 912 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 913 * pressure is important; it may have a substantial impact on performance. 914 */ 915 static int rproc_handle_carveout(struct rproc *rproc, 916 struct fw_rsc_carveout *rsc, 917 int offset, int avail) 918 { 919 struct rproc_mem_entry *carveout; 920 struct device *dev = &rproc->dev; 921 922 if (sizeof(*rsc) > avail) { 923 dev_err(dev, "carveout rsc is truncated\n"); 924 return -EINVAL; 925 } 926 927 /* make sure reserved bytes are zeroes */ 928 if (rsc->reserved) { 929 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 930 return -EINVAL; 931 } 932 933 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 934 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 935 936 /* 937 * Check carveout rsc already part of a registered carveout, 938 * Search by name, then check the da and length 939 */ 940 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 941 942 if (carveout) { 943 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 944 dev_err(dev, 945 "Carveout already associated to resource table\n"); 946 return -ENOMEM; 947 } 948 949 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 950 return -ENOMEM; 951 952 /* Update memory carveout with resource table info */ 953 carveout->rsc_offset = offset; 954 carveout->flags = rsc->flags; 955 956 return 0; 957 } 958 959 /* Register carveout in in list */ 960 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 961 rproc_alloc_carveout, 962 rproc_release_carveout, rsc->name); 963 if (!carveout) { 964 dev_err(dev, "Can't allocate memory entry structure\n"); 965 return -ENOMEM; 966 } 967 968 carveout->flags = rsc->flags; 969 carveout->rsc_offset = offset; 970 rproc_add_carveout(rproc, carveout); 971 972 return 0; 973 } 974 975 /** 976 * rproc_add_carveout() - register an allocated carveout region 977 * @rproc: rproc handle 978 * @mem: memory entry to register 979 * 980 * This function registers specified memory entry in @rproc carveouts list. 981 * Specified carveout should have been allocated before registering. 982 */ 983 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 984 { 985 list_add_tail(&mem->node, &rproc->carveouts); 986 } 987 EXPORT_SYMBOL(rproc_add_carveout); 988 989 /** 990 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 991 * @dev: pointer on device struct 992 * @va: virtual address 993 * @dma: dma address 994 * @len: memory carveout length 995 * @da: device address 996 * @alloc: memory carveout allocation function 997 * @release: memory carveout release function 998 * @name: carveout name 999 * 1000 * This function allocates a rproc_mem_entry struct and fill it with parameters 1001 * provided by client. 1002 */ 1003 __printf(8, 9) 1004 struct rproc_mem_entry * 1005 rproc_mem_entry_init(struct device *dev, 1006 void *va, dma_addr_t dma, size_t len, u32 da, 1007 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 1008 int (*release)(struct rproc *, struct rproc_mem_entry *), 1009 const char *name, ...) 1010 { 1011 struct rproc_mem_entry *mem; 1012 va_list args; 1013 1014 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1015 if (!mem) 1016 return mem; 1017 1018 mem->va = va; 1019 mem->dma = dma; 1020 mem->da = da; 1021 mem->len = len; 1022 mem->alloc = alloc; 1023 mem->release = release; 1024 mem->rsc_offset = FW_RSC_ADDR_ANY; 1025 mem->of_resm_idx = -1; 1026 1027 va_start(args, name); 1028 vsnprintf(mem->name, sizeof(mem->name), name, args); 1029 va_end(args); 1030 1031 return mem; 1032 } 1033 EXPORT_SYMBOL(rproc_mem_entry_init); 1034 1035 /** 1036 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1037 * from a reserved memory phandle 1038 * @dev: pointer on device struct 1039 * @of_resm_idx: reserved memory phandle index in "memory-region" 1040 * @len: memory carveout length 1041 * @da: device address 1042 * @name: carveout name 1043 * 1044 * This function allocates a rproc_mem_entry struct and fill it with parameters 1045 * provided by client. 1046 */ 1047 __printf(5, 6) 1048 struct rproc_mem_entry * 1049 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1050 u32 da, const char *name, ...) 1051 { 1052 struct rproc_mem_entry *mem; 1053 va_list args; 1054 1055 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1056 if (!mem) 1057 return mem; 1058 1059 mem->da = da; 1060 mem->len = len; 1061 mem->rsc_offset = FW_RSC_ADDR_ANY; 1062 mem->of_resm_idx = of_resm_idx; 1063 1064 va_start(args, name); 1065 vsnprintf(mem->name, sizeof(mem->name), name, args); 1066 va_end(args); 1067 1068 return mem; 1069 } 1070 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1071 1072 /** 1073 * rproc_of_parse_firmware() - parse and return the firmware-name 1074 * @dev: pointer on device struct representing a rproc 1075 * @index: index to use for the firmware-name retrieval 1076 * @fw_name: pointer to a character string, in which the firmware 1077 * name is returned on success and unmodified otherwise. 1078 * 1079 * This is an OF helper function that parses a device's DT node for 1080 * the "firmware-name" property and returns the firmware name pointer 1081 * in @fw_name on success. 1082 * 1083 * Return: 0 on success, or an appropriate failure. 1084 */ 1085 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1086 { 1087 int ret; 1088 1089 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1090 index, fw_name); 1091 return ret ? ret : 0; 1092 } 1093 EXPORT_SYMBOL(rproc_of_parse_firmware); 1094 1095 /* 1096 * A lookup table for resource handlers. The indices are defined in 1097 * enum fw_resource_type. 1098 */ 1099 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1100 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1101 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1102 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1103 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1104 }; 1105 1106 /* handle firmware resource entries before booting the remote processor */ 1107 static int rproc_handle_resources(struct rproc *rproc, 1108 rproc_handle_resource_t handlers[RSC_LAST]) 1109 { 1110 struct device *dev = &rproc->dev; 1111 rproc_handle_resource_t handler; 1112 int ret = 0, i; 1113 1114 if (!rproc->table_ptr) 1115 return 0; 1116 1117 for (i = 0; i < rproc->table_ptr->num; i++) { 1118 int offset = rproc->table_ptr->offset[i]; 1119 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1120 int avail = rproc->table_sz - offset - sizeof(*hdr); 1121 void *rsc = (void *)hdr + sizeof(*hdr); 1122 1123 /* make sure table isn't truncated */ 1124 if (avail < 0) { 1125 dev_err(dev, "rsc table is truncated\n"); 1126 return -EINVAL; 1127 } 1128 1129 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1130 1131 if (hdr->type >= RSC_VENDOR_START && 1132 hdr->type <= RSC_VENDOR_END) { 1133 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1134 offset + sizeof(*hdr), avail); 1135 if (ret == RSC_HANDLED) 1136 continue; 1137 else if (ret < 0) 1138 break; 1139 1140 dev_warn(dev, "unsupported vendor resource %d\n", 1141 hdr->type); 1142 continue; 1143 } 1144 1145 if (hdr->type >= RSC_LAST) { 1146 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1147 continue; 1148 } 1149 1150 handler = handlers[hdr->type]; 1151 if (!handler) 1152 continue; 1153 1154 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1155 if (ret) 1156 break; 1157 } 1158 1159 return ret; 1160 } 1161 1162 static int rproc_prepare_subdevices(struct rproc *rproc) 1163 { 1164 struct rproc_subdev *subdev; 1165 int ret; 1166 1167 list_for_each_entry(subdev, &rproc->subdevs, node) { 1168 if (subdev->prepare) { 1169 ret = subdev->prepare(subdev); 1170 if (ret) 1171 goto unroll_preparation; 1172 } 1173 } 1174 1175 return 0; 1176 1177 unroll_preparation: 1178 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1179 if (subdev->unprepare) 1180 subdev->unprepare(subdev); 1181 } 1182 1183 return ret; 1184 } 1185 1186 static int rproc_start_subdevices(struct rproc *rproc) 1187 { 1188 struct rproc_subdev *subdev; 1189 int ret; 1190 1191 list_for_each_entry(subdev, &rproc->subdevs, node) { 1192 if (subdev->start) { 1193 ret = subdev->start(subdev); 1194 if (ret) 1195 goto unroll_registration; 1196 } 1197 } 1198 1199 return 0; 1200 1201 unroll_registration: 1202 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1203 if (subdev->stop) 1204 subdev->stop(subdev, true); 1205 } 1206 1207 return ret; 1208 } 1209 1210 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1211 { 1212 struct rproc_subdev *subdev; 1213 1214 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1215 if (subdev->stop) 1216 subdev->stop(subdev, crashed); 1217 } 1218 } 1219 1220 static void rproc_unprepare_subdevices(struct rproc *rproc) 1221 { 1222 struct rproc_subdev *subdev; 1223 1224 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1225 if (subdev->unprepare) 1226 subdev->unprepare(subdev); 1227 } 1228 } 1229 1230 /** 1231 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1232 * in the list 1233 * @rproc: the remote processor handle 1234 * 1235 * This function parses registered carveout list, performs allocation 1236 * if alloc() ops registered and updates resource table information 1237 * if rsc_offset set. 1238 * 1239 * Return: 0 on success 1240 */ 1241 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1242 { 1243 struct rproc_mem_entry *entry, *tmp; 1244 struct fw_rsc_carveout *rsc; 1245 struct device *dev = &rproc->dev; 1246 u64 pa; 1247 int ret; 1248 1249 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1250 if (entry->alloc) { 1251 ret = entry->alloc(rproc, entry); 1252 if (ret) { 1253 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1254 entry->name, ret); 1255 return -ENOMEM; 1256 } 1257 } 1258 1259 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1260 /* update resource table */ 1261 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1262 1263 /* 1264 * Some remote processors might need to know the pa 1265 * even though they are behind an IOMMU. E.g., OMAP4's 1266 * remote M3 processor needs this so it can control 1267 * on-chip hardware accelerators that are not behind 1268 * the IOMMU, and therefor must know the pa. 1269 * 1270 * Generally we don't want to expose physical addresses 1271 * if we don't have to (remote processors are generally 1272 * _not_ trusted), so we might want to do this only for 1273 * remote processor that _must_ have this (e.g. OMAP4's 1274 * dual M3 subsystem). 1275 * 1276 * Non-IOMMU processors might also want to have this info. 1277 * In this case, the device address and the physical address 1278 * are the same. 1279 */ 1280 1281 /* Use va if defined else dma to generate pa */ 1282 if (entry->va) 1283 pa = (u64)rproc_va_to_pa(entry->va); 1284 else 1285 pa = (u64)entry->dma; 1286 1287 if (((u64)pa) & HIGH_BITS_MASK) 1288 dev_warn(dev, 1289 "Physical address cast in 32bit to fit resource table format\n"); 1290 1291 rsc->pa = (u32)pa; 1292 rsc->da = entry->da; 1293 rsc->len = entry->len; 1294 } 1295 } 1296 1297 return 0; 1298 } 1299 1300 1301 /** 1302 * rproc_resource_cleanup() - clean up and free all acquired resources 1303 * @rproc: rproc handle 1304 * 1305 * This function will free all resources acquired for @rproc, and it 1306 * is called whenever @rproc either shuts down or fails to boot. 1307 */ 1308 void rproc_resource_cleanup(struct rproc *rproc) 1309 { 1310 struct rproc_mem_entry *entry, *tmp; 1311 struct rproc_debug_trace *trace, *ttmp; 1312 struct rproc_vdev *rvdev, *rvtmp; 1313 struct device *dev = &rproc->dev; 1314 1315 /* clean up debugfs trace entries */ 1316 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1317 rproc_remove_trace_file(trace->tfile); 1318 rproc->num_traces--; 1319 list_del(&trace->node); 1320 kfree(trace); 1321 } 1322 1323 /* clean up iommu mapping entries */ 1324 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1325 size_t unmapped; 1326 1327 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1328 if (unmapped != entry->len) { 1329 /* nothing much to do besides complaining */ 1330 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1331 unmapped); 1332 } 1333 1334 list_del(&entry->node); 1335 kfree(entry); 1336 } 1337 1338 /* clean up carveout allocations */ 1339 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1340 if (entry->release) 1341 entry->release(rproc, entry); 1342 list_del(&entry->node); 1343 kfree(entry); 1344 } 1345 1346 /* clean up remote vdev entries */ 1347 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1348 kref_put(&rvdev->refcount, rproc_vdev_release); 1349 1350 rproc_coredump_cleanup(rproc); 1351 } 1352 EXPORT_SYMBOL(rproc_resource_cleanup); 1353 1354 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1355 { 1356 struct resource_table *loaded_table; 1357 struct device *dev = &rproc->dev; 1358 int ret; 1359 1360 /* load the ELF segments to memory */ 1361 ret = rproc_load_segments(rproc, fw); 1362 if (ret) { 1363 dev_err(dev, "Failed to load program segments: %d\n", ret); 1364 return ret; 1365 } 1366 1367 /* 1368 * The starting device has been given the rproc->cached_table as the 1369 * resource table. The address of the vring along with the other 1370 * allocated resources (carveouts etc) is stored in cached_table. 1371 * In order to pass this information to the remote device we must copy 1372 * this information to device memory. We also update the table_ptr so 1373 * that any subsequent changes will be applied to the loaded version. 1374 */ 1375 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1376 if (loaded_table) { 1377 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1378 rproc->table_ptr = loaded_table; 1379 } 1380 1381 ret = rproc_prepare_subdevices(rproc); 1382 if (ret) { 1383 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1384 rproc->name, ret); 1385 goto reset_table_ptr; 1386 } 1387 1388 /* power up the remote processor */ 1389 ret = rproc->ops->start(rproc); 1390 if (ret) { 1391 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1392 goto unprepare_subdevices; 1393 } 1394 1395 /* Start any subdevices for the remote processor */ 1396 ret = rproc_start_subdevices(rproc); 1397 if (ret) { 1398 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1399 rproc->name, ret); 1400 goto stop_rproc; 1401 } 1402 1403 rproc->state = RPROC_RUNNING; 1404 1405 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1406 1407 return 0; 1408 1409 stop_rproc: 1410 rproc->ops->stop(rproc); 1411 unprepare_subdevices: 1412 rproc_unprepare_subdevices(rproc); 1413 reset_table_ptr: 1414 rproc->table_ptr = rproc->cached_table; 1415 1416 return ret; 1417 } 1418 1419 static int rproc_attach(struct rproc *rproc) 1420 { 1421 struct device *dev = &rproc->dev; 1422 int ret; 1423 1424 ret = rproc_prepare_subdevices(rproc); 1425 if (ret) { 1426 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1427 rproc->name, ret); 1428 goto out; 1429 } 1430 1431 /* Attach to the remote processor */ 1432 ret = rproc_attach_device(rproc); 1433 if (ret) { 1434 dev_err(dev, "can't attach to rproc %s: %d\n", 1435 rproc->name, ret); 1436 goto unprepare_subdevices; 1437 } 1438 1439 /* Start any subdevices for the remote processor */ 1440 ret = rproc_start_subdevices(rproc); 1441 if (ret) { 1442 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1443 rproc->name, ret); 1444 goto stop_rproc; 1445 } 1446 1447 rproc->state = RPROC_RUNNING; 1448 1449 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1450 1451 return 0; 1452 1453 stop_rproc: 1454 rproc->ops->stop(rproc); 1455 unprepare_subdevices: 1456 rproc_unprepare_subdevices(rproc); 1457 out: 1458 return ret; 1459 } 1460 1461 /* 1462 * take a firmware and boot a remote processor with it. 1463 */ 1464 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1465 { 1466 struct device *dev = &rproc->dev; 1467 const char *name = rproc->firmware; 1468 int ret; 1469 1470 ret = rproc_fw_sanity_check(rproc, fw); 1471 if (ret) 1472 return ret; 1473 1474 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1475 1476 /* 1477 * if enabling an IOMMU isn't relevant for this rproc, this is 1478 * just a nop 1479 */ 1480 ret = rproc_enable_iommu(rproc); 1481 if (ret) { 1482 dev_err(dev, "can't enable iommu: %d\n", ret); 1483 return ret; 1484 } 1485 1486 /* Prepare rproc for firmware loading if needed */ 1487 ret = rproc_prepare_device(rproc); 1488 if (ret) { 1489 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1490 goto disable_iommu; 1491 } 1492 1493 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1494 1495 /* Load resource table, core dump segment list etc from the firmware */ 1496 ret = rproc_parse_fw(rproc, fw); 1497 if (ret) 1498 goto unprepare_rproc; 1499 1500 /* reset max_notifyid */ 1501 rproc->max_notifyid = -1; 1502 1503 /* reset handled vdev */ 1504 rproc->nb_vdev = 0; 1505 1506 /* handle fw resources which are required to boot rproc */ 1507 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1508 if (ret) { 1509 dev_err(dev, "Failed to process resources: %d\n", ret); 1510 goto clean_up_resources; 1511 } 1512 1513 /* Allocate carveout resources associated to rproc */ 1514 ret = rproc_alloc_registered_carveouts(rproc); 1515 if (ret) { 1516 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1517 ret); 1518 goto clean_up_resources; 1519 } 1520 1521 ret = rproc_start(rproc, fw); 1522 if (ret) 1523 goto clean_up_resources; 1524 1525 return 0; 1526 1527 clean_up_resources: 1528 rproc_resource_cleanup(rproc); 1529 kfree(rproc->cached_table); 1530 rproc->cached_table = NULL; 1531 rproc->table_ptr = NULL; 1532 unprepare_rproc: 1533 /* release HW resources if needed */ 1534 rproc_unprepare_device(rproc); 1535 disable_iommu: 1536 rproc_disable_iommu(rproc); 1537 return ret; 1538 } 1539 1540 /* 1541 * Attach to remote processor - similar to rproc_fw_boot() but without 1542 * the steps that deal with the firmware image. 1543 */ 1544 static int rproc_actuate(struct rproc *rproc) 1545 { 1546 struct device *dev = &rproc->dev; 1547 int ret; 1548 1549 /* 1550 * if enabling an IOMMU isn't relevant for this rproc, this is 1551 * just a nop 1552 */ 1553 ret = rproc_enable_iommu(rproc); 1554 if (ret) { 1555 dev_err(dev, "can't enable iommu: %d\n", ret); 1556 return ret; 1557 } 1558 1559 /* reset max_notifyid */ 1560 rproc->max_notifyid = -1; 1561 1562 /* reset handled vdev */ 1563 rproc->nb_vdev = 0; 1564 1565 /* 1566 * Handle firmware resources required to attach to a remote processor. 1567 * Because we are attaching rather than booting the remote processor, 1568 * we expect the platform driver to properly set rproc->table_ptr. 1569 */ 1570 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1571 if (ret) { 1572 dev_err(dev, "Failed to process resources: %d\n", ret); 1573 goto disable_iommu; 1574 } 1575 1576 /* Allocate carveout resources associated to rproc */ 1577 ret = rproc_alloc_registered_carveouts(rproc); 1578 if (ret) { 1579 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1580 ret); 1581 goto clean_up_resources; 1582 } 1583 1584 ret = rproc_attach(rproc); 1585 if (ret) 1586 goto clean_up_resources; 1587 1588 return 0; 1589 1590 clean_up_resources: 1591 rproc_resource_cleanup(rproc); 1592 disable_iommu: 1593 rproc_disable_iommu(rproc); 1594 return ret; 1595 } 1596 1597 /* 1598 * take a firmware and boot it up. 1599 * 1600 * Note: this function is called asynchronously upon registration of the 1601 * remote processor (so we must wait until it completes before we try 1602 * to unregister the device. one other option is just to use kref here, 1603 * that might be cleaner). 1604 */ 1605 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1606 { 1607 struct rproc *rproc = context; 1608 1609 rproc_boot(rproc); 1610 1611 release_firmware(fw); 1612 } 1613 1614 static int rproc_trigger_auto_boot(struct rproc *rproc) 1615 { 1616 int ret; 1617 1618 /* 1619 * Since the remote processor is in a detached state, it has already 1620 * been booted by another entity. As such there is no point in waiting 1621 * for a firmware image to be loaded, we can simply initiate the process 1622 * of attaching to it immediately. 1623 */ 1624 if (rproc->state == RPROC_DETACHED) 1625 return rproc_boot(rproc); 1626 1627 /* 1628 * We're initiating an asynchronous firmware loading, so we can 1629 * be built-in kernel code, without hanging the boot process. 1630 */ 1631 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1632 rproc->firmware, &rproc->dev, GFP_KERNEL, 1633 rproc, rproc_auto_boot_callback); 1634 if (ret < 0) 1635 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1636 1637 return ret; 1638 } 1639 1640 static int rproc_stop(struct rproc *rproc, bool crashed) 1641 { 1642 struct device *dev = &rproc->dev; 1643 int ret; 1644 1645 /* Stop any subdevices for the remote processor */ 1646 rproc_stop_subdevices(rproc, crashed); 1647 1648 /* the installed resource table is no longer accessible */ 1649 rproc->table_ptr = rproc->cached_table; 1650 1651 /* power off the remote processor */ 1652 ret = rproc->ops->stop(rproc); 1653 if (ret) { 1654 dev_err(dev, "can't stop rproc: %d\n", ret); 1655 return ret; 1656 } 1657 1658 rproc_unprepare_subdevices(rproc); 1659 1660 rproc->state = RPROC_OFFLINE; 1661 1662 /* 1663 * The remote processor has been stopped and is now offline, which means 1664 * that the next time it is brought back online the remoteproc core will 1665 * be responsible to load its firmware. As such it is no longer 1666 * autonomous. 1667 */ 1668 rproc->autonomous = false; 1669 1670 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1671 1672 return 0; 1673 } 1674 1675 1676 /** 1677 * rproc_trigger_recovery() - recover a remoteproc 1678 * @rproc: the remote processor 1679 * 1680 * The recovery is done by resetting all the virtio devices, that way all the 1681 * rpmsg drivers will be reseted along with the remote processor making the 1682 * remoteproc functional again. 1683 * 1684 * This function can sleep, so it cannot be called from atomic context. 1685 */ 1686 int rproc_trigger_recovery(struct rproc *rproc) 1687 { 1688 const struct firmware *firmware_p; 1689 struct device *dev = &rproc->dev; 1690 int ret; 1691 1692 ret = mutex_lock_interruptible(&rproc->lock); 1693 if (ret) 1694 return ret; 1695 1696 /* State could have changed before we got the mutex */ 1697 if (rproc->state != RPROC_CRASHED) 1698 goto unlock_mutex; 1699 1700 dev_err(dev, "recovering %s\n", rproc->name); 1701 1702 ret = rproc_stop(rproc, true); 1703 if (ret) 1704 goto unlock_mutex; 1705 1706 /* generate coredump */ 1707 rproc_coredump(rproc); 1708 1709 /* load firmware */ 1710 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1711 if (ret < 0) { 1712 dev_err(dev, "request_firmware failed: %d\n", ret); 1713 goto unlock_mutex; 1714 } 1715 1716 /* boot the remote processor up again */ 1717 ret = rproc_start(rproc, firmware_p); 1718 1719 release_firmware(firmware_p); 1720 1721 unlock_mutex: 1722 mutex_unlock(&rproc->lock); 1723 return ret; 1724 } 1725 1726 /** 1727 * rproc_crash_handler_work() - handle a crash 1728 * @work: work treating the crash 1729 * 1730 * This function needs to handle everything related to a crash, like cpu 1731 * registers and stack dump, information to help to debug the fatal error, etc. 1732 */ 1733 static void rproc_crash_handler_work(struct work_struct *work) 1734 { 1735 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1736 struct device *dev = &rproc->dev; 1737 1738 dev_dbg(dev, "enter %s\n", __func__); 1739 1740 mutex_lock(&rproc->lock); 1741 1742 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1743 /* handle only the first crash detected */ 1744 mutex_unlock(&rproc->lock); 1745 return; 1746 } 1747 1748 rproc->state = RPROC_CRASHED; 1749 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1750 rproc->name); 1751 1752 mutex_unlock(&rproc->lock); 1753 1754 if (!rproc->recovery_disabled) 1755 rproc_trigger_recovery(rproc); 1756 1757 pm_relax(rproc->dev.parent); 1758 } 1759 1760 /** 1761 * rproc_boot() - boot a remote processor 1762 * @rproc: handle of a remote processor 1763 * 1764 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1765 * 1766 * If the remote processor is already powered on, this function immediately 1767 * returns (successfully). 1768 * 1769 * Returns 0 on success, and an appropriate error value otherwise. 1770 */ 1771 int rproc_boot(struct rproc *rproc) 1772 { 1773 const struct firmware *firmware_p; 1774 struct device *dev; 1775 int ret; 1776 1777 if (!rproc) { 1778 pr_err("invalid rproc handle\n"); 1779 return -EINVAL; 1780 } 1781 1782 dev = &rproc->dev; 1783 1784 ret = mutex_lock_interruptible(&rproc->lock); 1785 if (ret) { 1786 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1787 return ret; 1788 } 1789 1790 if (rproc->state == RPROC_DELETED) { 1791 ret = -ENODEV; 1792 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1793 goto unlock_mutex; 1794 } 1795 1796 /* skip the boot or attach process if rproc is already powered up */ 1797 if (atomic_inc_return(&rproc->power) > 1) { 1798 ret = 0; 1799 goto unlock_mutex; 1800 } 1801 1802 if (rproc->state == RPROC_DETACHED) { 1803 dev_info(dev, "attaching to %s\n", rproc->name); 1804 1805 ret = rproc_actuate(rproc); 1806 } else { 1807 dev_info(dev, "powering up %s\n", rproc->name); 1808 1809 /* load firmware */ 1810 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1811 if (ret < 0) { 1812 dev_err(dev, "request_firmware failed: %d\n", ret); 1813 goto downref_rproc; 1814 } 1815 1816 ret = rproc_fw_boot(rproc, firmware_p); 1817 1818 release_firmware(firmware_p); 1819 } 1820 1821 downref_rproc: 1822 if (ret) 1823 atomic_dec(&rproc->power); 1824 unlock_mutex: 1825 mutex_unlock(&rproc->lock); 1826 return ret; 1827 } 1828 EXPORT_SYMBOL(rproc_boot); 1829 1830 /** 1831 * rproc_shutdown() - power off the remote processor 1832 * @rproc: the remote processor 1833 * 1834 * Power off a remote processor (previously booted with rproc_boot()). 1835 * 1836 * In case @rproc is still being used by an additional user(s), then 1837 * this function will just decrement the power refcount and exit, 1838 * without really powering off the device. 1839 * 1840 * Every call to rproc_boot() must (eventually) be accompanied by a call 1841 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1842 * 1843 * Notes: 1844 * - we're not decrementing the rproc's refcount, only the power refcount. 1845 * which means that the @rproc handle stays valid even after rproc_shutdown() 1846 * returns, and users can still use it with a subsequent rproc_boot(), if 1847 * needed. 1848 */ 1849 void rproc_shutdown(struct rproc *rproc) 1850 { 1851 struct device *dev = &rproc->dev; 1852 int ret; 1853 1854 ret = mutex_lock_interruptible(&rproc->lock); 1855 if (ret) { 1856 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1857 return; 1858 } 1859 1860 /* if the remote proc is still needed, bail out */ 1861 if (!atomic_dec_and_test(&rproc->power)) 1862 goto out; 1863 1864 ret = rproc_stop(rproc, false); 1865 if (ret) { 1866 atomic_inc(&rproc->power); 1867 goto out; 1868 } 1869 1870 /* clean up all acquired resources */ 1871 rproc_resource_cleanup(rproc); 1872 1873 /* release HW resources if needed */ 1874 rproc_unprepare_device(rproc); 1875 1876 rproc_disable_iommu(rproc); 1877 1878 /* Free the copy of the resource table */ 1879 kfree(rproc->cached_table); 1880 rproc->cached_table = NULL; 1881 rproc->table_ptr = NULL; 1882 out: 1883 mutex_unlock(&rproc->lock); 1884 } 1885 EXPORT_SYMBOL(rproc_shutdown); 1886 1887 /** 1888 * rproc_get_by_phandle() - find a remote processor by phandle 1889 * @phandle: phandle to the rproc 1890 * 1891 * Finds an rproc handle using the remote processor's phandle, and then 1892 * return a handle to the rproc. 1893 * 1894 * This function increments the remote processor's refcount, so always 1895 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1896 * 1897 * Returns the rproc handle on success, and NULL on failure. 1898 */ 1899 #ifdef CONFIG_OF 1900 struct rproc *rproc_get_by_phandle(phandle phandle) 1901 { 1902 struct rproc *rproc = NULL, *r; 1903 struct device_node *np; 1904 1905 np = of_find_node_by_phandle(phandle); 1906 if (!np) 1907 return NULL; 1908 1909 rcu_read_lock(); 1910 list_for_each_entry_rcu(r, &rproc_list, node) { 1911 if (r->dev.parent && r->dev.parent->of_node == np) { 1912 /* prevent underlying implementation from being removed */ 1913 if (!try_module_get(r->dev.parent->driver->owner)) { 1914 dev_err(&r->dev, "can't get owner\n"); 1915 break; 1916 } 1917 1918 rproc = r; 1919 get_device(&rproc->dev); 1920 break; 1921 } 1922 } 1923 rcu_read_unlock(); 1924 1925 of_node_put(np); 1926 1927 return rproc; 1928 } 1929 #else 1930 struct rproc *rproc_get_by_phandle(phandle phandle) 1931 { 1932 return NULL; 1933 } 1934 #endif 1935 EXPORT_SYMBOL(rproc_get_by_phandle); 1936 1937 static int rproc_validate(struct rproc *rproc) 1938 { 1939 switch (rproc->state) { 1940 case RPROC_OFFLINE: 1941 /* 1942 * An offline processor without a start() 1943 * function makes no sense. 1944 */ 1945 if (!rproc->ops->start) 1946 return -EINVAL; 1947 break; 1948 case RPROC_DETACHED: 1949 /* 1950 * A remote processor in a detached state without an 1951 * attach() function makes not sense. 1952 */ 1953 if (!rproc->ops->attach) 1954 return -EINVAL; 1955 /* 1956 * When attaching to a remote processor the device memory 1957 * is already available and as such there is no need to have a 1958 * cached table. 1959 */ 1960 if (rproc->cached_table) 1961 return -EINVAL; 1962 break; 1963 default: 1964 /* 1965 * When adding a remote processor, the state of the device 1966 * can be offline or detached, nothing else. 1967 */ 1968 return -EINVAL; 1969 } 1970 1971 return 0; 1972 } 1973 1974 /** 1975 * rproc_add() - register a remote processor 1976 * @rproc: the remote processor handle to register 1977 * 1978 * Registers @rproc with the remoteproc framework, after it has been 1979 * allocated with rproc_alloc(). 1980 * 1981 * This is called by the platform-specific rproc implementation, whenever 1982 * a new remote processor device is probed. 1983 * 1984 * Returns 0 on success and an appropriate error code otherwise. 1985 * 1986 * Note: this function initiates an asynchronous firmware loading 1987 * context, which will look for virtio devices supported by the rproc's 1988 * firmware. 1989 * 1990 * If found, those virtio devices will be created and added, so as a result 1991 * of registering this remote processor, additional virtio drivers might be 1992 * probed. 1993 */ 1994 int rproc_add(struct rproc *rproc) 1995 { 1996 struct device *dev = &rproc->dev; 1997 int ret; 1998 1999 ret = device_add(dev); 2000 if (ret < 0) 2001 return ret; 2002 2003 ret = rproc_validate(rproc); 2004 if (ret < 0) 2005 return ret; 2006 2007 dev_info(dev, "%s is available\n", rproc->name); 2008 2009 /* create debugfs entries */ 2010 rproc_create_debug_dir(rproc); 2011 2012 /* add char device for this remoteproc */ 2013 ret = rproc_char_device_add(rproc); 2014 if (ret < 0) 2015 return ret; 2016 2017 /* 2018 * Remind ourselves the remote processor has been attached to rather 2019 * than booted by the remoteproc core. This is important because the 2020 * RPROC_DETACHED state will be lost as soon as the remote processor 2021 * has been attached to. Used in firmware_show() and reset in 2022 * rproc_stop(). 2023 */ 2024 if (rproc->state == RPROC_DETACHED) 2025 rproc->autonomous = true; 2026 2027 /* if rproc is marked always-on, request it to boot */ 2028 if (rproc->auto_boot) { 2029 ret = rproc_trigger_auto_boot(rproc); 2030 if (ret < 0) 2031 return ret; 2032 } 2033 2034 /* expose to rproc_get_by_phandle users */ 2035 mutex_lock(&rproc_list_mutex); 2036 list_add_rcu(&rproc->node, &rproc_list); 2037 mutex_unlock(&rproc_list_mutex); 2038 2039 return 0; 2040 } 2041 EXPORT_SYMBOL(rproc_add); 2042 2043 static void devm_rproc_remove(void *rproc) 2044 { 2045 rproc_del(rproc); 2046 } 2047 2048 /** 2049 * devm_rproc_add() - resource managed rproc_add() 2050 * @dev: the underlying device 2051 * @rproc: the remote processor handle to register 2052 * 2053 * This function performs like rproc_add() but the registered rproc device will 2054 * automatically be removed on driver detach. 2055 * 2056 * Returns: 0 on success, negative errno on failure 2057 */ 2058 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2059 { 2060 int err; 2061 2062 err = rproc_add(rproc); 2063 if (err) 2064 return err; 2065 2066 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2067 } 2068 EXPORT_SYMBOL(devm_rproc_add); 2069 2070 /** 2071 * rproc_type_release() - release a remote processor instance 2072 * @dev: the rproc's device 2073 * 2074 * This function should _never_ be called directly. 2075 * 2076 * It will be called by the driver core when no one holds a valid pointer 2077 * to @dev anymore. 2078 */ 2079 static void rproc_type_release(struct device *dev) 2080 { 2081 struct rproc *rproc = container_of(dev, struct rproc, dev); 2082 2083 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2084 2085 idr_destroy(&rproc->notifyids); 2086 2087 if (rproc->index >= 0) 2088 ida_simple_remove(&rproc_dev_index, rproc->index); 2089 2090 kfree_const(rproc->firmware); 2091 kfree_const(rproc->name); 2092 kfree(rproc->ops); 2093 kfree(rproc); 2094 } 2095 2096 static const struct device_type rproc_type = { 2097 .name = "remoteproc", 2098 .release = rproc_type_release, 2099 }; 2100 2101 static int rproc_alloc_firmware(struct rproc *rproc, 2102 const char *name, const char *firmware) 2103 { 2104 const char *p; 2105 2106 /* 2107 * Allocate a firmware name if the caller gave us one to work 2108 * with. Otherwise construct a new one using a default pattern. 2109 */ 2110 if (firmware) 2111 p = kstrdup_const(firmware, GFP_KERNEL); 2112 else 2113 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2114 2115 if (!p) 2116 return -ENOMEM; 2117 2118 rproc->firmware = p; 2119 2120 return 0; 2121 } 2122 2123 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2124 { 2125 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2126 if (!rproc->ops) 2127 return -ENOMEM; 2128 2129 if (rproc->ops->load) 2130 return 0; 2131 2132 /* Default to ELF loader if no load function is specified */ 2133 rproc->ops->load = rproc_elf_load_segments; 2134 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2135 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2136 rproc->ops->sanity_check = rproc_elf_sanity_check; 2137 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2138 2139 return 0; 2140 } 2141 2142 /** 2143 * rproc_alloc() - allocate a remote processor handle 2144 * @dev: the underlying device 2145 * @name: name of this remote processor 2146 * @ops: platform-specific handlers (mainly start/stop) 2147 * @firmware: name of firmware file to load, can be NULL 2148 * @len: length of private data needed by the rproc driver (in bytes) 2149 * 2150 * Allocates a new remote processor handle, but does not register 2151 * it yet. if @firmware is NULL, a default name is used. 2152 * 2153 * This function should be used by rproc implementations during initialization 2154 * of the remote processor. 2155 * 2156 * After creating an rproc handle using this function, and when ready, 2157 * implementations should then call rproc_add() to complete 2158 * the registration of the remote processor. 2159 * 2160 * On success the new rproc is returned, and on failure, NULL. 2161 * 2162 * Note: _never_ directly deallocate @rproc, even if it was not registered 2163 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2164 */ 2165 struct rproc *rproc_alloc(struct device *dev, const char *name, 2166 const struct rproc_ops *ops, 2167 const char *firmware, int len) 2168 { 2169 struct rproc *rproc; 2170 2171 if (!dev || !name || !ops) 2172 return NULL; 2173 2174 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2175 if (!rproc) 2176 return NULL; 2177 2178 rproc->priv = &rproc[1]; 2179 rproc->auto_boot = true; 2180 rproc->elf_class = ELFCLASSNONE; 2181 rproc->elf_machine = EM_NONE; 2182 2183 device_initialize(&rproc->dev); 2184 rproc->dev.parent = dev; 2185 rproc->dev.type = &rproc_type; 2186 rproc->dev.class = &rproc_class; 2187 rproc->dev.driver_data = rproc; 2188 idr_init(&rproc->notifyids); 2189 2190 rproc->name = kstrdup_const(name, GFP_KERNEL); 2191 if (!rproc->name) 2192 goto put_device; 2193 2194 if (rproc_alloc_firmware(rproc, name, firmware)) 2195 goto put_device; 2196 2197 if (rproc_alloc_ops(rproc, ops)) 2198 goto put_device; 2199 2200 /* Assign a unique device index and name */ 2201 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2202 if (rproc->index < 0) { 2203 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2204 goto put_device; 2205 } 2206 2207 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2208 2209 atomic_set(&rproc->power, 0); 2210 2211 mutex_init(&rproc->lock); 2212 2213 INIT_LIST_HEAD(&rproc->carveouts); 2214 INIT_LIST_HEAD(&rproc->mappings); 2215 INIT_LIST_HEAD(&rproc->traces); 2216 INIT_LIST_HEAD(&rproc->rvdevs); 2217 INIT_LIST_HEAD(&rproc->subdevs); 2218 INIT_LIST_HEAD(&rproc->dump_segments); 2219 2220 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2221 2222 rproc->state = RPROC_OFFLINE; 2223 2224 return rproc; 2225 2226 put_device: 2227 put_device(&rproc->dev); 2228 return NULL; 2229 } 2230 EXPORT_SYMBOL(rproc_alloc); 2231 2232 /** 2233 * rproc_free() - unroll rproc_alloc() 2234 * @rproc: the remote processor handle 2235 * 2236 * This function decrements the rproc dev refcount. 2237 * 2238 * If no one holds any reference to rproc anymore, then its refcount would 2239 * now drop to zero, and it would be freed. 2240 */ 2241 void rproc_free(struct rproc *rproc) 2242 { 2243 put_device(&rproc->dev); 2244 } 2245 EXPORT_SYMBOL(rproc_free); 2246 2247 /** 2248 * rproc_put() - release rproc reference 2249 * @rproc: the remote processor handle 2250 * 2251 * This function decrements the rproc dev refcount. 2252 * 2253 * If no one holds any reference to rproc anymore, then its refcount would 2254 * now drop to zero, and it would be freed. 2255 */ 2256 void rproc_put(struct rproc *rproc) 2257 { 2258 module_put(rproc->dev.parent->driver->owner); 2259 put_device(&rproc->dev); 2260 } 2261 EXPORT_SYMBOL(rproc_put); 2262 2263 /** 2264 * rproc_del() - unregister a remote processor 2265 * @rproc: rproc handle to unregister 2266 * 2267 * This function should be called when the platform specific rproc 2268 * implementation decides to remove the rproc device. it should 2269 * _only_ be called if a previous invocation of rproc_add() 2270 * has completed successfully. 2271 * 2272 * After rproc_del() returns, @rproc isn't freed yet, because 2273 * of the outstanding reference created by rproc_alloc. To decrement that 2274 * one last refcount, one still needs to call rproc_free(). 2275 * 2276 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2277 */ 2278 int rproc_del(struct rproc *rproc) 2279 { 2280 if (!rproc) 2281 return -EINVAL; 2282 2283 /* if rproc is marked always-on, rproc_add() booted it */ 2284 /* TODO: make sure this works with rproc->power > 1 */ 2285 if (rproc->auto_boot) 2286 rproc_shutdown(rproc); 2287 2288 mutex_lock(&rproc->lock); 2289 rproc->state = RPROC_DELETED; 2290 mutex_unlock(&rproc->lock); 2291 2292 rproc_delete_debug_dir(rproc); 2293 rproc_char_device_remove(rproc); 2294 2295 /* the rproc is downref'ed as soon as it's removed from the klist */ 2296 mutex_lock(&rproc_list_mutex); 2297 list_del_rcu(&rproc->node); 2298 mutex_unlock(&rproc_list_mutex); 2299 2300 /* Ensure that no readers of rproc_list are still active */ 2301 synchronize_rcu(); 2302 2303 device_del(&rproc->dev); 2304 2305 return 0; 2306 } 2307 EXPORT_SYMBOL(rproc_del); 2308 2309 static void devm_rproc_free(struct device *dev, void *res) 2310 { 2311 rproc_free(*(struct rproc **)res); 2312 } 2313 2314 /** 2315 * devm_rproc_alloc() - resource managed rproc_alloc() 2316 * @dev: the underlying device 2317 * @name: name of this remote processor 2318 * @ops: platform-specific handlers (mainly start/stop) 2319 * @firmware: name of firmware file to load, can be NULL 2320 * @len: length of private data needed by the rproc driver (in bytes) 2321 * 2322 * This function performs like rproc_alloc() but the acquired rproc device will 2323 * automatically be released on driver detach. 2324 * 2325 * Returns: new rproc instance, or NULL on failure 2326 */ 2327 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2328 const struct rproc_ops *ops, 2329 const char *firmware, int len) 2330 { 2331 struct rproc **ptr, *rproc; 2332 2333 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2334 if (!ptr) 2335 return NULL; 2336 2337 rproc = rproc_alloc(dev, name, ops, firmware, len); 2338 if (rproc) { 2339 *ptr = rproc; 2340 devres_add(dev, ptr); 2341 } else { 2342 devres_free(ptr); 2343 } 2344 2345 return rproc; 2346 } 2347 EXPORT_SYMBOL(devm_rproc_alloc); 2348 2349 /** 2350 * rproc_add_subdev() - add a subdevice to a remoteproc 2351 * @rproc: rproc handle to add the subdevice to 2352 * @subdev: subdev handle to register 2353 * 2354 * Caller is responsible for populating optional subdevice function pointers. 2355 */ 2356 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2357 { 2358 list_add_tail(&subdev->node, &rproc->subdevs); 2359 } 2360 EXPORT_SYMBOL(rproc_add_subdev); 2361 2362 /** 2363 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2364 * @rproc: rproc handle to remove the subdevice from 2365 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2366 */ 2367 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2368 { 2369 list_del(&subdev->node); 2370 } 2371 EXPORT_SYMBOL(rproc_remove_subdev); 2372 2373 /** 2374 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2375 * @dev: child device to find ancestor of 2376 * 2377 * Returns the ancestor rproc instance, or NULL if not found. 2378 */ 2379 struct rproc *rproc_get_by_child(struct device *dev) 2380 { 2381 for (dev = dev->parent; dev; dev = dev->parent) { 2382 if (dev->type == &rproc_type) 2383 return dev->driver_data; 2384 } 2385 2386 return NULL; 2387 } 2388 EXPORT_SYMBOL(rproc_get_by_child); 2389 2390 /** 2391 * rproc_report_crash() - rproc crash reporter function 2392 * @rproc: remote processor 2393 * @type: crash type 2394 * 2395 * This function must be called every time a crash is detected by the low-level 2396 * drivers implementing a specific remoteproc. This should not be called from a 2397 * non-remoteproc driver. 2398 * 2399 * This function can be called from atomic/interrupt context. 2400 */ 2401 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2402 { 2403 if (!rproc) { 2404 pr_err("NULL rproc pointer\n"); 2405 return; 2406 } 2407 2408 /* Prevent suspend while the remoteproc is being recovered */ 2409 pm_stay_awake(rproc->dev.parent); 2410 2411 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2412 rproc->name, rproc_crash_to_string(type)); 2413 2414 /* create a new task to handle the error */ 2415 schedule_work(&rproc->crash_handler); 2416 } 2417 EXPORT_SYMBOL(rproc_report_crash); 2418 2419 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2420 void *ptr) 2421 { 2422 unsigned int longest = 0; 2423 struct rproc *rproc; 2424 unsigned int d; 2425 2426 rcu_read_lock(); 2427 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2428 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING) 2429 continue; 2430 2431 d = rproc->ops->panic(rproc); 2432 longest = max(longest, d); 2433 } 2434 rcu_read_unlock(); 2435 2436 /* 2437 * Delay for the longest requested duration before returning. This can 2438 * be used by the remoteproc drivers to give the remote processor time 2439 * to perform any requested operations (such as flush caches), when 2440 * it's not possible to signal the Linux side due to the panic. 2441 */ 2442 mdelay(longest); 2443 2444 return NOTIFY_DONE; 2445 } 2446 2447 static void __init rproc_init_panic(void) 2448 { 2449 rproc_panic_nb.notifier_call = rproc_panic_handler; 2450 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2451 } 2452 2453 static void __exit rproc_exit_panic(void) 2454 { 2455 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2456 } 2457 2458 static int __init remoteproc_init(void) 2459 { 2460 rproc_init_sysfs(); 2461 rproc_init_debugfs(); 2462 rproc_init_cdev(); 2463 rproc_init_panic(); 2464 2465 return 0; 2466 } 2467 subsys_initcall(remoteproc_init); 2468 2469 static void __exit remoteproc_exit(void) 2470 { 2471 ida_destroy(&rproc_dev_index); 2472 2473 rproc_exit_panic(); 2474 rproc_exit_debugfs(); 2475 rproc_exit_sysfs(); 2476 } 2477 module_exit(remoteproc_exit); 2478 2479 MODULE_LICENSE("GPL v2"); 2480 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2481