1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
39 
40 #include "remoteproc_internal.h"
41 
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
43 
44 static DEFINE_MUTEX(rproc_list_mutex);
45 static LIST_HEAD(rproc_list);
46 
47 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
48 				 void *, int offset, int avail);
49 
50 static int rproc_alloc_carveout(struct rproc *rproc,
51 				struct rproc_mem_entry *mem);
52 static int rproc_release_carveout(struct rproc *rproc,
53 				  struct rproc_mem_entry *mem);
54 
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57 
58 static const char * const rproc_crash_names[] = {
59 	[RPROC_MMUFAULT]	= "mmufault",
60 	[RPROC_WATCHDOG]	= "watchdog",
61 	[RPROC_FATAL_ERROR]	= "fatal error",
62 };
63 
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
66 {
67 	if (type < ARRAY_SIZE(rproc_crash_names))
68 		return rproc_crash_names[type];
69 	return "unknown";
70 }
71 
72 /*
73  * This is the IOMMU fault handler we register with the IOMMU API
74  * (when relevant; not all remote processors access memory through
75  * an IOMMU).
76  *
77  * IOMMU core will invoke this handler whenever the remote processor
78  * will try to access an unmapped device address.
79  */
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 			     unsigned long iova, int flags, void *token)
82 {
83 	struct rproc *rproc = token;
84 
85 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86 
87 	rproc_report_crash(rproc, RPROC_MMUFAULT);
88 
89 	/*
90 	 * Let the iommu core know we're not really handling this fault;
91 	 * we just used it as a recovery trigger.
92 	 */
93 	return -ENOSYS;
94 }
95 
96 static int rproc_enable_iommu(struct rproc *rproc)
97 {
98 	struct iommu_domain *domain;
99 	struct device *dev = rproc->dev.parent;
100 	int ret;
101 
102 	if (!rproc->has_iommu) {
103 		dev_dbg(dev, "iommu not present\n");
104 		return 0;
105 	}
106 
107 	domain = iommu_domain_alloc(dev->bus);
108 	if (!domain) {
109 		dev_err(dev, "can't alloc iommu domain\n");
110 		return -ENOMEM;
111 	}
112 
113 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114 
115 	ret = iommu_attach_device(domain, dev);
116 	if (ret) {
117 		dev_err(dev, "can't attach iommu device: %d\n", ret);
118 		goto free_domain;
119 	}
120 
121 	rproc->domain = domain;
122 
123 	return 0;
124 
125 free_domain:
126 	iommu_domain_free(domain);
127 	return ret;
128 }
129 
130 static void rproc_disable_iommu(struct rproc *rproc)
131 {
132 	struct iommu_domain *domain = rproc->domain;
133 	struct device *dev = rproc->dev.parent;
134 
135 	if (!domain)
136 		return;
137 
138 	iommu_detach_device(domain, dev);
139 	iommu_domain_free(domain);
140 }
141 
142 phys_addr_t rproc_va_to_pa(void *cpu_addr)
143 {
144 	/*
145 	 * Return physical address according to virtual address location
146 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
147 	 * - in kernel: if region allocated in generic dma memory pool
148 	 */
149 	if (is_vmalloc_addr(cpu_addr)) {
150 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
151 				    offset_in_page(cpu_addr);
152 	}
153 
154 	WARN_ON(!virt_addr_valid(cpu_addr));
155 	return virt_to_phys(cpu_addr);
156 }
157 EXPORT_SYMBOL(rproc_va_to_pa);
158 
159 /**
160  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
161  * @rproc: handle of a remote processor
162  * @da: remoteproc device address to translate
163  * @len: length of the memory region @da is pointing to
164  *
165  * Some remote processors will ask us to allocate them physically contiguous
166  * memory regions (which we call "carveouts"), and map them to specific
167  * device addresses (which are hardcoded in the firmware). They may also have
168  * dedicated memory regions internal to the processors, and use them either
169  * exclusively or alongside carveouts.
170  *
171  * They may then ask us to copy objects into specific device addresses (e.g.
172  * code/data sections) or expose us certain symbols in other device address
173  * (e.g. their trace buffer).
174  *
175  * This function is a helper function with which we can go over the allocated
176  * carveouts and translate specific device addresses to kernel virtual addresses
177  * so we can access the referenced memory. This function also allows to perform
178  * translations on the internal remoteproc memory regions through a platform
179  * implementation specific da_to_va ops, if present.
180  *
181  * The function returns a valid kernel address on success or NULL on failure.
182  *
183  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
184  * but only on kernel direct mapped RAM memory. Instead, we're just using
185  * here the output of the DMA API for the carveouts, which should be more
186  * correct.
187  */
188 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
189 {
190 	struct rproc_mem_entry *carveout;
191 	void *ptr = NULL;
192 
193 	if (rproc->ops->da_to_va) {
194 		ptr = rproc->ops->da_to_va(rproc, da, len);
195 		if (ptr)
196 			goto out;
197 	}
198 
199 	list_for_each_entry(carveout, &rproc->carveouts, node) {
200 		int offset = da - carveout->da;
201 
202 		/*  Verify that carveout is allocated */
203 		if (!carveout->va)
204 			continue;
205 
206 		/* try next carveout if da is too small */
207 		if (offset < 0)
208 			continue;
209 
210 		/* try next carveout if da is too large */
211 		if (offset + len > carveout->len)
212 			continue;
213 
214 		ptr = carveout->va + offset;
215 
216 		break;
217 	}
218 
219 out:
220 	return ptr;
221 }
222 EXPORT_SYMBOL(rproc_da_to_va);
223 
224 /**
225  * rproc_find_carveout_by_name() - lookup the carveout region by a name
226  * @rproc: handle of a remote processor
227  * @name,..: carveout name to find (standard printf format)
228  *
229  * Platform driver has the capability to register some pre-allacoted carveout
230  * (physically contiguous memory regions) before rproc firmware loading and
231  * associated resource table analysis. These regions may be dedicated memory
232  * regions internal to the coprocessor or specified DDR region with specific
233  * attributes
234  *
235  * This function is a helper function with which we can go over the
236  * allocated carveouts and return associated region characteristics like
237  * coprocessor address, length or processor virtual address.
238  *
239  * Return: a valid pointer on carveout entry on success or NULL on failure.
240  */
241 struct rproc_mem_entry *
242 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
243 {
244 	va_list args;
245 	char _name[32];
246 	struct rproc_mem_entry *carveout, *mem = NULL;
247 
248 	if (!name)
249 		return NULL;
250 
251 	va_start(args, name);
252 	vsnprintf(_name, sizeof(_name), name, args);
253 	va_end(args);
254 
255 	list_for_each_entry(carveout, &rproc->carveouts, node) {
256 		/* Compare carveout and requested names */
257 		if (!strcmp(carveout->name, _name)) {
258 			mem = carveout;
259 			break;
260 		}
261 	}
262 
263 	return mem;
264 }
265 
266 /**
267  * rproc_check_carveout_da() - Check specified carveout da configuration
268  * @rproc: handle of a remote processor
269  * @mem: pointer on carveout to check
270  * @da: area device address
271  * @len: associated area size
272  *
273  * This function is a helper function to verify requested device area (couple
274  * da, len) is part of specified carveout.
275  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
276  * checked.
277  *
278  * Return: 0 if carveout matches request else error
279  */
280 static int rproc_check_carveout_da(struct rproc *rproc,
281 				   struct rproc_mem_entry *mem, u32 da, u32 len)
282 {
283 	struct device *dev = &rproc->dev;
284 	int delta;
285 
286 	/* Check requested resource length */
287 	if (len > mem->len) {
288 		dev_err(dev, "Registered carveout doesn't fit len request\n");
289 		return -EINVAL;
290 	}
291 
292 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
293 		/* Address doesn't match registered carveout configuration */
294 		return -EINVAL;
295 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
296 		delta = da - mem->da;
297 
298 		/* Check requested resource belongs to registered carveout */
299 		if (delta < 0) {
300 			dev_err(dev,
301 				"Registered carveout doesn't fit da request\n");
302 			return -EINVAL;
303 		}
304 
305 		if (delta + len > mem->len) {
306 			dev_err(dev,
307 				"Registered carveout doesn't fit len request\n");
308 			return -EINVAL;
309 		}
310 	}
311 
312 	return 0;
313 }
314 
315 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
316 {
317 	struct rproc *rproc = rvdev->rproc;
318 	struct device *dev = &rproc->dev;
319 	struct rproc_vring *rvring = &rvdev->vring[i];
320 	struct fw_rsc_vdev *rsc;
321 	int ret, size, notifyid;
322 	struct rproc_mem_entry *mem;
323 
324 	/* actual size of vring (in bytes) */
325 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
326 
327 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
328 
329 	/* Search for pre-registered carveout */
330 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
331 					  i);
332 	if (mem) {
333 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
334 			return -ENOMEM;
335 	} else {
336 		/* Register carveout in in list */
337 		mem = rproc_mem_entry_init(dev, NULL, 0,
338 					   size, rsc->vring[i].da,
339 					   rproc_alloc_carveout,
340 					   rproc_release_carveout,
341 					   "vdev%dvring%d",
342 					   rvdev->index, i);
343 		if (!mem) {
344 			dev_err(dev, "Can't allocate memory entry structure\n");
345 			return -ENOMEM;
346 		}
347 
348 		rproc_add_carveout(rproc, mem);
349 	}
350 
351 	/*
352 	 * Assign an rproc-wide unique index for this vring
353 	 * TODO: assign a notifyid for rvdev updates as well
354 	 * TODO: support predefined notifyids (via resource table)
355 	 */
356 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
357 	if (ret < 0) {
358 		dev_err(dev, "idr_alloc failed: %d\n", ret);
359 		return ret;
360 	}
361 	notifyid = ret;
362 
363 	/* Potentially bump max_notifyid */
364 	if (notifyid > rproc->max_notifyid)
365 		rproc->max_notifyid = notifyid;
366 
367 	rvring->notifyid = notifyid;
368 
369 	/* Let the rproc know the notifyid of this vring.*/
370 	rsc->vring[i].notifyid = notifyid;
371 	return 0;
372 }
373 
374 static int
375 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
376 {
377 	struct rproc *rproc = rvdev->rproc;
378 	struct device *dev = &rproc->dev;
379 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
380 	struct rproc_vring *rvring = &rvdev->vring[i];
381 
382 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
383 		i, vring->da, vring->num, vring->align);
384 
385 	/* verify queue size and vring alignment are sane */
386 	if (!vring->num || !vring->align) {
387 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
388 			vring->num, vring->align);
389 		return -EINVAL;
390 	}
391 
392 	rvring->len = vring->num;
393 	rvring->align = vring->align;
394 	rvring->rvdev = rvdev;
395 
396 	return 0;
397 }
398 
399 void rproc_free_vring(struct rproc_vring *rvring)
400 {
401 	struct rproc *rproc = rvring->rvdev->rproc;
402 	int idx = rvring - rvring->rvdev->vring;
403 	struct fw_rsc_vdev *rsc;
404 
405 	idr_remove(&rproc->notifyids, rvring->notifyid);
406 
407 	/* reset resource entry info */
408 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
409 	rsc->vring[idx].da = 0;
410 	rsc->vring[idx].notifyid = -1;
411 }
412 
413 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
414 {
415 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
416 
417 	return rproc_add_virtio_dev(rvdev, rvdev->id);
418 }
419 
420 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
421 {
422 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
423 	int ret;
424 
425 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
426 	if (ret)
427 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
428 }
429 
430 /**
431  * rproc_rvdev_release() - release the existence of a rvdev
432  *
433  * @dev: the subdevice's dev
434  */
435 static void rproc_rvdev_release(struct device *dev)
436 {
437 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
438 
439 	of_reserved_mem_device_release(dev);
440 
441 	kfree(rvdev);
442 }
443 
444 /**
445  * rproc_handle_vdev() - handle a vdev fw resource
446  * @rproc: the remote processor
447  * @rsc: the vring resource descriptor
448  * @avail: size of available data (for sanity checking the image)
449  *
450  * This resource entry requests the host to statically register a virtio
451  * device (vdev), and setup everything needed to support it. It contains
452  * everything needed to make it possible: the virtio device id, virtio
453  * device features, vrings information, virtio config space, etc...
454  *
455  * Before registering the vdev, the vrings are allocated from non-cacheable
456  * physically contiguous memory. Currently we only support two vrings per
457  * remote processor (temporary limitation). We might also want to consider
458  * doing the vring allocation only later when ->find_vqs() is invoked, and
459  * then release them upon ->del_vqs().
460  *
461  * Note: @da is currently not really handled correctly: we dynamically
462  * allocate it using the DMA API, ignoring requested hard coded addresses,
463  * and we don't take care of any required IOMMU programming. This is all
464  * going to be taken care of when the generic iommu-based DMA API will be
465  * merged. Meanwhile, statically-addressed iommu-based firmware images should
466  * use RSC_DEVMEM resource entries to map their required @da to the physical
467  * address of their base CMA region (ouch, hacky!).
468  *
469  * Returns 0 on success, or an appropriate error code otherwise
470  */
471 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
472 			     int offset, int avail)
473 {
474 	struct device *dev = &rproc->dev;
475 	struct rproc_vdev *rvdev;
476 	int i, ret;
477 	char name[16];
478 
479 	/* make sure resource isn't truncated */
480 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
481 			avail) {
482 		dev_err(dev, "vdev rsc is truncated\n");
483 		return -EINVAL;
484 	}
485 
486 	/* make sure reserved bytes are zeroes */
487 	if (rsc->reserved[0] || rsc->reserved[1]) {
488 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
489 		return -EINVAL;
490 	}
491 
492 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
493 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
494 
495 	/* we currently support only two vrings per rvdev */
496 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
497 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
498 		return -EINVAL;
499 	}
500 
501 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
502 	if (!rvdev)
503 		return -ENOMEM;
504 
505 	kref_init(&rvdev->refcount);
506 
507 	rvdev->id = rsc->id;
508 	rvdev->rproc = rproc;
509 	rvdev->index = rproc->nb_vdev++;
510 
511 	/* Initialise vdev subdevice */
512 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
513 	rvdev->dev.parent = rproc->dev.parent;
514 	rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
515 	rvdev->dev.release = rproc_rvdev_release;
516 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
517 	dev_set_drvdata(&rvdev->dev, rvdev);
518 
519 	ret = device_register(&rvdev->dev);
520 	if (ret) {
521 		put_device(&rvdev->dev);
522 		return ret;
523 	}
524 	/* Make device dma capable by inheriting from parent's capabilities */
525 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
526 
527 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
528 					   dma_get_mask(rproc->dev.parent));
529 	if (ret) {
530 		dev_warn(dev,
531 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
532 			 dma_get_mask(rproc->dev.parent), ret);
533 	}
534 
535 	/* parse the vrings */
536 	for (i = 0; i < rsc->num_of_vrings; i++) {
537 		ret = rproc_parse_vring(rvdev, rsc, i);
538 		if (ret)
539 			goto free_rvdev;
540 	}
541 
542 	/* remember the resource offset*/
543 	rvdev->rsc_offset = offset;
544 
545 	/* allocate the vring resources */
546 	for (i = 0; i < rsc->num_of_vrings; i++) {
547 		ret = rproc_alloc_vring(rvdev, i);
548 		if (ret)
549 			goto unwind_vring_allocations;
550 	}
551 
552 	list_add_tail(&rvdev->node, &rproc->rvdevs);
553 
554 	rvdev->subdev.start = rproc_vdev_do_start;
555 	rvdev->subdev.stop = rproc_vdev_do_stop;
556 
557 	rproc_add_subdev(rproc, &rvdev->subdev);
558 
559 	return 0;
560 
561 unwind_vring_allocations:
562 	for (i--; i >= 0; i--)
563 		rproc_free_vring(&rvdev->vring[i]);
564 free_rvdev:
565 	device_unregister(&rvdev->dev);
566 	return ret;
567 }
568 
569 void rproc_vdev_release(struct kref *ref)
570 {
571 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
572 	struct rproc_vring *rvring;
573 	struct rproc *rproc = rvdev->rproc;
574 	int id;
575 
576 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
577 		rvring = &rvdev->vring[id];
578 		rproc_free_vring(rvring);
579 	}
580 
581 	rproc_remove_subdev(rproc, &rvdev->subdev);
582 	list_del(&rvdev->node);
583 	device_unregister(&rvdev->dev);
584 }
585 
586 /**
587  * rproc_handle_trace() - handle a shared trace buffer resource
588  * @rproc: the remote processor
589  * @rsc: the trace resource descriptor
590  * @avail: size of available data (for sanity checking the image)
591  *
592  * In case the remote processor dumps trace logs into memory,
593  * export it via debugfs.
594  *
595  * Currently, the 'da' member of @rsc should contain the device address
596  * where the remote processor is dumping the traces. Later we could also
597  * support dynamically allocating this address using the generic
598  * DMA API (but currently there isn't a use case for that).
599  *
600  * Returns 0 on success, or an appropriate error code otherwise
601  */
602 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
603 			      int offset, int avail)
604 {
605 	struct rproc_debug_trace *trace;
606 	struct device *dev = &rproc->dev;
607 	char name[15];
608 
609 	if (sizeof(*rsc) > avail) {
610 		dev_err(dev, "trace rsc is truncated\n");
611 		return -EINVAL;
612 	}
613 
614 	/* make sure reserved bytes are zeroes */
615 	if (rsc->reserved) {
616 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
617 		return -EINVAL;
618 	}
619 
620 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
621 	if (!trace)
622 		return -ENOMEM;
623 
624 	/* set the trace buffer dma properties */
625 	trace->trace_mem.len = rsc->len;
626 	trace->trace_mem.da = rsc->da;
627 
628 	/* set pointer on rproc device */
629 	trace->rproc = rproc;
630 
631 	/* make sure snprintf always null terminates, even if truncating */
632 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
633 
634 	/* create the debugfs entry */
635 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
636 	if (!trace->tfile) {
637 		kfree(trace);
638 		return -EINVAL;
639 	}
640 
641 	list_add_tail(&trace->node, &rproc->traces);
642 
643 	rproc->num_traces++;
644 
645 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
646 		name, rsc->da, rsc->len);
647 
648 	return 0;
649 }
650 
651 /**
652  * rproc_handle_devmem() - handle devmem resource entry
653  * @rproc: remote processor handle
654  * @rsc: the devmem resource entry
655  * @avail: size of available data (for sanity checking the image)
656  *
657  * Remote processors commonly need to access certain on-chip peripherals.
658  *
659  * Some of these remote processors access memory via an iommu device,
660  * and might require us to configure their iommu before they can access
661  * the on-chip peripherals they need.
662  *
663  * This resource entry is a request to map such a peripheral device.
664  *
665  * These devmem entries will contain the physical address of the device in
666  * the 'pa' member. If a specific device address is expected, then 'da' will
667  * contain it (currently this is the only use case supported). 'len' will
668  * contain the size of the physical region we need to map.
669  *
670  * Currently we just "trust" those devmem entries to contain valid physical
671  * addresses, but this is going to change: we want the implementations to
672  * tell us ranges of physical addresses the firmware is allowed to request,
673  * and not allow firmwares to request access to physical addresses that
674  * are outside those ranges.
675  */
676 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
677 			       int offset, int avail)
678 {
679 	struct rproc_mem_entry *mapping;
680 	struct device *dev = &rproc->dev;
681 	int ret;
682 
683 	/* no point in handling this resource without a valid iommu domain */
684 	if (!rproc->domain)
685 		return -EINVAL;
686 
687 	if (sizeof(*rsc) > avail) {
688 		dev_err(dev, "devmem rsc is truncated\n");
689 		return -EINVAL;
690 	}
691 
692 	/* make sure reserved bytes are zeroes */
693 	if (rsc->reserved) {
694 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
695 		return -EINVAL;
696 	}
697 
698 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
699 	if (!mapping)
700 		return -ENOMEM;
701 
702 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
703 	if (ret) {
704 		dev_err(dev, "failed to map devmem: %d\n", ret);
705 		goto out;
706 	}
707 
708 	/*
709 	 * We'll need this info later when we'll want to unmap everything
710 	 * (e.g. on shutdown).
711 	 *
712 	 * We can't trust the remote processor not to change the resource
713 	 * table, so we must maintain this info independently.
714 	 */
715 	mapping->da = rsc->da;
716 	mapping->len = rsc->len;
717 	list_add_tail(&mapping->node, &rproc->mappings);
718 
719 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
720 		rsc->pa, rsc->da, rsc->len);
721 
722 	return 0;
723 
724 out:
725 	kfree(mapping);
726 	return ret;
727 }
728 
729 /**
730  * rproc_alloc_carveout() - allocated specified carveout
731  * @rproc: rproc handle
732  * @mem: the memory entry to allocate
733  *
734  * This function allocate specified memory entry @mem using
735  * dma_alloc_coherent() as default allocator
736  */
737 static int rproc_alloc_carveout(struct rproc *rproc,
738 				struct rproc_mem_entry *mem)
739 {
740 	struct rproc_mem_entry *mapping = NULL;
741 	struct device *dev = &rproc->dev;
742 	dma_addr_t dma;
743 	void *va;
744 	int ret;
745 
746 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
747 	if (!va) {
748 		dev_err(dev->parent,
749 			"failed to allocate dma memory: len 0x%x\n", mem->len);
750 		return -ENOMEM;
751 	}
752 
753 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
754 		va, &dma, mem->len);
755 
756 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
757 		/*
758 		 * Check requested da is equal to dma address
759 		 * and print a warn message in case of missalignment.
760 		 * Don't stop rproc_start sequence as coprocessor may
761 		 * build pa to da translation on its side.
762 		 */
763 		if (mem->da != (u32)dma)
764 			dev_warn(dev->parent,
765 				 "Allocated carveout doesn't fit device address request\n");
766 	}
767 
768 	/*
769 	 * Ok, this is non-standard.
770 	 *
771 	 * Sometimes we can't rely on the generic iommu-based DMA API
772 	 * to dynamically allocate the device address and then set the IOMMU
773 	 * tables accordingly, because some remote processors might
774 	 * _require_ us to use hard coded device addresses that their
775 	 * firmware was compiled with.
776 	 *
777 	 * In this case, we must use the IOMMU API directly and map
778 	 * the memory to the device address as expected by the remote
779 	 * processor.
780 	 *
781 	 * Obviously such remote processor devices should not be configured
782 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
783 	 * physical address in this case.
784 	 */
785 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
786 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
787 		if (!mapping) {
788 			ret = -ENOMEM;
789 			goto dma_free;
790 		}
791 
792 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
793 				mem->flags);
794 		if (ret) {
795 			dev_err(dev, "iommu_map failed: %d\n", ret);
796 			goto free_mapping;
797 		}
798 
799 		/*
800 		 * We'll need this info later when we'll want to unmap
801 		 * everything (e.g. on shutdown).
802 		 *
803 		 * We can't trust the remote processor not to change the
804 		 * resource table, so we must maintain this info independently.
805 		 */
806 		mapping->da = mem->da;
807 		mapping->len = mem->len;
808 		list_add_tail(&mapping->node, &rproc->mappings);
809 
810 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
811 			mem->da, &dma);
812 	}
813 
814 	if (mem->da == FW_RSC_ADDR_ANY) {
815 		/* Update device address as undefined by requester */
816 		if ((u64)dma & HIGH_BITS_MASK)
817 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
818 
819 		mem->da = (u32)dma;
820 	}
821 
822 	mem->dma = dma;
823 	mem->va = va;
824 
825 	return 0;
826 
827 free_mapping:
828 	kfree(mapping);
829 dma_free:
830 	dma_free_coherent(dev->parent, mem->len, va, dma);
831 	return ret;
832 }
833 
834 /**
835  * rproc_release_carveout() - release acquired carveout
836  * @rproc: rproc handle
837  * @mem: the memory entry to release
838  *
839  * This function releases specified memory entry @mem allocated via
840  * rproc_alloc_carveout() function by @rproc.
841  */
842 static int rproc_release_carveout(struct rproc *rproc,
843 				  struct rproc_mem_entry *mem)
844 {
845 	struct device *dev = &rproc->dev;
846 
847 	/* clean up carveout allocations */
848 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
849 	return 0;
850 }
851 
852 /**
853  * rproc_handle_carveout() - handle phys contig memory allocation requests
854  * @rproc: rproc handle
855  * @rsc: the resource entry
856  * @avail: size of available data (for image validation)
857  *
858  * This function will handle firmware requests for allocation of physically
859  * contiguous memory regions.
860  *
861  * These request entries should come first in the firmware's resource table,
862  * as other firmware entries might request placing other data objects inside
863  * these memory regions (e.g. data/code segments, trace resource entries, ...).
864  *
865  * Allocating memory this way helps utilizing the reserved physical memory
866  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
867  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
868  * pressure is important; it may have a substantial impact on performance.
869  */
870 static int rproc_handle_carveout(struct rproc *rproc,
871 				 struct fw_rsc_carveout *rsc,
872 				 int offset, int avail)
873 {
874 	struct rproc_mem_entry *carveout;
875 	struct device *dev = &rproc->dev;
876 
877 	if (sizeof(*rsc) > avail) {
878 		dev_err(dev, "carveout rsc is truncated\n");
879 		return -EINVAL;
880 	}
881 
882 	/* make sure reserved bytes are zeroes */
883 	if (rsc->reserved) {
884 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
885 		return -EINVAL;
886 	}
887 
888 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
889 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
890 
891 	/*
892 	 * Check carveout rsc already part of a registered carveout,
893 	 * Search by name, then check the da and length
894 	 */
895 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
896 
897 	if (carveout) {
898 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
899 			dev_err(dev,
900 				"Carveout already associated to resource table\n");
901 			return -ENOMEM;
902 		}
903 
904 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
905 			return -ENOMEM;
906 
907 		/* Update memory carveout with resource table info */
908 		carveout->rsc_offset = offset;
909 		carveout->flags = rsc->flags;
910 
911 		return 0;
912 	}
913 
914 	/* Register carveout in in list */
915 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
916 					rproc_alloc_carveout,
917 					rproc_release_carveout, rsc->name);
918 	if (!carveout) {
919 		dev_err(dev, "Can't allocate memory entry structure\n");
920 		return -ENOMEM;
921 	}
922 
923 	carveout->flags = rsc->flags;
924 	carveout->rsc_offset = offset;
925 	rproc_add_carveout(rproc, carveout);
926 
927 	return 0;
928 }
929 
930 /**
931  * rproc_add_carveout() - register an allocated carveout region
932  * @rproc: rproc handle
933  * @mem: memory entry to register
934  *
935  * This function registers specified memory entry in @rproc carveouts list.
936  * Specified carveout should have been allocated before registering.
937  */
938 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
939 {
940 	list_add_tail(&mem->node, &rproc->carveouts);
941 }
942 EXPORT_SYMBOL(rproc_add_carveout);
943 
944 /**
945  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946  * @dev: pointer on device struct
947  * @va: virtual address
948  * @dma: dma address
949  * @len: memory carveout length
950  * @da: device address
951  * @alloc: memory carveout allocation function
952  * @release: memory carveout release function
953  * @name: carveout name
954  *
955  * This function allocates a rproc_mem_entry struct and fill it with parameters
956  * provided by client.
957  */
958 struct rproc_mem_entry *
959 rproc_mem_entry_init(struct device *dev,
960 		     void *va, dma_addr_t dma, int len, u32 da,
961 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
962 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
963 		     const char *name, ...)
964 {
965 	struct rproc_mem_entry *mem;
966 	va_list args;
967 
968 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969 	if (!mem)
970 		return mem;
971 
972 	mem->va = va;
973 	mem->dma = dma;
974 	mem->da = da;
975 	mem->len = len;
976 	mem->alloc = alloc;
977 	mem->release = release;
978 	mem->rsc_offset = FW_RSC_ADDR_ANY;
979 	mem->of_resm_idx = -1;
980 
981 	va_start(args, name);
982 	vsnprintf(mem->name, sizeof(mem->name), name, args);
983 	va_end(args);
984 
985 	return mem;
986 }
987 EXPORT_SYMBOL(rproc_mem_entry_init);
988 
989 /**
990  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991  * from a reserved memory phandle
992  * @dev: pointer on device struct
993  * @of_resm_idx: reserved memory phandle index in "memory-region"
994  * @len: memory carveout length
995  * @da: device address
996  * @name: carveout name
997  *
998  * This function allocates a rproc_mem_entry struct and fill it with parameters
999  * provided by client.
1000  */
1001 struct rproc_mem_entry *
1002 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1003 			     u32 da, const char *name, ...)
1004 {
1005 	struct rproc_mem_entry *mem;
1006 	va_list args;
1007 
1008 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1009 	if (!mem)
1010 		return mem;
1011 
1012 	mem->da = da;
1013 	mem->len = len;
1014 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1015 	mem->of_resm_idx = of_resm_idx;
1016 
1017 	va_start(args, name);
1018 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1019 	va_end(args);
1020 
1021 	return mem;
1022 }
1023 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1024 
1025 /**
1026  * A lookup table for resource handlers. The indices are defined in
1027  * enum fw_resource_type.
1028  */
1029 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1030 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1031 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1032 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1033 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1034 };
1035 
1036 /* handle firmware resource entries before booting the remote processor */
1037 static int rproc_handle_resources(struct rproc *rproc,
1038 				  rproc_handle_resource_t handlers[RSC_LAST])
1039 {
1040 	struct device *dev = &rproc->dev;
1041 	rproc_handle_resource_t handler;
1042 	int ret = 0, i;
1043 
1044 	if (!rproc->table_ptr)
1045 		return 0;
1046 
1047 	for (i = 0; i < rproc->table_ptr->num; i++) {
1048 		int offset = rproc->table_ptr->offset[i];
1049 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1050 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1051 		void *rsc = (void *)hdr + sizeof(*hdr);
1052 
1053 		/* make sure table isn't truncated */
1054 		if (avail < 0) {
1055 			dev_err(dev, "rsc table is truncated\n");
1056 			return -EINVAL;
1057 		}
1058 
1059 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1060 
1061 		if (hdr->type >= RSC_VENDOR_START &&
1062 		    hdr->type <= RSC_VENDOR_END) {
1063 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1064 					       offset + sizeof(*hdr), avail);
1065 			if (ret == RSC_HANDLED)
1066 				continue;
1067 			else if (ret < 0)
1068 				break;
1069 
1070 			dev_warn(dev, "unsupported vendor resource %d\n",
1071 				 hdr->type);
1072 			continue;
1073 		}
1074 
1075 		if (hdr->type >= RSC_LAST) {
1076 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1077 			continue;
1078 		}
1079 
1080 		handler = handlers[hdr->type];
1081 		if (!handler)
1082 			continue;
1083 
1084 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1085 		if (ret)
1086 			break;
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 static int rproc_prepare_subdevices(struct rproc *rproc)
1093 {
1094 	struct rproc_subdev *subdev;
1095 	int ret;
1096 
1097 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1098 		if (subdev->prepare) {
1099 			ret = subdev->prepare(subdev);
1100 			if (ret)
1101 				goto unroll_preparation;
1102 		}
1103 	}
1104 
1105 	return 0;
1106 
1107 unroll_preparation:
1108 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1109 		if (subdev->unprepare)
1110 			subdev->unprepare(subdev);
1111 	}
1112 
1113 	return ret;
1114 }
1115 
1116 static int rproc_start_subdevices(struct rproc *rproc)
1117 {
1118 	struct rproc_subdev *subdev;
1119 	int ret;
1120 
1121 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1122 		if (subdev->start) {
1123 			ret = subdev->start(subdev);
1124 			if (ret)
1125 				goto unroll_registration;
1126 		}
1127 	}
1128 
1129 	return 0;
1130 
1131 unroll_registration:
1132 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1133 		if (subdev->stop)
1134 			subdev->stop(subdev, true);
1135 	}
1136 
1137 	return ret;
1138 }
1139 
1140 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1141 {
1142 	struct rproc_subdev *subdev;
1143 
1144 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1145 		if (subdev->stop)
1146 			subdev->stop(subdev, crashed);
1147 	}
1148 }
1149 
1150 static void rproc_unprepare_subdevices(struct rproc *rproc)
1151 {
1152 	struct rproc_subdev *subdev;
1153 
1154 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1155 		if (subdev->unprepare)
1156 			subdev->unprepare(subdev);
1157 	}
1158 }
1159 
1160 /**
1161  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1162  * in the list
1163  * @rproc: the remote processor handle
1164  *
1165  * This function parses registered carveout list, performs allocation
1166  * if alloc() ops registered and updates resource table information
1167  * if rsc_offset set.
1168  *
1169  * Return: 0 on success
1170  */
1171 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1172 {
1173 	struct rproc_mem_entry *entry, *tmp;
1174 	struct fw_rsc_carveout *rsc;
1175 	struct device *dev = &rproc->dev;
1176 	u64 pa;
1177 	int ret;
1178 
1179 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1180 		if (entry->alloc) {
1181 			ret = entry->alloc(rproc, entry);
1182 			if (ret) {
1183 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1184 					entry->name, ret);
1185 				return -ENOMEM;
1186 			}
1187 		}
1188 
1189 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1190 			/* update resource table */
1191 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1192 
1193 			/*
1194 			 * Some remote processors might need to know the pa
1195 			 * even though they are behind an IOMMU. E.g., OMAP4's
1196 			 * remote M3 processor needs this so it can control
1197 			 * on-chip hardware accelerators that are not behind
1198 			 * the IOMMU, and therefor must know the pa.
1199 			 *
1200 			 * Generally we don't want to expose physical addresses
1201 			 * if we don't have to (remote processors are generally
1202 			 * _not_ trusted), so we might want to do this only for
1203 			 * remote processor that _must_ have this (e.g. OMAP4's
1204 			 * dual M3 subsystem).
1205 			 *
1206 			 * Non-IOMMU processors might also want to have this info.
1207 			 * In this case, the device address and the physical address
1208 			 * are the same.
1209 			 */
1210 
1211 			/* Use va if defined else dma to generate pa */
1212 			if (entry->va)
1213 				pa = (u64)rproc_va_to_pa(entry->va);
1214 			else
1215 				pa = (u64)entry->dma;
1216 
1217 			if (((u64)pa) & HIGH_BITS_MASK)
1218 				dev_warn(dev,
1219 					 "Physical address cast in 32bit to fit resource table format\n");
1220 
1221 			rsc->pa = (u32)pa;
1222 			rsc->da = entry->da;
1223 			rsc->len = entry->len;
1224 		}
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * rproc_coredump_cleanup() - clean up dump_segments list
1232  * @rproc: the remote processor handle
1233  */
1234 static void rproc_coredump_cleanup(struct rproc *rproc)
1235 {
1236 	struct rproc_dump_segment *entry, *tmp;
1237 
1238 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1239 		list_del(&entry->node);
1240 		kfree(entry);
1241 	}
1242 }
1243 
1244 /**
1245  * rproc_resource_cleanup() - clean up and free all acquired resources
1246  * @rproc: rproc handle
1247  *
1248  * This function will free all resources acquired for @rproc, and it
1249  * is called whenever @rproc either shuts down or fails to boot.
1250  */
1251 static void rproc_resource_cleanup(struct rproc *rproc)
1252 {
1253 	struct rproc_mem_entry *entry, *tmp;
1254 	struct rproc_debug_trace *trace, *ttmp;
1255 	struct rproc_vdev *rvdev, *rvtmp;
1256 	struct device *dev = &rproc->dev;
1257 
1258 	/* clean up debugfs trace entries */
1259 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1260 		rproc_remove_trace_file(trace->tfile);
1261 		rproc->num_traces--;
1262 		list_del(&trace->node);
1263 		kfree(trace);
1264 	}
1265 
1266 	/* clean up iommu mapping entries */
1267 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1268 		size_t unmapped;
1269 
1270 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1271 		if (unmapped != entry->len) {
1272 			/* nothing much to do besides complaining */
1273 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1274 				unmapped);
1275 		}
1276 
1277 		list_del(&entry->node);
1278 		kfree(entry);
1279 	}
1280 
1281 	/* clean up carveout allocations */
1282 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1283 		if (entry->release)
1284 			entry->release(rproc, entry);
1285 		list_del(&entry->node);
1286 		kfree(entry);
1287 	}
1288 
1289 	/* clean up remote vdev entries */
1290 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1291 		kref_put(&rvdev->refcount, rproc_vdev_release);
1292 
1293 	rproc_coredump_cleanup(rproc);
1294 }
1295 
1296 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1297 {
1298 	struct resource_table *loaded_table;
1299 	struct device *dev = &rproc->dev;
1300 	int ret;
1301 
1302 	/* load the ELF segments to memory */
1303 	ret = rproc_load_segments(rproc, fw);
1304 	if (ret) {
1305 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1306 		return ret;
1307 	}
1308 
1309 	/*
1310 	 * The starting device has been given the rproc->cached_table as the
1311 	 * resource table. The address of the vring along with the other
1312 	 * allocated resources (carveouts etc) is stored in cached_table.
1313 	 * In order to pass this information to the remote device we must copy
1314 	 * this information to device memory. We also update the table_ptr so
1315 	 * that any subsequent changes will be applied to the loaded version.
1316 	 */
1317 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1318 	if (loaded_table) {
1319 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1320 		rproc->table_ptr = loaded_table;
1321 	}
1322 
1323 	ret = rproc_prepare_subdevices(rproc);
1324 	if (ret) {
1325 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1326 			rproc->name, ret);
1327 		goto reset_table_ptr;
1328 	}
1329 
1330 	/* power up the remote processor */
1331 	ret = rproc->ops->start(rproc);
1332 	if (ret) {
1333 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1334 		goto unprepare_subdevices;
1335 	}
1336 
1337 	/* Start any subdevices for the remote processor */
1338 	ret = rproc_start_subdevices(rproc);
1339 	if (ret) {
1340 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1341 			rproc->name, ret);
1342 		goto stop_rproc;
1343 	}
1344 
1345 	rproc->state = RPROC_RUNNING;
1346 
1347 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1348 
1349 	return 0;
1350 
1351 stop_rproc:
1352 	rproc->ops->stop(rproc);
1353 unprepare_subdevices:
1354 	rproc_unprepare_subdevices(rproc);
1355 reset_table_ptr:
1356 	rproc->table_ptr = rproc->cached_table;
1357 
1358 	return ret;
1359 }
1360 
1361 /*
1362  * take a firmware and boot a remote processor with it.
1363  */
1364 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1365 {
1366 	struct device *dev = &rproc->dev;
1367 	const char *name = rproc->firmware;
1368 	int ret;
1369 
1370 	ret = rproc_fw_sanity_check(rproc, fw);
1371 	if (ret)
1372 		return ret;
1373 
1374 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1375 
1376 	/*
1377 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1378 	 * just a nop
1379 	 */
1380 	ret = rproc_enable_iommu(rproc);
1381 	if (ret) {
1382 		dev_err(dev, "can't enable iommu: %d\n", ret);
1383 		return ret;
1384 	}
1385 
1386 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1387 
1388 	/* Load resource table, core dump segment list etc from the firmware */
1389 	ret = rproc_parse_fw(rproc, fw);
1390 	if (ret)
1391 		goto disable_iommu;
1392 
1393 	/* reset max_notifyid */
1394 	rproc->max_notifyid = -1;
1395 
1396 	/* reset handled vdev */
1397 	rproc->nb_vdev = 0;
1398 
1399 	/* handle fw resources which are required to boot rproc */
1400 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1401 	if (ret) {
1402 		dev_err(dev, "Failed to process resources: %d\n", ret);
1403 		goto clean_up_resources;
1404 	}
1405 
1406 	/* Allocate carveout resources associated to rproc */
1407 	ret = rproc_alloc_registered_carveouts(rproc);
1408 	if (ret) {
1409 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1410 			ret);
1411 		goto clean_up_resources;
1412 	}
1413 
1414 	ret = rproc_start(rproc, fw);
1415 	if (ret)
1416 		goto clean_up_resources;
1417 
1418 	return 0;
1419 
1420 clean_up_resources:
1421 	rproc_resource_cleanup(rproc);
1422 	kfree(rproc->cached_table);
1423 	rproc->cached_table = NULL;
1424 	rproc->table_ptr = NULL;
1425 disable_iommu:
1426 	rproc_disable_iommu(rproc);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * take a firmware and boot it up.
1432  *
1433  * Note: this function is called asynchronously upon registration of the
1434  * remote processor (so we must wait until it completes before we try
1435  * to unregister the device. one other option is just to use kref here,
1436  * that might be cleaner).
1437  */
1438 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1439 {
1440 	struct rproc *rproc = context;
1441 
1442 	rproc_boot(rproc);
1443 
1444 	release_firmware(fw);
1445 }
1446 
1447 static int rproc_trigger_auto_boot(struct rproc *rproc)
1448 {
1449 	int ret;
1450 
1451 	/*
1452 	 * We're initiating an asynchronous firmware loading, so we can
1453 	 * be built-in kernel code, without hanging the boot process.
1454 	 */
1455 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1456 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1457 				      rproc, rproc_auto_boot_callback);
1458 	if (ret < 0)
1459 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1460 
1461 	return ret;
1462 }
1463 
1464 static int rproc_stop(struct rproc *rproc, bool crashed)
1465 {
1466 	struct device *dev = &rproc->dev;
1467 	int ret;
1468 
1469 	/* Stop any subdevices for the remote processor */
1470 	rproc_stop_subdevices(rproc, crashed);
1471 
1472 	/* the installed resource table is no longer accessible */
1473 	rproc->table_ptr = rproc->cached_table;
1474 
1475 	/* power off the remote processor */
1476 	ret = rproc->ops->stop(rproc);
1477 	if (ret) {
1478 		dev_err(dev, "can't stop rproc: %d\n", ret);
1479 		return ret;
1480 	}
1481 
1482 	rproc_unprepare_subdevices(rproc);
1483 
1484 	rproc->state = RPROC_OFFLINE;
1485 
1486 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1487 
1488 	return 0;
1489 }
1490 
1491 /**
1492  * rproc_coredump_add_segment() - add segment of device memory to coredump
1493  * @rproc:	handle of a remote processor
1494  * @da:		device address
1495  * @size:	size of segment
1496  *
1497  * Add device memory to the list of segments to be included in a coredump for
1498  * the remoteproc.
1499  *
1500  * Return: 0 on success, negative errno on error.
1501  */
1502 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1503 {
1504 	struct rproc_dump_segment *segment;
1505 
1506 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1507 	if (!segment)
1508 		return -ENOMEM;
1509 
1510 	segment->da = da;
1511 	segment->size = size;
1512 
1513 	list_add_tail(&segment->node, &rproc->dump_segments);
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(rproc_coredump_add_segment);
1518 
1519 /**
1520  * rproc_coredump_add_custom_segment() - add custom coredump segment
1521  * @rproc:	handle of a remote processor
1522  * @da:		device address
1523  * @size:	size of segment
1524  * @dumpfn:	custom dump function called for each segment during coredump
1525  * @priv:	private data
1526  *
1527  * Add device memory to the list of segments to be included in the coredump
1528  * and associate the segment with the given custom dump function and private
1529  * data.
1530  *
1531  * Return: 0 on success, negative errno on error.
1532  */
1533 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1534 				      dma_addr_t da, size_t size,
1535 				      void (*dumpfn)(struct rproc *rproc,
1536 						     struct rproc_dump_segment *segment,
1537 						     void *dest),
1538 				      void *priv)
1539 {
1540 	struct rproc_dump_segment *segment;
1541 
1542 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1543 	if (!segment)
1544 		return -ENOMEM;
1545 
1546 	segment->da = da;
1547 	segment->size = size;
1548 	segment->priv = priv;
1549 	segment->dump = dumpfn;
1550 
1551 	list_add_tail(&segment->node, &rproc->dump_segments);
1552 
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1556 
1557 /**
1558  * rproc_coredump() - perform coredump
1559  * @rproc:	rproc handle
1560  *
1561  * This function will generate an ELF header for the registered segments
1562  * and create a devcoredump device associated with rproc.
1563  */
1564 static void rproc_coredump(struct rproc *rproc)
1565 {
1566 	struct rproc_dump_segment *segment;
1567 	struct elf32_phdr *phdr;
1568 	struct elf32_hdr *ehdr;
1569 	size_t data_size;
1570 	size_t offset;
1571 	void *data;
1572 	void *ptr;
1573 	int phnum = 0;
1574 
1575 	if (list_empty(&rproc->dump_segments))
1576 		return;
1577 
1578 	data_size = sizeof(*ehdr);
1579 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1580 		data_size += sizeof(*phdr) + segment->size;
1581 
1582 		phnum++;
1583 	}
1584 
1585 	data = vmalloc(data_size);
1586 	if (!data)
1587 		return;
1588 
1589 	ehdr = data;
1590 
1591 	memset(ehdr, 0, sizeof(*ehdr));
1592 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1593 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1594 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1595 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1596 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1597 	ehdr->e_type = ET_CORE;
1598 	ehdr->e_machine = EM_NONE;
1599 	ehdr->e_version = EV_CURRENT;
1600 	ehdr->e_entry = rproc->bootaddr;
1601 	ehdr->e_phoff = sizeof(*ehdr);
1602 	ehdr->e_ehsize = sizeof(*ehdr);
1603 	ehdr->e_phentsize = sizeof(*phdr);
1604 	ehdr->e_phnum = phnum;
1605 
1606 	phdr = data + ehdr->e_phoff;
1607 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1608 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1609 		memset(phdr, 0, sizeof(*phdr));
1610 		phdr->p_type = PT_LOAD;
1611 		phdr->p_offset = offset;
1612 		phdr->p_vaddr = segment->da;
1613 		phdr->p_paddr = segment->da;
1614 		phdr->p_filesz = segment->size;
1615 		phdr->p_memsz = segment->size;
1616 		phdr->p_flags = PF_R | PF_W | PF_X;
1617 		phdr->p_align = 0;
1618 
1619 		if (segment->dump) {
1620 			segment->dump(rproc, segment, data + offset);
1621 		} else {
1622 			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1623 			if (!ptr) {
1624 				dev_err(&rproc->dev,
1625 					"invalid coredump segment (%pad, %zu)\n",
1626 					&segment->da, segment->size);
1627 				memset(data + offset, 0xff, segment->size);
1628 			} else {
1629 				memcpy(data + offset, ptr, segment->size);
1630 			}
1631 		}
1632 
1633 		offset += phdr->p_filesz;
1634 		phdr++;
1635 	}
1636 
1637 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1638 }
1639 
1640 /**
1641  * rproc_trigger_recovery() - recover a remoteproc
1642  * @rproc: the remote processor
1643  *
1644  * The recovery is done by resetting all the virtio devices, that way all the
1645  * rpmsg drivers will be reseted along with the remote processor making the
1646  * remoteproc functional again.
1647  *
1648  * This function can sleep, so it cannot be called from atomic context.
1649  */
1650 int rproc_trigger_recovery(struct rproc *rproc)
1651 {
1652 	const struct firmware *firmware_p;
1653 	struct device *dev = &rproc->dev;
1654 	int ret;
1655 
1656 	dev_err(dev, "recovering %s\n", rproc->name);
1657 
1658 	ret = mutex_lock_interruptible(&rproc->lock);
1659 	if (ret)
1660 		return ret;
1661 
1662 	ret = rproc_stop(rproc, true);
1663 	if (ret)
1664 		goto unlock_mutex;
1665 
1666 	/* generate coredump */
1667 	rproc_coredump(rproc);
1668 
1669 	/* load firmware */
1670 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1671 	if (ret < 0) {
1672 		dev_err(dev, "request_firmware failed: %d\n", ret);
1673 		goto unlock_mutex;
1674 	}
1675 
1676 	/* boot the remote processor up again */
1677 	ret = rproc_start(rproc, firmware_p);
1678 
1679 	release_firmware(firmware_p);
1680 
1681 unlock_mutex:
1682 	mutex_unlock(&rproc->lock);
1683 	return ret;
1684 }
1685 
1686 /**
1687  * rproc_crash_handler_work() - handle a crash
1688  *
1689  * This function needs to handle everything related to a crash, like cpu
1690  * registers and stack dump, information to help to debug the fatal error, etc.
1691  */
1692 static void rproc_crash_handler_work(struct work_struct *work)
1693 {
1694 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1695 	struct device *dev = &rproc->dev;
1696 
1697 	dev_dbg(dev, "enter %s\n", __func__);
1698 
1699 	mutex_lock(&rproc->lock);
1700 
1701 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1702 		/* handle only the first crash detected */
1703 		mutex_unlock(&rproc->lock);
1704 		return;
1705 	}
1706 
1707 	rproc->state = RPROC_CRASHED;
1708 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1709 		rproc->name);
1710 
1711 	mutex_unlock(&rproc->lock);
1712 
1713 	if (!rproc->recovery_disabled)
1714 		rproc_trigger_recovery(rproc);
1715 }
1716 
1717 /**
1718  * rproc_boot() - boot a remote processor
1719  * @rproc: handle of a remote processor
1720  *
1721  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1722  *
1723  * If the remote processor is already powered on, this function immediately
1724  * returns (successfully).
1725  *
1726  * Returns 0 on success, and an appropriate error value otherwise.
1727  */
1728 int rproc_boot(struct rproc *rproc)
1729 {
1730 	const struct firmware *firmware_p;
1731 	struct device *dev;
1732 	int ret;
1733 
1734 	if (!rproc) {
1735 		pr_err("invalid rproc handle\n");
1736 		return -EINVAL;
1737 	}
1738 
1739 	dev = &rproc->dev;
1740 
1741 	ret = mutex_lock_interruptible(&rproc->lock);
1742 	if (ret) {
1743 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1744 		return ret;
1745 	}
1746 
1747 	if (rproc->state == RPROC_DELETED) {
1748 		ret = -ENODEV;
1749 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1750 		goto unlock_mutex;
1751 	}
1752 
1753 	/* skip the boot process if rproc is already powered up */
1754 	if (atomic_inc_return(&rproc->power) > 1) {
1755 		ret = 0;
1756 		goto unlock_mutex;
1757 	}
1758 
1759 	dev_info(dev, "powering up %s\n", rproc->name);
1760 
1761 	/* load firmware */
1762 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1763 	if (ret < 0) {
1764 		dev_err(dev, "request_firmware failed: %d\n", ret);
1765 		goto downref_rproc;
1766 	}
1767 
1768 	ret = rproc_fw_boot(rproc, firmware_p);
1769 
1770 	release_firmware(firmware_p);
1771 
1772 downref_rproc:
1773 	if (ret)
1774 		atomic_dec(&rproc->power);
1775 unlock_mutex:
1776 	mutex_unlock(&rproc->lock);
1777 	return ret;
1778 }
1779 EXPORT_SYMBOL(rproc_boot);
1780 
1781 /**
1782  * rproc_shutdown() - power off the remote processor
1783  * @rproc: the remote processor
1784  *
1785  * Power off a remote processor (previously booted with rproc_boot()).
1786  *
1787  * In case @rproc is still being used by an additional user(s), then
1788  * this function will just decrement the power refcount and exit,
1789  * without really powering off the device.
1790  *
1791  * Every call to rproc_boot() must (eventually) be accompanied by a call
1792  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1793  *
1794  * Notes:
1795  * - we're not decrementing the rproc's refcount, only the power refcount.
1796  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1797  *   returns, and users can still use it with a subsequent rproc_boot(), if
1798  *   needed.
1799  */
1800 void rproc_shutdown(struct rproc *rproc)
1801 {
1802 	struct device *dev = &rproc->dev;
1803 	int ret;
1804 
1805 	ret = mutex_lock_interruptible(&rproc->lock);
1806 	if (ret) {
1807 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1808 		return;
1809 	}
1810 
1811 	/* if the remote proc is still needed, bail out */
1812 	if (!atomic_dec_and_test(&rproc->power))
1813 		goto out;
1814 
1815 	ret = rproc_stop(rproc, false);
1816 	if (ret) {
1817 		atomic_inc(&rproc->power);
1818 		goto out;
1819 	}
1820 
1821 	/* clean up all acquired resources */
1822 	rproc_resource_cleanup(rproc);
1823 
1824 	rproc_disable_iommu(rproc);
1825 
1826 	/* Free the copy of the resource table */
1827 	kfree(rproc->cached_table);
1828 	rproc->cached_table = NULL;
1829 	rproc->table_ptr = NULL;
1830 out:
1831 	mutex_unlock(&rproc->lock);
1832 }
1833 EXPORT_SYMBOL(rproc_shutdown);
1834 
1835 /**
1836  * rproc_get_by_phandle() - find a remote processor by phandle
1837  * @phandle: phandle to the rproc
1838  *
1839  * Finds an rproc handle using the remote processor's phandle, and then
1840  * return a handle to the rproc.
1841  *
1842  * This function increments the remote processor's refcount, so always
1843  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1844  *
1845  * Returns the rproc handle on success, and NULL on failure.
1846  */
1847 #ifdef CONFIG_OF
1848 struct rproc *rproc_get_by_phandle(phandle phandle)
1849 {
1850 	struct rproc *rproc = NULL, *r;
1851 	struct device_node *np;
1852 
1853 	np = of_find_node_by_phandle(phandle);
1854 	if (!np)
1855 		return NULL;
1856 
1857 	mutex_lock(&rproc_list_mutex);
1858 	list_for_each_entry(r, &rproc_list, node) {
1859 		if (r->dev.parent && r->dev.parent->of_node == np) {
1860 			/* prevent underlying implementation from being removed */
1861 			if (!try_module_get(r->dev.parent->driver->owner)) {
1862 				dev_err(&r->dev, "can't get owner\n");
1863 				break;
1864 			}
1865 
1866 			rproc = r;
1867 			get_device(&rproc->dev);
1868 			break;
1869 		}
1870 	}
1871 	mutex_unlock(&rproc_list_mutex);
1872 
1873 	of_node_put(np);
1874 
1875 	return rproc;
1876 }
1877 #else
1878 struct rproc *rproc_get_by_phandle(phandle phandle)
1879 {
1880 	return NULL;
1881 }
1882 #endif
1883 EXPORT_SYMBOL(rproc_get_by_phandle);
1884 
1885 /**
1886  * rproc_add() - register a remote processor
1887  * @rproc: the remote processor handle to register
1888  *
1889  * Registers @rproc with the remoteproc framework, after it has been
1890  * allocated with rproc_alloc().
1891  *
1892  * This is called by the platform-specific rproc implementation, whenever
1893  * a new remote processor device is probed.
1894  *
1895  * Returns 0 on success and an appropriate error code otherwise.
1896  *
1897  * Note: this function initiates an asynchronous firmware loading
1898  * context, which will look for virtio devices supported by the rproc's
1899  * firmware.
1900  *
1901  * If found, those virtio devices will be created and added, so as a result
1902  * of registering this remote processor, additional virtio drivers might be
1903  * probed.
1904  */
1905 int rproc_add(struct rproc *rproc)
1906 {
1907 	struct device *dev = &rproc->dev;
1908 	int ret;
1909 
1910 	ret = device_add(dev);
1911 	if (ret < 0)
1912 		return ret;
1913 
1914 	dev_info(dev, "%s is available\n", rproc->name);
1915 
1916 	/* create debugfs entries */
1917 	rproc_create_debug_dir(rproc);
1918 
1919 	/* if rproc is marked always-on, request it to boot */
1920 	if (rproc->auto_boot) {
1921 		ret = rproc_trigger_auto_boot(rproc);
1922 		if (ret < 0)
1923 			return ret;
1924 	}
1925 
1926 	/* expose to rproc_get_by_phandle users */
1927 	mutex_lock(&rproc_list_mutex);
1928 	list_add(&rproc->node, &rproc_list);
1929 	mutex_unlock(&rproc_list_mutex);
1930 
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL(rproc_add);
1934 
1935 /**
1936  * rproc_type_release() - release a remote processor instance
1937  * @dev: the rproc's device
1938  *
1939  * This function should _never_ be called directly.
1940  *
1941  * It will be called by the driver core when no one holds a valid pointer
1942  * to @dev anymore.
1943  */
1944 static void rproc_type_release(struct device *dev)
1945 {
1946 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1947 
1948 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1949 
1950 	idr_destroy(&rproc->notifyids);
1951 
1952 	if (rproc->index >= 0)
1953 		ida_simple_remove(&rproc_dev_index, rproc->index);
1954 
1955 	kfree(rproc->firmware);
1956 	kfree(rproc->ops);
1957 	kfree(rproc);
1958 }
1959 
1960 static const struct device_type rproc_type = {
1961 	.name		= "remoteproc",
1962 	.release	= rproc_type_release,
1963 };
1964 
1965 /**
1966  * rproc_alloc() - allocate a remote processor handle
1967  * @dev: the underlying device
1968  * @name: name of this remote processor
1969  * @ops: platform-specific handlers (mainly start/stop)
1970  * @firmware: name of firmware file to load, can be NULL
1971  * @len: length of private data needed by the rproc driver (in bytes)
1972  *
1973  * Allocates a new remote processor handle, but does not register
1974  * it yet. if @firmware is NULL, a default name is used.
1975  *
1976  * This function should be used by rproc implementations during initialization
1977  * of the remote processor.
1978  *
1979  * After creating an rproc handle using this function, and when ready,
1980  * implementations should then call rproc_add() to complete
1981  * the registration of the remote processor.
1982  *
1983  * On success the new rproc is returned, and on failure, NULL.
1984  *
1985  * Note: _never_ directly deallocate @rproc, even if it was not registered
1986  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1987  */
1988 struct rproc *rproc_alloc(struct device *dev, const char *name,
1989 			  const struct rproc_ops *ops,
1990 			  const char *firmware, int len)
1991 {
1992 	struct rproc *rproc;
1993 	char *p, *template = "rproc-%s-fw";
1994 	int name_len;
1995 
1996 	if (!dev || !name || !ops)
1997 		return NULL;
1998 
1999 	if (!firmware) {
2000 		/*
2001 		 * If the caller didn't pass in a firmware name then
2002 		 * construct a default name.
2003 		 */
2004 		name_len = strlen(name) + strlen(template) - 2 + 1;
2005 		p = kmalloc(name_len, GFP_KERNEL);
2006 		if (!p)
2007 			return NULL;
2008 		snprintf(p, name_len, template, name);
2009 	} else {
2010 		p = kstrdup(firmware, GFP_KERNEL);
2011 		if (!p)
2012 			return NULL;
2013 	}
2014 
2015 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2016 	if (!rproc) {
2017 		kfree(p);
2018 		return NULL;
2019 	}
2020 
2021 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2022 	if (!rproc->ops) {
2023 		kfree(p);
2024 		kfree(rproc);
2025 		return NULL;
2026 	}
2027 
2028 	rproc->firmware = p;
2029 	rproc->name = name;
2030 	rproc->priv = &rproc[1];
2031 	rproc->auto_boot = true;
2032 
2033 	device_initialize(&rproc->dev);
2034 	rproc->dev.parent = dev;
2035 	rproc->dev.type = &rproc_type;
2036 	rproc->dev.class = &rproc_class;
2037 	rproc->dev.driver_data = rproc;
2038 
2039 	/* Assign a unique device index and name */
2040 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2041 	if (rproc->index < 0) {
2042 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2043 		put_device(&rproc->dev);
2044 		return NULL;
2045 	}
2046 
2047 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2048 
2049 	atomic_set(&rproc->power, 0);
2050 
2051 	/* Default to ELF loader if no load function is specified */
2052 	if (!rproc->ops->load) {
2053 		rproc->ops->load = rproc_elf_load_segments;
2054 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2055 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2056 		rproc->ops->sanity_check = rproc_elf_sanity_check;
2057 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2058 	}
2059 
2060 	mutex_init(&rproc->lock);
2061 
2062 	idr_init(&rproc->notifyids);
2063 
2064 	INIT_LIST_HEAD(&rproc->carveouts);
2065 	INIT_LIST_HEAD(&rproc->mappings);
2066 	INIT_LIST_HEAD(&rproc->traces);
2067 	INIT_LIST_HEAD(&rproc->rvdevs);
2068 	INIT_LIST_HEAD(&rproc->subdevs);
2069 	INIT_LIST_HEAD(&rproc->dump_segments);
2070 
2071 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2072 
2073 	rproc->state = RPROC_OFFLINE;
2074 
2075 	return rproc;
2076 }
2077 EXPORT_SYMBOL(rproc_alloc);
2078 
2079 /**
2080  * rproc_free() - unroll rproc_alloc()
2081  * @rproc: the remote processor handle
2082  *
2083  * This function decrements the rproc dev refcount.
2084  *
2085  * If no one holds any reference to rproc anymore, then its refcount would
2086  * now drop to zero, and it would be freed.
2087  */
2088 void rproc_free(struct rproc *rproc)
2089 {
2090 	put_device(&rproc->dev);
2091 }
2092 EXPORT_SYMBOL(rproc_free);
2093 
2094 /**
2095  * rproc_put() - release rproc reference
2096  * @rproc: the remote processor handle
2097  *
2098  * This function decrements the rproc dev refcount.
2099  *
2100  * If no one holds any reference to rproc anymore, then its refcount would
2101  * now drop to zero, and it would be freed.
2102  */
2103 void rproc_put(struct rproc *rproc)
2104 {
2105 	module_put(rproc->dev.parent->driver->owner);
2106 	put_device(&rproc->dev);
2107 }
2108 EXPORT_SYMBOL(rproc_put);
2109 
2110 /**
2111  * rproc_del() - unregister a remote processor
2112  * @rproc: rproc handle to unregister
2113  *
2114  * This function should be called when the platform specific rproc
2115  * implementation decides to remove the rproc device. it should
2116  * _only_ be called if a previous invocation of rproc_add()
2117  * has completed successfully.
2118  *
2119  * After rproc_del() returns, @rproc isn't freed yet, because
2120  * of the outstanding reference created by rproc_alloc. To decrement that
2121  * one last refcount, one still needs to call rproc_free().
2122  *
2123  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2124  */
2125 int rproc_del(struct rproc *rproc)
2126 {
2127 	if (!rproc)
2128 		return -EINVAL;
2129 
2130 	/* if rproc is marked always-on, rproc_add() booted it */
2131 	/* TODO: make sure this works with rproc->power > 1 */
2132 	if (rproc->auto_boot)
2133 		rproc_shutdown(rproc);
2134 
2135 	mutex_lock(&rproc->lock);
2136 	rproc->state = RPROC_DELETED;
2137 	mutex_unlock(&rproc->lock);
2138 
2139 	rproc_delete_debug_dir(rproc);
2140 
2141 	/* the rproc is downref'ed as soon as it's removed from the klist */
2142 	mutex_lock(&rproc_list_mutex);
2143 	list_del(&rproc->node);
2144 	mutex_unlock(&rproc_list_mutex);
2145 
2146 	device_del(&rproc->dev);
2147 
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL(rproc_del);
2151 
2152 /**
2153  * rproc_add_subdev() - add a subdevice to a remoteproc
2154  * @rproc: rproc handle to add the subdevice to
2155  * @subdev: subdev handle to register
2156  *
2157  * Caller is responsible for populating optional subdevice function pointers.
2158  */
2159 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2160 {
2161 	list_add_tail(&subdev->node, &rproc->subdevs);
2162 }
2163 EXPORT_SYMBOL(rproc_add_subdev);
2164 
2165 /**
2166  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2167  * @rproc: rproc handle to remove the subdevice from
2168  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2169  */
2170 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2171 {
2172 	list_del(&subdev->node);
2173 }
2174 EXPORT_SYMBOL(rproc_remove_subdev);
2175 
2176 /**
2177  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2178  * @dev:	child device to find ancestor of
2179  *
2180  * Returns the ancestor rproc instance, or NULL if not found.
2181  */
2182 struct rproc *rproc_get_by_child(struct device *dev)
2183 {
2184 	for (dev = dev->parent; dev; dev = dev->parent) {
2185 		if (dev->type == &rproc_type)
2186 			return dev->driver_data;
2187 	}
2188 
2189 	return NULL;
2190 }
2191 EXPORT_SYMBOL(rproc_get_by_child);
2192 
2193 /**
2194  * rproc_report_crash() - rproc crash reporter function
2195  * @rproc: remote processor
2196  * @type: crash type
2197  *
2198  * This function must be called every time a crash is detected by the low-level
2199  * drivers implementing a specific remoteproc. This should not be called from a
2200  * non-remoteproc driver.
2201  *
2202  * This function can be called from atomic/interrupt context.
2203  */
2204 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2205 {
2206 	if (!rproc) {
2207 		pr_err("NULL rproc pointer\n");
2208 		return;
2209 	}
2210 
2211 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2212 		rproc->name, rproc_crash_to_string(type));
2213 
2214 	/* create a new task to handle the error */
2215 	schedule_work(&rproc->crash_handler);
2216 }
2217 EXPORT_SYMBOL(rproc_report_crash);
2218 
2219 static int __init remoteproc_init(void)
2220 {
2221 	rproc_init_sysfs();
2222 	rproc_init_debugfs();
2223 
2224 	return 0;
2225 }
2226 subsys_initcall(remoteproc_init);
2227 
2228 static void __exit remoteproc_exit(void)
2229 {
2230 	ida_destroy(&rproc_dev_index);
2231 
2232 	rproc_exit_debugfs();
2233 	rproc_exit_sysfs();
2234 }
2235 module_exit(remoteproc_exit);
2236 
2237 MODULE_LICENSE("GPL v2");
2238 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2239