1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/firmware.h> 26 #include <linux/string.h> 27 #include <linux/debugfs.h> 28 #include <linux/devcoredump.h> 29 #include <linux/remoteproc.h> 30 #include <linux/iommu.h> 31 #include <linux/idr.h> 32 #include <linux/elf.h> 33 #include <linux/crc32.h> 34 #include <linux/of_reserved_mem.h> 35 #include <linux/virtio_ids.h> 36 #include <linux/virtio_ring.h> 37 #include <asm/byteorder.h> 38 #include <linux/platform_device.h> 39 40 #include "remoteproc_internal.h" 41 42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 43 44 static DEFINE_MUTEX(rproc_list_mutex); 45 static LIST_HEAD(rproc_list); 46 47 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 48 void *, int offset, int avail); 49 50 static int rproc_alloc_carveout(struct rproc *rproc, 51 struct rproc_mem_entry *mem); 52 static int rproc_release_carveout(struct rproc *rproc, 53 struct rproc_mem_entry *mem); 54 55 /* Unique indices for remoteproc devices */ 56 static DEFINE_IDA(rproc_dev_index); 57 58 static const char * const rproc_crash_names[] = { 59 [RPROC_MMUFAULT] = "mmufault", 60 [RPROC_WATCHDOG] = "watchdog", 61 [RPROC_FATAL_ERROR] = "fatal error", 62 }; 63 64 /* translate rproc_crash_type to string */ 65 static const char *rproc_crash_to_string(enum rproc_crash_type type) 66 { 67 if (type < ARRAY_SIZE(rproc_crash_names)) 68 return rproc_crash_names[type]; 69 return "unknown"; 70 } 71 72 /* 73 * This is the IOMMU fault handler we register with the IOMMU API 74 * (when relevant; not all remote processors access memory through 75 * an IOMMU). 76 * 77 * IOMMU core will invoke this handler whenever the remote processor 78 * will try to access an unmapped device address. 79 */ 80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 81 unsigned long iova, int flags, void *token) 82 { 83 struct rproc *rproc = token; 84 85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 86 87 rproc_report_crash(rproc, RPROC_MMUFAULT); 88 89 /* 90 * Let the iommu core know we're not really handling this fault; 91 * we just used it as a recovery trigger. 92 */ 93 return -ENOSYS; 94 } 95 96 static int rproc_enable_iommu(struct rproc *rproc) 97 { 98 struct iommu_domain *domain; 99 struct device *dev = rproc->dev.parent; 100 int ret; 101 102 if (!rproc->has_iommu) { 103 dev_dbg(dev, "iommu not present\n"); 104 return 0; 105 } 106 107 domain = iommu_domain_alloc(dev->bus); 108 if (!domain) { 109 dev_err(dev, "can't alloc iommu domain\n"); 110 return -ENOMEM; 111 } 112 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 114 115 ret = iommu_attach_device(domain, dev); 116 if (ret) { 117 dev_err(dev, "can't attach iommu device: %d\n", ret); 118 goto free_domain; 119 } 120 121 rproc->domain = domain; 122 123 return 0; 124 125 free_domain: 126 iommu_domain_free(domain); 127 return ret; 128 } 129 130 static void rproc_disable_iommu(struct rproc *rproc) 131 { 132 struct iommu_domain *domain = rproc->domain; 133 struct device *dev = rproc->dev.parent; 134 135 if (!domain) 136 return; 137 138 iommu_detach_device(domain, dev); 139 iommu_domain_free(domain); 140 } 141 142 phys_addr_t rproc_va_to_pa(void *cpu_addr) 143 { 144 /* 145 * Return physical address according to virtual address location 146 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 147 * - in kernel: if region allocated in generic dma memory pool 148 */ 149 if (is_vmalloc_addr(cpu_addr)) { 150 return page_to_phys(vmalloc_to_page(cpu_addr)) + 151 offset_in_page(cpu_addr); 152 } 153 154 WARN_ON(!virt_addr_valid(cpu_addr)); 155 return virt_to_phys(cpu_addr); 156 } 157 EXPORT_SYMBOL(rproc_va_to_pa); 158 159 /** 160 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 161 * @rproc: handle of a remote processor 162 * @da: remoteproc device address to translate 163 * @len: length of the memory region @da is pointing to 164 * 165 * Some remote processors will ask us to allocate them physically contiguous 166 * memory regions (which we call "carveouts"), and map them to specific 167 * device addresses (which are hardcoded in the firmware). They may also have 168 * dedicated memory regions internal to the processors, and use them either 169 * exclusively or alongside carveouts. 170 * 171 * They may then ask us to copy objects into specific device addresses (e.g. 172 * code/data sections) or expose us certain symbols in other device address 173 * (e.g. their trace buffer). 174 * 175 * This function is a helper function with which we can go over the allocated 176 * carveouts and translate specific device addresses to kernel virtual addresses 177 * so we can access the referenced memory. This function also allows to perform 178 * translations on the internal remoteproc memory regions through a platform 179 * implementation specific da_to_va ops, if present. 180 * 181 * The function returns a valid kernel address on success or NULL on failure. 182 * 183 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 184 * but only on kernel direct mapped RAM memory. Instead, we're just using 185 * here the output of the DMA API for the carveouts, which should be more 186 * correct. 187 */ 188 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 189 { 190 struct rproc_mem_entry *carveout; 191 void *ptr = NULL; 192 193 if (rproc->ops->da_to_va) { 194 ptr = rproc->ops->da_to_va(rproc, da, len); 195 if (ptr) 196 goto out; 197 } 198 199 list_for_each_entry(carveout, &rproc->carveouts, node) { 200 int offset = da - carveout->da; 201 202 /* Verify that carveout is allocated */ 203 if (!carveout->va) 204 continue; 205 206 /* try next carveout if da is too small */ 207 if (offset < 0) 208 continue; 209 210 /* try next carveout if da is too large */ 211 if (offset + len > carveout->len) 212 continue; 213 214 ptr = carveout->va + offset; 215 216 break; 217 } 218 219 out: 220 return ptr; 221 } 222 EXPORT_SYMBOL(rproc_da_to_va); 223 224 /** 225 * rproc_find_carveout_by_name() - lookup the carveout region by a name 226 * @rproc: handle of a remote processor 227 * @name,..: carveout name to find (standard printf format) 228 * 229 * Platform driver has the capability to register some pre-allacoted carveout 230 * (physically contiguous memory regions) before rproc firmware loading and 231 * associated resource table analysis. These regions may be dedicated memory 232 * regions internal to the coprocessor or specified DDR region with specific 233 * attributes 234 * 235 * This function is a helper function with which we can go over the 236 * allocated carveouts and return associated region characteristics like 237 * coprocessor address, length or processor virtual address. 238 * 239 * Return: a valid pointer on carveout entry on success or NULL on failure. 240 */ 241 struct rproc_mem_entry * 242 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 243 { 244 va_list args; 245 char _name[32]; 246 struct rproc_mem_entry *carveout, *mem = NULL; 247 248 if (!name) 249 return NULL; 250 251 va_start(args, name); 252 vsnprintf(_name, sizeof(_name), name, args); 253 va_end(args); 254 255 list_for_each_entry(carveout, &rproc->carveouts, node) { 256 /* Compare carveout and requested names */ 257 if (!strcmp(carveout->name, _name)) { 258 mem = carveout; 259 break; 260 } 261 } 262 263 return mem; 264 } 265 266 /** 267 * rproc_check_carveout_da() - Check specified carveout da configuration 268 * @rproc: handle of a remote processor 269 * @mem: pointer on carveout to check 270 * @da: area device address 271 * @len: associated area size 272 * 273 * This function is a helper function to verify requested device area (couple 274 * da, len) is part of specified carveout. 275 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 276 * checked. 277 * 278 * Return: 0 if carveout matches request else error 279 */ 280 static int rproc_check_carveout_da(struct rproc *rproc, 281 struct rproc_mem_entry *mem, u32 da, u32 len) 282 { 283 struct device *dev = &rproc->dev; 284 int delta; 285 286 /* Check requested resource length */ 287 if (len > mem->len) { 288 dev_err(dev, "Registered carveout doesn't fit len request\n"); 289 return -EINVAL; 290 } 291 292 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 293 /* Address doesn't match registered carveout configuration */ 294 return -EINVAL; 295 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 296 delta = da - mem->da; 297 298 /* Check requested resource belongs to registered carveout */ 299 if (delta < 0) { 300 dev_err(dev, 301 "Registered carveout doesn't fit da request\n"); 302 return -EINVAL; 303 } 304 305 if (delta + len > mem->len) { 306 dev_err(dev, 307 "Registered carveout doesn't fit len request\n"); 308 return -EINVAL; 309 } 310 } 311 312 return 0; 313 } 314 315 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 316 { 317 struct rproc *rproc = rvdev->rproc; 318 struct device *dev = &rproc->dev; 319 struct rproc_vring *rvring = &rvdev->vring[i]; 320 struct fw_rsc_vdev *rsc; 321 int ret, size, notifyid; 322 struct rproc_mem_entry *mem; 323 324 /* actual size of vring (in bytes) */ 325 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 326 327 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 328 329 /* Search for pre-registered carveout */ 330 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 331 i); 332 if (mem) { 333 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 334 return -ENOMEM; 335 } else { 336 /* Register carveout in in list */ 337 mem = rproc_mem_entry_init(dev, NULL, 0, 338 size, rsc->vring[i].da, 339 rproc_alloc_carveout, 340 rproc_release_carveout, 341 "vdev%dvring%d", 342 rvdev->index, i); 343 if (!mem) { 344 dev_err(dev, "Can't allocate memory entry structure\n"); 345 return -ENOMEM; 346 } 347 348 rproc_add_carveout(rproc, mem); 349 } 350 351 /* 352 * Assign an rproc-wide unique index for this vring 353 * TODO: assign a notifyid for rvdev updates as well 354 * TODO: support predefined notifyids (via resource table) 355 */ 356 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 357 if (ret < 0) { 358 dev_err(dev, "idr_alloc failed: %d\n", ret); 359 return ret; 360 } 361 notifyid = ret; 362 363 /* Potentially bump max_notifyid */ 364 if (notifyid > rproc->max_notifyid) 365 rproc->max_notifyid = notifyid; 366 367 rvring->notifyid = notifyid; 368 369 /* Let the rproc know the notifyid of this vring.*/ 370 rsc->vring[i].notifyid = notifyid; 371 return 0; 372 } 373 374 static int 375 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 376 { 377 struct rproc *rproc = rvdev->rproc; 378 struct device *dev = &rproc->dev; 379 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 380 struct rproc_vring *rvring = &rvdev->vring[i]; 381 382 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 383 i, vring->da, vring->num, vring->align); 384 385 /* verify queue size and vring alignment are sane */ 386 if (!vring->num || !vring->align) { 387 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 388 vring->num, vring->align); 389 return -EINVAL; 390 } 391 392 rvring->len = vring->num; 393 rvring->align = vring->align; 394 rvring->rvdev = rvdev; 395 396 return 0; 397 } 398 399 void rproc_free_vring(struct rproc_vring *rvring) 400 { 401 struct rproc *rproc = rvring->rvdev->rproc; 402 int idx = rvring - rvring->rvdev->vring; 403 struct fw_rsc_vdev *rsc; 404 405 idr_remove(&rproc->notifyids, rvring->notifyid); 406 407 /* reset resource entry info */ 408 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 409 rsc->vring[idx].da = 0; 410 rsc->vring[idx].notifyid = -1; 411 } 412 413 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 414 { 415 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 416 417 return rproc_add_virtio_dev(rvdev, rvdev->id); 418 } 419 420 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 421 { 422 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 423 int ret; 424 425 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 426 if (ret) 427 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 428 } 429 430 /** 431 * rproc_rvdev_release() - release the existence of a rvdev 432 * 433 * @dev: the subdevice's dev 434 */ 435 static void rproc_rvdev_release(struct device *dev) 436 { 437 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 438 439 of_reserved_mem_device_release(dev); 440 441 kfree(rvdev); 442 } 443 444 /** 445 * rproc_handle_vdev() - handle a vdev fw resource 446 * @rproc: the remote processor 447 * @rsc: the vring resource descriptor 448 * @avail: size of available data (for sanity checking the image) 449 * 450 * This resource entry requests the host to statically register a virtio 451 * device (vdev), and setup everything needed to support it. It contains 452 * everything needed to make it possible: the virtio device id, virtio 453 * device features, vrings information, virtio config space, etc... 454 * 455 * Before registering the vdev, the vrings are allocated from non-cacheable 456 * physically contiguous memory. Currently we only support two vrings per 457 * remote processor (temporary limitation). We might also want to consider 458 * doing the vring allocation only later when ->find_vqs() is invoked, and 459 * then release them upon ->del_vqs(). 460 * 461 * Note: @da is currently not really handled correctly: we dynamically 462 * allocate it using the DMA API, ignoring requested hard coded addresses, 463 * and we don't take care of any required IOMMU programming. This is all 464 * going to be taken care of when the generic iommu-based DMA API will be 465 * merged. Meanwhile, statically-addressed iommu-based firmware images should 466 * use RSC_DEVMEM resource entries to map their required @da to the physical 467 * address of their base CMA region (ouch, hacky!). 468 * 469 * Returns 0 on success, or an appropriate error code otherwise 470 */ 471 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 472 int offset, int avail) 473 { 474 struct device *dev = &rproc->dev; 475 struct rproc_vdev *rvdev; 476 int i, ret; 477 char name[16]; 478 479 /* make sure resource isn't truncated */ 480 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 481 avail) { 482 dev_err(dev, "vdev rsc is truncated\n"); 483 return -EINVAL; 484 } 485 486 /* make sure reserved bytes are zeroes */ 487 if (rsc->reserved[0] || rsc->reserved[1]) { 488 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 489 return -EINVAL; 490 } 491 492 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 493 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 494 495 /* we currently support only two vrings per rvdev */ 496 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 497 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 498 return -EINVAL; 499 } 500 501 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 502 if (!rvdev) 503 return -ENOMEM; 504 505 kref_init(&rvdev->refcount); 506 507 rvdev->id = rsc->id; 508 rvdev->rproc = rproc; 509 rvdev->index = rproc->nb_vdev++; 510 511 /* Initialise vdev subdevice */ 512 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 513 rvdev->dev.parent = rproc->dev.parent; 514 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset; 515 rvdev->dev.release = rproc_rvdev_release; 516 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 517 dev_set_drvdata(&rvdev->dev, rvdev); 518 519 ret = device_register(&rvdev->dev); 520 if (ret) { 521 put_device(&rvdev->dev); 522 return ret; 523 } 524 /* Make device dma capable by inheriting from parent's capabilities */ 525 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 526 527 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 528 dma_get_mask(rproc->dev.parent)); 529 if (ret) { 530 dev_warn(dev, 531 "Failed to set DMA mask %llx. Trying to continue... %x\n", 532 dma_get_mask(rproc->dev.parent), ret); 533 } 534 535 /* parse the vrings */ 536 for (i = 0; i < rsc->num_of_vrings; i++) { 537 ret = rproc_parse_vring(rvdev, rsc, i); 538 if (ret) 539 goto free_rvdev; 540 } 541 542 /* remember the resource offset*/ 543 rvdev->rsc_offset = offset; 544 545 /* allocate the vring resources */ 546 for (i = 0; i < rsc->num_of_vrings; i++) { 547 ret = rproc_alloc_vring(rvdev, i); 548 if (ret) 549 goto unwind_vring_allocations; 550 } 551 552 list_add_tail(&rvdev->node, &rproc->rvdevs); 553 554 rvdev->subdev.start = rproc_vdev_do_start; 555 rvdev->subdev.stop = rproc_vdev_do_stop; 556 557 rproc_add_subdev(rproc, &rvdev->subdev); 558 559 return 0; 560 561 unwind_vring_allocations: 562 for (i--; i >= 0; i--) 563 rproc_free_vring(&rvdev->vring[i]); 564 free_rvdev: 565 device_unregister(&rvdev->dev); 566 return ret; 567 } 568 569 void rproc_vdev_release(struct kref *ref) 570 { 571 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 572 struct rproc_vring *rvring; 573 struct rproc *rproc = rvdev->rproc; 574 int id; 575 576 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 577 rvring = &rvdev->vring[id]; 578 rproc_free_vring(rvring); 579 } 580 581 rproc_remove_subdev(rproc, &rvdev->subdev); 582 list_del(&rvdev->node); 583 device_unregister(&rvdev->dev); 584 } 585 586 /** 587 * rproc_handle_trace() - handle a shared trace buffer resource 588 * @rproc: the remote processor 589 * @rsc: the trace resource descriptor 590 * @avail: size of available data (for sanity checking the image) 591 * 592 * In case the remote processor dumps trace logs into memory, 593 * export it via debugfs. 594 * 595 * Currently, the 'da' member of @rsc should contain the device address 596 * where the remote processor is dumping the traces. Later we could also 597 * support dynamically allocating this address using the generic 598 * DMA API (but currently there isn't a use case for that). 599 * 600 * Returns 0 on success, or an appropriate error code otherwise 601 */ 602 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 603 int offset, int avail) 604 { 605 struct rproc_debug_trace *trace; 606 struct device *dev = &rproc->dev; 607 char name[15]; 608 609 if (sizeof(*rsc) > avail) { 610 dev_err(dev, "trace rsc is truncated\n"); 611 return -EINVAL; 612 } 613 614 /* make sure reserved bytes are zeroes */ 615 if (rsc->reserved) { 616 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 617 return -EINVAL; 618 } 619 620 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 621 if (!trace) 622 return -ENOMEM; 623 624 /* set the trace buffer dma properties */ 625 trace->trace_mem.len = rsc->len; 626 trace->trace_mem.da = rsc->da; 627 628 /* set pointer on rproc device */ 629 trace->rproc = rproc; 630 631 /* make sure snprintf always null terminates, even if truncating */ 632 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 633 634 /* create the debugfs entry */ 635 trace->tfile = rproc_create_trace_file(name, rproc, trace); 636 if (!trace->tfile) { 637 kfree(trace); 638 return -EINVAL; 639 } 640 641 list_add_tail(&trace->node, &rproc->traces); 642 643 rproc->num_traces++; 644 645 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 646 name, rsc->da, rsc->len); 647 648 return 0; 649 } 650 651 /** 652 * rproc_handle_devmem() - handle devmem resource entry 653 * @rproc: remote processor handle 654 * @rsc: the devmem resource entry 655 * @avail: size of available data (for sanity checking the image) 656 * 657 * Remote processors commonly need to access certain on-chip peripherals. 658 * 659 * Some of these remote processors access memory via an iommu device, 660 * and might require us to configure their iommu before they can access 661 * the on-chip peripherals they need. 662 * 663 * This resource entry is a request to map such a peripheral device. 664 * 665 * These devmem entries will contain the physical address of the device in 666 * the 'pa' member. If a specific device address is expected, then 'da' will 667 * contain it (currently this is the only use case supported). 'len' will 668 * contain the size of the physical region we need to map. 669 * 670 * Currently we just "trust" those devmem entries to contain valid physical 671 * addresses, but this is going to change: we want the implementations to 672 * tell us ranges of physical addresses the firmware is allowed to request, 673 * and not allow firmwares to request access to physical addresses that 674 * are outside those ranges. 675 */ 676 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 677 int offset, int avail) 678 { 679 struct rproc_mem_entry *mapping; 680 struct device *dev = &rproc->dev; 681 int ret; 682 683 /* no point in handling this resource without a valid iommu domain */ 684 if (!rproc->domain) 685 return -EINVAL; 686 687 if (sizeof(*rsc) > avail) { 688 dev_err(dev, "devmem rsc is truncated\n"); 689 return -EINVAL; 690 } 691 692 /* make sure reserved bytes are zeroes */ 693 if (rsc->reserved) { 694 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 695 return -EINVAL; 696 } 697 698 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 699 if (!mapping) 700 return -ENOMEM; 701 702 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 703 if (ret) { 704 dev_err(dev, "failed to map devmem: %d\n", ret); 705 goto out; 706 } 707 708 /* 709 * We'll need this info later when we'll want to unmap everything 710 * (e.g. on shutdown). 711 * 712 * We can't trust the remote processor not to change the resource 713 * table, so we must maintain this info independently. 714 */ 715 mapping->da = rsc->da; 716 mapping->len = rsc->len; 717 list_add_tail(&mapping->node, &rproc->mappings); 718 719 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 720 rsc->pa, rsc->da, rsc->len); 721 722 return 0; 723 724 out: 725 kfree(mapping); 726 return ret; 727 } 728 729 /** 730 * rproc_alloc_carveout() - allocated specified carveout 731 * @rproc: rproc handle 732 * @mem: the memory entry to allocate 733 * 734 * This function allocate specified memory entry @mem using 735 * dma_alloc_coherent() as default allocator 736 */ 737 static int rproc_alloc_carveout(struct rproc *rproc, 738 struct rproc_mem_entry *mem) 739 { 740 struct rproc_mem_entry *mapping = NULL; 741 struct device *dev = &rproc->dev; 742 dma_addr_t dma; 743 void *va; 744 int ret; 745 746 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 747 if (!va) { 748 dev_err(dev->parent, 749 "failed to allocate dma memory: len 0x%x\n", mem->len); 750 return -ENOMEM; 751 } 752 753 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n", 754 va, &dma, mem->len); 755 756 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 757 /* 758 * Check requested da is equal to dma address 759 * and print a warn message in case of missalignment. 760 * Don't stop rproc_start sequence as coprocessor may 761 * build pa to da translation on its side. 762 */ 763 if (mem->da != (u32)dma) 764 dev_warn(dev->parent, 765 "Allocated carveout doesn't fit device address request\n"); 766 } 767 768 /* 769 * Ok, this is non-standard. 770 * 771 * Sometimes we can't rely on the generic iommu-based DMA API 772 * to dynamically allocate the device address and then set the IOMMU 773 * tables accordingly, because some remote processors might 774 * _require_ us to use hard coded device addresses that their 775 * firmware was compiled with. 776 * 777 * In this case, we must use the IOMMU API directly and map 778 * the memory to the device address as expected by the remote 779 * processor. 780 * 781 * Obviously such remote processor devices should not be configured 782 * to use the iommu-based DMA API: we expect 'dma' to contain the 783 * physical address in this case. 784 */ 785 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 786 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 787 if (!mapping) { 788 ret = -ENOMEM; 789 goto dma_free; 790 } 791 792 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 793 mem->flags); 794 if (ret) { 795 dev_err(dev, "iommu_map failed: %d\n", ret); 796 goto free_mapping; 797 } 798 799 /* 800 * We'll need this info later when we'll want to unmap 801 * everything (e.g. on shutdown). 802 * 803 * We can't trust the remote processor not to change the 804 * resource table, so we must maintain this info independently. 805 */ 806 mapping->da = mem->da; 807 mapping->len = mem->len; 808 list_add_tail(&mapping->node, &rproc->mappings); 809 810 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 811 mem->da, &dma); 812 } 813 814 if (mem->da == FW_RSC_ADDR_ANY) { 815 /* Update device address as undefined by requester */ 816 if ((u64)dma & HIGH_BITS_MASK) 817 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 818 819 mem->da = (u32)dma; 820 } 821 822 mem->dma = dma; 823 mem->va = va; 824 825 return 0; 826 827 free_mapping: 828 kfree(mapping); 829 dma_free: 830 dma_free_coherent(dev->parent, mem->len, va, dma); 831 return ret; 832 } 833 834 /** 835 * rproc_release_carveout() - release acquired carveout 836 * @rproc: rproc handle 837 * @mem: the memory entry to release 838 * 839 * This function releases specified memory entry @mem allocated via 840 * rproc_alloc_carveout() function by @rproc. 841 */ 842 static int rproc_release_carveout(struct rproc *rproc, 843 struct rproc_mem_entry *mem) 844 { 845 struct device *dev = &rproc->dev; 846 847 /* clean up carveout allocations */ 848 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 849 return 0; 850 } 851 852 /** 853 * rproc_handle_carveout() - handle phys contig memory allocation requests 854 * @rproc: rproc handle 855 * @rsc: the resource entry 856 * @avail: size of available data (for image validation) 857 * 858 * This function will handle firmware requests for allocation of physically 859 * contiguous memory regions. 860 * 861 * These request entries should come first in the firmware's resource table, 862 * as other firmware entries might request placing other data objects inside 863 * these memory regions (e.g. data/code segments, trace resource entries, ...). 864 * 865 * Allocating memory this way helps utilizing the reserved physical memory 866 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 867 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 868 * pressure is important; it may have a substantial impact on performance. 869 */ 870 static int rproc_handle_carveout(struct rproc *rproc, 871 struct fw_rsc_carveout *rsc, 872 int offset, int avail) 873 { 874 struct rproc_mem_entry *carveout; 875 struct device *dev = &rproc->dev; 876 877 if (sizeof(*rsc) > avail) { 878 dev_err(dev, "carveout rsc is truncated\n"); 879 return -EINVAL; 880 } 881 882 /* make sure reserved bytes are zeroes */ 883 if (rsc->reserved) { 884 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 885 return -EINVAL; 886 } 887 888 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 889 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 890 891 /* 892 * Check carveout rsc already part of a registered carveout, 893 * Search by name, then check the da and length 894 */ 895 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 896 897 if (carveout) { 898 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 899 dev_err(dev, 900 "Carveout already associated to resource table\n"); 901 return -ENOMEM; 902 } 903 904 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 905 return -ENOMEM; 906 907 /* Update memory carveout with resource table info */ 908 carveout->rsc_offset = offset; 909 carveout->flags = rsc->flags; 910 911 return 0; 912 } 913 914 /* Register carveout in in list */ 915 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 916 rproc_alloc_carveout, 917 rproc_release_carveout, rsc->name); 918 if (!carveout) { 919 dev_err(dev, "Can't allocate memory entry structure\n"); 920 return -ENOMEM; 921 } 922 923 carveout->flags = rsc->flags; 924 carveout->rsc_offset = offset; 925 rproc_add_carveout(rproc, carveout); 926 927 return 0; 928 } 929 930 /** 931 * rproc_add_carveout() - register an allocated carveout region 932 * @rproc: rproc handle 933 * @mem: memory entry to register 934 * 935 * This function registers specified memory entry in @rproc carveouts list. 936 * Specified carveout should have been allocated before registering. 937 */ 938 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 939 { 940 list_add_tail(&mem->node, &rproc->carveouts); 941 } 942 EXPORT_SYMBOL(rproc_add_carveout); 943 944 /** 945 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 946 * @dev: pointer on device struct 947 * @va: virtual address 948 * @dma: dma address 949 * @len: memory carveout length 950 * @da: device address 951 * @alloc: memory carveout allocation function 952 * @release: memory carveout release function 953 * @name: carveout name 954 * 955 * This function allocates a rproc_mem_entry struct and fill it with parameters 956 * provided by client. 957 */ 958 struct rproc_mem_entry * 959 rproc_mem_entry_init(struct device *dev, 960 void *va, dma_addr_t dma, int len, u32 da, 961 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 962 int (*release)(struct rproc *, struct rproc_mem_entry *), 963 const char *name, ...) 964 { 965 struct rproc_mem_entry *mem; 966 va_list args; 967 968 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 969 if (!mem) 970 return mem; 971 972 mem->va = va; 973 mem->dma = dma; 974 mem->da = da; 975 mem->len = len; 976 mem->alloc = alloc; 977 mem->release = release; 978 mem->rsc_offset = FW_RSC_ADDR_ANY; 979 mem->of_resm_idx = -1; 980 981 va_start(args, name); 982 vsnprintf(mem->name, sizeof(mem->name), name, args); 983 va_end(args); 984 985 return mem; 986 } 987 EXPORT_SYMBOL(rproc_mem_entry_init); 988 989 /** 990 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 991 * from a reserved memory phandle 992 * @dev: pointer on device struct 993 * @of_resm_idx: reserved memory phandle index in "memory-region" 994 * @len: memory carveout length 995 * @da: device address 996 * @name: carveout name 997 * 998 * This function allocates a rproc_mem_entry struct and fill it with parameters 999 * provided by client. 1000 */ 1001 struct rproc_mem_entry * 1002 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len, 1003 u32 da, const char *name, ...) 1004 { 1005 struct rproc_mem_entry *mem; 1006 va_list args; 1007 1008 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1009 if (!mem) 1010 return mem; 1011 1012 mem->da = da; 1013 mem->len = len; 1014 mem->rsc_offset = FW_RSC_ADDR_ANY; 1015 mem->of_resm_idx = of_resm_idx; 1016 1017 va_start(args, name); 1018 vsnprintf(mem->name, sizeof(mem->name), name, args); 1019 va_end(args); 1020 1021 return mem; 1022 } 1023 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1024 1025 /** 1026 * A lookup table for resource handlers. The indices are defined in 1027 * enum fw_resource_type. 1028 */ 1029 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1030 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1031 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1032 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1033 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1034 }; 1035 1036 /* handle firmware resource entries before booting the remote processor */ 1037 static int rproc_handle_resources(struct rproc *rproc, 1038 rproc_handle_resource_t handlers[RSC_LAST]) 1039 { 1040 struct device *dev = &rproc->dev; 1041 rproc_handle_resource_t handler; 1042 int ret = 0, i; 1043 1044 if (!rproc->table_ptr) 1045 return 0; 1046 1047 for (i = 0; i < rproc->table_ptr->num; i++) { 1048 int offset = rproc->table_ptr->offset[i]; 1049 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1050 int avail = rproc->table_sz - offset - sizeof(*hdr); 1051 void *rsc = (void *)hdr + sizeof(*hdr); 1052 1053 /* make sure table isn't truncated */ 1054 if (avail < 0) { 1055 dev_err(dev, "rsc table is truncated\n"); 1056 return -EINVAL; 1057 } 1058 1059 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1060 1061 if (hdr->type >= RSC_VENDOR_START && 1062 hdr->type <= RSC_VENDOR_END) { 1063 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1064 offset + sizeof(*hdr), avail); 1065 if (ret == RSC_HANDLED) 1066 continue; 1067 else if (ret < 0) 1068 break; 1069 1070 dev_warn(dev, "unsupported vendor resource %d\n", 1071 hdr->type); 1072 continue; 1073 } 1074 1075 if (hdr->type >= RSC_LAST) { 1076 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1077 continue; 1078 } 1079 1080 handler = handlers[hdr->type]; 1081 if (!handler) 1082 continue; 1083 1084 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1085 if (ret) 1086 break; 1087 } 1088 1089 return ret; 1090 } 1091 1092 static int rproc_prepare_subdevices(struct rproc *rproc) 1093 { 1094 struct rproc_subdev *subdev; 1095 int ret; 1096 1097 list_for_each_entry(subdev, &rproc->subdevs, node) { 1098 if (subdev->prepare) { 1099 ret = subdev->prepare(subdev); 1100 if (ret) 1101 goto unroll_preparation; 1102 } 1103 } 1104 1105 return 0; 1106 1107 unroll_preparation: 1108 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1109 if (subdev->unprepare) 1110 subdev->unprepare(subdev); 1111 } 1112 1113 return ret; 1114 } 1115 1116 static int rproc_start_subdevices(struct rproc *rproc) 1117 { 1118 struct rproc_subdev *subdev; 1119 int ret; 1120 1121 list_for_each_entry(subdev, &rproc->subdevs, node) { 1122 if (subdev->start) { 1123 ret = subdev->start(subdev); 1124 if (ret) 1125 goto unroll_registration; 1126 } 1127 } 1128 1129 return 0; 1130 1131 unroll_registration: 1132 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1133 if (subdev->stop) 1134 subdev->stop(subdev, true); 1135 } 1136 1137 return ret; 1138 } 1139 1140 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1141 { 1142 struct rproc_subdev *subdev; 1143 1144 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1145 if (subdev->stop) 1146 subdev->stop(subdev, crashed); 1147 } 1148 } 1149 1150 static void rproc_unprepare_subdevices(struct rproc *rproc) 1151 { 1152 struct rproc_subdev *subdev; 1153 1154 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1155 if (subdev->unprepare) 1156 subdev->unprepare(subdev); 1157 } 1158 } 1159 1160 /** 1161 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1162 * in the list 1163 * @rproc: the remote processor handle 1164 * 1165 * This function parses registered carveout list, performs allocation 1166 * if alloc() ops registered and updates resource table information 1167 * if rsc_offset set. 1168 * 1169 * Return: 0 on success 1170 */ 1171 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1172 { 1173 struct rproc_mem_entry *entry, *tmp; 1174 struct fw_rsc_carveout *rsc; 1175 struct device *dev = &rproc->dev; 1176 u64 pa; 1177 int ret; 1178 1179 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1180 if (entry->alloc) { 1181 ret = entry->alloc(rproc, entry); 1182 if (ret) { 1183 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1184 entry->name, ret); 1185 return -ENOMEM; 1186 } 1187 } 1188 1189 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1190 /* update resource table */ 1191 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1192 1193 /* 1194 * Some remote processors might need to know the pa 1195 * even though they are behind an IOMMU. E.g., OMAP4's 1196 * remote M3 processor needs this so it can control 1197 * on-chip hardware accelerators that are not behind 1198 * the IOMMU, and therefor must know the pa. 1199 * 1200 * Generally we don't want to expose physical addresses 1201 * if we don't have to (remote processors are generally 1202 * _not_ trusted), so we might want to do this only for 1203 * remote processor that _must_ have this (e.g. OMAP4's 1204 * dual M3 subsystem). 1205 * 1206 * Non-IOMMU processors might also want to have this info. 1207 * In this case, the device address and the physical address 1208 * are the same. 1209 */ 1210 1211 /* Use va if defined else dma to generate pa */ 1212 if (entry->va) 1213 pa = (u64)rproc_va_to_pa(entry->va); 1214 else 1215 pa = (u64)entry->dma; 1216 1217 if (((u64)pa) & HIGH_BITS_MASK) 1218 dev_warn(dev, 1219 "Physical address cast in 32bit to fit resource table format\n"); 1220 1221 rsc->pa = (u32)pa; 1222 rsc->da = entry->da; 1223 rsc->len = entry->len; 1224 } 1225 } 1226 1227 return 0; 1228 } 1229 1230 /** 1231 * rproc_coredump_cleanup() - clean up dump_segments list 1232 * @rproc: the remote processor handle 1233 */ 1234 static void rproc_coredump_cleanup(struct rproc *rproc) 1235 { 1236 struct rproc_dump_segment *entry, *tmp; 1237 1238 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { 1239 list_del(&entry->node); 1240 kfree(entry); 1241 } 1242 } 1243 1244 /** 1245 * rproc_resource_cleanup() - clean up and free all acquired resources 1246 * @rproc: rproc handle 1247 * 1248 * This function will free all resources acquired for @rproc, and it 1249 * is called whenever @rproc either shuts down or fails to boot. 1250 */ 1251 static void rproc_resource_cleanup(struct rproc *rproc) 1252 { 1253 struct rproc_mem_entry *entry, *tmp; 1254 struct rproc_debug_trace *trace, *ttmp; 1255 struct rproc_vdev *rvdev, *rvtmp; 1256 struct device *dev = &rproc->dev; 1257 1258 /* clean up debugfs trace entries */ 1259 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1260 rproc_remove_trace_file(trace->tfile); 1261 rproc->num_traces--; 1262 list_del(&trace->node); 1263 kfree(trace); 1264 } 1265 1266 /* clean up iommu mapping entries */ 1267 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1268 size_t unmapped; 1269 1270 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1271 if (unmapped != entry->len) { 1272 /* nothing much to do besides complaining */ 1273 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 1274 unmapped); 1275 } 1276 1277 list_del(&entry->node); 1278 kfree(entry); 1279 } 1280 1281 /* clean up carveout allocations */ 1282 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1283 if (entry->release) 1284 entry->release(rproc, entry); 1285 list_del(&entry->node); 1286 kfree(entry); 1287 } 1288 1289 /* clean up remote vdev entries */ 1290 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1291 kref_put(&rvdev->refcount, rproc_vdev_release); 1292 1293 rproc_coredump_cleanup(rproc); 1294 } 1295 1296 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1297 { 1298 struct resource_table *loaded_table; 1299 struct device *dev = &rproc->dev; 1300 int ret; 1301 1302 /* load the ELF segments to memory */ 1303 ret = rproc_load_segments(rproc, fw); 1304 if (ret) { 1305 dev_err(dev, "Failed to load program segments: %d\n", ret); 1306 return ret; 1307 } 1308 1309 /* 1310 * The starting device has been given the rproc->cached_table as the 1311 * resource table. The address of the vring along with the other 1312 * allocated resources (carveouts etc) is stored in cached_table. 1313 * In order to pass this information to the remote device we must copy 1314 * this information to device memory. We also update the table_ptr so 1315 * that any subsequent changes will be applied to the loaded version. 1316 */ 1317 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1318 if (loaded_table) { 1319 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1320 rproc->table_ptr = loaded_table; 1321 } 1322 1323 ret = rproc_prepare_subdevices(rproc); 1324 if (ret) { 1325 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1326 rproc->name, ret); 1327 goto reset_table_ptr; 1328 } 1329 1330 /* power up the remote processor */ 1331 ret = rproc->ops->start(rproc); 1332 if (ret) { 1333 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1334 goto unprepare_subdevices; 1335 } 1336 1337 /* Start any subdevices for the remote processor */ 1338 ret = rproc_start_subdevices(rproc); 1339 if (ret) { 1340 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1341 rproc->name, ret); 1342 goto stop_rproc; 1343 } 1344 1345 rproc->state = RPROC_RUNNING; 1346 1347 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1348 1349 return 0; 1350 1351 stop_rproc: 1352 rproc->ops->stop(rproc); 1353 unprepare_subdevices: 1354 rproc_unprepare_subdevices(rproc); 1355 reset_table_ptr: 1356 rproc->table_ptr = rproc->cached_table; 1357 1358 return ret; 1359 } 1360 1361 /* 1362 * take a firmware and boot a remote processor with it. 1363 */ 1364 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1365 { 1366 struct device *dev = &rproc->dev; 1367 const char *name = rproc->firmware; 1368 int ret; 1369 1370 ret = rproc_fw_sanity_check(rproc, fw); 1371 if (ret) 1372 return ret; 1373 1374 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1375 1376 /* 1377 * if enabling an IOMMU isn't relevant for this rproc, this is 1378 * just a nop 1379 */ 1380 ret = rproc_enable_iommu(rproc); 1381 if (ret) { 1382 dev_err(dev, "can't enable iommu: %d\n", ret); 1383 return ret; 1384 } 1385 1386 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1387 1388 /* Load resource table, core dump segment list etc from the firmware */ 1389 ret = rproc_parse_fw(rproc, fw); 1390 if (ret) 1391 goto disable_iommu; 1392 1393 /* reset max_notifyid */ 1394 rproc->max_notifyid = -1; 1395 1396 /* reset handled vdev */ 1397 rproc->nb_vdev = 0; 1398 1399 /* handle fw resources which are required to boot rproc */ 1400 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1401 if (ret) { 1402 dev_err(dev, "Failed to process resources: %d\n", ret); 1403 goto clean_up_resources; 1404 } 1405 1406 /* Allocate carveout resources associated to rproc */ 1407 ret = rproc_alloc_registered_carveouts(rproc); 1408 if (ret) { 1409 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1410 ret); 1411 goto clean_up_resources; 1412 } 1413 1414 ret = rproc_start(rproc, fw); 1415 if (ret) 1416 goto clean_up_resources; 1417 1418 return 0; 1419 1420 clean_up_resources: 1421 rproc_resource_cleanup(rproc); 1422 kfree(rproc->cached_table); 1423 rproc->cached_table = NULL; 1424 rproc->table_ptr = NULL; 1425 disable_iommu: 1426 rproc_disable_iommu(rproc); 1427 return ret; 1428 } 1429 1430 /* 1431 * take a firmware and boot it up. 1432 * 1433 * Note: this function is called asynchronously upon registration of the 1434 * remote processor (so we must wait until it completes before we try 1435 * to unregister the device. one other option is just to use kref here, 1436 * that might be cleaner). 1437 */ 1438 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1439 { 1440 struct rproc *rproc = context; 1441 1442 rproc_boot(rproc); 1443 1444 release_firmware(fw); 1445 } 1446 1447 static int rproc_trigger_auto_boot(struct rproc *rproc) 1448 { 1449 int ret; 1450 1451 /* 1452 * We're initiating an asynchronous firmware loading, so we can 1453 * be built-in kernel code, without hanging the boot process. 1454 */ 1455 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1456 rproc->firmware, &rproc->dev, GFP_KERNEL, 1457 rproc, rproc_auto_boot_callback); 1458 if (ret < 0) 1459 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1460 1461 return ret; 1462 } 1463 1464 static int rproc_stop(struct rproc *rproc, bool crashed) 1465 { 1466 struct device *dev = &rproc->dev; 1467 int ret; 1468 1469 /* Stop any subdevices for the remote processor */ 1470 rproc_stop_subdevices(rproc, crashed); 1471 1472 /* the installed resource table is no longer accessible */ 1473 rproc->table_ptr = rproc->cached_table; 1474 1475 /* power off the remote processor */ 1476 ret = rproc->ops->stop(rproc); 1477 if (ret) { 1478 dev_err(dev, "can't stop rproc: %d\n", ret); 1479 return ret; 1480 } 1481 1482 rproc_unprepare_subdevices(rproc); 1483 1484 rproc->state = RPROC_OFFLINE; 1485 1486 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1487 1488 return 0; 1489 } 1490 1491 /** 1492 * rproc_coredump_add_segment() - add segment of device memory to coredump 1493 * @rproc: handle of a remote processor 1494 * @da: device address 1495 * @size: size of segment 1496 * 1497 * Add device memory to the list of segments to be included in a coredump for 1498 * the remoteproc. 1499 * 1500 * Return: 0 on success, negative errno on error. 1501 */ 1502 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) 1503 { 1504 struct rproc_dump_segment *segment; 1505 1506 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1507 if (!segment) 1508 return -ENOMEM; 1509 1510 segment->da = da; 1511 segment->size = size; 1512 1513 list_add_tail(&segment->node, &rproc->dump_segments); 1514 1515 return 0; 1516 } 1517 EXPORT_SYMBOL(rproc_coredump_add_segment); 1518 1519 /** 1520 * rproc_coredump_add_custom_segment() - add custom coredump segment 1521 * @rproc: handle of a remote processor 1522 * @da: device address 1523 * @size: size of segment 1524 * @dumpfn: custom dump function called for each segment during coredump 1525 * @priv: private data 1526 * 1527 * Add device memory to the list of segments to be included in the coredump 1528 * and associate the segment with the given custom dump function and private 1529 * data. 1530 * 1531 * Return: 0 on success, negative errno on error. 1532 */ 1533 int rproc_coredump_add_custom_segment(struct rproc *rproc, 1534 dma_addr_t da, size_t size, 1535 void (*dumpfn)(struct rproc *rproc, 1536 struct rproc_dump_segment *segment, 1537 void *dest), 1538 void *priv) 1539 { 1540 struct rproc_dump_segment *segment; 1541 1542 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1543 if (!segment) 1544 return -ENOMEM; 1545 1546 segment->da = da; 1547 segment->size = size; 1548 segment->priv = priv; 1549 segment->dump = dumpfn; 1550 1551 list_add_tail(&segment->node, &rproc->dump_segments); 1552 1553 return 0; 1554 } 1555 EXPORT_SYMBOL(rproc_coredump_add_custom_segment); 1556 1557 /** 1558 * rproc_coredump() - perform coredump 1559 * @rproc: rproc handle 1560 * 1561 * This function will generate an ELF header for the registered segments 1562 * and create a devcoredump device associated with rproc. 1563 */ 1564 static void rproc_coredump(struct rproc *rproc) 1565 { 1566 struct rproc_dump_segment *segment; 1567 struct elf32_phdr *phdr; 1568 struct elf32_hdr *ehdr; 1569 size_t data_size; 1570 size_t offset; 1571 void *data; 1572 void *ptr; 1573 int phnum = 0; 1574 1575 if (list_empty(&rproc->dump_segments)) 1576 return; 1577 1578 data_size = sizeof(*ehdr); 1579 list_for_each_entry(segment, &rproc->dump_segments, node) { 1580 data_size += sizeof(*phdr) + segment->size; 1581 1582 phnum++; 1583 } 1584 1585 data = vmalloc(data_size); 1586 if (!data) 1587 return; 1588 1589 ehdr = data; 1590 1591 memset(ehdr, 0, sizeof(*ehdr)); 1592 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1593 ehdr->e_ident[EI_CLASS] = ELFCLASS32; 1594 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1595 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1596 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; 1597 ehdr->e_type = ET_CORE; 1598 ehdr->e_machine = EM_NONE; 1599 ehdr->e_version = EV_CURRENT; 1600 ehdr->e_entry = rproc->bootaddr; 1601 ehdr->e_phoff = sizeof(*ehdr); 1602 ehdr->e_ehsize = sizeof(*ehdr); 1603 ehdr->e_phentsize = sizeof(*phdr); 1604 ehdr->e_phnum = phnum; 1605 1606 phdr = data + ehdr->e_phoff; 1607 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum; 1608 list_for_each_entry(segment, &rproc->dump_segments, node) { 1609 memset(phdr, 0, sizeof(*phdr)); 1610 phdr->p_type = PT_LOAD; 1611 phdr->p_offset = offset; 1612 phdr->p_vaddr = segment->da; 1613 phdr->p_paddr = segment->da; 1614 phdr->p_filesz = segment->size; 1615 phdr->p_memsz = segment->size; 1616 phdr->p_flags = PF_R | PF_W | PF_X; 1617 phdr->p_align = 0; 1618 1619 if (segment->dump) { 1620 segment->dump(rproc, segment, data + offset); 1621 } else { 1622 ptr = rproc_da_to_va(rproc, segment->da, segment->size); 1623 if (!ptr) { 1624 dev_err(&rproc->dev, 1625 "invalid coredump segment (%pad, %zu)\n", 1626 &segment->da, segment->size); 1627 memset(data + offset, 0xff, segment->size); 1628 } else { 1629 memcpy(data + offset, ptr, segment->size); 1630 } 1631 } 1632 1633 offset += phdr->p_filesz; 1634 phdr++; 1635 } 1636 1637 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); 1638 } 1639 1640 /** 1641 * rproc_trigger_recovery() - recover a remoteproc 1642 * @rproc: the remote processor 1643 * 1644 * The recovery is done by resetting all the virtio devices, that way all the 1645 * rpmsg drivers will be reseted along with the remote processor making the 1646 * remoteproc functional again. 1647 * 1648 * This function can sleep, so it cannot be called from atomic context. 1649 */ 1650 int rproc_trigger_recovery(struct rproc *rproc) 1651 { 1652 const struct firmware *firmware_p; 1653 struct device *dev = &rproc->dev; 1654 int ret; 1655 1656 dev_err(dev, "recovering %s\n", rproc->name); 1657 1658 ret = mutex_lock_interruptible(&rproc->lock); 1659 if (ret) 1660 return ret; 1661 1662 ret = rproc_stop(rproc, true); 1663 if (ret) 1664 goto unlock_mutex; 1665 1666 /* generate coredump */ 1667 rproc_coredump(rproc); 1668 1669 /* load firmware */ 1670 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1671 if (ret < 0) { 1672 dev_err(dev, "request_firmware failed: %d\n", ret); 1673 goto unlock_mutex; 1674 } 1675 1676 /* boot the remote processor up again */ 1677 ret = rproc_start(rproc, firmware_p); 1678 1679 release_firmware(firmware_p); 1680 1681 unlock_mutex: 1682 mutex_unlock(&rproc->lock); 1683 return ret; 1684 } 1685 1686 /** 1687 * rproc_crash_handler_work() - handle a crash 1688 * 1689 * This function needs to handle everything related to a crash, like cpu 1690 * registers and stack dump, information to help to debug the fatal error, etc. 1691 */ 1692 static void rproc_crash_handler_work(struct work_struct *work) 1693 { 1694 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1695 struct device *dev = &rproc->dev; 1696 1697 dev_dbg(dev, "enter %s\n", __func__); 1698 1699 mutex_lock(&rproc->lock); 1700 1701 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1702 /* handle only the first crash detected */ 1703 mutex_unlock(&rproc->lock); 1704 return; 1705 } 1706 1707 rproc->state = RPROC_CRASHED; 1708 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1709 rproc->name); 1710 1711 mutex_unlock(&rproc->lock); 1712 1713 if (!rproc->recovery_disabled) 1714 rproc_trigger_recovery(rproc); 1715 } 1716 1717 /** 1718 * rproc_boot() - boot a remote processor 1719 * @rproc: handle of a remote processor 1720 * 1721 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1722 * 1723 * If the remote processor is already powered on, this function immediately 1724 * returns (successfully). 1725 * 1726 * Returns 0 on success, and an appropriate error value otherwise. 1727 */ 1728 int rproc_boot(struct rproc *rproc) 1729 { 1730 const struct firmware *firmware_p; 1731 struct device *dev; 1732 int ret; 1733 1734 if (!rproc) { 1735 pr_err("invalid rproc handle\n"); 1736 return -EINVAL; 1737 } 1738 1739 dev = &rproc->dev; 1740 1741 ret = mutex_lock_interruptible(&rproc->lock); 1742 if (ret) { 1743 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1744 return ret; 1745 } 1746 1747 if (rproc->state == RPROC_DELETED) { 1748 ret = -ENODEV; 1749 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1750 goto unlock_mutex; 1751 } 1752 1753 /* skip the boot process if rproc is already powered up */ 1754 if (atomic_inc_return(&rproc->power) > 1) { 1755 ret = 0; 1756 goto unlock_mutex; 1757 } 1758 1759 dev_info(dev, "powering up %s\n", rproc->name); 1760 1761 /* load firmware */ 1762 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1763 if (ret < 0) { 1764 dev_err(dev, "request_firmware failed: %d\n", ret); 1765 goto downref_rproc; 1766 } 1767 1768 ret = rproc_fw_boot(rproc, firmware_p); 1769 1770 release_firmware(firmware_p); 1771 1772 downref_rproc: 1773 if (ret) 1774 atomic_dec(&rproc->power); 1775 unlock_mutex: 1776 mutex_unlock(&rproc->lock); 1777 return ret; 1778 } 1779 EXPORT_SYMBOL(rproc_boot); 1780 1781 /** 1782 * rproc_shutdown() - power off the remote processor 1783 * @rproc: the remote processor 1784 * 1785 * Power off a remote processor (previously booted with rproc_boot()). 1786 * 1787 * In case @rproc is still being used by an additional user(s), then 1788 * this function will just decrement the power refcount and exit, 1789 * without really powering off the device. 1790 * 1791 * Every call to rproc_boot() must (eventually) be accompanied by a call 1792 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1793 * 1794 * Notes: 1795 * - we're not decrementing the rproc's refcount, only the power refcount. 1796 * which means that the @rproc handle stays valid even after rproc_shutdown() 1797 * returns, and users can still use it with a subsequent rproc_boot(), if 1798 * needed. 1799 */ 1800 void rproc_shutdown(struct rproc *rproc) 1801 { 1802 struct device *dev = &rproc->dev; 1803 int ret; 1804 1805 ret = mutex_lock_interruptible(&rproc->lock); 1806 if (ret) { 1807 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1808 return; 1809 } 1810 1811 /* if the remote proc is still needed, bail out */ 1812 if (!atomic_dec_and_test(&rproc->power)) 1813 goto out; 1814 1815 ret = rproc_stop(rproc, false); 1816 if (ret) { 1817 atomic_inc(&rproc->power); 1818 goto out; 1819 } 1820 1821 /* clean up all acquired resources */ 1822 rproc_resource_cleanup(rproc); 1823 1824 rproc_disable_iommu(rproc); 1825 1826 /* Free the copy of the resource table */ 1827 kfree(rproc->cached_table); 1828 rproc->cached_table = NULL; 1829 rproc->table_ptr = NULL; 1830 out: 1831 mutex_unlock(&rproc->lock); 1832 } 1833 EXPORT_SYMBOL(rproc_shutdown); 1834 1835 /** 1836 * rproc_get_by_phandle() - find a remote processor by phandle 1837 * @phandle: phandle to the rproc 1838 * 1839 * Finds an rproc handle using the remote processor's phandle, and then 1840 * return a handle to the rproc. 1841 * 1842 * This function increments the remote processor's refcount, so always 1843 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1844 * 1845 * Returns the rproc handle on success, and NULL on failure. 1846 */ 1847 #ifdef CONFIG_OF 1848 struct rproc *rproc_get_by_phandle(phandle phandle) 1849 { 1850 struct rproc *rproc = NULL, *r; 1851 struct device_node *np; 1852 1853 np = of_find_node_by_phandle(phandle); 1854 if (!np) 1855 return NULL; 1856 1857 mutex_lock(&rproc_list_mutex); 1858 list_for_each_entry(r, &rproc_list, node) { 1859 if (r->dev.parent && r->dev.parent->of_node == np) { 1860 /* prevent underlying implementation from being removed */ 1861 if (!try_module_get(r->dev.parent->driver->owner)) { 1862 dev_err(&r->dev, "can't get owner\n"); 1863 break; 1864 } 1865 1866 rproc = r; 1867 get_device(&rproc->dev); 1868 break; 1869 } 1870 } 1871 mutex_unlock(&rproc_list_mutex); 1872 1873 of_node_put(np); 1874 1875 return rproc; 1876 } 1877 #else 1878 struct rproc *rproc_get_by_phandle(phandle phandle) 1879 { 1880 return NULL; 1881 } 1882 #endif 1883 EXPORT_SYMBOL(rproc_get_by_phandle); 1884 1885 /** 1886 * rproc_add() - register a remote processor 1887 * @rproc: the remote processor handle to register 1888 * 1889 * Registers @rproc with the remoteproc framework, after it has been 1890 * allocated with rproc_alloc(). 1891 * 1892 * This is called by the platform-specific rproc implementation, whenever 1893 * a new remote processor device is probed. 1894 * 1895 * Returns 0 on success and an appropriate error code otherwise. 1896 * 1897 * Note: this function initiates an asynchronous firmware loading 1898 * context, which will look for virtio devices supported by the rproc's 1899 * firmware. 1900 * 1901 * If found, those virtio devices will be created and added, so as a result 1902 * of registering this remote processor, additional virtio drivers might be 1903 * probed. 1904 */ 1905 int rproc_add(struct rproc *rproc) 1906 { 1907 struct device *dev = &rproc->dev; 1908 int ret; 1909 1910 ret = device_add(dev); 1911 if (ret < 0) 1912 return ret; 1913 1914 dev_info(dev, "%s is available\n", rproc->name); 1915 1916 /* create debugfs entries */ 1917 rproc_create_debug_dir(rproc); 1918 1919 /* if rproc is marked always-on, request it to boot */ 1920 if (rproc->auto_boot) { 1921 ret = rproc_trigger_auto_boot(rproc); 1922 if (ret < 0) 1923 return ret; 1924 } 1925 1926 /* expose to rproc_get_by_phandle users */ 1927 mutex_lock(&rproc_list_mutex); 1928 list_add(&rproc->node, &rproc_list); 1929 mutex_unlock(&rproc_list_mutex); 1930 1931 return 0; 1932 } 1933 EXPORT_SYMBOL(rproc_add); 1934 1935 /** 1936 * rproc_type_release() - release a remote processor instance 1937 * @dev: the rproc's device 1938 * 1939 * This function should _never_ be called directly. 1940 * 1941 * It will be called by the driver core when no one holds a valid pointer 1942 * to @dev anymore. 1943 */ 1944 static void rproc_type_release(struct device *dev) 1945 { 1946 struct rproc *rproc = container_of(dev, struct rproc, dev); 1947 1948 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1949 1950 idr_destroy(&rproc->notifyids); 1951 1952 if (rproc->index >= 0) 1953 ida_simple_remove(&rproc_dev_index, rproc->index); 1954 1955 kfree(rproc->firmware); 1956 kfree(rproc->ops); 1957 kfree(rproc); 1958 } 1959 1960 static const struct device_type rproc_type = { 1961 .name = "remoteproc", 1962 .release = rproc_type_release, 1963 }; 1964 1965 /** 1966 * rproc_alloc() - allocate a remote processor handle 1967 * @dev: the underlying device 1968 * @name: name of this remote processor 1969 * @ops: platform-specific handlers (mainly start/stop) 1970 * @firmware: name of firmware file to load, can be NULL 1971 * @len: length of private data needed by the rproc driver (in bytes) 1972 * 1973 * Allocates a new remote processor handle, but does not register 1974 * it yet. if @firmware is NULL, a default name is used. 1975 * 1976 * This function should be used by rproc implementations during initialization 1977 * of the remote processor. 1978 * 1979 * After creating an rproc handle using this function, and when ready, 1980 * implementations should then call rproc_add() to complete 1981 * the registration of the remote processor. 1982 * 1983 * On success the new rproc is returned, and on failure, NULL. 1984 * 1985 * Note: _never_ directly deallocate @rproc, even if it was not registered 1986 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1987 */ 1988 struct rproc *rproc_alloc(struct device *dev, const char *name, 1989 const struct rproc_ops *ops, 1990 const char *firmware, int len) 1991 { 1992 struct rproc *rproc; 1993 char *p, *template = "rproc-%s-fw"; 1994 int name_len; 1995 1996 if (!dev || !name || !ops) 1997 return NULL; 1998 1999 if (!firmware) { 2000 /* 2001 * If the caller didn't pass in a firmware name then 2002 * construct a default name. 2003 */ 2004 name_len = strlen(name) + strlen(template) - 2 + 1; 2005 p = kmalloc(name_len, GFP_KERNEL); 2006 if (!p) 2007 return NULL; 2008 snprintf(p, name_len, template, name); 2009 } else { 2010 p = kstrdup(firmware, GFP_KERNEL); 2011 if (!p) 2012 return NULL; 2013 } 2014 2015 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2016 if (!rproc) { 2017 kfree(p); 2018 return NULL; 2019 } 2020 2021 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2022 if (!rproc->ops) { 2023 kfree(p); 2024 kfree(rproc); 2025 return NULL; 2026 } 2027 2028 rproc->firmware = p; 2029 rproc->name = name; 2030 rproc->priv = &rproc[1]; 2031 rproc->auto_boot = true; 2032 2033 device_initialize(&rproc->dev); 2034 rproc->dev.parent = dev; 2035 rproc->dev.type = &rproc_type; 2036 rproc->dev.class = &rproc_class; 2037 rproc->dev.driver_data = rproc; 2038 2039 /* Assign a unique device index and name */ 2040 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2041 if (rproc->index < 0) { 2042 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2043 put_device(&rproc->dev); 2044 return NULL; 2045 } 2046 2047 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2048 2049 atomic_set(&rproc->power, 0); 2050 2051 /* Default to ELF loader if no load function is specified */ 2052 if (!rproc->ops->load) { 2053 rproc->ops->load = rproc_elf_load_segments; 2054 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2055 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2056 rproc->ops->sanity_check = rproc_elf_sanity_check; 2057 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2058 } 2059 2060 mutex_init(&rproc->lock); 2061 2062 idr_init(&rproc->notifyids); 2063 2064 INIT_LIST_HEAD(&rproc->carveouts); 2065 INIT_LIST_HEAD(&rproc->mappings); 2066 INIT_LIST_HEAD(&rproc->traces); 2067 INIT_LIST_HEAD(&rproc->rvdevs); 2068 INIT_LIST_HEAD(&rproc->subdevs); 2069 INIT_LIST_HEAD(&rproc->dump_segments); 2070 2071 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2072 2073 rproc->state = RPROC_OFFLINE; 2074 2075 return rproc; 2076 } 2077 EXPORT_SYMBOL(rproc_alloc); 2078 2079 /** 2080 * rproc_free() - unroll rproc_alloc() 2081 * @rproc: the remote processor handle 2082 * 2083 * This function decrements the rproc dev refcount. 2084 * 2085 * If no one holds any reference to rproc anymore, then its refcount would 2086 * now drop to zero, and it would be freed. 2087 */ 2088 void rproc_free(struct rproc *rproc) 2089 { 2090 put_device(&rproc->dev); 2091 } 2092 EXPORT_SYMBOL(rproc_free); 2093 2094 /** 2095 * rproc_put() - release rproc reference 2096 * @rproc: the remote processor handle 2097 * 2098 * This function decrements the rproc dev refcount. 2099 * 2100 * If no one holds any reference to rproc anymore, then its refcount would 2101 * now drop to zero, and it would be freed. 2102 */ 2103 void rproc_put(struct rproc *rproc) 2104 { 2105 module_put(rproc->dev.parent->driver->owner); 2106 put_device(&rproc->dev); 2107 } 2108 EXPORT_SYMBOL(rproc_put); 2109 2110 /** 2111 * rproc_del() - unregister a remote processor 2112 * @rproc: rproc handle to unregister 2113 * 2114 * This function should be called when the platform specific rproc 2115 * implementation decides to remove the rproc device. it should 2116 * _only_ be called if a previous invocation of rproc_add() 2117 * has completed successfully. 2118 * 2119 * After rproc_del() returns, @rproc isn't freed yet, because 2120 * of the outstanding reference created by rproc_alloc. To decrement that 2121 * one last refcount, one still needs to call rproc_free(). 2122 * 2123 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2124 */ 2125 int rproc_del(struct rproc *rproc) 2126 { 2127 if (!rproc) 2128 return -EINVAL; 2129 2130 /* if rproc is marked always-on, rproc_add() booted it */ 2131 /* TODO: make sure this works with rproc->power > 1 */ 2132 if (rproc->auto_boot) 2133 rproc_shutdown(rproc); 2134 2135 mutex_lock(&rproc->lock); 2136 rproc->state = RPROC_DELETED; 2137 mutex_unlock(&rproc->lock); 2138 2139 rproc_delete_debug_dir(rproc); 2140 2141 /* the rproc is downref'ed as soon as it's removed from the klist */ 2142 mutex_lock(&rproc_list_mutex); 2143 list_del(&rproc->node); 2144 mutex_unlock(&rproc_list_mutex); 2145 2146 device_del(&rproc->dev); 2147 2148 return 0; 2149 } 2150 EXPORT_SYMBOL(rproc_del); 2151 2152 /** 2153 * rproc_add_subdev() - add a subdevice to a remoteproc 2154 * @rproc: rproc handle to add the subdevice to 2155 * @subdev: subdev handle to register 2156 * 2157 * Caller is responsible for populating optional subdevice function pointers. 2158 */ 2159 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2160 { 2161 list_add_tail(&subdev->node, &rproc->subdevs); 2162 } 2163 EXPORT_SYMBOL(rproc_add_subdev); 2164 2165 /** 2166 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2167 * @rproc: rproc handle to remove the subdevice from 2168 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2169 */ 2170 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2171 { 2172 list_del(&subdev->node); 2173 } 2174 EXPORT_SYMBOL(rproc_remove_subdev); 2175 2176 /** 2177 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2178 * @dev: child device to find ancestor of 2179 * 2180 * Returns the ancestor rproc instance, or NULL if not found. 2181 */ 2182 struct rproc *rproc_get_by_child(struct device *dev) 2183 { 2184 for (dev = dev->parent; dev; dev = dev->parent) { 2185 if (dev->type == &rproc_type) 2186 return dev->driver_data; 2187 } 2188 2189 return NULL; 2190 } 2191 EXPORT_SYMBOL(rproc_get_by_child); 2192 2193 /** 2194 * rproc_report_crash() - rproc crash reporter function 2195 * @rproc: remote processor 2196 * @type: crash type 2197 * 2198 * This function must be called every time a crash is detected by the low-level 2199 * drivers implementing a specific remoteproc. This should not be called from a 2200 * non-remoteproc driver. 2201 * 2202 * This function can be called from atomic/interrupt context. 2203 */ 2204 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2205 { 2206 if (!rproc) { 2207 pr_err("NULL rproc pointer\n"); 2208 return; 2209 } 2210 2211 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2212 rproc->name, rproc_crash_to_string(type)); 2213 2214 /* create a new task to handle the error */ 2215 schedule_work(&rproc->crash_handler); 2216 } 2217 EXPORT_SYMBOL(rproc_report_crash); 2218 2219 static int __init remoteproc_init(void) 2220 { 2221 rproc_init_sysfs(); 2222 rproc_init_debugfs(); 2223 2224 return 0; 2225 } 2226 subsys_initcall(remoteproc_init); 2227 2228 static void __exit remoteproc_exit(void) 2229 { 2230 ida_destroy(&rproc_dev_index); 2231 2232 rproc_exit_debugfs(); 2233 rproc_exit_sysfs(); 2234 } 2235 module_exit(remoteproc_exit); 2236 2237 MODULE_LICENSE("GPL v2"); 2238 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2239