xref: /openbmc/linux/drivers/remoteproc/remoteproc_core.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
41 
42 #include "remoteproc_internal.h"
43 
44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
45 
46 static DEFINE_MUTEX(rproc_list_mutex);
47 static LIST_HEAD(rproc_list);
48 static struct notifier_block rproc_panic_nb;
49 
50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 				 void *, int offset, int avail);
52 
53 static int rproc_alloc_carveout(struct rproc *rproc,
54 				struct rproc_mem_entry *mem);
55 static int rproc_release_carveout(struct rproc *rproc,
56 				  struct rproc_mem_entry *mem);
57 
58 /* Unique indices for remoteproc devices */
59 static DEFINE_IDA(rproc_dev_index);
60 static struct workqueue_struct *rproc_recovery_wq;
61 
62 static const char * const rproc_crash_names[] = {
63 	[RPROC_MMUFAULT]	= "mmufault",
64 	[RPROC_WATCHDOG]	= "watchdog",
65 	[RPROC_FATAL_ERROR]	= "fatal error",
66 };
67 
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 	if (type < ARRAY_SIZE(rproc_crash_names))
72 		return rproc_crash_names[type];
73 	return "unknown";
74 }
75 
76 /*
77  * This is the IOMMU fault handler we register with the IOMMU API
78  * (when relevant; not all remote processors access memory through
79  * an IOMMU).
80  *
81  * IOMMU core will invoke this handler whenever the remote processor
82  * will try to access an unmapped device address.
83  */
84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 			     unsigned long iova, int flags, void *token)
86 {
87 	struct rproc *rproc = token;
88 
89 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90 
91 	rproc_report_crash(rproc, RPROC_MMUFAULT);
92 
93 	/*
94 	 * Let the iommu core know we're not really handling this fault;
95 	 * we just used it as a recovery trigger.
96 	 */
97 	return -ENOSYS;
98 }
99 
100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 	struct iommu_domain *domain;
103 	struct device *dev = rproc->dev.parent;
104 	int ret;
105 
106 	if (!rproc->has_iommu) {
107 		dev_dbg(dev, "iommu not present\n");
108 		return 0;
109 	}
110 
111 	domain = iommu_domain_alloc(dev->bus);
112 	if (!domain) {
113 		dev_err(dev, "can't alloc iommu domain\n");
114 		return -ENOMEM;
115 	}
116 
117 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 
119 	ret = iommu_attach_device(domain, dev);
120 	if (ret) {
121 		dev_err(dev, "can't attach iommu device: %d\n", ret);
122 		goto free_domain;
123 	}
124 
125 	rproc->domain = domain;
126 
127 	return 0;
128 
129 free_domain:
130 	iommu_domain_free(domain);
131 	return ret;
132 }
133 
134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 	struct iommu_domain *domain = rproc->domain;
137 	struct device *dev = rproc->dev.parent;
138 
139 	if (!domain)
140 		return;
141 
142 	iommu_detach_device(domain, dev);
143 	iommu_domain_free(domain);
144 }
145 
146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 	/*
149 	 * Return physical address according to virtual address location
150 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 	 * - in kernel: if region allocated in generic dma memory pool
152 	 */
153 	if (is_vmalloc_addr(cpu_addr)) {
154 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 				    offset_in_page(cpu_addr);
156 	}
157 
158 	WARN_ON(!virt_addr_valid(cpu_addr));
159 	return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162 
163 /**
164  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165  * @rproc: handle of a remote processor
166  * @da: remoteproc device address to translate
167  * @len: length of the memory region @da is pointing to
168  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
169  *
170  * Some remote processors will ask us to allocate them physically contiguous
171  * memory regions (which we call "carveouts"), and map them to specific
172  * device addresses (which are hardcoded in the firmware). They may also have
173  * dedicated memory regions internal to the processors, and use them either
174  * exclusively or alongside carveouts.
175  *
176  * They may then ask us to copy objects into specific device addresses (e.g.
177  * code/data sections) or expose us certain symbols in other device address
178  * (e.g. their trace buffer).
179  *
180  * This function is a helper function with which we can go over the allocated
181  * carveouts and translate specific device addresses to kernel virtual addresses
182  * so we can access the referenced memory. This function also allows to perform
183  * translations on the internal remoteproc memory regions through a platform
184  * implementation specific da_to_va ops, if present.
185  *
186  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187  * but only on kernel direct mapped RAM memory. Instead, we're just using
188  * here the output of the DMA API for the carveouts, which should be more
189  * correct.
190  *
191  * Return: a valid kernel address on success or NULL on failure
192  */
193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194 {
195 	struct rproc_mem_entry *carveout;
196 	void *ptr = NULL;
197 
198 	if (rproc->ops->da_to_va) {
199 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 		if (ptr)
201 			goto out;
202 	}
203 
204 	list_for_each_entry(carveout, &rproc->carveouts, node) {
205 		int offset = da - carveout->da;
206 
207 		/*  Verify that carveout is allocated */
208 		if (!carveout->va)
209 			continue;
210 
211 		/* try next carveout if da is too small */
212 		if (offset < 0)
213 			continue;
214 
215 		/* try next carveout if da is too large */
216 		if (offset + len > carveout->len)
217 			continue;
218 
219 		ptr = carveout->va + offset;
220 
221 		if (is_iomem)
222 			*is_iomem = carveout->is_iomem;
223 
224 		break;
225 	}
226 
227 out:
228 	return ptr;
229 }
230 EXPORT_SYMBOL(rproc_da_to_va);
231 
232 /**
233  * rproc_find_carveout_by_name() - lookup the carveout region by a name
234  * @rproc: handle of a remote processor
235  * @name: carveout name to find (format string)
236  * @...: optional parameters matching @name string
237  *
238  * Platform driver has the capability to register some pre-allacoted carveout
239  * (physically contiguous memory regions) before rproc firmware loading and
240  * associated resource table analysis. These regions may be dedicated memory
241  * regions internal to the coprocessor or specified DDR region with specific
242  * attributes
243  *
244  * This function is a helper function with which we can go over the
245  * allocated carveouts and return associated region characteristics like
246  * coprocessor address, length or processor virtual address.
247  *
248  * Return: a valid pointer on carveout entry on success or NULL on failure.
249  */
250 __printf(2, 3)
251 struct rproc_mem_entry *
252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 	va_list args;
255 	char _name[32];
256 	struct rproc_mem_entry *carveout, *mem = NULL;
257 
258 	if (!name)
259 		return NULL;
260 
261 	va_start(args, name);
262 	vsnprintf(_name, sizeof(_name), name, args);
263 	va_end(args);
264 
265 	list_for_each_entry(carveout, &rproc->carveouts, node) {
266 		/* Compare carveout and requested names */
267 		if (!strcmp(carveout->name, _name)) {
268 			mem = carveout;
269 			break;
270 		}
271 	}
272 
273 	return mem;
274 }
275 
276 /**
277  * rproc_check_carveout_da() - Check specified carveout da configuration
278  * @rproc: handle of a remote processor
279  * @mem: pointer on carveout to check
280  * @da: area device address
281  * @len: associated area size
282  *
283  * This function is a helper function to verify requested device area (couple
284  * da, len) is part of specified carveout.
285  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286  * checked.
287  *
288  * Return: 0 if carveout matches request else error
289  */
290 static int rproc_check_carveout_da(struct rproc *rproc,
291 				   struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 	struct device *dev = &rproc->dev;
294 	int delta;
295 
296 	/* Check requested resource length */
297 	if (len > mem->len) {
298 		dev_err(dev, "Registered carveout doesn't fit len request\n");
299 		return -EINVAL;
300 	}
301 
302 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 		/* Address doesn't match registered carveout configuration */
304 		return -EINVAL;
305 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 		delta = da - mem->da;
307 
308 		/* Check requested resource belongs to registered carveout */
309 		if (delta < 0) {
310 			dev_err(dev,
311 				"Registered carveout doesn't fit da request\n");
312 			return -EINVAL;
313 		}
314 
315 		if (delta + len > mem->len) {
316 			dev_err(dev,
317 				"Registered carveout doesn't fit len request\n");
318 			return -EINVAL;
319 		}
320 	}
321 
322 	return 0;
323 }
324 
325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 	struct rproc *rproc = rvdev->rproc;
328 	struct device *dev = &rproc->dev;
329 	struct rproc_vring *rvring = &rvdev->vring[i];
330 	struct fw_rsc_vdev *rsc;
331 	int ret, notifyid;
332 	struct rproc_mem_entry *mem;
333 	size_t size;
334 
335 	/* actual size of vring (in bytes) */
336 	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
337 
338 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339 
340 	/* Search for pre-registered carveout */
341 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
342 					  i);
343 	if (mem) {
344 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
345 			return -ENOMEM;
346 	} else {
347 		/* Register carveout in list */
348 		mem = rproc_mem_entry_init(dev, NULL, 0,
349 					   size, rsc->vring[i].da,
350 					   rproc_alloc_carveout,
351 					   rproc_release_carveout,
352 					   "vdev%dvring%d",
353 					   rvdev->index, i);
354 		if (!mem) {
355 			dev_err(dev, "Can't allocate memory entry structure\n");
356 			return -ENOMEM;
357 		}
358 
359 		rproc_add_carveout(rproc, mem);
360 	}
361 
362 	/*
363 	 * Assign an rproc-wide unique index for this vring
364 	 * TODO: assign a notifyid for rvdev updates as well
365 	 * TODO: support predefined notifyids (via resource table)
366 	 */
367 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
368 	if (ret < 0) {
369 		dev_err(dev, "idr_alloc failed: %d\n", ret);
370 		return ret;
371 	}
372 	notifyid = ret;
373 
374 	/* Potentially bump max_notifyid */
375 	if (notifyid > rproc->max_notifyid)
376 		rproc->max_notifyid = notifyid;
377 
378 	rvring->notifyid = notifyid;
379 
380 	/* Let the rproc know the notifyid of this vring.*/
381 	rsc->vring[i].notifyid = notifyid;
382 	return 0;
383 }
384 
385 int
386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387 {
388 	struct rproc *rproc = rvdev->rproc;
389 	struct device *dev = &rproc->dev;
390 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 	struct rproc_vring *rvring = &rvdev->vring[i];
392 
393 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 		i, vring->da, vring->num, vring->align);
395 
396 	/* verify queue size and vring alignment are sane */
397 	if (!vring->num || !vring->align) {
398 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 			vring->num, vring->align);
400 		return -EINVAL;
401 	}
402 
403 	rvring->num = vring->num;
404 	rvring->align = vring->align;
405 	rvring->rvdev = rvdev;
406 
407 	return 0;
408 }
409 
410 void rproc_free_vring(struct rproc_vring *rvring)
411 {
412 	struct rproc *rproc = rvring->rvdev->rproc;
413 	int idx = rvring - rvring->rvdev->vring;
414 	struct fw_rsc_vdev *rsc;
415 
416 	idr_remove(&rproc->notifyids, rvring->notifyid);
417 
418 	/*
419 	 * At this point rproc_stop() has been called and the installed resource
420 	 * table in the remote processor memory may no longer be accessible. As
421 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 	 * resource table (rproc->cached_table).  The cached resource table is
423 	 * only available when a remote processor has been booted by the
424 	 * remoteproc core, otherwise it is NULL.
425 	 *
426 	 * Based on the above, reset the virtio device section in the cached
427 	 * resource table only if there is one to work with.
428 	 */
429 	if (rproc->table_ptr) {
430 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 		rsc->vring[idx].da = 0;
432 		rsc->vring[idx].notifyid = -1;
433 	}
434 }
435 
436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
437 {
438 	if (rvdev && rproc)
439 		list_add_tail(&rvdev->node, &rproc->rvdevs);
440 }
441 
442 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
443 {
444 	if (rvdev)
445 		list_del(&rvdev->node);
446 }
447 /**
448  * rproc_handle_vdev() - handle a vdev fw resource
449  * @rproc: the remote processor
450  * @ptr: the vring resource descriptor
451  * @offset: offset of the resource entry
452  * @avail: size of available data (for sanity checking the image)
453  *
454  * This resource entry requests the host to statically register a virtio
455  * device (vdev), and setup everything needed to support it. It contains
456  * everything needed to make it possible: the virtio device id, virtio
457  * device features, vrings information, virtio config space, etc...
458  *
459  * Before registering the vdev, the vrings are allocated from non-cacheable
460  * physically contiguous memory. Currently we only support two vrings per
461  * remote processor (temporary limitation). We might also want to consider
462  * doing the vring allocation only later when ->find_vqs() is invoked, and
463  * then release them upon ->del_vqs().
464  *
465  * Note: @da is currently not really handled correctly: we dynamically
466  * allocate it using the DMA API, ignoring requested hard coded addresses,
467  * and we don't take care of any required IOMMU programming. This is all
468  * going to be taken care of when the generic iommu-based DMA API will be
469  * merged. Meanwhile, statically-addressed iommu-based firmware images should
470  * use RSC_DEVMEM resource entries to map their required @da to the physical
471  * address of their base CMA region (ouch, hacky!).
472  *
473  * Return: 0 on success, or an appropriate error code otherwise
474  */
475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 			     int offset, int avail)
477 {
478 	struct fw_rsc_vdev *rsc = ptr;
479 	struct device *dev = &rproc->dev;
480 	struct rproc_vdev *rvdev;
481 	size_t rsc_size;
482 	struct rproc_vdev_data rvdev_data;
483 	struct platform_device *pdev;
484 
485 	/* make sure resource isn't truncated */
486 	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 	if (size_add(rsc_size, rsc->config_len) > avail) {
488 		dev_err(dev, "vdev rsc is truncated\n");
489 		return -EINVAL;
490 	}
491 
492 	/* make sure reserved bytes are zeroes */
493 	if (rsc->reserved[0] || rsc->reserved[1]) {
494 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
495 		return -EINVAL;
496 	}
497 
498 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
500 
501 	/* we currently support only two vrings per rvdev */
502 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
504 		return -EINVAL;
505 	}
506 
507 	rvdev_data.id = rsc->id;
508 	rvdev_data.index = rproc->nb_vdev++;
509 	rvdev_data.rsc_offset = offset;
510 	rvdev_data.rsc = rsc;
511 
512 	/*
513 	 * When there is more than one remote processor, rproc->nb_vdev number is
514 	 * same for each separate instances of "rproc". If rvdev_data.index is used
515 	 * as device id, then we get duplication in sysfs, so need to use
516 	 * PLATFORM_DEVID_AUTO to auto select device id.
517 	 */
518 	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
519 					     sizeof(rvdev_data));
520 	if (IS_ERR(pdev)) {
521 		dev_err(dev, "failed to create rproc-virtio device\n");
522 		return PTR_ERR(pdev);
523 	}
524 
525 	return 0;
526 }
527 
528 /**
529  * rproc_handle_trace() - handle a shared trace buffer resource
530  * @rproc: the remote processor
531  * @ptr: the trace resource descriptor
532  * @offset: offset of the resource entry
533  * @avail: size of available data (for sanity checking the image)
534  *
535  * In case the remote processor dumps trace logs into memory,
536  * export it via debugfs.
537  *
538  * Currently, the 'da' member of @rsc should contain the device address
539  * where the remote processor is dumping the traces. Later we could also
540  * support dynamically allocating this address using the generic
541  * DMA API (but currently there isn't a use case for that).
542  *
543  * Return: 0 on success, or an appropriate error code otherwise
544  */
545 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
546 			      int offset, int avail)
547 {
548 	struct fw_rsc_trace *rsc = ptr;
549 	struct rproc_debug_trace *trace;
550 	struct device *dev = &rproc->dev;
551 	char name[15];
552 
553 	if (sizeof(*rsc) > avail) {
554 		dev_err(dev, "trace rsc is truncated\n");
555 		return -EINVAL;
556 	}
557 
558 	/* make sure reserved bytes are zeroes */
559 	if (rsc->reserved) {
560 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
561 		return -EINVAL;
562 	}
563 
564 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
565 	if (!trace)
566 		return -ENOMEM;
567 
568 	/* set the trace buffer dma properties */
569 	trace->trace_mem.len = rsc->len;
570 	trace->trace_mem.da = rsc->da;
571 
572 	/* set pointer on rproc device */
573 	trace->rproc = rproc;
574 
575 	/* make sure snprintf always null terminates, even if truncating */
576 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
577 
578 	/* create the debugfs entry */
579 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
580 
581 	list_add_tail(&trace->node, &rproc->traces);
582 
583 	rproc->num_traces++;
584 
585 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
586 		name, rsc->da, rsc->len);
587 
588 	return 0;
589 }
590 
591 /**
592  * rproc_handle_devmem() - handle devmem resource entry
593  * @rproc: remote processor handle
594  * @ptr: the devmem resource entry
595  * @offset: offset of the resource entry
596  * @avail: size of available data (for sanity checking the image)
597  *
598  * Remote processors commonly need to access certain on-chip peripherals.
599  *
600  * Some of these remote processors access memory via an iommu device,
601  * and might require us to configure their iommu before they can access
602  * the on-chip peripherals they need.
603  *
604  * This resource entry is a request to map such a peripheral device.
605  *
606  * These devmem entries will contain the physical address of the device in
607  * the 'pa' member. If a specific device address is expected, then 'da' will
608  * contain it (currently this is the only use case supported). 'len' will
609  * contain the size of the physical region we need to map.
610  *
611  * Currently we just "trust" those devmem entries to contain valid physical
612  * addresses, but this is going to change: we want the implementations to
613  * tell us ranges of physical addresses the firmware is allowed to request,
614  * and not allow firmwares to request access to physical addresses that
615  * are outside those ranges.
616  *
617  * Return: 0 on success, or an appropriate error code otherwise
618  */
619 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
620 			       int offset, int avail)
621 {
622 	struct fw_rsc_devmem *rsc = ptr;
623 	struct rproc_mem_entry *mapping;
624 	struct device *dev = &rproc->dev;
625 	int ret;
626 
627 	/* no point in handling this resource without a valid iommu domain */
628 	if (!rproc->domain)
629 		return -EINVAL;
630 
631 	if (sizeof(*rsc) > avail) {
632 		dev_err(dev, "devmem rsc is truncated\n");
633 		return -EINVAL;
634 	}
635 
636 	/* make sure reserved bytes are zeroes */
637 	if (rsc->reserved) {
638 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
639 		return -EINVAL;
640 	}
641 
642 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
643 	if (!mapping)
644 		return -ENOMEM;
645 
646 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
647 	if (ret) {
648 		dev_err(dev, "failed to map devmem: %d\n", ret);
649 		goto out;
650 	}
651 
652 	/*
653 	 * We'll need this info later when we'll want to unmap everything
654 	 * (e.g. on shutdown).
655 	 *
656 	 * We can't trust the remote processor not to change the resource
657 	 * table, so we must maintain this info independently.
658 	 */
659 	mapping->da = rsc->da;
660 	mapping->len = rsc->len;
661 	list_add_tail(&mapping->node, &rproc->mappings);
662 
663 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
664 		rsc->pa, rsc->da, rsc->len);
665 
666 	return 0;
667 
668 out:
669 	kfree(mapping);
670 	return ret;
671 }
672 
673 /**
674  * rproc_alloc_carveout() - allocated specified carveout
675  * @rproc: rproc handle
676  * @mem: the memory entry to allocate
677  *
678  * This function allocate specified memory entry @mem using
679  * dma_alloc_coherent() as default allocator
680  *
681  * Return: 0 on success, or an appropriate error code otherwise
682  */
683 static int rproc_alloc_carveout(struct rproc *rproc,
684 				struct rproc_mem_entry *mem)
685 {
686 	struct rproc_mem_entry *mapping = NULL;
687 	struct device *dev = &rproc->dev;
688 	dma_addr_t dma;
689 	void *va;
690 	int ret;
691 
692 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
693 	if (!va) {
694 		dev_err(dev->parent,
695 			"failed to allocate dma memory: len 0x%zx\n",
696 			mem->len);
697 		return -ENOMEM;
698 	}
699 
700 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
701 		va, &dma, mem->len);
702 
703 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
704 		/*
705 		 * Check requested da is equal to dma address
706 		 * and print a warn message in case of missalignment.
707 		 * Don't stop rproc_start sequence as coprocessor may
708 		 * build pa to da translation on its side.
709 		 */
710 		if (mem->da != (u32)dma)
711 			dev_warn(dev->parent,
712 				 "Allocated carveout doesn't fit device address request\n");
713 	}
714 
715 	/*
716 	 * Ok, this is non-standard.
717 	 *
718 	 * Sometimes we can't rely on the generic iommu-based DMA API
719 	 * to dynamically allocate the device address and then set the IOMMU
720 	 * tables accordingly, because some remote processors might
721 	 * _require_ us to use hard coded device addresses that their
722 	 * firmware was compiled with.
723 	 *
724 	 * In this case, we must use the IOMMU API directly and map
725 	 * the memory to the device address as expected by the remote
726 	 * processor.
727 	 *
728 	 * Obviously such remote processor devices should not be configured
729 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
730 	 * physical address in this case.
731 	 */
732 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
733 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
734 		if (!mapping) {
735 			ret = -ENOMEM;
736 			goto dma_free;
737 		}
738 
739 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
740 				mem->flags);
741 		if (ret) {
742 			dev_err(dev, "iommu_map failed: %d\n", ret);
743 			goto free_mapping;
744 		}
745 
746 		/*
747 		 * We'll need this info later when we'll want to unmap
748 		 * everything (e.g. on shutdown).
749 		 *
750 		 * We can't trust the remote processor not to change the
751 		 * resource table, so we must maintain this info independently.
752 		 */
753 		mapping->da = mem->da;
754 		mapping->len = mem->len;
755 		list_add_tail(&mapping->node, &rproc->mappings);
756 
757 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
758 			mem->da, &dma);
759 	}
760 
761 	if (mem->da == FW_RSC_ADDR_ANY) {
762 		/* Update device address as undefined by requester */
763 		if ((u64)dma & HIGH_BITS_MASK)
764 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
765 
766 		mem->da = (u32)dma;
767 	}
768 
769 	mem->dma = dma;
770 	mem->va = va;
771 
772 	return 0;
773 
774 free_mapping:
775 	kfree(mapping);
776 dma_free:
777 	dma_free_coherent(dev->parent, mem->len, va, dma);
778 	return ret;
779 }
780 
781 /**
782  * rproc_release_carveout() - release acquired carveout
783  * @rproc: rproc handle
784  * @mem: the memory entry to release
785  *
786  * This function releases specified memory entry @mem allocated via
787  * rproc_alloc_carveout() function by @rproc.
788  *
789  * Return: 0 on success, or an appropriate error code otherwise
790  */
791 static int rproc_release_carveout(struct rproc *rproc,
792 				  struct rproc_mem_entry *mem)
793 {
794 	struct device *dev = &rproc->dev;
795 
796 	/* clean up carveout allocations */
797 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
798 	return 0;
799 }
800 
801 /**
802  * rproc_handle_carveout() - handle phys contig memory allocation requests
803  * @rproc: rproc handle
804  * @ptr: the resource entry
805  * @offset: offset of the resource entry
806  * @avail: size of available data (for image validation)
807  *
808  * This function will handle firmware requests for allocation of physically
809  * contiguous memory regions.
810  *
811  * These request entries should come first in the firmware's resource table,
812  * as other firmware entries might request placing other data objects inside
813  * these memory regions (e.g. data/code segments, trace resource entries, ...).
814  *
815  * Allocating memory this way helps utilizing the reserved physical memory
816  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
817  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
818  * pressure is important; it may have a substantial impact on performance.
819  *
820  * Return: 0 on success, or an appropriate error code otherwise
821  */
822 static int rproc_handle_carveout(struct rproc *rproc,
823 				 void *ptr, int offset, int avail)
824 {
825 	struct fw_rsc_carveout *rsc = ptr;
826 	struct rproc_mem_entry *carveout;
827 	struct device *dev = &rproc->dev;
828 
829 	if (sizeof(*rsc) > avail) {
830 		dev_err(dev, "carveout rsc is truncated\n");
831 		return -EINVAL;
832 	}
833 
834 	/* make sure reserved bytes are zeroes */
835 	if (rsc->reserved) {
836 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
837 		return -EINVAL;
838 	}
839 
840 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
841 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
842 
843 	/*
844 	 * Check carveout rsc already part of a registered carveout,
845 	 * Search by name, then check the da and length
846 	 */
847 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
848 
849 	if (carveout) {
850 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
851 			dev_err(dev,
852 				"Carveout already associated to resource table\n");
853 			return -ENOMEM;
854 		}
855 
856 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
857 			return -ENOMEM;
858 
859 		/* Update memory carveout with resource table info */
860 		carveout->rsc_offset = offset;
861 		carveout->flags = rsc->flags;
862 
863 		return 0;
864 	}
865 
866 	/* Register carveout in list */
867 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
868 					rproc_alloc_carveout,
869 					rproc_release_carveout, rsc->name);
870 	if (!carveout) {
871 		dev_err(dev, "Can't allocate memory entry structure\n");
872 		return -ENOMEM;
873 	}
874 
875 	carveout->flags = rsc->flags;
876 	carveout->rsc_offset = offset;
877 	rproc_add_carveout(rproc, carveout);
878 
879 	return 0;
880 }
881 
882 /**
883  * rproc_add_carveout() - register an allocated carveout region
884  * @rproc: rproc handle
885  * @mem: memory entry to register
886  *
887  * This function registers specified memory entry in @rproc carveouts list.
888  * Specified carveout should have been allocated before registering.
889  */
890 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
891 {
892 	list_add_tail(&mem->node, &rproc->carveouts);
893 }
894 EXPORT_SYMBOL(rproc_add_carveout);
895 
896 /**
897  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
898  * @dev: pointer on device struct
899  * @va: virtual address
900  * @dma: dma address
901  * @len: memory carveout length
902  * @da: device address
903  * @alloc: memory carveout allocation function
904  * @release: memory carveout release function
905  * @name: carveout name
906  *
907  * This function allocates a rproc_mem_entry struct and fill it with parameters
908  * provided by client.
909  *
910  * Return: a valid pointer on success, or NULL on failure
911  */
912 __printf(8, 9)
913 struct rproc_mem_entry *
914 rproc_mem_entry_init(struct device *dev,
915 		     void *va, dma_addr_t dma, size_t len, u32 da,
916 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
917 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
918 		     const char *name, ...)
919 {
920 	struct rproc_mem_entry *mem;
921 	va_list args;
922 
923 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
924 	if (!mem)
925 		return mem;
926 
927 	mem->va = va;
928 	mem->dma = dma;
929 	mem->da = da;
930 	mem->len = len;
931 	mem->alloc = alloc;
932 	mem->release = release;
933 	mem->rsc_offset = FW_RSC_ADDR_ANY;
934 	mem->of_resm_idx = -1;
935 
936 	va_start(args, name);
937 	vsnprintf(mem->name, sizeof(mem->name), name, args);
938 	va_end(args);
939 
940 	return mem;
941 }
942 EXPORT_SYMBOL(rproc_mem_entry_init);
943 
944 /**
945  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946  * from a reserved memory phandle
947  * @dev: pointer on device struct
948  * @of_resm_idx: reserved memory phandle index in "memory-region"
949  * @len: memory carveout length
950  * @da: device address
951  * @name: carveout name
952  *
953  * This function allocates a rproc_mem_entry struct and fill it with parameters
954  * provided by client.
955  *
956  * Return: a valid pointer on success, or NULL on failure
957  */
958 __printf(5, 6)
959 struct rproc_mem_entry *
960 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
961 			     u32 da, const char *name, ...)
962 {
963 	struct rproc_mem_entry *mem;
964 	va_list args;
965 
966 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
967 	if (!mem)
968 		return mem;
969 
970 	mem->da = da;
971 	mem->len = len;
972 	mem->rsc_offset = FW_RSC_ADDR_ANY;
973 	mem->of_resm_idx = of_resm_idx;
974 
975 	va_start(args, name);
976 	vsnprintf(mem->name, sizeof(mem->name), name, args);
977 	va_end(args);
978 
979 	return mem;
980 }
981 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
982 
983 /**
984  * rproc_of_parse_firmware() - parse and return the firmware-name
985  * @dev: pointer on device struct representing a rproc
986  * @index: index to use for the firmware-name retrieval
987  * @fw_name: pointer to a character string, in which the firmware
988  *           name is returned on success and unmodified otherwise.
989  *
990  * This is an OF helper function that parses a device's DT node for
991  * the "firmware-name" property and returns the firmware name pointer
992  * in @fw_name on success.
993  *
994  * Return: 0 on success, or an appropriate failure.
995  */
996 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
997 {
998 	int ret;
999 
1000 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1001 					    index, fw_name);
1002 	return ret ? ret : 0;
1003 }
1004 EXPORT_SYMBOL(rproc_of_parse_firmware);
1005 
1006 /*
1007  * A lookup table for resource handlers. The indices are defined in
1008  * enum fw_resource_type.
1009  */
1010 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1011 	[RSC_CARVEOUT] = rproc_handle_carveout,
1012 	[RSC_DEVMEM] = rproc_handle_devmem,
1013 	[RSC_TRACE] = rproc_handle_trace,
1014 	[RSC_VDEV] = rproc_handle_vdev,
1015 };
1016 
1017 /* handle firmware resource entries before booting the remote processor */
1018 static int rproc_handle_resources(struct rproc *rproc,
1019 				  rproc_handle_resource_t handlers[RSC_LAST])
1020 {
1021 	struct device *dev = &rproc->dev;
1022 	rproc_handle_resource_t handler;
1023 	int ret = 0, i;
1024 
1025 	if (!rproc->table_ptr)
1026 		return 0;
1027 
1028 	for (i = 0; i < rproc->table_ptr->num; i++) {
1029 		int offset = rproc->table_ptr->offset[i];
1030 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1031 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1032 		void *rsc = (void *)hdr + sizeof(*hdr);
1033 
1034 		/* make sure table isn't truncated */
1035 		if (avail < 0) {
1036 			dev_err(dev, "rsc table is truncated\n");
1037 			return -EINVAL;
1038 		}
1039 
1040 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1041 
1042 		if (hdr->type >= RSC_VENDOR_START &&
1043 		    hdr->type <= RSC_VENDOR_END) {
1044 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1045 					       offset + sizeof(*hdr), avail);
1046 			if (ret == RSC_HANDLED)
1047 				continue;
1048 			else if (ret < 0)
1049 				break;
1050 
1051 			dev_warn(dev, "unsupported vendor resource %d\n",
1052 				 hdr->type);
1053 			continue;
1054 		}
1055 
1056 		if (hdr->type >= RSC_LAST) {
1057 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1058 			continue;
1059 		}
1060 
1061 		handler = handlers[hdr->type];
1062 		if (!handler)
1063 			continue;
1064 
1065 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1066 		if (ret)
1067 			break;
1068 	}
1069 
1070 	return ret;
1071 }
1072 
1073 static int rproc_prepare_subdevices(struct rproc *rproc)
1074 {
1075 	struct rproc_subdev *subdev;
1076 	int ret;
1077 
1078 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1079 		if (subdev->prepare) {
1080 			ret = subdev->prepare(subdev);
1081 			if (ret)
1082 				goto unroll_preparation;
1083 		}
1084 	}
1085 
1086 	return 0;
1087 
1088 unroll_preparation:
1089 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1090 		if (subdev->unprepare)
1091 			subdev->unprepare(subdev);
1092 	}
1093 
1094 	return ret;
1095 }
1096 
1097 static int rproc_start_subdevices(struct rproc *rproc)
1098 {
1099 	struct rproc_subdev *subdev;
1100 	int ret;
1101 
1102 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1103 		if (subdev->start) {
1104 			ret = subdev->start(subdev);
1105 			if (ret)
1106 				goto unroll_registration;
1107 		}
1108 	}
1109 
1110 	return 0;
1111 
1112 unroll_registration:
1113 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1114 		if (subdev->stop)
1115 			subdev->stop(subdev, true);
1116 	}
1117 
1118 	return ret;
1119 }
1120 
1121 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1122 {
1123 	struct rproc_subdev *subdev;
1124 
1125 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1126 		if (subdev->stop)
1127 			subdev->stop(subdev, crashed);
1128 	}
1129 }
1130 
1131 static void rproc_unprepare_subdevices(struct rproc *rproc)
1132 {
1133 	struct rproc_subdev *subdev;
1134 
1135 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1136 		if (subdev->unprepare)
1137 			subdev->unprepare(subdev);
1138 	}
1139 }
1140 
1141 /**
1142  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1143  * in the list
1144  * @rproc: the remote processor handle
1145  *
1146  * This function parses registered carveout list, performs allocation
1147  * if alloc() ops registered and updates resource table information
1148  * if rsc_offset set.
1149  *
1150  * Return: 0 on success
1151  */
1152 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1153 {
1154 	struct rproc_mem_entry *entry, *tmp;
1155 	struct fw_rsc_carveout *rsc;
1156 	struct device *dev = &rproc->dev;
1157 	u64 pa;
1158 	int ret;
1159 
1160 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1161 		if (entry->alloc) {
1162 			ret = entry->alloc(rproc, entry);
1163 			if (ret) {
1164 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1165 					entry->name, ret);
1166 				return -ENOMEM;
1167 			}
1168 		}
1169 
1170 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1171 			/* update resource table */
1172 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1173 
1174 			/*
1175 			 * Some remote processors might need to know the pa
1176 			 * even though they are behind an IOMMU. E.g., OMAP4's
1177 			 * remote M3 processor needs this so it can control
1178 			 * on-chip hardware accelerators that are not behind
1179 			 * the IOMMU, and therefor must know the pa.
1180 			 *
1181 			 * Generally we don't want to expose physical addresses
1182 			 * if we don't have to (remote processors are generally
1183 			 * _not_ trusted), so we might want to do this only for
1184 			 * remote processor that _must_ have this (e.g. OMAP4's
1185 			 * dual M3 subsystem).
1186 			 *
1187 			 * Non-IOMMU processors might also want to have this info.
1188 			 * In this case, the device address and the physical address
1189 			 * are the same.
1190 			 */
1191 
1192 			/* Use va if defined else dma to generate pa */
1193 			if (entry->va)
1194 				pa = (u64)rproc_va_to_pa(entry->va);
1195 			else
1196 				pa = (u64)entry->dma;
1197 
1198 			if (((u64)pa) & HIGH_BITS_MASK)
1199 				dev_warn(dev,
1200 					 "Physical address cast in 32bit to fit resource table format\n");
1201 
1202 			rsc->pa = (u32)pa;
1203 			rsc->da = entry->da;
1204 			rsc->len = entry->len;
1205 		}
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 
1212 /**
1213  * rproc_resource_cleanup() - clean up and free all acquired resources
1214  * @rproc: rproc handle
1215  *
1216  * This function will free all resources acquired for @rproc, and it
1217  * is called whenever @rproc either shuts down or fails to boot.
1218  */
1219 void rproc_resource_cleanup(struct rproc *rproc)
1220 {
1221 	struct rproc_mem_entry *entry, *tmp;
1222 	struct rproc_debug_trace *trace, *ttmp;
1223 	struct rproc_vdev *rvdev, *rvtmp;
1224 	struct device *dev = &rproc->dev;
1225 
1226 	/* clean up debugfs trace entries */
1227 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1228 		rproc_remove_trace_file(trace->tfile);
1229 		rproc->num_traces--;
1230 		list_del(&trace->node);
1231 		kfree(trace);
1232 	}
1233 
1234 	/* clean up iommu mapping entries */
1235 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1236 		size_t unmapped;
1237 
1238 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1239 		if (unmapped != entry->len) {
1240 			/* nothing much to do besides complaining */
1241 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1242 				unmapped);
1243 		}
1244 
1245 		list_del(&entry->node);
1246 		kfree(entry);
1247 	}
1248 
1249 	/* clean up carveout allocations */
1250 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1251 		if (entry->release)
1252 			entry->release(rproc, entry);
1253 		list_del(&entry->node);
1254 		kfree(entry);
1255 	}
1256 
1257 	/* clean up remote vdev entries */
1258 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1259 		platform_device_unregister(rvdev->pdev);
1260 
1261 	rproc_coredump_cleanup(rproc);
1262 }
1263 EXPORT_SYMBOL(rproc_resource_cleanup);
1264 
1265 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1266 {
1267 	struct resource_table *loaded_table;
1268 	struct device *dev = &rproc->dev;
1269 	int ret;
1270 
1271 	/* load the ELF segments to memory */
1272 	ret = rproc_load_segments(rproc, fw);
1273 	if (ret) {
1274 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1275 		return ret;
1276 	}
1277 
1278 	/*
1279 	 * The starting device has been given the rproc->cached_table as the
1280 	 * resource table. The address of the vring along with the other
1281 	 * allocated resources (carveouts etc) is stored in cached_table.
1282 	 * In order to pass this information to the remote device we must copy
1283 	 * this information to device memory. We also update the table_ptr so
1284 	 * that any subsequent changes will be applied to the loaded version.
1285 	 */
1286 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1287 	if (loaded_table) {
1288 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1289 		rproc->table_ptr = loaded_table;
1290 	}
1291 
1292 	ret = rproc_prepare_subdevices(rproc);
1293 	if (ret) {
1294 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1295 			rproc->name, ret);
1296 		goto reset_table_ptr;
1297 	}
1298 
1299 	/* power up the remote processor */
1300 	ret = rproc->ops->start(rproc);
1301 	if (ret) {
1302 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1303 		goto unprepare_subdevices;
1304 	}
1305 
1306 	/* Start any subdevices for the remote processor */
1307 	ret = rproc_start_subdevices(rproc);
1308 	if (ret) {
1309 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1310 			rproc->name, ret);
1311 		goto stop_rproc;
1312 	}
1313 
1314 	rproc->state = RPROC_RUNNING;
1315 
1316 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1317 
1318 	return 0;
1319 
1320 stop_rproc:
1321 	rproc->ops->stop(rproc);
1322 unprepare_subdevices:
1323 	rproc_unprepare_subdevices(rproc);
1324 reset_table_ptr:
1325 	rproc->table_ptr = rproc->cached_table;
1326 
1327 	return ret;
1328 }
1329 
1330 static int __rproc_attach(struct rproc *rproc)
1331 {
1332 	struct device *dev = &rproc->dev;
1333 	int ret;
1334 
1335 	ret = rproc_prepare_subdevices(rproc);
1336 	if (ret) {
1337 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1338 			rproc->name, ret);
1339 		goto out;
1340 	}
1341 
1342 	/* Attach to the remote processor */
1343 	ret = rproc_attach_device(rproc);
1344 	if (ret) {
1345 		dev_err(dev, "can't attach to rproc %s: %d\n",
1346 			rproc->name, ret);
1347 		goto unprepare_subdevices;
1348 	}
1349 
1350 	/* Start any subdevices for the remote processor */
1351 	ret = rproc_start_subdevices(rproc);
1352 	if (ret) {
1353 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1354 			rproc->name, ret);
1355 		goto stop_rproc;
1356 	}
1357 
1358 	rproc->state = RPROC_ATTACHED;
1359 
1360 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1361 
1362 	return 0;
1363 
1364 stop_rproc:
1365 	rproc->ops->stop(rproc);
1366 unprepare_subdevices:
1367 	rproc_unprepare_subdevices(rproc);
1368 out:
1369 	return ret;
1370 }
1371 
1372 /*
1373  * take a firmware and boot a remote processor with it.
1374  */
1375 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1376 {
1377 	struct device *dev = &rproc->dev;
1378 	const char *name = rproc->firmware;
1379 	int ret;
1380 
1381 	ret = rproc_fw_sanity_check(rproc, fw);
1382 	if (ret)
1383 		return ret;
1384 
1385 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1386 
1387 	/*
1388 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1389 	 * just a nop
1390 	 */
1391 	ret = rproc_enable_iommu(rproc);
1392 	if (ret) {
1393 		dev_err(dev, "can't enable iommu: %d\n", ret);
1394 		return ret;
1395 	}
1396 
1397 	/* Prepare rproc for firmware loading if needed */
1398 	ret = rproc_prepare_device(rproc);
1399 	if (ret) {
1400 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1401 		goto disable_iommu;
1402 	}
1403 
1404 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1405 
1406 	/* Load resource table, core dump segment list etc from the firmware */
1407 	ret = rproc_parse_fw(rproc, fw);
1408 	if (ret)
1409 		goto unprepare_rproc;
1410 
1411 	/* reset max_notifyid */
1412 	rproc->max_notifyid = -1;
1413 
1414 	/* reset handled vdev */
1415 	rproc->nb_vdev = 0;
1416 
1417 	/* handle fw resources which are required to boot rproc */
1418 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1419 	if (ret) {
1420 		dev_err(dev, "Failed to process resources: %d\n", ret);
1421 		goto clean_up_resources;
1422 	}
1423 
1424 	/* Allocate carveout resources associated to rproc */
1425 	ret = rproc_alloc_registered_carveouts(rproc);
1426 	if (ret) {
1427 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1428 			ret);
1429 		goto clean_up_resources;
1430 	}
1431 
1432 	ret = rproc_start(rproc, fw);
1433 	if (ret)
1434 		goto clean_up_resources;
1435 
1436 	return 0;
1437 
1438 clean_up_resources:
1439 	rproc_resource_cleanup(rproc);
1440 	kfree(rproc->cached_table);
1441 	rproc->cached_table = NULL;
1442 	rproc->table_ptr = NULL;
1443 unprepare_rproc:
1444 	/* release HW resources if needed */
1445 	rproc_unprepare_device(rproc);
1446 disable_iommu:
1447 	rproc_disable_iommu(rproc);
1448 	return ret;
1449 }
1450 
1451 static int rproc_set_rsc_table(struct rproc *rproc)
1452 {
1453 	struct resource_table *table_ptr;
1454 	struct device *dev = &rproc->dev;
1455 	size_t table_sz;
1456 	int ret;
1457 
1458 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1459 	if (!table_ptr) {
1460 		/* Not having a resource table is acceptable */
1461 		return 0;
1462 	}
1463 
1464 	if (IS_ERR(table_ptr)) {
1465 		ret = PTR_ERR(table_ptr);
1466 		dev_err(dev, "can't load resource table: %d\n", ret);
1467 		return ret;
1468 	}
1469 
1470 	/*
1471 	 * If it is possible to detach the remote processor, keep an untouched
1472 	 * copy of the resource table.  That way we can start fresh again when
1473 	 * the remote processor is re-attached, that is:
1474 	 *
1475 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1476 	 *
1477 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1478 	 * rproc_reset_rsc_table_on_stop().
1479 	 */
1480 	if (rproc->ops->detach) {
1481 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1482 		if (!rproc->clean_table)
1483 			return -ENOMEM;
1484 	} else {
1485 		rproc->clean_table = NULL;
1486 	}
1487 
1488 	rproc->cached_table = NULL;
1489 	rproc->table_ptr = table_ptr;
1490 	rproc->table_sz = table_sz;
1491 
1492 	return 0;
1493 }
1494 
1495 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1496 {
1497 	struct resource_table *table_ptr;
1498 
1499 	/* A resource table was never retrieved, nothing to do here */
1500 	if (!rproc->table_ptr)
1501 		return 0;
1502 
1503 	/*
1504 	 * If we made it to this point a clean_table _must_ have been
1505 	 * allocated in rproc_set_rsc_table().  If one isn't present
1506 	 * something went really wrong and we must complain.
1507 	 */
1508 	if (WARN_ON(!rproc->clean_table))
1509 		return -EINVAL;
1510 
1511 	/* Remember where the external entity installed the resource table */
1512 	table_ptr = rproc->table_ptr;
1513 
1514 	/*
1515 	 * If we made it here the remote processor was started by another
1516 	 * entity and a cache table doesn't exist.  As such make a copy of
1517 	 * the resource table currently used by the remote processor and
1518 	 * use that for the rest of the shutdown process.  The memory
1519 	 * allocated here is free'd in rproc_detach().
1520 	 */
1521 	rproc->cached_table = kmemdup(rproc->table_ptr,
1522 				      rproc->table_sz, GFP_KERNEL);
1523 	if (!rproc->cached_table)
1524 		return -ENOMEM;
1525 
1526 	/*
1527 	 * Use a copy of the resource table for the remainder of the
1528 	 * shutdown process.
1529 	 */
1530 	rproc->table_ptr = rproc->cached_table;
1531 
1532 	/*
1533 	 * Reset the memory area where the firmware loaded the resource table
1534 	 * to its original value.  That way when we re-attach the remote
1535 	 * processor the resource table is clean and ready to be used again.
1536 	 */
1537 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1538 
1539 	/*
1540 	 * The clean resource table is no longer needed.  Allocated in
1541 	 * rproc_set_rsc_table().
1542 	 */
1543 	kfree(rproc->clean_table);
1544 
1545 	return 0;
1546 }
1547 
1548 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1549 {
1550 	/* A resource table was never retrieved, nothing to do here */
1551 	if (!rproc->table_ptr)
1552 		return 0;
1553 
1554 	/*
1555 	 * If a cache table exists the remote processor was started by
1556 	 * the remoteproc core.  That cache table should be used for
1557 	 * the rest of the shutdown process.
1558 	 */
1559 	if (rproc->cached_table)
1560 		goto out;
1561 
1562 	/*
1563 	 * If we made it here the remote processor was started by another
1564 	 * entity and a cache table doesn't exist.  As such make a copy of
1565 	 * the resource table currently used by the remote processor and
1566 	 * use that for the rest of the shutdown process.  The memory
1567 	 * allocated here is free'd in rproc_shutdown().
1568 	 */
1569 	rproc->cached_table = kmemdup(rproc->table_ptr,
1570 				      rproc->table_sz, GFP_KERNEL);
1571 	if (!rproc->cached_table)
1572 		return -ENOMEM;
1573 
1574 	/*
1575 	 * Since the remote processor is being switched off the clean table
1576 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1577 	 */
1578 	kfree(rproc->clean_table);
1579 
1580 out:
1581 	/*
1582 	 * Use a copy of the resource table for the remainder of the
1583 	 * shutdown process.
1584 	 */
1585 	rproc->table_ptr = rproc->cached_table;
1586 	return 0;
1587 }
1588 
1589 /*
1590  * Attach to remote processor - similar to rproc_fw_boot() but without
1591  * the steps that deal with the firmware image.
1592  */
1593 static int rproc_attach(struct rproc *rproc)
1594 {
1595 	struct device *dev = &rproc->dev;
1596 	int ret;
1597 
1598 	/*
1599 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1600 	 * just a nop
1601 	 */
1602 	ret = rproc_enable_iommu(rproc);
1603 	if (ret) {
1604 		dev_err(dev, "can't enable iommu: %d\n", ret);
1605 		return ret;
1606 	}
1607 
1608 	/* Do anything that is needed to boot the remote processor */
1609 	ret = rproc_prepare_device(rproc);
1610 	if (ret) {
1611 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1612 		goto disable_iommu;
1613 	}
1614 
1615 	ret = rproc_set_rsc_table(rproc);
1616 	if (ret) {
1617 		dev_err(dev, "can't load resource table: %d\n", ret);
1618 		goto unprepare_device;
1619 	}
1620 
1621 	/* reset max_notifyid */
1622 	rproc->max_notifyid = -1;
1623 
1624 	/* reset handled vdev */
1625 	rproc->nb_vdev = 0;
1626 
1627 	/*
1628 	 * Handle firmware resources required to attach to a remote processor.
1629 	 * Because we are attaching rather than booting the remote processor,
1630 	 * we expect the platform driver to properly set rproc->table_ptr.
1631 	 */
1632 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1633 	if (ret) {
1634 		dev_err(dev, "Failed to process resources: %d\n", ret);
1635 		goto unprepare_device;
1636 	}
1637 
1638 	/* Allocate carveout resources associated to rproc */
1639 	ret = rproc_alloc_registered_carveouts(rproc);
1640 	if (ret) {
1641 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1642 			ret);
1643 		goto clean_up_resources;
1644 	}
1645 
1646 	ret = __rproc_attach(rproc);
1647 	if (ret)
1648 		goto clean_up_resources;
1649 
1650 	return 0;
1651 
1652 clean_up_resources:
1653 	rproc_resource_cleanup(rproc);
1654 unprepare_device:
1655 	/* release HW resources if needed */
1656 	rproc_unprepare_device(rproc);
1657 disable_iommu:
1658 	rproc_disable_iommu(rproc);
1659 	return ret;
1660 }
1661 
1662 /*
1663  * take a firmware and boot it up.
1664  *
1665  * Note: this function is called asynchronously upon registration of the
1666  * remote processor (so we must wait until it completes before we try
1667  * to unregister the device. one other option is just to use kref here,
1668  * that might be cleaner).
1669  */
1670 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1671 {
1672 	struct rproc *rproc = context;
1673 
1674 	rproc_boot(rproc);
1675 
1676 	release_firmware(fw);
1677 }
1678 
1679 static int rproc_trigger_auto_boot(struct rproc *rproc)
1680 {
1681 	int ret;
1682 
1683 	/*
1684 	 * Since the remote processor is in a detached state, it has already
1685 	 * been booted by another entity.  As such there is no point in waiting
1686 	 * for a firmware image to be loaded, we can simply initiate the process
1687 	 * of attaching to it immediately.
1688 	 */
1689 	if (rproc->state == RPROC_DETACHED)
1690 		return rproc_boot(rproc);
1691 
1692 	/*
1693 	 * We're initiating an asynchronous firmware loading, so we can
1694 	 * be built-in kernel code, without hanging the boot process.
1695 	 */
1696 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1697 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1698 				      rproc, rproc_auto_boot_callback);
1699 	if (ret < 0)
1700 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1701 
1702 	return ret;
1703 }
1704 
1705 static int rproc_stop(struct rproc *rproc, bool crashed)
1706 {
1707 	struct device *dev = &rproc->dev;
1708 	int ret;
1709 
1710 	/* No need to continue if a stop() operation has not been provided */
1711 	if (!rproc->ops->stop)
1712 		return -EINVAL;
1713 
1714 	/* Stop any subdevices for the remote processor */
1715 	rproc_stop_subdevices(rproc, crashed);
1716 
1717 	/* the installed resource table is no longer accessible */
1718 	ret = rproc_reset_rsc_table_on_stop(rproc);
1719 	if (ret) {
1720 		dev_err(dev, "can't reset resource table: %d\n", ret);
1721 		return ret;
1722 	}
1723 
1724 
1725 	/* power off the remote processor */
1726 	ret = rproc->ops->stop(rproc);
1727 	if (ret) {
1728 		dev_err(dev, "can't stop rproc: %d\n", ret);
1729 		return ret;
1730 	}
1731 
1732 	rproc_unprepare_subdevices(rproc);
1733 
1734 	rproc->state = RPROC_OFFLINE;
1735 
1736 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * __rproc_detach(): Does the opposite of __rproc_attach()
1743  */
1744 static int __rproc_detach(struct rproc *rproc)
1745 {
1746 	struct device *dev = &rproc->dev;
1747 	int ret;
1748 
1749 	/* No need to continue if a detach() operation has not been provided */
1750 	if (!rproc->ops->detach)
1751 		return -EINVAL;
1752 
1753 	/* Stop any subdevices for the remote processor */
1754 	rproc_stop_subdevices(rproc, false);
1755 
1756 	/* the installed resource table is no longer accessible */
1757 	ret = rproc_reset_rsc_table_on_detach(rproc);
1758 	if (ret) {
1759 		dev_err(dev, "can't reset resource table: %d\n", ret);
1760 		return ret;
1761 	}
1762 
1763 	/* Tell the remote processor the core isn't available anymore */
1764 	ret = rproc->ops->detach(rproc);
1765 	if (ret) {
1766 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1767 		return ret;
1768 	}
1769 
1770 	rproc_unprepare_subdevices(rproc);
1771 
1772 	rproc->state = RPROC_DETACHED;
1773 
1774 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1775 
1776 	return 0;
1777 }
1778 
1779 static int rproc_attach_recovery(struct rproc *rproc)
1780 {
1781 	int ret;
1782 
1783 	ret = __rproc_detach(rproc);
1784 	if (ret)
1785 		return ret;
1786 
1787 	return __rproc_attach(rproc);
1788 }
1789 
1790 static int rproc_boot_recovery(struct rproc *rproc)
1791 {
1792 	const struct firmware *firmware_p;
1793 	struct device *dev = &rproc->dev;
1794 	int ret;
1795 
1796 	ret = rproc_stop(rproc, true);
1797 	if (ret)
1798 		return ret;
1799 
1800 	/* generate coredump */
1801 	rproc->ops->coredump(rproc);
1802 
1803 	/* load firmware */
1804 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1805 	if (ret < 0) {
1806 		dev_err(dev, "request_firmware failed: %d\n", ret);
1807 		return ret;
1808 	}
1809 
1810 	/* boot the remote processor up again */
1811 	ret = rproc_start(rproc, firmware_p);
1812 
1813 	release_firmware(firmware_p);
1814 
1815 	return ret;
1816 }
1817 
1818 /**
1819  * rproc_trigger_recovery() - recover a remoteproc
1820  * @rproc: the remote processor
1821  *
1822  * The recovery is done by resetting all the virtio devices, that way all the
1823  * rpmsg drivers will be reseted along with the remote processor making the
1824  * remoteproc functional again.
1825  *
1826  * This function can sleep, so it cannot be called from atomic context.
1827  *
1828  * Return: 0 on success or a negative value upon failure
1829  */
1830 int rproc_trigger_recovery(struct rproc *rproc)
1831 {
1832 	struct device *dev = &rproc->dev;
1833 	int ret;
1834 
1835 	ret = mutex_lock_interruptible(&rproc->lock);
1836 	if (ret)
1837 		return ret;
1838 
1839 	/* State could have changed before we got the mutex */
1840 	if (rproc->state != RPROC_CRASHED)
1841 		goto unlock_mutex;
1842 
1843 	dev_err(dev, "recovering %s\n", rproc->name);
1844 
1845 	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1846 		ret = rproc_attach_recovery(rproc);
1847 	else
1848 		ret = rproc_boot_recovery(rproc);
1849 
1850 unlock_mutex:
1851 	mutex_unlock(&rproc->lock);
1852 	return ret;
1853 }
1854 
1855 /**
1856  * rproc_crash_handler_work() - handle a crash
1857  * @work: work treating the crash
1858  *
1859  * This function needs to handle everything related to a crash, like cpu
1860  * registers and stack dump, information to help to debug the fatal error, etc.
1861  */
1862 static void rproc_crash_handler_work(struct work_struct *work)
1863 {
1864 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1865 	struct device *dev = &rproc->dev;
1866 
1867 	dev_dbg(dev, "enter %s\n", __func__);
1868 
1869 	mutex_lock(&rproc->lock);
1870 
1871 	if (rproc->state == RPROC_CRASHED) {
1872 		/* handle only the first crash detected */
1873 		mutex_unlock(&rproc->lock);
1874 		return;
1875 	}
1876 
1877 	if (rproc->state == RPROC_OFFLINE) {
1878 		/* Don't recover if the remote processor was stopped */
1879 		mutex_unlock(&rproc->lock);
1880 		goto out;
1881 	}
1882 
1883 	rproc->state = RPROC_CRASHED;
1884 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1885 		rproc->name);
1886 
1887 	mutex_unlock(&rproc->lock);
1888 
1889 	if (!rproc->recovery_disabled)
1890 		rproc_trigger_recovery(rproc);
1891 
1892 out:
1893 	pm_relax(rproc->dev.parent);
1894 }
1895 
1896 /**
1897  * rproc_boot() - boot a remote processor
1898  * @rproc: handle of a remote processor
1899  *
1900  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1901  *
1902  * If the remote processor is already powered on, this function immediately
1903  * returns (successfully).
1904  *
1905  * Return: 0 on success, and an appropriate error value otherwise
1906  */
1907 int rproc_boot(struct rproc *rproc)
1908 {
1909 	const struct firmware *firmware_p;
1910 	struct device *dev;
1911 	int ret;
1912 
1913 	if (!rproc) {
1914 		pr_err("invalid rproc handle\n");
1915 		return -EINVAL;
1916 	}
1917 
1918 	dev = &rproc->dev;
1919 
1920 	ret = mutex_lock_interruptible(&rproc->lock);
1921 	if (ret) {
1922 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1923 		return ret;
1924 	}
1925 
1926 	if (rproc->state == RPROC_DELETED) {
1927 		ret = -ENODEV;
1928 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1929 		goto unlock_mutex;
1930 	}
1931 
1932 	/* skip the boot or attach process if rproc is already powered up */
1933 	if (atomic_inc_return(&rproc->power) > 1) {
1934 		ret = 0;
1935 		goto unlock_mutex;
1936 	}
1937 
1938 	if (rproc->state == RPROC_DETACHED) {
1939 		dev_info(dev, "attaching to %s\n", rproc->name);
1940 
1941 		ret = rproc_attach(rproc);
1942 	} else {
1943 		dev_info(dev, "powering up %s\n", rproc->name);
1944 
1945 		/* load firmware */
1946 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1947 		if (ret < 0) {
1948 			dev_err(dev, "request_firmware failed: %d\n", ret);
1949 			goto downref_rproc;
1950 		}
1951 
1952 		ret = rproc_fw_boot(rproc, firmware_p);
1953 
1954 		release_firmware(firmware_p);
1955 	}
1956 
1957 downref_rproc:
1958 	if (ret)
1959 		atomic_dec(&rproc->power);
1960 unlock_mutex:
1961 	mutex_unlock(&rproc->lock);
1962 	return ret;
1963 }
1964 EXPORT_SYMBOL(rproc_boot);
1965 
1966 /**
1967  * rproc_shutdown() - power off the remote processor
1968  * @rproc: the remote processor
1969  *
1970  * Power off a remote processor (previously booted with rproc_boot()).
1971  *
1972  * In case @rproc is still being used by an additional user(s), then
1973  * this function will just decrement the power refcount and exit,
1974  * without really powering off the device.
1975  *
1976  * Every call to rproc_boot() must (eventually) be accompanied by a call
1977  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1978  *
1979  * Notes:
1980  * - we're not decrementing the rproc's refcount, only the power refcount.
1981  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1982  *   returns, and users can still use it with a subsequent rproc_boot(), if
1983  *   needed.
1984  *
1985  * Return: 0 on success, and an appropriate error value otherwise
1986  */
1987 int rproc_shutdown(struct rproc *rproc)
1988 {
1989 	struct device *dev = &rproc->dev;
1990 	int ret = 0;
1991 
1992 	ret = mutex_lock_interruptible(&rproc->lock);
1993 	if (ret) {
1994 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1995 		return ret;
1996 	}
1997 
1998 	if (rproc->state != RPROC_RUNNING &&
1999 	    rproc->state != RPROC_ATTACHED) {
2000 		ret = -EINVAL;
2001 		goto out;
2002 	}
2003 
2004 	/* if the remote proc is still needed, bail out */
2005 	if (!atomic_dec_and_test(&rproc->power))
2006 		goto out;
2007 
2008 	ret = rproc_stop(rproc, false);
2009 	if (ret) {
2010 		atomic_inc(&rproc->power);
2011 		goto out;
2012 	}
2013 
2014 	/* clean up all acquired resources */
2015 	rproc_resource_cleanup(rproc);
2016 
2017 	/* release HW resources if needed */
2018 	rproc_unprepare_device(rproc);
2019 
2020 	rproc_disable_iommu(rproc);
2021 
2022 	/* Free the copy of the resource table */
2023 	kfree(rproc->cached_table);
2024 	rproc->cached_table = NULL;
2025 	rproc->table_ptr = NULL;
2026 out:
2027 	mutex_unlock(&rproc->lock);
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL(rproc_shutdown);
2031 
2032 /**
2033  * rproc_detach() - Detach the remote processor from the
2034  * remoteproc core
2035  *
2036  * @rproc: the remote processor
2037  *
2038  * Detach a remote processor (previously attached to with rproc_attach()).
2039  *
2040  * In case @rproc is still being used by an additional user(s), then
2041  * this function will just decrement the power refcount and exit,
2042  * without disconnecting the device.
2043  *
2044  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2045  * processor know that services provided by the application processor are
2046  * no longer available.  From there it should be possible to remove the
2047  * platform driver and even power cycle the application processor (if the HW
2048  * supports it) without needing to switch off the remote processor.
2049  *
2050  * Return: 0 on success, and an appropriate error value otherwise
2051  */
2052 int rproc_detach(struct rproc *rproc)
2053 {
2054 	struct device *dev = &rproc->dev;
2055 	int ret;
2056 
2057 	ret = mutex_lock_interruptible(&rproc->lock);
2058 	if (ret) {
2059 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2060 		return ret;
2061 	}
2062 
2063 	if (rproc->state != RPROC_ATTACHED) {
2064 		ret = -EINVAL;
2065 		goto out;
2066 	}
2067 
2068 	/* if the remote proc is still needed, bail out */
2069 	if (!atomic_dec_and_test(&rproc->power)) {
2070 		ret = 0;
2071 		goto out;
2072 	}
2073 
2074 	ret = __rproc_detach(rproc);
2075 	if (ret) {
2076 		atomic_inc(&rproc->power);
2077 		goto out;
2078 	}
2079 
2080 	/* clean up all acquired resources */
2081 	rproc_resource_cleanup(rproc);
2082 
2083 	/* release HW resources if needed */
2084 	rproc_unprepare_device(rproc);
2085 
2086 	rproc_disable_iommu(rproc);
2087 
2088 	/* Free the copy of the resource table */
2089 	kfree(rproc->cached_table);
2090 	rproc->cached_table = NULL;
2091 	rproc->table_ptr = NULL;
2092 out:
2093 	mutex_unlock(&rproc->lock);
2094 	return ret;
2095 }
2096 EXPORT_SYMBOL(rproc_detach);
2097 
2098 /**
2099  * rproc_get_by_phandle() - find a remote processor by phandle
2100  * @phandle: phandle to the rproc
2101  *
2102  * Finds an rproc handle using the remote processor's phandle, and then
2103  * return a handle to the rproc.
2104  *
2105  * This function increments the remote processor's refcount, so always
2106  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2107  *
2108  * Return: rproc handle on success, and NULL on failure
2109  */
2110 #ifdef CONFIG_OF
2111 struct rproc *rproc_get_by_phandle(phandle phandle)
2112 {
2113 	struct rproc *rproc = NULL, *r;
2114 	struct device_node *np;
2115 
2116 	np = of_find_node_by_phandle(phandle);
2117 	if (!np)
2118 		return NULL;
2119 
2120 	rcu_read_lock();
2121 	list_for_each_entry_rcu(r, &rproc_list, node) {
2122 		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2123 			/* prevent underlying implementation from being removed */
2124 			if (!try_module_get(r->dev.parent->driver->owner)) {
2125 				dev_err(&r->dev, "can't get owner\n");
2126 				break;
2127 			}
2128 
2129 			rproc = r;
2130 			get_device(&rproc->dev);
2131 			break;
2132 		}
2133 	}
2134 	rcu_read_unlock();
2135 
2136 	of_node_put(np);
2137 
2138 	return rproc;
2139 }
2140 #else
2141 struct rproc *rproc_get_by_phandle(phandle phandle)
2142 {
2143 	return NULL;
2144 }
2145 #endif
2146 EXPORT_SYMBOL(rproc_get_by_phandle);
2147 
2148 /**
2149  * rproc_set_firmware() - assign a new firmware
2150  * @rproc: rproc handle to which the new firmware is being assigned
2151  * @fw_name: new firmware name to be assigned
2152  *
2153  * This function allows remoteproc drivers or clients to configure a custom
2154  * firmware name that is different from the default name used during remoteproc
2155  * registration. The function does not trigger a remote processor boot,
2156  * only sets the firmware name used for a subsequent boot. This function
2157  * should also be called only when the remote processor is offline.
2158  *
2159  * This allows either the userspace to configure a different name through
2160  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2161  * a specific firmware when it is controlling the boot and shutdown of the
2162  * remote processor.
2163  *
2164  * Return: 0 on success or a negative value upon failure
2165  */
2166 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2167 {
2168 	struct device *dev;
2169 	int ret, len;
2170 	char *p;
2171 
2172 	if (!rproc || !fw_name)
2173 		return -EINVAL;
2174 
2175 	dev = rproc->dev.parent;
2176 
2177 	ret = mutex_lock_interruptible(&rproc->lock);
2178 	if (ret) {
2179 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2180 		return -EINVAL;
2181 	}
2182 
2183 	if (rproc->state != RPROC_OFFLINE) {
2184 		dev_err(dev, "can't change firmware while running\n");
2185 		ret = -EBUSY;
2186 		goto out;
2187 	}
2188 
2189 	len = strcspn(fw_name, "\n");
2190 	if (!len) {
2191 		dev_err(dev, "can't provide empty string for firmware name\n");
2192 		ret = -EINVAL;
2193 		goto out;
2194 	}
2195 
2196 	p = kstrndup(fw_name, len, GFP_KERNEL);
2197 	if (!p) {
2198 		ret = -ENOMEM;
2199 		goto out;
2200 	}
2201 
2202 	kfree_const(rproc->firmware);
2203 	rproc->firmware = p;
2204 
2205 out:
2206 	mutex_unlock(&rproc->lock);
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(rproc_set_firmware);
2210 
2211 static int rproc_validate(struct rproc *rproc)
2212 {
2213 	switch (rproc->state) {
2214 	case RPROC_OFFLINE:
2215 		/*
2216 		 * An offline processor without a start()
2217 		 * function makes no sense.
2218 		 */
2219 		if (!rproc->ops->start)
2220 			return -EINVAL;
2221 		break;
2222 	case RPROC_DETACHED:
2223 		/*
2224 		 * A remote processor in a detached state without an
2225 		 * attach() function makes not sense.
2226 		 */
2227 		if (!rproc->ops->attach)
2228 			return -EINVAL;
2229 		/*
2230 		 * When attaching to a remote processor the device memory
2231 		 * is already available and as such there is no need to have a
2232 		 * cached table.
2233 		 */
2234 		if (rproc->cached_table)
2235 			return -EINVAL;
2236 		break;
2237 	default:
2238 		/*
2239 		 * When adding a remote processor, the state of the device
2240 		 * can be offline or detached, nothing else.
2241 		 */
2242 		return -EINVAL;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 /**
2249  * rproc_add() - register a remote processor
2250  * @rproc: the remote processor handle to register
2251  *
2252  * Registers @rproc with the remoteproc framework, after it has been
2253  * allocated with rproc_alloc().
2254  *
2255  * This is called by the platform-specific rproc implementation, whenever
2256  * a new remote processor device is probed.
2257  *
2258  * Note: this function initiates an asynchronous firmware loading
2259  * context, which will look for virtio devices supported by the rproc's
2260  * firmware.
2261  *
2262  * If found, those virtio devices will be created and added, so as a result
2263  * of registering this remote processor, additional virtio drivers might be
2264  * probed.
2265  *
2266  * Return: 0 on success and an appropriate error code otherwise
2267  */
2268 int rproc_add(struct rproc *rproc)
2269 {
2270 	struct device *dev = &rproc->dev;
2271 	int ret;
2272 
2273 	ret = rproc_validate(rproc);
2274 	if (ret < 0)
2275 		return ret;
2276 
2277 	/* add char device for this remoteproc */
2278 	ret = rproc_char_device_add(rproc);
2279 	if (ret < 0)
2280 		return ret;
2281 
2282 	ret = device_add(dev);
2283 	if (ret < 0) {
2284 		put_device(dev);
2285 		goto rproc_remove_cdev;
2286 	}
2287 
2288 	dev_info(dev, "%s is available\n", rproc->name);
2289 
2290 	/* create debugfs entries */
2291 	rproc_create_debug_dir(rproc);
2292 
2293 	/* if rproc is marked always-on, request it to boot */
2294 	if (rproc->auto_boot) {
2295 		ret = rproc_trigger_auto_boot(rproc);
2296 		if (ret < 0)
2297 			goto rproc_remove_dev;
2298 	}
2299 
2300 	/* expose to rproc_get_by_phandle users */
2301 	mutex_lock(&rproc_list_mutex);
2302 	list_add_rcu(&rproc->node, &rproc_list);
2303 	mutex_unlock(&rproc_list_mutex);
2304 
2305 	return 0;
2306 
2307 rproc_remove_dev:
2308 	rproc_delete_debug_dir(rproc);
2309 	device_del(dev);
2310 rproc_remove_cdev:
2311 	rproc_char_device_remove(rproc);
2312 	return ret;
2313 }
2314 EXPORT_SYMBOL(rproc_add);
2315 
2316 static void devm_rproc_remove(void *rproc)
2317 {
2318 	rproc_del(rproc);
2319 }
2320 
2321 /**
2322  * devm_rproc_add() - resource managed rproc_add()
2323  * @dev: the underlying device
2324  * @rproc: the remote processor handle to register
2325  *
2326  * This function performs like rproc_add() but the registered rproc device will
2327  * automatically be removed on driver detach.
2328  *
2329  * Return: 0 on success, negative errno on failure
2330  */
2331 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2332 {
2333 	int err;
2334 
2335 	err = rproc_add(rproc);
2336 	if (err)
2337 		return err;
2338 
2339 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2340 }
2341 EXPORT_SYMBOL(devm_rproc_add);
2342 
2343 /**
2344  * rproc_type_release() - release a remote processor instance
2345  * @dev: the rproc's device
2346  *
2347  * This function should _never_ be called directly.
2348  *
2349  * It will be called by the driver core when no one holds a valid pointer
2350  * to @dev anymore.
2351  */
2352 static void rproc_type_release(struct device *dev)
2353 {
2354 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2355 
2356 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2357 
2358 	idr_destroy(&rproc->notifyids);
2359 
2360 	if (rproc->index >= 0)
2361 		ida_free(&rproc_dev_index, rproc->index);
2362 
2363 	kfree_const(rproc->firmware);
2364 	kfree_const(rproc->name);
2365 	kfree(rproc->ops);
2366 	kfree(rproc);
2367 }
2368 
2369 static const struct device_type rproc_type = {
2370 	.name		= "remoteproc",
2371 	.release	= rproc_type_release,
2372 };
2373 
2374 static int rproc_alloc_firmware(struct rproc *rproc,
2375 				const char *name, const char *firmware)
2376 {
2377 	const char *p;
2378 
2379 	/*
2380 	 * Allocate a firmware name if the caller gave us one to work
2381 	 * with.  Otherwise construct a new one using a default pattern.
2382 	 */
2383 	if (firmware)
2384 		p = kstrdup_const(firmware, GFP_KERNEL);
2385 	else
2386 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2387 
2388 	if (!p)
2389 		return -ENOMEM;
2390 
2391 	rproc->firmware = p;
2392 
2393 	return 0;
2394 }
2395 
2396 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2397 {
2398 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2399 	if (!rproc->ops)
2400 		return -ENOMEM;
2401 
2402 	/* Default to rproc_coredump if no coredump function is specified */
2403 	if (!rproc->ops->coredump)
2404 		rproc->ops->coredump = rproc_coredump;
2405 
2406 	if (rproc->ops->load)
2407 		return 0;
2408 
2409 	/* Default to ELF loader if no load function is specified */
2410 	rproc->ops->load = rproc_elf_load_segments;
2411 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2412 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2413 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2414 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2415 
2416 	return 0;
2417 }
2418 
2419 /**
2420  * rproc_alloc() - allocate a remote processor handle
2421  * @dev: the underlying device
2422  * @name: name of this remote processor
2423  * @ops: platform-specific handlers (mainly start/stop)
2424  * @firmware: name of firmware file to load, can be NULL
2425  * @len: length of private data needed by the rproc driver (in bytes)
2426  *
2427  * Allocates a new remote processor handle, but does not register
2428  * it yet. if @firmware is NULL, a default name is used.
2429  *
2430  * This function should be used by rproc implementations during initialization
2431  * of the remote processor.
2432  *
2433  * After creating an rproc handle using this function, and when ready,
2434  * implementations should then call rproc_add() to complete
2435  * the registration of the remote processor.
2436  *
2437  * Note: _never_ directly deallocate @rproc, even if it was not registered
2438  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2439  *
2440  * Return: new rproc pointer on success, and NULL on failure
2441  */
2442 struct rproc *rproc_alloc(struct device *dev, const char *name,
2443 			  const struct rproc_ops *ops,
2444 			  const char *firmware, int len)
2445 {
2446 	struct rproc *rproc;
2447 
2448 	if (!dev || !name || !ops)
2449 		return NULL;
2450 
2451 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2452 	if (!rproc)
2453 		return NULL;
2454 
2455 	rproc->priv = &rproc[1];
2456 	rproc->auto_boot = true;
2457 	rproc->elf_class = ELFCLASSNONE;
2458 	rproc->elf_machine = EM_NONE;
2459 
2460 	device_initialize(&rproc->dev);
2461 	rproc->dev.parent = dev;
2462 	rproc->dev.type = &rproc_type;
2463 	rproc->dev.class = &rproc_class;
2464 	rproc->dev.driver_data = rproc;
2465 	idr_init(&rproc->notifyids);
2466 
2467 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2468 	if (!rproc->name)
2469 		goto put_device;
2470 
2471 	if (rproc_alloc_firmware(rproc, name, firmware))
2472 		goto put_device;
2473 
2474 	if (rproc_alloc_ops(rproc, ops))
2475 		goto put_device;
2476 
2477 	/* Assign a unique device index and name */
2478 	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2479 	if (rproc->index < 0) {
2480 		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2481 		goto put_device;
2482 	}
2483 
2484 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2485 
2486 	atomic_set(&rproc->power, 0);
2487 
2488 	mutex_init(&rproc->lock);
2489 
2490 	INIT_LIST_HEAD(&rproc->carveouts);
2491 	INIT_LIST_HEAD(&rproc->mappings);
2492 	INIT_LIST_HEAD(&rproc->traces);
2493 	INIT_LIST_HEAD(&rproc->rvdevs);
2494 	INIT_LIST_HEAD(&rproc->subdevs);
2495 	INIT_LIST_HEAD(&rproc->dump_segments);
2496 
2497 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2498 
2499 	rproc->state = RPROC_OFFLINE;
2500 
2501 	return rproc;
2502 
2503 put_device:
2504 	put_device(&rproc->dev);
2505 	return NULL;
2506 }
2507 EXPORT_SYMBOL(rproc_alloc);
2508 
2509 /**
2510  * rproc_free() - unroll rproc_alloc()
2511  * @rproc: the remote processor handle
2512  *
2513  * This function decrements the rproc dev refcount.
2514  *
2515  * If no one holds any reference to rproc anymore, then its refcount would
2516  * now drop to zero, and it would be freed.
2517  */
2518 void rproc_free(struct rproc *rproc)
2519 {
2520 	put_device(&rproc->dev);
2521 }
2522 EXPORT_SYMBOL(rproc_free);
2523 
2524 /**
2525  * rproc_put() - release rproc reference
2526  * @rproc: the remote processor handle
2527  *
2528  * This function decrements the rproc dev refcount.
2529  *
2530  * If no one holds any reference to rproc anymore, then its refcount would
2531  * now drop to zero, and it would be freed.
2532  */
2533 void rproc_put(struct rproc *rproc)
2534 {
2535 	module_put(rproc->dev.parent->driver->owner);
2536 	put_device(&rproc->dev);
2537 }
2538 EXPORT_SYMBOL(rproc_put);
2539 
2540 /**
2541  * rproc_del() - unregister a remote processor
2542  * @rproc: rproc handle to unregister
2543  *
2544  * This function should be called when the platform specific rproc
2545  * implementation decides to remove the rproc device. it should
2546  * _only_ be called if a previous invocation of rproc_add()
2547  * has completed successfully.
2548  *
2549  * After rproc_del() returns, @rproc isn't freed yet, because
2550  * of the outstanding reference created by rproc_alloc. To decrement that
2551  * one last refcount, one still needs to call rproc_free().
2552  *
2553  * Return: 0 on success and -EINVAL if @rproc isn't valid
2554  */
2555 int rproc_del(struct rproc *rproc)
2556 {
2557 	if (!rproc)
2558 		return -EINVAL;
2559 
2560 	/* TODO: make sure this works with rproc->power > 1 */
2561 	rproc_shutdown(rproc);
2562 
2563 	mutex_lock(&rproc->lock);
2564 	rproc->state = RPROC_DELETED;
2565 	mutex_unlock(&rproc->lock);
2566 
2567 	rproc_delete_debug_dir(rproc);
2568 
2569 	/* the rproc is downref'ed as soon as it's removed from the klist */
2570 	mutex_lock(&rproc_list_mutex);
2571 	list_del_rcu(&rproc->node);
2572 	mutex_unlock(&rproc_list_mutex);
2573 
2574 	/* Ensure that no readers of rproc_list are still active */
2575 	synchronize_rcu();
2576 
2577 	device_del(&rproc->dev);
2578 	rproc_char_device_remove(rproc);
2579 
2580 	return 0;
2581 }
2582 EXPORT_SYMBOL(rproc_del);
2583 
2584 static void devm_rproc_free(struct device *dev, void *res)
2585 {
2586 	rproc_free(*(struct rproc **)res);
2587 }
2588 
2589 /**
2590  * devm_rproc_alloc() - resource managed rproc_alloc()
2591  * @dev: the underlying device
2592  * @name: name of this remote processor
2593  * @ops: platform-specific handlers (mainly start/stop)
2594  * @firmware: name of firmware file to load, can be NULL
2595  * @len: length of private data needed by the rproc driver (in bytes)
2596  *
2597  * This function performs like rproc_alloc() but the acquired rproc device will
2598  * automatically be released on driver detach.
2599  *
2600  * Return: new rproc instance, or NULL on failure
2601  */
2602 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2603 			       const struct rproc_ops *ops,
2604 			       const char *firmware, int len)
2605 {
2606 	struct rproc **ptr, *rproc;
2607 
2608 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2609 	if (!ptr)
2610 		return NULL;
2611 
2612 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2613 	if (rproc) {
2614 		*ptr = rproc;
2615 		devres_add(dev, ptr);
2616 	} else {
2617 		devres_free(ptr);
2618 	}
2619 
2620 	return rproc;
2621 }
2622 EXPORT_SYMBOL(devm_rproc_alloc);
2623 
2624 /**
2625  * rproc_add_subdev() - add a subdevice to a remoteproc
2626  * @rproc: rproc handle to add the subdevice to
2627  * @subdev: subdev handle to register
2628  *
2629  * Caller is responsible for populating optional subdevice function pointers.
2630  */
2631 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2632 {
2633 	list_add_tail(&subdev->node, &rproc->subdevs);
2634 }
2635 EXPORT_SYMBOL(rproc_add_subdev);
2636 
2637 /**
2638  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2639  * @rproc: rproc handle to remove the subdevice from
2640  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2641  */
2642 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2643 {
2644 	list_del(&subdev->node);
2645 }
2646 EXPORT_SYMBOL(rproc_remove_subdev);
2647 
2648 /**
2649  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2650  * @dev:	child device to find ancestor of
2651  *
2652  * Return: the ancestor rproc instance, or NULL if not found
2653  */
2654 struct rproc *rproc_get_by_child(struct device *dev)
2655 {
2656 	for (dev = dev->parent; dev; dev = dev->parent) {
2657 		if (dev->type == &rproc_type)
2658 			return dev->driver_data;
2659 	}
2660 
2661 	return NULL;
2662 }
2663 EXPORT_SYMBOL(rproc_get_by_child);
2664 
2665 /**
2666  * rproc_report_crash() - rproc crash reporter function
2667  * @rproc: remote processor
2668  * @type: crash type
2669  *
2670  * This function must be called every time a crash is detected by the low-level
2671  * drivers implementing a specific remoteproc. This should not be called from a
2672  * non-remoteproc driver.
2673  *
2674  * This function can be called from atomic/interrupt context.
2675  */
2676 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2677 {
2678 	if (!rproc) {
2679 		pr_err("NULL rproc pointer\n");
2680 		return;
2681 	}
2682 
2683 	/* Prevent suspend while the remoteproc is being recovered */
2684 	pm_stay_awake(rproc->dev.parent);
2685 
2686 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2687 		rproc->name, rproc_crash_to_string(type));
2688 
2689 	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2690 }
2691 EXPORT_SYMBOL(rproc_report_crash);
2692 
2693 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2694 			       void *ptr)
2695 {
2696 	unsigned int longest = 0;
2697 	struct rproc *rproc;
2698 	unsigned int d;
2699 
2700 	rcu_read_lock();
2701 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2702 		if (!rproc->ops->panic)
2703 			continue;
2704 
2705 		if (rproc->state != RPROC_RUNNING &&
2706 		    rproc->state != RPROC_ATTACHED)
2707 			continue;
2708 
2709 		d = rproc->ops->panic(rproc);
2710 		longest = max(longest, d);
2711 	}
2712 	rcu_read_unlock();
2713 
2714 	/*
2715 	 * Delay for the longest requested duration before returning. This can
2716 	 * be used by the remoteproc drivers to give the remote processor time
2717 	 * to perform any requested operations (such as flush caches), when
2718 	 * it's not possible to signal the Linux side due to the panic.
2719 	 */
2720 	mdelay(longest);
2721 
2722 	return NOTIFY_DONE;
2723 }
2724 
2725 static void __init rproc_init_panic(void)
2726 {
2727 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2728 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2729 }
2730 
2731 static void __exit rproc_exit_panic(void)
2732 {
2733 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2734 }
2735 
2736 static int __init remoteproc_init(void)
2737 {
2738 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2739 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2740 	if (!rproc_recovery_wq) {
2741 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2742 		return -ENOMEM;
2743 	}
2744 
2745 	rproc_init_sysfs();
2746 	rproc_init_debugfs();
2747 	rproc_init_cdev();
2748 	rproc_init_panic();
2749 
2750 	return 0;
2751 }
2752 subsys_initcall(remoteproc_init);
2753 
2754 static void __exit remoteproc_exit(void)
2755 {
2756 	ida_destroy(&rproc_dev_index);
2757 
2758 	if (!rproc_recovery_wq)
2759 		return;
2760 
2761 	rproc_exit_panic();
2762 	rproc_exit_debugfs();
2763 	rproc_exit_sysfs();
2764 	destroy_workqueue(rproc_recovery_wq);
2765 }
2766 module_exit(remoteproc_exit);
2767 
2768 MODULE_LICENSE("GPL v2");
2769 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2770