1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/mutex.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/firmware.h> 27 #include <linux/string.h> 28 #include <linux/debugfs.h> 29 #include <linux/rculist.h> 30 #include <linux/remoteproc.h> 31 #include <linux/iommu.h> 32 #include <linux/idr.h> 33 #include <linux/elf.h> 34 #include <linux/crc32.h> 35 #include <linux/of_reserved_mem.h> 36 #include <linux/virtio_ids.h> 37 #include <linux/virtio_ring.h> 38 #include <asm/byteorder.h> 39 #include <linux/platform_device.h> 40 41 #include "remoteproc_internal.h" 42 43 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 44 45 static DEFINE_MUTEX(rproc_list_mutex); 46 static LIST_HEAD(rproc_list); 47 static struct notifier_block rproc_panic_nb; 48 49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 50 void *, int offset, int avail); 51 52 static int rproc_alloc_carveout(struct rproc *rproc, 53 struct rproc_mem_entry *mem); 54 static int rproc_release_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56 57 /* Unique indices for remoteproc devices */ 58 static DEFINE_IDA(rproc_dev_index); 59 60 static const char * const rproc_crash_names[] = { 61 [RPROC_MMUFAULT] = "mmufault", 62 [RPROC_WATCHDOG] = "watchdog", 63 [RPROC_FATAL_ERROR] = "fatal error", 64 }; 65 66 /* translate rproc_crash_type to string */ 67 static const char *rproc_crash_to_string(enum rproc_crash_type type) 68 { 69 if (type < ARRAY_SIZE(rproc_crash_names)) 70 return rproc_crash_names[type]; 71 return "unknown"; 72 } 73 74 /* 75 * This is the IOMMU fault handler we register with the IOMMU API 76 * (when relevant; not all remote processors access memory through 77 * an IOMMU). 78 * 79 * IOMMU core will invoke this handler whenever the remote processor 80 * will try to access an unmapped device address. 81 */ 82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 83 unsigned long iova, int flags, void *token) 84 { 85 struct rproc *rproc = token; 86 87 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 88 89 rproc_report_crash(rproc, RPROC_MMUFAULT); 90 91 /* 92 * Let the iommu core know we're not really handling this fault; 93 * we just used it as a recovery trigger. 94 */ 95 return -ENOSYS; 96 } 97 98 static int rproc_enable_iommu(struct rproc *rproc) 99 { 100 struct iommu_domain *domain; 101 struct device *dev = rproc->dev.parent; 102 int ret; 103 104 if (!rproc->has_iommu) { 105 dev_dbg(dev, "iommu not present\n"); 106 return 0; 107 } 108 109 domain = iommu_domain_alloc(dev->bus); 110 if (!domain) { 111 dev_err(dev, "can't alloc iommu domain\n"); 112 return -ENOMEM; 113 } 114 115 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 116 117 ret = iommu_attach_device(domain, dev); 118 if (ret) { 119 dev_err(dev, "can't attach iommu device: %d\n", ret); 120 goto free_domain; 121 } 122 123 rproc->domain = domain; 124 125 return 0; 126 127 free_domain: 128 iommu_domain_free(domain); 129 return ret; 130 } 131 132 static void rproc_disable_iommu(struct rproc *rproc) 133 { 134 struct iommu_domain *domain = rproc->domain; 135 struct device *dev = rproc->dev.parent; 136 137 if (!domain) 138 return; 139 140 iommu_detach_device(domain, dev); 141 iommu_domain_free(domain); 142 } 143 144 phys_addr_t rproc_va_to_pa(void *cpu_addr) 145 { 146 /* 147 * Return physical address according to virtual address location 148 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 149 * - in kernel: if region allocated in generic dma memory pool 150 */ 151 if (is_vmalloc_addr(cpu_addr)) { 152 return page_to_phys(vmalloc_to_page(cpu_addr)) + 153 offset_in_page(cpu_addr); 154 } 155 156 WARN_ON(!virt_addr_valid(cpu_addr)); 157 return virt_to_phys(cpu_addr); 158 } 159 EXPORT_SYMBOL(rproc_va_to_pa); 160 161 /** 162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 163 * @rproc: handle of a remote processor 164 * @da: remoteproc device address to translate 165 * @len: length of the memory region @da is pointing to 166 * 167 * Some remote processors will ask us to allocate them physically contiguous 168 * memory regions (which we call "carveouts"), and map them to specific 169 * device addresses (which are hardcoded in the firmware). They may also have 170 * dedicated memory regions internal to the processors, and use them either 171 * exclusively or alongside carveouts. 172 * 173 * They may then ask us to copy objects into specific device addresses (e.g. 174 * code/data sections) or expose us certain symbols in other device address 175 * (e.g. their trace buffer). 176 * 177 * This function is a helper function with which we can go over the allocated 178 * carveouts and translate specific device addresses to kernel virtual addresses 179 * so we can access the referenced memory. This function also allows to perform 180 * translations on the internal remoteproc memory regions through a platform 181 * implementation specific da_to_va ops, if present. 182 * 183 * The function returns a valid kernel address on success or NULL on failure. 184 * 185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 186 * but only on kernel direct mapped RAM memory. Instead, we're just using 187 * here the output of the DMA API for the carveouts, which should be more 188 * correct. 189 */ 190 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 191 { 192 struct rproc_mem_entry *carveout; 193 void *ptr = NULL; 194 195 if (rproc->ops->da_to_va) { 196 ptr = rproc->ops->da_to_va(rproc, da, len); 197 if (ptr) 198 goto out; 199 } 200 201 list_for_each_entry(carveout, &rproc->carveouts, node) { 202 int offset = da - carveout->da; 203 204 /* Verify that carveout is allocated */ 205 if (!carveout->va) 206 continue; 207 208 /* try next carveout if da is too small */ 209 if (offset < 0) 210 continue; 211 212 /* try next carveout if da is too large */ 213 if (offset + len > carveout->len) 214 continue; 215 216 ptr = carveout->va + offset; 217 218 break; 219 } 220 221 out: 222 return ptr; 223 } 224 EXPORT_SYMBOL(rproc_da_to_va); 225 226 /** 227 * rproc_find_carveout_by_name() - lookup the carveout region by a name 228 * @rproc: handle of a remote processor 229 * @name: carveout name to find (format string) 230 * @...: optional parameters matching @name string 231 * 232 * Platform driver has the capability to register some pre-allacoted carveout 233 * (physically contiguous memory regions) before rproc firmware loading and 234 * associated resource table analysis. These regions may be dedicated memory 235 * regions internal to the coprocessor or specified DDR region with specific 236 * attributes 237 * 238 * This function is a helper function with which we can go over the 239 * allocated carveouts and return associated region characteristics like 240 * coprocessor address, length or processor virtual address. 241 * 242 * Return: a valid pointer on carveout entry on success or NULL on failure. 243 */ 244 __printf(2, 3) 245 struct rproc_mem_entry * 246 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 247 { 248 va_list args; 249 char _name[32]; 250 struct rproc_mem_entry *carveout, *mem = NULL; 251 252 if (!name) 253 return NULL; 254 255 va_start(args, name); 256 vsnprintf(_name, sizeof(_name), name, args); 257 va_end(args); 258 259 list_for_each_entry(carveout, &rproc->carveouts, node) { 260 /* Compare carveout and requested names */ 261 if (!strcmp(carveout->name, _name)) { 262 mem = carveout; 263 break; 264 } 265 } 266 267 return mem; 268 } 269 270 /** 271 * rproc_check_carveout_da() - Check specified carveout da configuration 272 * @rproc: handle of a remote processor 273 * @mem: pointer on carveout to check 274 * @da: area device address 275 * @len: associated area size 276 * 277 * This function is a helper function to verify requested device area (couple 278 * da, len) is part of specified carveout. 279 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 280 * checked. 281 * 282 * Return: 0 if carveout matches request else error 283 */ 284 static int rproc_check_carveout_da(struct rproc *rproc, 285 struct rproc_mem_entry *mem, u32 da, u32 len) 286 { 287 struct device *dev = &rproc->dev; 288 int delta; 289 290 /* Check requested resource length */ 291 if (len > mem->len) { 292 dev_err(dev, "Registered carveout doesn't fit len request\n"); 293 return -EINVAL; 294 } 295 296 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 297 /* Address doesn't match registered carveout configuration */ 298 return -EINVAL; 299 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 300 delta = da - mem->da; 301 302 /* Check requested resource belongs to registered carveout */ 303 if (delta < 0) { 304 dev_err(dev, 305 "Registered carveout doesn't fit da request\n"); 306 return -EINVAL; 307 } 308 309 if (delta + len > mem->len) { 310 dev_err(dev, 311 "Registered carveout doesn't fit len request\n"); 312 return -EINVAL; 313 } 314 } 315 316 return 0; 317 } 318 319 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 320 { 321 struct rproc *rproc = rvdev->rproc; 322 struct device *dev = &rproc->dev; 323 struct rproc_vring *rvring = &rvdev->vring[i]; 324 struct fw_rsc_vdev *rsc; 325 int ret, notifyid; 326 struct rproc_mem_entry *mem; 327 size_t size; 328 329 /* actual size of vring (in bytes) */ 330 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 331 332 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 333 334 /* Search for pre-registered carveout */ 335 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 336 i); 337 if (mem) { 338 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 339 return -ENOMEM; 340 } else { 341 /* Register carveout in in list */ 342 mem = rproc_mem_entry_init(dev, NULL, 0, 343 size, rsc->vring[i].da, 344 rproc_alloc_carveout, 345 rproc_release_carveout, 346 "vdev%dvring%d", 347 rvdev->index, i); 348 if (!mem) { 349 dev_err(dev, "Can't allocate memory entry structure\n"); 350 return -ENOMEM; 351 } 352 353 rproc_add_carveout(rproc, mem); 354 } 355 356 /* 357 * Assign an rproc-wide unique index for this vring 358 * TODO: assign a notifyid for rvdev updates as well 359 * TODO: support predefined notifyids (via resource table) 360 */ 361 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 362 if (ret < 0) { 363 dev_err(dev, "idr_alloc failed: %d\n", ret); 364 return ret; 365 } 366 notifyid = ret; 367 368 /* Potentially bump max_notifyid */ 369 if (notifyid > rproc->max_notifyid) 370 rproc->max_notifyid = notifyid; 371 372 rvring->notifyid = notifyid; 373 374 /* Let the rproc know the notifyid of this vring.*/ 375 rsc->vring[i].notifyid = notifyid; 376 return 0; 377 } 378 379 static int 380 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 381 { 382 struct rproc *rproc = rvdev->rproc; 383 struct device *dev = &rproc->dev; 384 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 385 struct rproc_vring *rvring = &rvdev->vring[i]; 386 387 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 388 i, vring->da, vring->num, vring->align); 389 390 /* verify queue size and vring alignment are sane */ 391 if (!vring->num || !vring->align) { 392 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 393 vring->num, vring->align); 394 return -EINVAL; 395 } 396 397 rvring->len = vring->num; 398 rvring->align = vring->align; 399 rvring->rvdev = rvdev; 400 401 return 0; 402 } 403 404 void rproc_free_vring(struct rproc_vring *rvring) 405 { 406 struct rproc *rproc = rvring->rvdev->rproc; 407 int idx = rvring - rvring->rvdev->vring; 408 struct fw_rsc_vdev *rsc; 409 410 idr_remove(&rproc->notifyids, rvring->notifyid); 411 412 /* 413 * At this point rproc_stop() has been called and the installed resource 414 * table in the remote processor memory may no longer be accessible. As 415 * such and as per rproc_stop(), rproc->table_ptr points to the cached 416 * resource table (rproc->cached_table). The cached resource table is 417 * only available when a remote processor has been booted by the 418 * remoteproc core, otherwise it is NULL. 419 * 420 * Based on the above, reset the virtio device section in the cached 421 * resource table only if there is one to work with. 422 */ 423 if (rproc->table_ptr) { 424 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 425 rsc->vring[idx].da = 0; 426 rsc->vring[idx].notifyid = -1; 427 } 428 } 429 430 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 431 { 432 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 433 434 return rproc_add_virtio_dev(rvdev, rvdev->id); 435 } 436 437 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 438 { 439 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 440 int ret; 441 442 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 443 if (ret) 444 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 445 } 446 447 /** 448 * rproc_rvdev_release() - release the existence of a rvdev 449 * 450 * @dev: the subdevice's dev 451 */ 452 static void rproc_rvdev_release(struct device *dev) 453 { 454 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 455 456 of_reserved_mem_device_release(dev); 457 458 kfree(rvdev); 459 } 460 461 /** 462 * rproc_handle_vdev() - handle a vdev fw resource 463 * @rproc: the remote processor 464 * @rsc: the vring resource descriptor 465 * @offset: offset of the resource entry 466 * @avail: size of available data (for sanity checking the image) 467 * 468 * This resource entry requests the host to statically register a virtio 469 * device (vdev), and setup everything needed to support it. It contains 470 * everything needed to make it possible: the virtio device id, virtio 471 * device features, vrings information, virtio config space, etc... 472 * 473 * Before registering the vdev, the vrings are allocated from non-cacheable 474 * physically contiguous memory. Currently we only support two vrings per 475 * remote processor (temporary limitation). We might also want to consider 476 * doing the vring allocation only later when ->find_vqs() is invoked, and 477 * then release them upon ->del_vqs(). 478 * 479 * Note: @da is currently not really handled correctly: we dynamically 480 * allocate it using the DMA API, ignoring requested hard coded addresses, 481 * and we don't take care of any required IOMMU programming. This is all 482 * going to be taken care of when the generic iommu-based DMA API will be 483 * merged. Meanwhile, statically-addressed iommu-based firmware images should 484 * use RSC_DEVMEM resource entries to map their required @da to the physical 485 * address of their base CMA region (ouch, hacky!). 486 * 487 * Returns 0 on success, or an appropriate error code otherwise 488 */ 489 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 490 int offset, int avail) 491 { 492 struct device *dev = &rproc->dev; 493 struct rproc_vdev *rvdev; 494 int i, ret; 495 char name[16]; 496 497 /* make sure resource isn't truncated */ 498 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 499 avail) { 500 dev_err(dev, "vdev rsc is truncated\n"); 501 return -EINVAL; 502 } 503 504 /* make sure reserved bytes are zeroes */ 505 if (rsc->reserved[0] || rsc->reserved[1]) { 506 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 507 return -EINVAL; 508 } 509 510 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 511 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 512 513 /* we currently support only two vrings per rvdev */ 514 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 515 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 516 return -EINVAL; 517 } 518 519 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 520 if (!rvdev) 521 return -ENOMEM; 522 523 kref_init(&rvdev->refcount); 524 525 rvdev->id = rsc->id; 526 rvdev->rproc = rproc; 527 rvdev->index = rproc->nb_vdev++; 528 529 /* Initialise vdev subdevice */ 530 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 531 rvdev->dev.parent = &rproc->dev; 532 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset; 533 rvdev->dev.release = rproc_rvdev_release; 534 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 535 dev_set_drvdata(&rvdev->dev, rvdev); 536 537 ret = device_register(&rvdev->dev); 538 if (ret) { 539 put_device(&rvdev->dev); 540 return ret; 541 } 542 /* Make device dma capable by inheriting from parent's capabilities */ 543 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 544 545 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 546 dma_get_mask(rproc->dev.parent)); 547 if (ret) { 548 dev_warn(dev, 549 "Failed to set DMA mask %llx. Trying to continue... %x\n", 550 dma_get_mask(rproc->dev.parent), ret); 551 } 552 553 /* parse the vrings */ 554 for (i = 0; i < rsc->num_of_vrings; i++) { 555 ret = rproc_parse_vring(rvdev, rsc, i); 556 if (ret) 557 goto free_rvdev; 558 } 559 560 /* remember the resource offset*/ 561 rvdev->rsc_offset = offset; 562 563 /* allocate the vring resources */ 564 for (i = 0; i < rsc->num_of_vrings; i++) { 565 ret = rproc_alloc_vring(rvdev, i); 566 if (ret) 567 goto unwind_vring_allocations; 568 } 569 570 list_add_tail(&rvdev->node, &rproc->rvdevs); 571 572 rvdev->subdev.start = rproc_vdev_do_start; 573 rvdev->subdev.stop = rproc_vdev_do_stop; 574 575 rproc_add_subdev(rproc, &rvdev->subdev); 576 577 return 0; 578 579 unwind_vring_allocations: 580 for (i--; i >= 0; i--) 581 rproc_free_vring(&rvdev->vring[i]); 582 free_rvdev: 583 device_unregister(&rvdev->dev); 584 return ret; 585 } 586 587 void rproc_vdev_release(struct kref *ref) 588 { 589 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 590 struct rproc_vring *rvring; 591 struct rproc *rproc = rvdev->rproc; 592 int id; 593 594 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 595 rvring = &rvdev->vring[id]; 596 rproc_free_vring(rvring); 597 } 598 599 rproc_remove_subdev(rproc, &rvdev->subdev); 600 list_del(&rvdev->node); 601 device_unregister(&rvdev->dev); 602 } 603 604 /** 605 * rproc_handle_trace() - handle a shared trace buffer resource 606 * @rproc: the remote processor 607 * @rsc: the trace resource descriptor 608 * @offset: offset of the resource entry 609 * @avail: size of available data (for sanity checking the image) 610 * 611 * In case the remote processor dumps trace logs into memory, 612 * export it via debugfs. 613 * 614 * Currently, the 'da' member of @rsc should contain the device address 615 * where the remote processor is dumping the traces. Later we could also 616 * support dynamically allocating this address using the generic 617 * DMA API (but currently there isn't a use case for that). 618 * 619 * Returns 0 on success, or an appropriate error code otherwise 620 */ 621 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 622 int offset, int avail) 623 { 624 struct rproc_debug_trace *trace; 625 struct device *dev = &rproc->dev; 626 char name[15]; 627 628 if (sizeof(*rsc) > avail) { 629 dev_err(dev, "trace rsc is truncated\n"); 630 return -EINVAL; 631 } 632 633 /* make sure reserved bytes are zeroes */ 634 if (rsc->reserved) { 635 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 636 return -EINVAL; 637 } 638 639 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 640 if (!trace) 641 return -ENOMEM; 642 643 /* set the trace buffer dma properties */ 644 trace->trace_mem.len = rsc->len; 645 trace->trace_mem.da = rsc->da; 646 647 /* set pointer on rproc device */ 648 trace->rproc = rproc; 649 650 /* make sure snprintf always null terminates, even if truncating */ 651 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 652 653 /* create the debugfs entry */ 654 trace->tfile = rproc_create_trace_file(name, rproc, trace); 655 if (!trace->tfile) { 656 kfree(trace); 657 return -EINVAL; 658 } 659 660 list_add_tail(&trace->node, &rproc->traces); 661 662 rproc->num_traces++; 663 664 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 665 name, rsc->da, rsc->len); 666 667 return 0; 668 } 669 670 /** 671 * rproc_handle_devmem() - handle devmem resource entry 672 * @rproc: remote processor handle 673 * @rsc: the devmem resource entry 674 * @offset: offset of the resource entry 675 * @avail: size of available data (for sanity checking the image) 676 * 677 * Remote processors commonly need to access certain on-chip peripherals. 678 * 679 * Some of these remote processors access memory via an iommu device, 680 * and might require us to configure their iommu before they can access 681 * the on-chip peripherals they need. 682 * 683 * This resource entry is a request to map such a peripheral device. 684 * 685 * These devmem entries will contain the physical address of the device in 686 * the 'pa' member. If a specific device address is expected, then 'da' will 687 * contain it (currently this is the only use case supported). 'len' will 688 * contain the size of the physical region we need to map. 689 * 690 * Currently we just "trust" those devmem entries to contain valid physical 691 * addresses, but this is going to change: we want the implementations to 692 * tell us ranges of physical addresses the firmware is allowed to request, 693 * and not allow firmwares to request access to physical addresses that 694 * are outside those ranges. 695 */ 696 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 697 int offset, int avail) 698 { 699 struct rproc_mem_entry *mapping; 700 struct device *dev = &rproc->dev; 701 int ret; 702 703 /* no point in handling this resource without a valid iommu domain */ 704 if (!rproc->domain) 705 return -EINVAL; 706 707 if (sizeof(*rsc) > avail) { 708 dev_err(dev, "devmem rsc is truncated\n"); 709 return -EINVAL; 710 } 711 712 /* make sure reserved bytes are zeroes */ 713 if (rsc->reserved) { 714 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 715 return -EINVAL; 716 } 717 718 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 719 if (!mapping) 720 return -ENOMEM; 721 722 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 723 if (ret) { 724 dev_err(dev, "failed to map devmem: %d\n", ret); 725 goto out; 726 } 727 728 /* 729 * We'll need this info later when we'll want to unmap everything 730 * (e.g. on shutdown). 731 * 732 * We can't trust the remote processor not to change the resource 733 * table, so we must maintain this info independently. 734 */ 735 mapping->da = rsc->da; 736 mapping->len = rsc->len; 737 list_add_tail(&mapping->node, &rproc->mappings); 738 739 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 740 rsc->pa, rsc->da, rsc->len); 741 742 return 0; 743 744 out: 745 kfree(mapping); 746 return ret; 747 } 748 749 /** 750 * rproc_alloc_carveout() - allocated specified carveout 751 * @rproc: rproc handle 752 * @mem: the memory entry to allocate 753 * 754 * This function allocate specified memory entry @mem using 755 * dma_alloc_coherent() as default allocator 756 */ 757 static int rproc_alloc_carveout(struct rproc *rproc, 758 struct rproc_mem_entry *mem) 759 { 760 struct rproc_mem_entry *mapping = NULL; 761 struct device *dev = &rproc->dev; 762 dma_addr_t dma; 763 void *va; 764 int ret; 765 766 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 767 if (!va) { 768 dev_err(dev->parent, 769 "failed to allocate dma memory: len 0x%zx\n", 770 mem->len); 771 return -ENOMEM; 772 } 773 774 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 775 va, &dma, mem->len); 776 777 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 778 /* 779 * Check requested da is equal to dma address 780 * and print a warn message in case of missalignment. 781 * Don't stop rproc_start sequence as coprocessor may 782 * build pa to da translation on its side. 783 */ 784 if (mem->da != (u32)dma) 785 dev_warn(dev->parent, 786 "Allocated carveout doesn't fit device address request\n"); 787 } 788 789 /* 790 * Ok, this is non-standard. 791 * 792 * Sometimes we can't rely on the generic iommu-based DMA API 793 * to dynamically allocate the device address and then set the IOMMU 794 * tables accordingly, because some remote processors might 795 * _require_ us to use hard coded device addresses that their 796 * firmware was compiled with. 797 * 798 * In this case, we must use the IOMMU API directly and map 799 * the memory to the device address as expected by the remote 800 * processor. 801 * 802 * Obviously such remote processor devices should not be configured 803 * to use the iommu-based DMA API: we expect 'dma' to contain the 804 * physical address in this case. 805 */ 806 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 807 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 808 if (!mapping) { 809 ret = -ENOMEM; 810 goto dma_free; 811 } 812 813 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 814 mem->flags); 815 if (ret) { 816 dev_err(dev, "iommu_map failed: %d\n", ret); 817 goto free_mapping; 818 } 819 820 /* 821 * We'll need this info later when we'll want to unmap 822 * everything (e.g. on shutdown). 823 * 824 * We can't trust the remote processor not to change the 825 * resource table, so we must maintain this info independently. 826 */ 827 mapping->da = mem->da; 828 mapping->len = mem->len; 829 list_add_tail(&mapping->node, &rproc->mappings); 830 831 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 832 mem->da, &dma); 833 } 834 835 if (mem->da == FW_RSC_ADDR_ANY) { 836 /* Update device address as undefined by requester */ 837 if ((u64)dma & HIGH_BITS_MASK) 838 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 839 840 mem->da = (u32)dma; 841 } 842 843 mem->dma = dma; 844 mem->va = va; 845 846 return 0; 847 848 free_mapping: 849 kfree(mapping); 850 dma_free: 851 dma_free_coherent(dev->parent, mem->len, va, dma); 852 return ret; 853 } 854 855 /** 856 * rproc_release_carveout() - release acquired carveout 857 * @rproc: rproc handle 858 * @mem: the memory entry to release 859 * 860 * This function releases specified memory entry @mem allocated via 861 * rproc_alloc_carveout() function by @rproc. 862 */ 863 static int rproc_release_carveout(struct rproc *rproc, 864 struct rproc_mem_entry *mem) 865 { 866 struct device *dev = &rproc->dev; 867 868 /* clean up carveout allocations */ 869 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 870 return 0; 871 } 872 873 /** 874 * rproc_handle_carveout() - handle phys contig memory allocation requests 875 * @rproc: rproc handle 876 * @rsc: the resource entry 877 * @offset: offset of the resource entry 878 * @avail: size of available data (for image validation) 879 * 880 * This function will handle firmware requests for allocation of physically 881 * contiguous memory regions. 882 * 883 * These request entries should come first in the firmware's resource table, 884 * as other firmware entries might request placing other data objects inside 885 * these memory regions (e.g. data/code segments, trace resource entries, ...). 886 * 887 * Allocating memory this way helps utilizing the reserved physical memory 888 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 889 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 890 * pressure is important; it may have a substantial impact on performance. 891 */ 892 static int rproc_handle_carveout(struct rproc *rproc, 893 struct fw_rsc_carveout *rsc, 894 int offset, int avail) 895 { 896 struct rproc_mem_entry *carveout; 897 struct device *dev = &rproc->dev; 898 899 if (sizeof(*rsc) > avail) { 900 dev_err(dev, "carveout rsc is truncated\n"); 901 return -EINVAL; 902 } 903 904 /* make sure reserved bytes are zeroes */ 905 if (rsc->reserved) { 906 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 907 return -EINVAL; 908 } 909 910 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 911 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 912 913 /* 914 * Check carveout rsc already part of a registered carveout, 915 * Search by name, then check the da and length 916 */ 917 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 918 919 if (carveout) { 920 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 921 dev_err(dev, 922 "Carveout already associated to resource table\n"); 923 return -ENOMEM; 924 } 925 926 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 927 return -ENOMEM; 928 929 /* Update memory carveout with resource table info */ 930 carveout->rsc_offset = offset; 931 carveout->flags = rsc->flags; 932 933 return 0; 934 } 935 936 /* Register carveout in in list */ 937 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 938 rproc_alloc_carveout, 939 rproc_release_carveout, rsc->name); 940 if (!carveout) { 941 dev_err(dev, "Can't allocate memory entry structure\n"); 942 return -ENOMEM; 943 } 944 945 carveout->flags = rsc->flags; 946 carveout->rsc_offset = offset; 947 rproc_add_carveout(rproc, carveout); 948 949 return 0; 950 } 951 952 /** 953 * rproc_add_carveout() - register an allocated carveout region 954 * @rproc: rproc handle 955 * @mem: memory entry to register 956 * 957 * This function registers specified memory entry in @rproc carveouts list. 958 * Specified carveout should have been allocated before registering. 959 */ 960 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 961 { 962 list_add_tail(&mem->node, &rproc->carveouts); 963 } 964 EXPORT_SYMBOL(rproc_add_carveout); 965 966 /** 967 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 968 * @dev: pointer on device struct 969 * @va: virtual address 970 * @dma: dma address 971 * @len: memory carveout length 972 * @da: device address 973 * @alloc: memory carveout allocation function 974 * @release: memory carveout release function 975 * @name: carveout name 976 * 977 * This function allocates a rproc_mem_entry struct and fill it with parameters 978 * provided by client. 979 */ 980 __printf(8, 9) 981 struct rproc_mem_entry * 982 rproc_mem_entry_init(struct device *dev, 983 void *va, dma_addr_t dma, size_t len, u32 da, 984 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 985 int (*release)(struct rproc *, struct rproc_mem_entry *), 986 const char *name, ...) 987 { 988 struct rproc_mem_entry *mem; 989 va_list args; 990 991 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 992 if (!mem) 993 return mem; 994 995 mem->va = va; 996 mem->dma = dma; 997 mem->da = da; 998 mem->len = len; 999 mem->alloc = alloc; 1000 mem->release = release; 1001 mem->rsc_offset = FW_RSC_ADDR_ANY; 1002 mem->of_resm_idx = -1; 1003 1004 va_start(args, name); 1005 vsnprintf(mem->name, sizeof(mem->name), name, args); 1006 va_end(args); 1007 1008 return mem; 1009 } 1010 EXPORT_SYMBOL(rproc_mem_entry_init); 1011 1012 /** 1013 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1014 * from a reserved memory phandle 1015 * @dev: pointer on device struct 1016 * @of_resm_idx: reserved memory phandle index in "memory-region" 1017 * @len: memory carveout length 1018 * @da: device address 1019 * @name: carveout name 1020 * 1021 * This function allocates a rproc_mem_entry struct and fill it with parameters 1022 * provided by client. 1023 */ 1024 __printf(5, 6) 1025 struct rproc_mem_entry * 1026 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1027 u32 da, const char *name, ...) 1028 { 1029 struct rproc_mem_entry *mem; 1030 va_list args; 1031 1032 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1033 if (!mem) 1034 return mem; 1035 1036 mem->da = da; 1037 mem->len = len; 1038 mem->rsc_offset = FW_RSC_ADDR_ANY; 1039 mem->of_resm_idx = of_resm_idx; 1040 1041 va_start(args, name); 1042 vsnprintf(mem->name, sizeof(mem->name), name, args); 1043 va_end(args); 1044 1045 return mem; 1046 } 1047 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1048 1049 /** 1050 * rproc_of_parse_firmware() - parse and return the firmware-name 1051 * @dev: pointer on device struct representing a rproc 1052 * @index: index to use for the firmware-name retrieval 1053 * @fw_name: pointer to a character string, in which the firmware 1054 * name is returned on success and unmodified otherwise. 1055 * 1056 * This is an OF helper function that parses a device's DT node for 1057 * the "firmware-name" property and returns the firmware name pointer 1058 * in @fw_name on success. 1059 * 1060 * Return: 0 on success, or an appropriate failure. 1061 */ 1062 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1063 { 1064 int ret; 1065 1066 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1067 index, fw_name); 1068 return ret ? ret : 0; 1069 } 1070 EXPORT_SYMBOL(rproc_of_parse_firmware); 1071 1072 /* 1073 * A lookup table for resource handlers. The indices are defined in 1074 * enum fw_resource_type. 1075 */ 1076 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1077 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1078 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1079 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1080 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1081 }; 1082 1083 /* handle firmware resource entries before booting the remote processor */ 1084 static int rproc_handle_resources(struct rproc *rproc, 1085 rproc_handle_resource_t handlers[RSC_LAST]) 1086 { 1087 struct device *dev = &rproc->dev; 1088 rproc_handle_resource_t handler; 1089 int ret = 0, i; 1090 1091 if (!rproc->table_ptr) 1092 return 0; 1093 1094 for (i = 0; i < rproc->table_ptr->num; i++) { 1095 int offset = rproc->table_ptr->offset[i]; 1096 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1097 int avail = rproc->table_sz - offset - sizeof(*hdr); 1098 void *rsc = (void *)hdr + sizeof(*hdr); 1099 1100 /* make sure table isn't truncated */ 1101 if (avail < 0) { 1102 dev_err(dev, "rsc table is truncated\n"); 1103 return -EINVAL; 1104 } 1105 1106 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1107 1108 if (hdr->type >= RSC_VENDOR_START && 1109 hdr->type <= RSC_VENDOR_END) { 1110 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1111 offset + sizeof(*hdr), avail); 1112 if (ret == RSC_HANDLED) 1113 continue; 1114 else if (ret < 0) 1115 break; 1116 1117 dev_warn(dev, "unsupported vendor resource %d\n", 1118 hdr->type); 1119 continue; 1120 } 1121 1122 if (hdr->type >= RSC_LAST) { 1123 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1124 continue; 1125 } 1126 1127 handler = handlers[hdr->type]; 1128 if (!handler) 1129 continue; 1130 1131 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1132 if (ret) 1133 break; 1134 } 1135 1136 return ret; 1137 } 1138 1139 static int rproc_prepare_subdevices(struct rproc *rproc) 1140 { 1141 struct rproc_subdev *subdev; 1142 int ret; 1143 1144 list_for_each_entry(subdev, &rproc->subdevs, node) { 1145 if (subdev->prepare) { 1146 ret = subdev->prepare(subdev); 1147 if (ret) 1148 goto unroll_preparation; 1149 } 1150 } 1151 1152 return 0; 1153 1154 unroll_preparation: 1155 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1156 if (subdev->unprepare) 1157 subdev->unprepare(subdev); 1158 } 1159 1160 return ret; 1161 } 1162 1163 static int rproc_start_subdevices(struct rproc *rproc) 1164 { 1165 struct rproc_subdev *subdev; 1166 int ret; 1167 1168 list_for_each_entry(subdev, &rproc->subdevs, node) { 1169 if (subdev->start) { 1170 ret = subdev->start(subdev); 1171 if (ret) 1172 goto unroll_registration; 1173 } 1174 } 1175 1176 return 0; 1177 1178 unroll_registration: 1179 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1180 if (subdev->stop) 1181 subdev->stop(subdev, true); 1182 } 1183 1184 return ret; 1185 } 1186 1187 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1188 { 1189 struct rproc_subdev *subdev; 1190 1191 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1192 if (subdev->stop) 1193 subdev->stop(subdev, crashed); 1194 } 1195 } 1196 1197 static void rproc_unprepare_subdevices(struct rproc *rproc) 1198 { 1199 struct rproc_subdev *subdev; 1200 1201 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1202 if (subdev->unprepare) 1203 subdev->unprepare(subdev); 1204 } 1205 } 1206 1207 /** 1208 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1209 * in the list 1210 * @rproc: the remote processor handle 1211 * 1212 * This function parses registered carveout list, performs allocation 1213 * if alloc() ops registered and updates resource table information 1214 * if rsc_offset set. 1215 * 1216 * Return: 0 on success 1217 */ 1218 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1219 { 1220 struct rproc_mem_entry *entry, *tmp; 1221 struct fw_rsc_carveout *rsc; 1222 struct device *dev = &rproc->dev; 1223 u64 pa; 1224 int ret; 1225 1226 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1227 if (entry->alloc) { 1228 ret = entry->alloc(rproc, entry); 1229 if (ret) { 1230 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1231 entry->name, ret); 1232 return -ENOMEM; 1233 } 1234 } 1235 1236 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1237 /* update resource table */ 1238 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1239 1240 /* 1241 * Some remote processors might need to know the pa 1242 * even though they are behind an IOMMU. E.g., OMAP4's 1243 * remote M3 processor needs this so it can control 1244 * on-chip hardware accelerators that are not behind 1245 * the IOMMU, and therefor must know the pa. 1246 * 1247 * Generally we don't want to expose physical addresses 1248 * if we don't have to (remote processors are generally 1249 * _not_ trusted), so we might want to do this only for 1250 * remote processor that _must_ have this (e.g. OMAP4's 1251 * dual M3 subsystem). 1252 * 1253 * Non-IOMMU processors might also want to have this info. 1254 * In this case, the device address and the physical address 1255 * are the same. 1256 */ 1257 1258 /* Use va if defined else dma to generate pa */ 1259 if (entry->va) 1260 pa = (u64)rproc_va_to_pa(entry->va); 1261 else 1262 pa = (u64)entry->dma; 1263 1264 if (((u64)pa) & HIGH_BITS_MASK) 1265 dev_warn(dev, 1266 "Physical address cast in 32bit to fit resource table format\n"); 1267 1268 rsc->pa = (u32)pa; 1269 rsc->da = entry->da; 1270 rsc->len = entry->len; 1271 } 1272 } 1273 1274 return 0; 1275 } 1276 1277 1278 /** 1279 * rproc_resource_cleanup() - clean up and free all acquired resources 1280 * @rproc: rproc handle 1281 * 1282 * This function will free all resources acquired for @rproc, and it 1283 * is called whenever @rproc either shuts down or fails to boot. 1284 */ 1285 void rproc_resource_cleanup(struct rproc *rproc) 1286 { 1287 struct rproc_mem_entry *entry, *tmp; 1288 struct rproc_debug_trace *trace, *ttmp; 1289 struct rproc_vdev *rvdev, *rvtmp; 1290 struct device *dev = &rproc->dev; 1291 1292 /* clean up debugfs trace entries */ 1293 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1294 rproc_remove_trace_file(trace->tfile); 1295 rproc->num_traces--; 1296 list_del(&trace->node); 1297 kfree(trace); 1298 } 1299 1300 /* clean up iommu mapping entries */ 1301 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1302 size_t unmapped; 1303 1304 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1305 if (unmapped != entry->len) { 1306 /* nothing much to do besides complaining */ 1307 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1308 unmapped); 1309 } 1310 1311 list_del(&entry->node); 1312 kfree(entry); 1313 } 1314 1315 /* clean up carveout allocations */ 1316 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1317 if (entry->release) 1318 entry->release(rproc, entry); 1319 list_del(&entry->node); 1320 kfree(entry); 1321 } 1322 1323 /* clean up remote vdev entries */ 1324 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1325 kref_put(&rvdev->refcount, rproc_vdev_release); 1326 1327 rproc_coredump_cleanup(rproc); 1328 } 1329 EXPORT_SYMBOL(rproc_resource_cleanup); 1330 1331 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1332 { 1333 struct resource_table *loaded_table; 1334 struct device *dev = &rproc->dev; 1335 int ret; 1336 1337 /* load the ELF segments to memory */ 1338 ret = rproc_load_segments(rproc, fw); 1339 if (ret) { 1340 dev_err(dev, "Failed to load program segments: %d\n", ret); 1341 return ret; 1342 } 1343 1344 /* 1345 * The starting device has been given the rproc->cached_table as the 1346 * resource table. The address of the vring along with the other 1347 * allocated resources (carveouts etc) is stored in cached_table. 1348 * In order to pass this information to the remote device we must copy 1349 * this information to device memory. We also update the table_ptr so 1350 * that any subsequent changes will be applied to the loaded version. 1351 */ 1352 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1353 if (loaded_table) { 1354 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1355 rproc->table_ptr = loaded_table; 1356 } 1357 1358 ret = rproc_prepare_subdevices(rproc); 1359 if (ret) { 1360 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1361 rproc->name, ret); 1362 goto reset_table_ptr; 1363 } 1364 1365 /* power up the remote processor */ 1366 ret = rproc->ops->start(rproc); 1367 if (ret) { 1368 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1369 goto unprepare_subdevices; 1370 } 1371 1372 /* Start any subdevices for the remote processor */ 1373 ret = rproc_start_subdevices(rproc); 1374 if (ret) { 1375 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1376 rproc->name, ret); 1377 goto stop_rproc; 1378 } 1379 1380 rproc->state = RPROC_RUNNING; 1381 1382 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1383 1384 return 0; 1385 1386 stop_rproc: 1387 rproc->ops->stop(rproc); 1388 unprepare_subdevices: 1389 rproc_unprepare_subdevices(rproc); 1390 reset_table_ptr: 1391 rproc->table_ptr = rproc->cached_table; 1392 1393 return ret; 1394 } 1395 1396 static int rproc_attach(struct rproc *rproc) 1397 { 1398 struct device *dev = &rproc->dev; 1399 int ret; 1400 1401 ret = rproc_prepare_subdevices(rproc); 1402 if (ret) { 1403 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1404 rproc->name, ret); 1405 goto out; 1406 } 1407 1408 /* Attach to the remote processor */ 1409 ret = rproc_attach_device(rproc); 1410 if (ret) { 1411 dev_err(dev, "can't attach to rproc %s: %d\n", 1412 rproc->name, ret); 1413 goto unprepare_subdevices; 1414 } 1415 1416 /* Start any subdevices for the remote processor */ 1417 ret = rproc_start_subdevices(rproc); 1418 if (ret) { 1419 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1420 rproc->name, ret); 1421 goto stop_rproc; 1422 } 1423 1424 rproc->state = RPROC_RUNNING; 1425 1426 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1427 1428 return 0; 1429 1430 stop_rproc: 1431 rproc->ops->stop(rproc); 1432 unprepare_subdevices: 1433 rproc_unprepare_subdevices(rproc); 1434 out: 1435 return ret; 1436 } 1437 1438 /* 1439 * take a firmware and boot a remote processor with it. 1440 */ 1441 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1442 { 1443 struct device *dev = &rproc->dev; 1444 const char *name = rproc->firmware; 1445 int ret; 1446 1447 ret = rproc_fw_sanity_check(rproc, fw); 1448 if (ret) 1449 return ret; 1450 1451 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1452 1453 /* 1454 * if enabling an IOMMU isn't relevant for this rproc, this is 1455 * just a nop 1456 */ 1457 ret = rproc_enable_iommu(rproc); 1458 if (ret) { 1459 dev_err(dev, "can't enable iommu: %d\n", ret); 1460 return ret; 1461 } 1462 1463 /* Prepare rproc for firmware loading if needed */ 1464 ret = rproc_prepare_device(rproc); 1465 if (ret) { 1466 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1467 goto disable_iommu; 1468 } 1469 1470 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1471 1472 /* Load resource table, core dump segment list etc from the firmware */ 1473 ret = rproc_parse_fw(rproc, fw); 1474 if (ret) 1475 goto unprepare_rproc; 1476 1477 /* reset max_notifyid */ 1478 rproc->max_notifyid = -1; 1479 1480 /* reset handled vdev */ 1481 rproc->nb_vdev = 0; 1482 1483 /* handle fw resources which are required to boot rproc */ 1484 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1485 if (ret) { 1486 dev_err(dev, "Failed to process resources: %d\n", ret); 1487 goto clean_up_resources; 1488 } 1489 1490 /* Allocate carveout resources associated to rproc */ 1491 ret = rproc_alloc_registered_carveouts(rproc); 1492 if (ret) { 1493 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1494 ret); 1495 goto clean_up_resources; 1496 } 1497 1498 ret = rproc_start(rproc, fw); 1499 if (ret) 1500 goto clean_up_resources; 1501 1502 return 0; 1503 1504 clean_up_resources: 1505 rproc_resource_cleanup(rproc); 1506 kfree(rproc->cached_table); 1507 rproc->cached_table = NULL; 1508 rproc->table_ptr = NULL; 1509 unprepare_rproc: 1510 /* release HW resources if needed */ 1511 rproc_unprepare_device(rproc); 1512 disable_iommu: 1513 rproc_disable_iommu(rproc); 1514 return ret; 1515 } 1516 1517 /* 1518 * Attach to remote processor - similar to rproc_fw_boot() but without 1519 * the steps that deal with the firmware image. 1520 */ 1521 static int rproc_actuate(struct rproc *rproc) 1522 { 1523 struct device *dev = &rproc->dev; 1524 int ret; 1525 1526 /* 1527 * if enabling an IOMMU isn't relevant for this rproc, this is 1528 * just a nop 1529 */ 1530 ret = rproc_enable_iommu(rproc); 1531 if (ret) { 1532 dev_err(dev, "can't enable iommu: %d\n", ret); 1533 return ret; 1534 } 1535 1536 /* reset max_notifyid */ 1537 rproc->max_notifyid = -1; 1538 1539 /* reset handled vdev */ 1540 rproc->nb_vdev = 0; 1541 1542 /* 1543 * Handle firmware resources required to attach to a remote processor. 1544 * Because we are attaching rather than booting the remote processor, 1545 * we expect the platform driver to properly set rproc->table_ptr. 1546 */ 1547 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1548 if (ret) { 1549 dev_err(dev, "Failed to process resources: %d\n", ret); 1550 goto disable_iommu; 1551 } 1552 1553 /* Allocate carveout resources associated to rproc */ 1554 ret = rproc_alloc_registered_carveouts(rproc); 1555 if (ret) { 1556 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1557 ret); 1558 goto clean_up_resources; 1559 } 1560 1561 ret = rproc_attach(rproc); 1562 if (ret) 1563 goto clean_up_resources; 1564 1565 return 0; 1566 1567 clean_up_resources: 1568 rproc_resource_cleanup(rproc); 1569 disable_iommu: 1570 rproc_disable_iommu(rproc); 1571 return ret; 1572 } 1573 1574 /* 1575 * take a firmware and boot it up. 1576 * 1577 * Note: this function is called asynchronously upon registration of the 1578 * remote processor (so we must wait until it completes before we try 1579 * to unregister the device. one other option is just to use kref here, 1580 * that might be cleaner). 1581 */ 1582 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1583 { 1584 struct rproc *rproc = context; 1585 1586 rproc_boot(rproc); 1587 1588 release_firmware(fw); 1589 } 1590 1591 static int rproc_trigger_auto_boot(struct rproc *rproc) 1592 { 1593 int ret; 1594 1595 /* 1596 * Since the remote processor is in a detached state, it has already 1597 * been booted by another entity. As such there is no point in waiting 1598 * for a firmware image to be loaded, we can simply initiate the process 1599 * of attaching to it immediately. 1600 */ 1601 if (rproc->state == RPROC_DETACHED) 1602 return rproc_boot(rproc); 1603 1604 /* 1605 * We're initiating an asynchronous firmware loading, so we can 1606 * be built-in kernel code, without hanging the boot process. 1607 */ 1608 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1609 rproc->firmware, &rproc->dev, GFP_KERNEL, 1610 rproc, rproc_auto_boot_callback); 1611 if (ret < 0) 1612 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1613 1614 return ret; 1615 } 1616 1617 static int rproc_stop(struct rproc *rproc, bool crashed) 1618 { 1619 struct device *dev = &rproc->dev; 1620 int ret; 1621 1622 /* Stop any subdevices for the remote processor */ 1623 rproc_stop_subdevices(rproc, crashed); 1624 1625 /* the installed resource table is no longer accessible */ 1626 rproc->table_ptr = rproc->cached_table; 1627 1628 /* power off the remote processor */ 1629 ret = rproc->ops->stop(rproc); 1630 if (ret) { 1631 dev_err(dev, "can't stop rproc: %d\n", ret); 1632 return ret; 1633 } 1634 1635 rproc_unprepare_subdevices(rproc); 1636 1637 rproc->state = RPROC_OFFLINE; 1638 1639 /* 1640 * The remote processor has been stopped and is now offline, which means 1641 * that the next time it is brought back online the remoteproc core will 1642 * be responsible to load its firmware. As such it is no longer 1643 * autonomous. 1644 */ 1645 rproc->autonomous = false; 1646 1647 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1648 1649 return 0; 1650 } 1651 1652 1653 /** 1654 * rproc_trigger_recovery() - recover a remoteproc 1655 * @rproc: the remote processor 1656 * 1657 * The recovery is done by resetting all the virtio devices, that way all the 1658 * rpmsg drivers will be reseted along with the remote processor making the 1659 * remoteproc functional again. 1660 * 1661 * This function can sleep, so it cannot be called from atomic context. 1662 */ 1663 int rproc_trigger_recovery(struct rproc *rproc) 1664 { 1665 const struct firmware *firmware_p; 1666 struct device *dev = &rproc->dev; 1667 int ret; 1668 1669 ret = mutex_lock_interruptible(&rproc->lock); 1670 if (ret) 1671 return ret; 1672 1673 /* State could have changed before we got the mutex */ 1674 if (rproc->state != RPROC_CRASHED) 1675 goto unlock_mutex; 1676 1677 dev_err(dev, "recovering %s\n", rproc->name); 1678 1679 ret = rproc_stop(rproc, true); 1680 if (ret) 1681 goto unlock_mutex; 1682 1683 /* generate coredump */ 1684 rproc_coredump(rproc); 1685 1686 /* load firmware */ 1687 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1688 if (ret < 0) { 1689 dev_err(dev, "request_firmware failed: %d\n", ret); 1690 goto unlock_mutex; 1691 } 1692 1693 /* boot the remote processor up again */ 1694 ret = rproc_start(rproc, firmware_p); 1695 1696 release_firmware(firmware_p); 1697 1698 unlock_mutex: 1699 mutex_unlock(&rproc->lock); 1700 return ret; 1701 } 1702 1703 /** 1704 * rproc_crash_handler_work() - handle a crash 1705 * @work: work treating the crash 1706 * 1707 * This function needs to handle everything related to a crash, like cpu 1708 * registers and stack dump, information to help to debug the fatal error, etc. 1709 */ 1710 static void rproc_crash_handler_work(struct work_struct *work) 1711 { 1712 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1713 struct device *dev = &rproc->dev; 1714 1715 dev_dbg(dev, "enter %s\n", __func__); 1716 1717 mutex_lock(&rproc->lock); 1718 1719 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1720 /* handle only the first crash detected */ 1721 mutex_unlock(&rproc->lock); 1722 return; 1723 } 1724 1725 rproc->state = RPROC_CRASHED; 1726 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1727 rproc->name); 1728 1729 mutex_unlock(&rproc->lock); 1730 1731 if (!rproc->recovery_disabled) 1732 rproc_trigger_recovery(rproc); 1733 1734 pm_relax(rproc->dev.parent); 1735 } 1736 1737 /** 1738 * rproc_boot() - boot a remote processor 1739 * @rproc: handle of a remote processor 1740 * 1741 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1742 * 1743 * If the remote processor is already powered on, this function immediately 1744 * returns (successfully). 1745 * 1746 * Returns 0 on success, and an appropriate error value otherwise. 1747 */ 1748 int rproc_boot(struct rproc *rproc) 1749 { 1750 const struct firmware *firmware_p; 1751 struct device *dev; 1752 int ret; 1753 1754 if (!rproc) { 1755 pr_err("invalid rproc handle\n"); 1756 return -EINVAL; 1757 } 1758 1759 dev = &rproc->dev; 1760 1761 ret = mutex_lock_interruptible(&rproc->lock); 1762 if (ret) { 1763 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1764 return ret; 1765 } 1766 1767 if (rproc->state == RPROC_DELETED) { 1768 ret = -ENODEV; 1769 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1770 goto unlock_mutex; 1771 } 1772 1773 /* skip the boot or attach process if rproc is already powered up */ 1774 if (atomic_inc_return(&rproc->power) > 1) { 1775 ret = 0; 1776 goto unlock_mutex; 1777 } 1778 1779 if (rproc->state == RPROC_DETACHED) { 1780 dev_info(dev, "attaching to %s\n", rproc->name); 1781 1782 ret = rproc_actuate(rproc); 1783 } else { 1784 dev_info(dev, "powering up %s\n", rproc->name); 1785 1786 /* load firmware */ 1787 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1788 if (ret < 0) { 1789 dev_err(dev, "request_firmware failed: %d\n", ret); 1790 goto downref_rproc; 1791 } 1792 1793 ret = rproc_fw_boot(rproc, firmware_p); 1794 1795 release_firmware(firmware_p); 1796 } 1797 1798 downref_rproc: 1799 if (ret) 1800 atomic_dec(&rproc->power); 1801 unlock_mutex: 1802 mutex_unlock(&rproc->lock); 1803 return ret; 1804 } 1805 EXPORT_SYMBOL(rproc_boot); 1806 1807 /** 1808 * rproc_shutdown() - power off the remote processor 1809 * @rproc: the remote processor 1810 * 1811 * Power off a remote processor (previously booted with rproc_boot()). 1812 * 1813 * In case @rproc is still being used by an additional user(s), then 1814 * this function will just decrement the power refcount and exit, 1815 * without really powering off the device. 1816 * 1817 * Every call to rproc_boot() must (eventually) be accompanied by a call 1818 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1819 * 1820 * Notes: 1821 * - we're not decrementing the rproc's refcount, only the power refcount. 1822 * which means that the @rproc handle stays valid even after rproc_shutdown() 1823 * returns, and users can still use it with a subsequent rproc_boot(), if 1824 * needed. 1825 */ 1826 void rproc_shutdown(struct rproc *rproc) 1827 { 1828 struct device *dev = &rproc->dev; 1829 int ret; 1830 1831 ret = mutex_lock_interruptible(&rproc->lock); 1832 if (ret) { 1833 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1834 return; 1835 } 1836 1837 /* if the remote proc is still needed, bail out */ 1838 if (!atomic_dec_and_test(&rproc->power)) 1839 goto out; 1840 1841 ret = rproc_stop(rproc, false); 1842 if (ret) { 1843 atomic_inc(&rproc->power); 1844 goto out; 1845 } 1846 1847 /* clean up all acquired resources */ 1848 rproc_resource_cleanup(rproc); 1849 1850 /* release HW resources if needed */ 1851 rproc_unprepare_device(rproc); 1852 1853 rproc_disable_iommu(rproc); 1854 1855 /* Free the copy of the resource table */ 1856 kfree(rproc->cached_table); 1857 rproc->cached_table = NULL; 1858 rproc->table_ptr = NULL; 1859 out: 1860 mutex_unlock(&rproc->lock); 1861 } 1862 EXPORT_SYMBOL(rproc_shutdown); 1863 1864 /** 1865 * rproc_get_by_phandle() - find a remote processor by phandle 1866 * @phandle: phandle to the rproc 1867 * 1868 * Finds an rproc handle using the remote processor's phandle, and then 1869 * return a handle to the rproc. 1870 * 1871 * This function increments the remote processor's refcount, so always 1872 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1873 * 1874 * Returns the rproc handle on success, and NULL on failure. 1875 */ 1876 #ifdef CONFIG_OF 1877 struct rproc *rproc_get_by_phandle(phandle phandle) 1878 { 1879 struct rproc *rproc = NULL, *r; 1880 struct device_node *np; 1881 1882 np = of_find_node_by_phandle(phandle); 1883 if (!np) 1884 return NULL; 1885 1886 rcu_read_lock(); 1887 list_for_each_entry_rcu(r, &rproc_list, node) { 1888 if (r->dev.parent && r->dev.parent->of_node == np) { 1889 /* prevent underlying implementation from being removed */ 1890 if (!try_module_get(r->dev.parent->driver->owner)) { 1891 dev_err(&r->dev, "can't get owner\n"); 1892 break; 1893 } 1894 1895 rproc = r; 1896 get_device(&rproc->dev); 1897 break; 1898 } 1899 } 1900 rcu_read_unlock(); 1901 1902 of_node_put(np); 1903 1904 return rproc; 1905 } 1906 #else 1907 struct rproc *rproc_get_by_phandle(phandle phandle) 1908 { 1909 return NULL; 1910 } 1911 #endif 1912 EXPORT_SYMBOL(rproc_get_by_phandle); 1913 1914 static int rproc_validate(struct rproc *rproc) 1915 { 1916 switch (rproc->state) { 1917 case RPROC_OFFLINE: 1918 /* 1919 * An offline processor without a start() 1920 * function makes no sense. 1921 */ 1922 if (!rproc->ops->start) 1923 return -EINVAL; 1924 break; 1925 case RPROC_DETACHED: 1926 /* 1927 * A remote processor in a detached state without an 1928 * attach() function makes not sense. 1929 */ 1930 if (!rproc->ops->attach) 1931 return -EINVAL; 1932 /* 1933 * When attaching to a remote processor the device memory 1934 * is already available and as such there is no need to have a 1935 * cached table. 1936 */ 1937 if (rproc->cached_table) 1938 return -EINVAL; 1939 break; 1940 default: 1941 /* 1942 * When adding a remote processor, the state of the device 1943 * can be offline or detached, nothing else. 1944 */ 1945 return -EINVAL; 1946 } 1947 1948 return 0; 1949 } 1950 1951 /** 1952 * rproc_add() - register a remote processor 1953 * @rproc: the remote processor handle to register 1954 * 1955 * Registers @rproc with the remoteproc framework, after it has been 1956 * allocated with rproc_alloc(). 1957 * 1958 * This is called by the platform-specific rproc implementation, whenever 1959 * a new remote processor device is probed. 1960 * 1961 * Returns 0 on success and an appropriate error code otherwise. 1962 * 1963 * Note: this function initiates an asynchronous firmware loading 1964 * context, which will look for virtio devices supported by the rproc's 1965 * firmware. 1966 * 1967 * If found, those virtio devices will be created and added, so as a result 1968 * of registering this remote processor, additional virtio drivers might be 1969 * probed. 1970 */ 1971 int rproc_add(struct rproc *rproc) 1972 { 1973 struct device *dev = &rproc->dev; 1974 int ret; 1975 1976 ret = device_add(dev); 1977 if (ret < 0) 1978 return ret; 1979 1980 ret = rproc_validate(rproc); 1981 if (ret < 0) 1982 return ret; 1983 1984 dev_info(dev, "%s is available\n", rproc->name); 1985 1986 /* create debugfs entries */ 1987 rproc_create_debug_dir(rproc); 1988 1989 /* add char device for this remoteproc */ 1990 ret = rproc_char_device_add(rproc); 1991 if (ret < 0) 1992 return ret; 1993 1994 /* 1995 * Remind ourselves the remote processor has been attached to rather 1996 * than booted by the remoteproc core. This is important because the 1997 * RPROC_DETACHED state will be lost as soon as the remote processor 1998 * has been attached to. Used in firmware_show() and reset in 1999 * rproc_stop(). 2000 */ 2001 if (rproc->state == RPROC_DETACHED) 2002 rproc->autonomous = true; 2003 2004 /* if rproc is marked always-on, request it to boot */ 2005 if (rproc->auto_boot) { 2006 ret = rproc_trigger_auto_boot(rproc); 2007 if (ret < 0) 2008 return ret; 2009 } 2010 2011 /* expose to rproc_get_by_phandle users */ 2012 mutex_lock(&rproc_list_mutex); 2013 list_add_rcu(&rproc->node, &rproc_list); 2014 mutex_unlock(&rproc_list_mutex); 2015 2016 return 0; 2017 } 2018 EXPORT_SYMBOL(rproc_add); 2019 2020 static void devm_rproc_remove(void *rproc) 2021 { 2022 rproc_del(rproc); 2023 } 2024 2025 /** 2026 * devm_rproc_add() - resource managed rproc_add() 2027 * @dev: the underlying device 2028 * @rproc: the remote processor handle to register 2029 * 2030 * This function performs like rproc_add() but the registered rproc device will 2031 * automatically be removed on driver detach. 2032 * 2033 * Returns: 0 on success, negative errno on failure 2034 */ 2035 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2036 { 2037 int err; 2038 2039 err = rproc_add(rproc); 2040 if (err) 2041 return err; 2042 2043 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2044 } 2045 EXPORT_SYMBOL(devm_rproc_add); 2046 2047 /** 2048 * rproc_type_release() - release a remote processor instance 2049 * @dev: the rproc's device 2050 * 2051 * This function should _never_ be called directly. 2052 * 2053 * It will be called by the driver core when no one holds a valid pointer 2054 * to @dev anymore. 2055 */ 2056 static void rproc_type_release(struct device *dev) 2057 { 2058 struct rproc *rproc = container_of(dev, struct rproc, dev); 2059 2060 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2061 2062 idr_destroy(&rproc->notifyids); 2063 2064 if (rproc->index >= 0) 2065 ida_simple_remove(&rproc_dev_index, rproc->index); 2066 2067 kfree_const(rproc->firmware); 2068 kfree_const(rproc->name); 2069 kfree(rproc->ops); 2070 kfree(rproc); 2071 } 2072 2073 static const struct device_type rproc_type = { 2074 .name = "remoteproc", 2075 .release = rproc_type_release, 2076 }; 2077 2078 static int rproc_alloc_firmware(struct rproc *rproc, 2079 const char *name, const char *firmware) 2080 { 2081 const char *p; 2082 2083 /* 2084 * Allocate a firmware name if the caller gave us one to work 2085 * with. Otherwise construct a new one using a default pattern. 2086 */ 2087 if (firmware) 2088 p = kstrdup_const(firmware, GFP_KERNEL); 2089 else 2090 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2091 2092 if (!p) 2093 return -ENOMEM; 2094 2095 rproc->firmware = p; 2096 2097 return 0; 2098 } 2099 2100 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2101 { 2102 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2103 if (!rproc->ops) 2104 return -ENOMEM; 2105 2106 if (rproc->ops->load) 2107 return 0; 2108 2109 /* Default to ELF loader if no load function is specified */ 2110 rproc->ops->load = rproc_elf_load_segments; 2111 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2112 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2113 rproc->ops->sanity_check = rproc_elf_sanity_check; 2114 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2115 2116 return 0; 2117 } 2118 2119 /** 2120 * rproc_alloc() - allocate a remote processor handle 2121 * @dev: the underlying device 2122 * @name: name of this remote processor 2123 * @ops: platform-specific handlers (mainly start/stop) 2124 * @firmware: name of firmware file to load, can be NULL 2125 * @len: length of private data needed by the rproc driver (in bytes) 2126 * 2127 * Allocates a new remote processor handle, but does not register 2128 * it yet. if @firmware is NULL, a default name is used. 2129 * 2130 * This function should be used by rproc implementations during initialization 2131 * of the remote processor. 2132 * 2133 * After creating an rproc handle using this function, and when ready, 2134 * implementations should then call rproc_add() to complete 2135 * the registration of the remote processor. 2136 * 2137 * On success the new rproc is returned, and on failure, NULL. 2138 * 2139 * Note: _never_ directly deallocate @rproc, even if it was not registered 2140 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2141 */ 2142 struct rproc *rproc_alloc(struct device *dev, const char *name, 2143 const struct rproc_ops *ops, 2144 const char *firmware, int len) 2145 { 2146 struct rproc *rproc; 2147 2148 if (!dev || !name || !ops) 2149 return NULL; 2150 2151 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2152 if (!rproc) 2153 return NULL; 2154 2155 rproc->priv = &rproc[1]; 2156 rproc->auto_boot = true; 2157 rproc->elf_class = ELFCLASSNONE; 2158 rproc->elf_machine = EM_NONE; 2159 2160 device_initialize(&rproc->dev); 2161 rproc->dev.parent = dev; 2162 rproc->dev.type = &rproc_type; 2163 rproc->dev.class = &rproc_class; 2164 rproc->dev.driver_data = rproc; 2165 idr_init(&rproc->notifyids); 2166 2167 rproc->name = kstrdup_const(name, GFP_KERNEL); 2168 if (!rproc->name) 2169 goto put_device; 2170 2171 if (rproc_alloc_firmware(rproc, name, firmware)) 2172 goto put_device; 2173 2174 if (rproc_alloc_ops(rproc, ops)) 2175 goto put_device; 2176 2177 /* Assign a unique device index and name */ 2178 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2179 if (rproc->index < 0) { 2180 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2181 goto put_device; 2182 } 2183 2184 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2185 2186 atomic_set(&rproc->power, 0); 2187 2188 mutex_init(&rproc->lock); 2189 2190 INIT_LIST_HEAD(&rproc->carveouts); 2191 INIT_LIST_HEAD(&rproc->mappings); 2192 INIT_LIST_HEAD(&rproc->traces); 2193 INIT_LIST_HEAD(&rproc->rvdevs); 2194 INIT_LIST_HEAD(&rproc->subdevs); 2195 INIT_LIST_HEAD(&rproc->dump_segments); 2196 2197 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2198 2199 rproc->state = RPROC_OFFLINE; 2200 2201 return rproc; 2202 2203 put_device: 2204 put_device(&rproc->dev); 2205 return NULL; 2206 } 2207 EXPORT_SYMBOL(rproc_alloc); 2208 2209 /** 2210 * rproc_free() - unroll rproc_alloc() 2211 * @rproc: the remote processor handle 2212 * 2213 * This function decrements the rproc dev refcount. 2214 * 2215 * If no one holds any reference to rproc anymore, then its refcount would 2216 * now drop to zero, and it would be freed. 2217 */ 2218 void rproc_free(struct rproc *rproc) 2219 { 2220 put_device(&rproc->dev); 2221 } 2222 EXPORT_SYMBOL(rproc_free); 2223 2224 /** 2225 * rproc_put() - release rproc reference 2226 * @rproc: the remote processor handle 2227 * 2228 * This function decrements the rproc dev refcount. 2229 * 2230 * If no one holds any reference to rproc anymore, then its refcount would 2231 * now drop to zero, and it would be freed. 2232 */ 2233 void rproc_put(struct rproc *rproc) 2234 { 2235 module_put(rproc->dev.parent->driver->owner); 2236 put_device(&rproc->dev); 2237 } 2238 EXPORT_SYMBOL(rproc_put); 2239 2240 /** 2241 * rproc_del() - unregister a remote processor 2242 * @rproc: rproc handle to unregister 2243 * 2244 * This function should be called when the platform specific rproc 2245 * implementation decides to remove the rproc device. it should 2246 * _only_ be called if a previous invocation of rproc_add() 2247 * has completed successfully. 2248 * 2249 * After rproc_del() returns, @rproc isn't freed yet, because 2250 * of the outstanding reference created by rproc_alloc. To decrement that 2251 * one last refcount, one still needs to call rproc_free(). 2252 * 2253 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2254 */ 2255 int rproc_del(struct rproc *rproc) 2256 { 2257 if (!rproc) 2258 return -EINVAL; 2259 2260 /* if rproc is marked always-on, rproc_add() booted it */ 2261 /* TODO: make sure this works with rproc->power > 1 */ 2262 if (rproc->auto_boot) 2263 rproc_shutdown(rproc); 2264 2265 mutex_lock(&rproc->lock); 2266 rproc->state = RPROC_DELETED; 2267 mutex_unlock(&rproc->lock); 2268 2269 rproc_delete_debug_dir(rproc); 2270 rproc_char_device_remove(rproc); 2271 2272 /* the rproc is downref'ed as soon as it's removed from the klist */ 2273 mutex_lock(&rproc_list_mutex); 2274 list_del_rcu(&rproc->node); 2275 mutex_unlock(&rproc_list_mutex); 2276 2277 /* Ensure that no readers of rproc_list are still active */ 2278 synchronize_rcu(); 2279 2280 device_del(&rproc->dev); 2281 2282 return 0; 2283 } 2284 EXPORT_SYMBOL(rproc_del); 2285 2286 static void devm_rproc_free(struct device *dev, void *res) 2287 { 2288 rproc_free(*(struct rproc **)res); 2289 } 2290 2291 /** 2292 * devm_rproc_alloc() - resource managed rproc_alloc() 2293 * @dev: the underlying device 2294 * @name: name of this remote processor 2295 * @ops: platform-specific handlers (mainly start/stop) 2296 * @firmware: name of firmware file to load, can be NULL 2297 * @len: length of private data needed by the rproc driver (in bytes) 2298 * 2299 * This function performs like rproc_alloc() but the acquired rproc device will 2300 * automatically be released on driver detach. 2301 * 2302 * Returns: new rproc instance, or NULL on failure 2303 */ 2304 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2305 const struct rproc_ops *ops, 2306 const char *firmware, int len) 2307 { 2308 struct rproc **ptr, *rproc; 2309 2310 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2311 if (!ptr) 2312 return NULL; 2313 2314 rproc = rproc_alloc(dev, name, ops, firmware, len); 2315 if (rproc) { 2316 *ptr = rproc; 2317 devres_add(dev, ptr); 2318 } else { 2319 devres_free(ptr); 2320 } 2321 2322 return rproc; 2323 } 2324 EXPORT_SYMBOL(devm_rproc_alloc); 2325 2326 /** 2327 * rproc_add_subdev() - add a subdevice to a remoteproc 2328 * @rproc: rproc handle to add the subdevice to 2329 * @subdev: subdev handle to register 2330 * 2331 * Caller is responsible for populating optional subdevice function pointers. 2332 */ 2333 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2334 { 2335 list_add_tail(&subdev->node, &rproc->subdevs); 2336 } 2337 EXPORT_SYMBOL(rproc_add_subdev); 2338 2339 /** 2340 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2341 * @rproc: rproc handle to remove the subdevice from 2342 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2343 */ 2344 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2345 { 2346 list_del(&subdev->node); 2347 } 2348 EXPORT_SYMBOL(rproc_remove_subdev); 2349 2350 /** 2351 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2352 * @dev: child device to find ancestor of 2353 * 2354 * Returns the ancestor rproc instance, or NULL if not found. 2355 */ 2356 struct rproc *rproc_get_by_child(struct device *dev) 2357 { 2358 for (dev = dev->parent; dev; dev = dev->parent) { 2359 if (dev->type == &rproc_type) 2360 return dev->driver_data; 2361 } 2362 2363 return NULL; 2364 } 2365 EXPORT_SYMBOL(rproc_get_by_child); 2366 2367 /** 2368 * rproc_report_crash() - rproc crash reporter function 2369 * @rproc: remote processor 2370 * @type: crash type 2371 * 2372 * This function must be called every time a crash is detected by the low-level 2373 * drivers implementing a specific remoteproc. This should not be called from a 2374 * non-remoteproc driver. 2375 * 2376 * This function can be called from atomic/interrupt context. 2377 */ 2378 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2379 { 2380 if (!rproc) { 2381 pr_err("NULL rproc pointer\n"); 2382 return; 2383 } 2384 2385 /* Prevent suspend while the remoteproc is being recovered */ 2386 pm_stay_awake(rproc->dev.parent); 2387 2388 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2389 rproc->name, rproc_crash_to_string(type)); 2390 2391 /* create a new task to handle the error */ 2392 schedule_work(&rproc->crash_handler); 2393 } 2394 EXPORT_SYMBOL(rproc_report_crash); 2395 2396 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2397 void *ptr) 2398 { 2399 unsigned int longest = 0; 2400 struct rproc *rproc; 2401 unsigned int d; 2402 2403 rcu_read_lock(); 2404 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2405 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING) 2406 continue; 2407 2408 d = rproc->ops->panic(rproc); 2409 longest = max(longest, d); 2410 } 2411 rcu_read_unlock(); 2412 2413 /* 2414 * Delay for the longest requested duration before returning. This can 2415 * be used by the remoteproc drivers to give the remote processor time 2416 * to perform any requested operations (such as flush caches), when 2417 * it's not possible to signal the Linux side due to the panic. 2418 */ 2419 mdelay(longest); 2420 2421 return NOTIFY_DONE; 2422 } 2423 2424 static void __init rproc_init_panic(void) 2425 { 2426 rproc_panic_nb.notifier_call = rproc_panic_handler; 2427 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2428 } 2429 2430 static void __exit rproc_exit_panic(void) 2431 { 2432 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2433 } 2434 2435 static int __init remoteproc_init(void) 2436 { 2437 rproc_init_sysfs(); 2438 rproc_init_debugfs(); 2439 rproc_init_cdev(); 2440 rproc_init_panic(); 2441 2442 return 0; 2443 } 2444 subsys_initcall(remoteproc_init); 2445 2446 static void __exit remoteproc_exit(void) 2447 { 2448 ida_destroy(&rproc_dev_index); 2449 2450 rproc_exit_panic(); 2451 rproc_exit_debugfs(); 2452 rproc_exit_sysfs(); 2453 } 2454 module_exit(remoteproc_exit); 2455 2456 MODULE_LICENSE("GPL v2"); 2457 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2458