1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firmware.h>
27 #include <linux/string.h>
28 #include <linux/debugfs.h>
29 #include <linux/rculist.h>
30 #include <linux/remoteproc.h>
31 #include <linux/iommu.h>
32 #include <linux/idr.h>
33 #include <linux/elf.h>
34 #include <linux/crc32.h>
35 #include <linux/of_reserved_mem.h>
36 #include <linux/virtio_ids.h>
37 #include <linux/virtio_ring.h>
38 #include <asm/byteorder.h>
39 #include <linux/platform_device.h>
40 
41 #include "remoteproc_internal.h"
42 
43 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
44 
45 static DEFINE_MUTEX(rproc_list_mutex);
46 static LIST_HEAD(rproc_list);
47 static struct notifier_block rproc_panic_nb;
48 
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 				 void *, int offset, int avail);
51 
52 static int rproc_alloc_carveout(struct rproc *rproc,
53 				struct rproc_mem_entry *mem);
54 static int rproc_release_carveout(struct rproc *rproc,
55 				  struct rproc_mem_entry *mem);
56 
57 /* Unique indices for remoteproc devices */
58 static DEFINE_IDA(rproc_dev_index);
59 
60 static const char * const rproc_crash_names[] = {
61 	[RPROC_MMUFAULT]	= "mmufault",
62 	[RPROC_WATCHDOG]	= "watchdog",
63 	[RPROC_FATAL_ERROR]	= "fatal error",
64 };
65 
66 /* translate rproc_crash_type to string */
67 static const char *rproc_crash_to_string(enum rproc_crash_type type)
68 {
69 	if (type < ARRAY_SIZE(rproc_crash_names))
70 		return rproc_crash_names[type];
71 	return "unknown";
72 }
73 
74 /*
75  * This is the IOMMU fault handler we register with the IOMMU API
76  * (when relevant; not all remote processors access memory through
77  * an IOMMU).
78  *
79  * IOMMU core will invoke this handler whenever the remote processor
80  * will try to access an unmapped device address.
81  */
82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
83 			     unsigned long iova, int flags, void *token)
84 {
85 	struct rproc *rproc = token;
86 
87 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88 
89 	rproc_report_crash(rproc, RPROC_MMUFAULT);
90 
91 	/*
92 	 * Let the iommu core know we're not really handling this fault;
93 	 * we just used it as a recovery trigger.
94 	 */
95 	return -ENOSYS;
96 }
97 
98 static int rproc_enable_iommu(struct rproc *rproc)
99 {
100 	struct iommu_domain *domain;
101 	struct device *dev = rproc->dev.parent;
102 	int ret;
103 
104 	if (!rproc->has_iommu) {
105 		dev_dbg(dev, "iommu not present\n");
106 		return 0;
107 	}
108 
109 	domain = iommu_domain_alloc(dev->bus);
110 	if (!domain) {
111 		dev_err(dev, "can't alloc iommu domain\n");
112 		return -ENOMEM;
113 	}
114 
115 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
116 
117 	ret = iommu_attach_device(domain, dev);
118 	if (ret) {
119 		dev_err(dev, "can't attach iommu device: %d\n", ret);
120 		goto free_domain;
121 	}
122 
123 	rproc->domain = domain;
124 
125 	return 0;
126 
127 free_domain:
128 	iommu_domain_free(domain);
129 	return ret;
130 }
131 
132 static void rproc_disable_iommu(struct rproc *rproc)
133 {
134 	struct iommu_domain *domain = rproc->domain;
135 	struct device *dev = rproc->dev.parent;
136 
137 	if (!domain)
138 		return;
139 
140 	iommu_detach_device(domain, dev);
141 	iommu_domain_free(domain);
142 }
143 
144 phys_addr_t rproc_va_to_pa(void *cpu_addr)
145 {
146 	/*
147 	 * Return physical address according to virtual address location
148 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
149 	 * - in kernel: if region allocated in generic dma memory pool
150 	 */
151 	if (is_vmalloc_addr(cpu_addr)) {
152 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
153 				    offset_in_page(cpu_addr);
154 	}
155 
156 	WARN_ON(!virt_addr_valid(cpu_addr));
157 	return virt_to_phys(cpu_addr);
158 }
159 EXPORT_SYMBOL(rproc_va_to_pa);
160 
161 /**
162  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
163  * @rproc: handle of a remote processor
164  * @da: remoteproc device address to translate
165  * @len: length of the memory region @da is pointing to
166  *
167  * Some remote processors will ask us to allocate them physically contiguous
168  * memory regions (which we call "carveouts"), and map them to specific
169  * device addresses (which are hardcoded in the firmware). They may also have
170  * dedicated memory regions internal to the processors, and use them either
171  * exclusively or alongside carveouts.
172  *
173  * They may then ask us to copy objects into specific device addresses (e.g.
174  * code/data sections) or expose us certain symbols in other device address
175  * (e.g. their trace buffer).
176  *
177  * This function is a helper function with which we can go over the allocated
178  * carveouts and translate specific device addresses to kernel virtual addresses
179  * so we can access the referenced memory. This function also allows to perform
180  * translations on the internal remoteproc memory regions through a platform
181  * implementation specific da_to_va ops, if present.
182  *
183  * The function returns a valid kernel address on success or NULL on failure.
184  *
185  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
186  * but only on kernel direct mapped RAM memory. Instead, we're just using
187  * here the output of the DMA API for the carveouts, which should be more
188  * correct.
189  */
190 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
191 {
192 	struct rproc_mem_entry *carveout;
193 	void *ptr = NULL;
194 
195 	if (rproc->ops->da_to_va) {
196 		ptr = rproc->ops->da_to_va(rproc, da, len);
197 		if (ptr)
198 			goto out;
199 	}
200 
201 	list_for_each_entry(carveout, &rproc->carveouts, node) {
202 		int offset = da - carveout->da;
203 
204 		/*  Verify that carveout is allocated */
205 		if (!carveout->va)
206 			continue;
207 
208 		/* try next carveout if da is too small */
209 		if (offset < 0)
210 			continue;
211 
212 		/* try next carveout if da is too large */
213 		if (offset + len > carveout->len)
214 			continue;
215 
216 		ptr = carveout->va + offset;
217 
218 		break;
219 	}
220 
221 out:
222 	return ptr;
223 }
224 EXPORT_SYMBOL(rproc_da_to_va);
225 
226 /**
227  * rproc_find_carveout_by_name() - lookup the carveout region by a name
228  * @rproc: handle of a remote processor
229  * @name: carveout name to find (format string)
230  * @...: optional parameters matching @name string
231  *
232  * Platform driver has the capability to register some pre-allacoted carveout
233  * (physically contiguous memory regions) before rproc firmware loading and
234  * associated resource table analysis. These regions may be dedicated memory
235  * regions internal to the coprocessor or specified DDR region with specific
236  * attributes
237  *
238  * This function is a helper function with which we can go over the
239  * allocated carveouts and return associated region characteristics like
240  * coprocessor address, length or processor virtual address.
241  *
242  * Return: a valid pointer on carveout entry on success or NULL on failure.
243  */
244 __printf(2, 3)
245 struct rproc_mem_entry *
246 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
247 {
248 	va_list args;
249 	char _name[32];
250 	struct rproc_mem_entry *carveout, *mem = NULL;
251 
252 	if (!name)
253 		return NULL;
254 
255 	va_start(args, name);
256 	vsnprintf(_name, sizeof(_name), name, args);
257 	va_end(args);
258 
259 	list_for_each_entry(carveout, &rproc->carveouts, node) {
260 		/* Compare carveout and requested names */
261 		if (!strcmp(carveout->name, _name)) {
262 			mem = carveout;
263 			break;
264 		}
265 	}
266 
267 	return mem;
268 }
269 
270 /**
271  * rproc_check_carveout_da() - Check specified carveout da configuration
272  * @rproc: handle of a remote processor
273  * @mem: pointer on carveout to check
274  * @da: area device address
275  * @len: associated area size
276  *
277  * This function is a helper function to verify requested device area (couple
278  * da, len) is part of specified carveout.
279  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
280  * checked.
281  *
282  * Return: 0 if carveout matches request else error
283  */
284 static int rproc_check_carveout_da(struct rproc *rproc,
285 				   struct rproc_mem_entry *mem, u32 da, u32 len)
286 {
287 	struct device *dev = &rproc->dev;
288 	int delta;
289 
290 	/* Check requested resource length */
291 	if (len > mem->len) {
292 		dev_err(dev, "Registered carveout doesn't fit len request\n");
293 		return -EINVAL;
294 	}
295 
296 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
297 		/* Address doesn't match registered carveout configuration */
298 		return -EINVAL;
299 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
300 		delta = da - mem->da;
301 
302 		/* Check requested resource belongs to registered carveout */
303 		if (delta < 0) {
304 			dev_err(dev,
305 				"Registered carveout doesn't fit da request\n");
306 			return -EINVAL;
307 		}
308 
309 		if (delta + len > mem->len) {
310 			dev_err(dev,
311 				"Registered carveout doesn't fit len request\n");
312 			return -EINVAL;
313 		}
314 	}
315 
316 	return 0;
317 }
318 
319 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
320 {
321 	struct rproc *rproc = rvdev->rproc;
322 	struct device *dev = &rproc->dev;
323 	struct rproc_vring *rvring = &rvdev->vring[i];
324 	struct fw_rsc_vdev *rsc;
325 	int ret, notifyid;
326 	struct rproc_mem_entry *mem;
327 	size_t size;
328 
329 	/* actual size of vring (in bytes) */
330 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
331 
332 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
333 
334 	/* Search for pre-registered carveout */
335 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
336 					  i);
337 	if (mem) {
338 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
339 			return -ENOMEM;
340 	} else {
341 		/* Register carveout in in list */
342 		mem = rproc_mem_entry_init(dev, NULL, 0,
343 					   size, rsc->vring[i].da,
344 					   rproc_alloc_carveout,
345 					   rproc_release_carveout,
346 					   "vdev%dvring%d",
347 					   rvdev->index, i);
348 		if (!mem) {
349 			dev_err(dev, "Can't allocate memory entry structure\n");
350 			return -ENOMEM;
351 		}
352 
353 		rproc_add_carveout(rproc, mem);
354 	}
355 
356 	/*
357 	 * Assign an rproc-wide unique index for this vring
358 	 * TODO: assign a notifyid for rvdev updates as well
359 	 * TODO: support predefined notifyids (via resource table)
360 	 */
361 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
362 	if (ret < 0) {
363 		dev_err(dev, "idr_alloc failed: %d\n", ret);
364 		return ret;
365 	}
366 	notifyid = ret;
367 
368 	/* Potentially bump max_notifyid */
369 	if (notifyid > rproc->max_notifyid)
370 		rproc->max_notifyid = notifyid;
371 
372 	rvring->notifyid = notifyid;
373 
374 	/* Let the rproc know the notifyid of this vring.*/
375 	rsc->vring[i].notifyid = notifyid;
376 	return 0;
377 }
378 
379 static int
380 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
381 {
382 	struct rproc *rproc = rvdev->rproc;
383 	struct device *dev = &rproc->dev;
384 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
385 	struct rproc_vring *rvring = &rvdev->vring[i];
386 
387 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
388 		i, vring->da, vring->num, vring->align);
389 
390 	/* verify queue size and vring alignment are sane */
391 	if (!vring->num || !vring->align) {
392 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
393 			vring->num, vring->align);
394 		return -EINVAL;
395 	}
396 
397 	rvring->len = vring->num;
398 	rvring->align = vring->align;
399 	rvring->rvdev = rvdev;
400 
401 	return 0;
402 }
403 
404 void rproc_free_vring(struct rproc_vring *rvring)
405 {
406 	struct rproc *rproc = rvring->rvdev->rproc;
407 	int idx = rvring - rvring->rvdev->vring;
408 	struct fw_rsc_vdev *rsc;
409 
410 	idr_remove(&rproc->notifyids, rvring->notifyid);
411 
412 	/*
413 	 * At this point rproc_stop() has been called and the installed resource
414 	 * table in the remote processor memory may no longer be accessible. As
415 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
416 	 * resource table (rproc->cached_table).  The cached resource table is
417 	 * only available when a remote processor has been booted by the
418 	 * remoteproc core, otherwise it is NULL.
419 	 *
420 	 * Based on the above, reset the virtio device section in the cached
421 	 * resource table only if there is one to work with.
422 	 */
423 	if (rproc->table_ptr) {
424 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
425 		rsc->vring[idx].da = 0;
426 		rsc->vring[idx].notifyid = -1;
427 	}
428 }
429 
430 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
431 {
432 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
433 
434 	return rproc_add_virtio_dev(rvdev, rvdev->id);
435 }
436 
437 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
438 {
439 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
440 	int ret;
441 
442 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
443 	if (ret)
444 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
445 }
446 
447 /**
448  * rproc_rvdev_release() - release the existence of a rvdev
449  *
450  * @dev: the subdevice's dev
451  */
452 static void rproc_rvdev_release(struct device *dev)
453 {
454 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
455 
456 	of_reserved_mem_device_release(dev);
457 
458 	kfree(rvdev);
459 }
460 
461 /**
462  * rproc_handle_vdev() - handle a vdev fw resource
463  * @rproc: the remote processor
464  * @rsc: the vring resource descriptor
465  * @offset: offset of the resource entry
466  * @avail: size of available data (for sanity checking the image)
467  *
468  * This resource entry requests the host to statically register a virtio
469  * device (vdev), and setup everything needed to support it. It contains
470  * everything needed to make it possible: the virtio device id, virtio
471  * device features, vrings information, virtio config space, etc...
472  *
473  * Before registering the vdev, the vrings are allocated from non-cacheable
474  * physically contiguous memory. Currently we only support two vrings per
475  * remote processor (temporary limitation). We might also want to consider
476  * doing the vring allocation only later when ->find_vqs() is invoked, and
477  * then release them upon ->del_vqs().
478  *
479  * Note: @da is currently not really handled correctly: we dynamically
480  * allocate it using the DMA API, ignoring requested hard coded addresses,
481  * and we don't take care of any required IOMMU programming. This is all
482  * going to be taken care of when the generic iommu-based DMA API will be
483  * merged. Meanwhile, statically-addressed iommu-based firmware images should
484  * use RSC_DEVMEM resource entries to map their required @da to the physical
485  * address of their base CMA region (ouch, hacky!).
486  *
487  * Returns 0 on success, or an appropriate error code otherwise
488  */
489 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
490 			     int offset, int avail)
491 {
492 	struct device *dev = &rproc->dev;
493 	struct rproc_vdev *rvdev;
494 	int i, ret;
495 	char name[16];
496 
497 	/* make sure resource isn't truncated */
498 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
499 			avail) {
500 		dev_err(dev, "vdev rsc is truncated\n");
501 		return -EINVAL;
502 	}
503 
504 	/* make sure reserved bytes are zeroes */
505 	if (rsc->reserved[0] || rsc->reserved[1]) {
506 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
507 		return -EINVAL;
508 	}
509 
510 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
511 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
512 
513 	/* we currently support only two vrings per rvdev */
514 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
515 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
516 		return -EINVAL;
517 	}
518 
519 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
520 	if (!rvdev)
521 		return -ENOMEM;
522 
523 	kref_init(&rvdev->refcount);
524 
525 	rvdev->id = rsc->id;
526 	rvdev->rproc = rproc;
527 	rvdev->index = rproc->nb_vdev++;
528 
529 	/* Initialise vdev subdevice */
530 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
531 	rvdev->dev.parent = &rproc->dev;
532 	rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
533 	rvdev->dev.release = rproc_rvdev_release;
534 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
535 	dev_set_drvdata(&rvdev->dev, rvdev);
536 
537 	ret = device_register(&rvdev->dev);
538 	if (ret) {
539 		put_device(&rvdev->dev);
540 		return ret;
541 	}
542 	/* Make device dma capable by inheriting from parent's capabilities */
543 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
544 
545 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
546 					   dma_get_mask(rproc->dev.parent));
547 	if (ret) {
548 		dev_warn(dev,
549 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
550 			 dma_get_mask(rproc->dev.parent), ret);
551 	}
552 
553 	/* parse the vrings */
554 	for (i = 0; i < rsc->num_of_vrings; i++) {
555 		ret = rproc_parse_vring(rvdev, rsc, i);
556 		if (ret)
557 			goto free_rvdev;
558 	}
559 
560 	/* remember the resource offset*/
561 	rvdev->rsc_offset = offset;
562 
563 	/* allocate the vring resources */
564 	for (i = 0; i < rsc->num_of_vrings; i++) {
565 		ret = rproc_alloc_vring(rvdev, i);
566 		if (ret)
567 			goto unwind_vring_allocations;
568 	}
569 
570 	list_add_tail(&rvdev->node, &rproc->rvdevs);
571 
572 	rvdev->subdev.start = rproc_vdev_do_start;
573 	rvdev->subdev.stop = rproc_vdev_do_stop;
574 
575 	rproc_add_subdev(rproc, &rvdev->subdev);
576 
577 	return 0;
578 
579 unwind_vring_allocations:
580 	for (i--; i >= 0; i--)
581 		rproc_free_vring(&rvdev->vring[i]);
582 free_rvdev:
583 	device_unregister(&rvdev->dev);
584 	return ret;
585 }
586 
587 void rproc_vdev_release(struct kref *ref)
588 {
589 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
590 	struct rproc_vring *rvring;
591 	struct rproc *rproc = rvdev->rproc;
592 	int id;
593 
594 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
595 		rvring = &rvdev->vring[id];
596 		rproc_free_vring(rvring);
597 	}
598 
599 	rproc_remove_subdev(rproc, &rvdev->subdev);
600 	list_del(&rvdev->node);
601 	device_unregister(&rvdev->dev);
602 }
603 
604 /**
605  * rproc_handle_trace() - handle a shared trace buffer resource
606  * @rproc: the remote processor
607  * @rsc: the trace resource descriptor
608  * @offset: offset of the resource entry
609  * @avail: size of available data (for sanity checking the image)
610  *
611  * In case the remote processor dumps trace logs into memory,
612  * export it via debugfs.
613  *
614  * Currently, the 'da' member of @rsc should contain the device address
615  * where the remote processor is dumping the traces. Later we could also
616  * support dynamically allocating this address using the generic
617  * DMA API (but currently there isn't a use case for that).
618  *
619  * Returns 0 on success, or an appropriate error code otherwise
620  */
621 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
622 			      int offset, int avail)
623 {
624 	struct rproc_debug_trace *trace;
625 	struct device *dev = &rproc->dev;
626 	char name[15];
627 
628 	if (sizeof(*rsc) > avail) {
629 		dev_err(dev, "trace rsc is truncated\n");
630 		return -EINVAL;
631 	}
632 
633 	/* make sure reserved bytes are zeroes */
634 	if (rsc->reserved) {
635 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
636 		return -EINVAL;
637 	}
638 
639 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
640 	if (!trace)
641 		return -ENOMEM;
642 
643 	/* set the trace buffer dma properties */
644 	trace->trace_mem.len = rsc->len;
645 	trace->trace_mem.da = rsc->da;
646 
647 	/* set pointer on rproc device */
648 	trace->rproc = rproc;
649 
650 	/* make sure snprintf always null terminates, even if truncating */
651 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
652 
653 	/* create the debugfs entry */
654 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
655 	if (!trace->tfile) {
656 		kfree(trace);
657 		return -EINVAL;
658 	}
659 
660 	list_add_tail(&trace->node, &rproc->traces);
661 
662 	rproc->num_traces++;
663 
664 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
665 		name, rsc->da, rsc->len);
666 
667 	return 0;
668 }
669 
670 /**
671  * rproc_handle_devmem() - handle devmem resource entry
672  * @rproc: remote processor handle
673  * @rsc: the devmem resource entry
674  * @offset: offset of the resource entry
675  * @avail: size of available data (for sanity checking the image)
676  *
677  * Remote processors commonly need to access certain on-chip peripherals.
678  *
679  * Some of these remote processors access memory via an iommu device,
680  * and might require us to configure their iommu before they can access
681  * the on-chip peripherals they need.
682  *
683  * This resource entry is a request to map such a peripheral device.
684  *
685  * These devmem entries will contain the physical address of the device in
686  * the 'pa' member. If a specific device address is expected, then 'da' will
687  * contain it (currently this is the only use case supported). 'len' will
688  * contain the size of the physical region we need to map.
689  *
690  * Currently we just "trust" those devmem entries to contain valid physical
691  * addresses, but this is going to change: we want the implementations to
692  * tell us ranges of physical addresses the firmware is allowed to request,
693  * and not allow firmwares to request access to physical addresses that
694  * are outside those ranges.
695  */
696 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
697 			       int offset, int avail)
698 {
699 	struct rproc_mem_entry *mapping;
700 	struct device *dev = &rproc->dev;
701 	int ret;
702 
703 	/* no point in handling this resource without a valid iommu domain */
704 	if (!rproc->domain)
705 		return -EINVAL;
706 
707 	if (sizeof(*rsc) > avail) {
708 		dev_err(dev, "devmem rsc is truncated\n");
709 		return -EINVAL;
710 	}
711 
712 	/* make sure reserved bytes are zeroes */
713 	if (rsc->reserved) {
714 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
715 		return -EINVAL;
716 	}
717 
718 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
719 	if (!mapping)
720 		return -ENOMEM;
721 
722 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
723 	if (ret) {
724 		dev_err(dev, "failed to map devmem: %d\n", ret);
725 		goto out;
726 	}
727 
728 	/*
729 	 * We'll need this info later when we'll want to unmap everything
730 	 * (e.g. on shutdown).
731 	 *
732 	 * We can't trust the remote processor not to change the resource
733 	 * table, so we must maintain this info independently.
734 	 */
735 	mapping->da = rsc->da;
736 	mapping->len = rsc->len;
737 	list_add_tail(&mapping->node, &rproc->mappings);
738 
739 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
740 		rsc->pa, rsc->da, rsc->len);
741 
742 	return 0;
743 
744 out:
745 	kfree(mapping);
746 	return ret;
747 }
748 
749 /**
750  * rproc_alloc_carveout() - allocated specified carveout
751  * @rproc: rproc handle
752  * @mem: the memory entry to allocate
753  *
754  * This function allocate specified memory entry @mem using
755  * dma_alloc_coherent() as default allocator
756  */
757 static int rproc_alloc_carveout(struct rproc *rproc,
758 				struct rproc_mem_entry *mem)
759 {
760 	struct rproc_mem_entry *mapping = NULL;
761 	struct device *dev = &rproc->dev;
762 	dma_addr_t dma;
763 	void *va;
764 	int ret;
765 
766 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
767 	if (!va) {
768 		dev_err(dev->parent,
769 			"failed to allocate dma memory: len 0x%zx\n",
770 			mem->len);
771 		return -ENOMEM;
772 	}
773 
774 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
775 		va, &dma, mem->len);
776 
777 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
778 		/*
779 		 * Check requested da is equal to dma address
780 		 * and print a warn message in case of missalignment.
781 		 * Don't stop rproc_start sequence as coprocessor may
782 		 * build pa to da translation on its side.
783 		 */
784 		if (mem->da != (u32)dma)
785 			dev_warn(dev->parent,
786 				 "Allocated carveout doesn't fit device address request\n");
787 	}
788 
789 	/*
790 	 * Ok, this is non-standard.
791 	 *
792 	 * Sometimes we can't rely on the generic iommu-based DMA API
793 	 * to dynamically allocate the device address and then set the IOMMU
794 	 * tables accordingly, because some remote processors might
795 	 * _require_ us to use hard coded device addresses that their
796 	 * firmware was compiled with.
797 	 *
798 	 * In this case, we must use the IOMMU API directly and map
799 	 * the memory to the device address as expected by the remote
800 	 * processor.
801 	 *
802 	 * Obviously such remote processor devices should not be configured
803 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
804 	 * physical address in this case.
805 	 */
806 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
807 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
808 		if (!mapping) {
809 			ret = -ENOMEM;
810 			goto dma_free;
811 		}
812 
813 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
814 				mem->flags);
815 		if (ret) {
816 			dev_err(dev, "iommu_map failed: %d\n", ret);
817 			goto free_mapping;
818 		}
819 
820 		/*
821 		 * We'll need this info later when we'll want to unmap
822 		 * everything (e.g. on shutdown).
823 		 *
824 		 * We can't trust the remote processor not to change the
825 		 * resource table, so we must maintain this info independently.
826 		 */
827 		mapping->da = mem->da;
828 		mapping->len = mem->len;
829 		list_add_tail(&mapping->node, &rproc->mappings);
830 
831 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
832 			mem->da, &dma);
833 	}
834 
835 	if (mem->da == FW_RSC_ADDR_ANY) {
836 		/* Update device address as undefined by requester */
837 		if ((u64)dma & HIGH_BITS_MASK)
838 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
839 
840 		mem->da = (u32)dma;
841 	}
842 
843 	mem->dma = dma;
844 	mem->va = va;
845 
846 	return 0;
847 
848 free_mapping:
849 	kfree(mapping);
850 dma_free:
851 	dma_free_coherent(dev->parent, mem->len, va, dma);
852 	return ret;
853 }
854 
855 /**
856  * rproc_release_carveout() - release acquired carveout
857  * @rproc: rproc handle
858  * @mem: the memory entry to release
859  *
860  * This function releases specified memory entry @mem allocated via
861  * rproc_alloc_carveout() function by @rproc.
862  */
863 static int rproc_release_carveout(struct rproc *rproc,
864 				  struct rproc_mem_entry *mem)
865 {
866 	struct device *dev = &rproc->dev;
867 
868 	/* clean up carveout allocations */
869 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
870 	return 0;
871 }
872 
873 /**
874  * rproc_handle_carveout() - handle phys contig memory allocation requests
875  * @rproc: rproc handle
876  * @rsc: the resource entry
877  * @offset: offset of the resource entry
878  * @avail: size of available data (for image validation)
879  *
880  * This function will handle firmware requests for allocation of physically
881  * contiguous memory regions.
882  *
883  * These request entries should come first in the firmware's resource table,
884  * as other firmware entries might request placing other data objects inside
885  * these memory regions (e.g. data/code segments, trace resource entries, ...).
886  *
887  * Allocating memory this way helps utilizing the reserved physical memory
888  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
889  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
890  * pressure is important; it may have a substantial impact on performance.
891  */
892 static int rproc_handle_carveout(struct rproc *rproc,
893 				 struct fw_rsc_carveout *rsc,
894 				 int offset, int avail)
895 {
896 	struct rproc_mem_entry *carveout;
897 	struct device *dev = &rproc->dev;
898 
899 	if (sizeof(*rsc) > avail) {
900 		dev_err(dev, "carveout rsc is truncated\n");
901 		return -EINVAL;
902 	}
903 
904 	/* make sure reserved bytes are zeroes */
905 	if (rsc->reserved) {
906 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
907 		return -EINVAL;
908 	}
909 
910 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
911 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
912 
913 	/*
914 	 * Check carveout rsc already part of a registered carveout,
915 	 * Search by name, then check the da and length
916 	 */
917 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
918 
919 	if (carveout) {
920 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
921 			dev_err(dev,
922 				"Carveout already associated to resource table\n");
923 			return -ENOMEM;
924 		}
925 
926 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
927 			return -ENOMEM;
928 
929 		/* Update memory carveout with resource table info */
930 		carveout->rsc_offset = offset;
931 		carveout->flags = rsc->flags;
932 
933 		return 0;
934 	}
935 
936 	/* Register carveout in in list */
937 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
938 					rproc_alloc_carveout,
939 					rproc_release_carveout, rsc->name);
940 	if (!carveout) {
941 		dev_err(dev, "Can't allocate memory entry structure\n");
942 		return -ENOMEM;
943 	}
944 
945 	carveout->flags = rsc->flags;
946 	carveout->rsc_offset = offset;
947 	rproc_add_carveout(rproc, carveout);
948 
949 	return 0;
950 }
951 
952 /**
953  * rproc_add_carveout() - register an allocated carveout region
954  * @rproc: rproc handle
955  * @mem: memory entry to register
956  *
957  * This function registers specified memory entry in @rproc carveouts list.
958  * Specified carveout should have been allocated before registering.
959  */
960 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
961 {
962 	list_add_tail(&mem->node, &rproc->carveouts);
963 }
964 EXPORT_SYMBOL(rproc_add_carveout);
965 
966 /**
967  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
968  * @dev: pointer on device struct
969  * @va: virtual address
970  * @dma: dma address
971  * @len: memory carveout length
972  * @da: device address
973  * @alloc: memory carveout allocation function
974  * @release: memory carveout release function
975  * @name: carveout name
976  *
977  * This function allocates a rproc_mem_entry struct and fill it with parameters
978  * provided by client.
979  */
980 __printf(8, 9)
981 struct rproc_mem_entry *
982 rproc_mem_entry_init(struct device *dev,
983 		     void *va, dma_addr_t dma, size_t len, u32 da,
984 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
985 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
986 		     const char *name, ...)
987 {
988 	struct rproc_mem_entry *mem;
989 	va_list args;
990 
991 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
992 	if (!mem)
993 		return mem;
994 
995 	mem->va = va;
996 	mem->dma = dma;
997 	mem->da = da;
998 	mem->len = len;
999 	mem->alloc = alloc;
1000 	mem->release = release;
1001 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1002 	mem->of_resm_idx = -1;
1003 
1004 	va_start(args, name);
1005 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1006 	va_end(args);
1007 
1008 	return mem;
1009 }
1010 EXPORT_SYMBOL(rproc_mem_entry_init);
1011 
1012 /**
1013  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1014  * from a reserved memory phandle
1015  * @dev: pointer on device struct
1016  * @of_resm_idx: reserved memory phandle index in "memory-region"
1017  * @len: memory carveout length
1018  * @da: device address
1019  * @name: carveout name
1020  *
1021  * This function allocates a rproc_mem_entry struct and fill it with parameters
1022  * provided by client.
1023  */
1024 __printf(5, 6)
1025 struct rproc_mem_entry *
1026 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1027 			     u32 da, const char *name, ...)
1028 {
1029 	struct rproc_mem_entry *mem;
1030 	va_list args;
1031 
1032 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1033 	if (!mem)
1034 		return mem;
1035 
1036 	mem->da = da;
1037 	mem->len = len;
1038 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1039 	mem->of_resm_idx = of_resm_idx;
1040 
1041 	va_start(args, name);
1042 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1043 	va_end(args);
1044 
1045 	return mem;
1046 }
1047 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1048 
1049 /**
1050  * rproc_of_parse_firmware() - parse and return the firmware-name
1051  * @dev: pointer on device struct representing a rproc
1052  * @index: index to use for the firmware-name retrieval
1053  * @fw_name: pointer to a character string, in which the firmware
1054  *           name is returned on success and unmodified otherwise.
1055  *
1056  * This is an OF helper function that parses a device's DT node for
1057  * the "firmware-name" property and returns the firmware name pointer
1058  * in @fw_name on success.
1059  *
1060  * Return: 0 on success, or an appropriate failure.
1061  */
1062 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1063 {
1064 	int ret;
1065 
1066 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1067 					    index, fw_name);
1068 	return ret ? ret : 0;
1069 }
1070 EXPORT_SYMBOL(rproc_of_parse_firmware);
1071 
1072 /*
1073  * A lookup table for resource handlers. The indices are defined in
1074  * enum fw_resource_type.
1075  */
1076 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1077 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1078 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1079 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1080 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1081 };
1082 
1083 /* handle firmware resource entries before booting the remote processor */
1084 static int rproc_handle_resources(struct rproc *rproc,
1085 				  rproc_handle_resource_t handlers[RSC_LAST])
1086 {
1087 	struct device *dev = &rproc->dev;
1088 	rproc_handle_resource_t handler;
1089 	int ret = 0, i;
1090 
1091 	if (!rproc->table_ptr)
1092 		return 0;
1093 
1094 	for (i = 0; i < rproc->table_ptr->num; i++) {
1095 		int offset = rproc->table_ptr->offset[i];
1096 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1097 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1098 		void *rsc = (void *)hdr + sizeof(*hdr);
1099 
1100 		/* make sure table isn't truncated */
1101 		if (avail < 0) {
1102 			dev_err(dev, "rsc table is truncated\n");
1103 			return -EINVAL;
1104 		}
1105 
1106 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1107 
1108 		if (hdr->type >= RSC_VENDOR_START &&
1109 		    hdr->type <= RSC_VENDOR_END) {
1110 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1111 					       offset + sizeof(*hdr), avail);
1112 			if (ret == RSC_HANDLED)
1113 				continue;
1114 			else if (ret < 0)
1115 				break;
1116 
1117 			dev_warn(dev, "unsupported vendor resource %d\n",
1118 				 hdr->type);
1119 			continue;
1120 		}
1121 
1122 		if (hdr->type >= RSC_LAST) {
1123 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1124 			continue;
1125 		}
1126 
1127 		handler = handlers[hdr->type];
1128 		if (!handler)
1129 			continue;
1130 
1131 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1132 		if (ret)
1133 			break;
1134 	}
1135 
1136 	return ret;
1137 }
1138 
1139 static int rproc_prepare_subdevices(struct rproc *rproc)
1140 {
1141 	struct rproc_subdev *subdev;
1142 	int ret;
1143 
1144 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1145 		if (subdev->prepare) {
1146 			ret = subdev->prepare(subdev);
1147 			if (ret)
1148 				goto unroll_preparation;
1149 		}
1150 	}
1151 
1152 	return 0;
1153 
1154 unroll_preparation:
1155 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1156 		if (subdev->unprepare)
1157 			subdev->unprepare(subdev);
1158 	}
1159 
1160 	return ret;
1161 }
1162 
1163 static int rproc_start_subdevices(struct rproc *rproc)
1164 {
1165 	struct rproc_subdev *subdev;
1166 	int ret;
1167 
1168 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1169 		if (subdev->start) {
1170 			ret = subdev->start(subdev);
1171 			if (ret)
1172 				goto unroll_registration;
1173 		}
1174 	}
1175 
1176 	return 0;
1177 
1178 unroll_registration:
1179 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1180 		if (subdev->stop)
1181 			subdev->stop(subdev, true);
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1188 {
1189 	struct rproc_subdev *subdev;
1190 
1191 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1192 		if (subdev->stop)
1193 			subdev->stop(subdev, crashed);
1194 	}
1195 }
1196 
1197 static void rproc_unprepare_subdevices(struct rproc *rproc)
1198 {
1199 	struct rproc_subdev *subdev;
1200 
1201 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1202 		if (subdev->unprepare)
1203 			subdev->unprepare(subdev);
1204 	}
1205 }
1206 
1207 /**
1208  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1209  * in the list
1210  * @rproc: the remote processor handle
1211  *
1212  * This function parses registered carveout list, performs allocation
1213  * if alloc() ops registered and updates resource table information
1214  * if rsc_offset set.
1215  *
1216  * Return: 0 on success
1217  */
1218 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1219 {
1220 	struct rproc_mem_entry *entry, *tmp;
1221 	struct fw_rsc_carveout *rsc;
1222 	struct device *dev = &rproc->dev;
1223 	u64 pa;
1224 	int ret;
1225 
1226 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1227 		if (entry->alloc) {
1228 			ret = entry->alloc(rproc, entry);
1229 			if (ret) {
1230 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1231 					entry->name, ret);
1232 				return -ENOMEM;
1233 			}
1234 		}
1235 
1236 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1237 			/* update resource table */
1238 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1239 
1240 			/*
1241 			 * Some remote processors might need to know the pa
1242 			 * even though they are behind an IOMMU. E.g., OMAP4's
1243 			 * remote M3 processor needs this so it can control
1244 			 * on-chip hardware accelerators that are not behind
1245 			 * the IOMMU, and therefor must know the pa.
1246 			 *
1247 			 * Generally we don't want to expose physical addresses
1248 			 * if we don't have to (remote processors are generally
1249 			 * _not_ trusted), so we might want to do this only for
1250 			 * remote processor that _must_ have this (e.g. OMAP4's
1251 			 * dual M3 subsystem).
1252 			 *
1253 			 * Non-IOMMU processors might also want to have this info.
1254 			 * In this case, the device address and the physical address
1255 			 * are the same.
1256 			 */
1257 
1258 			/* Use va if defined else dma to generate pa */
1259 			if (entry->va)
1260 				pa = (u64)rproc_va_to_pa(entry->va);
1261 			else
1262 				pa = (u64)entry->dma;
1263 
1264 			if (((u64)pa) & HIGH_BITS_MASK)
1265 				dev_warn(dev,
1266 					 "Physical address cast in 32bit to fit resource table format\n");
1267 
1268 			rsc->pa = (u32)pa;
1269 			rsc->da = entry->da;
1270 			rsc->len = entry->len;
1271 		}
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 
1278 /**
1279  * rproc_resource_cleanup() - clean up and free all acquired resources
1280  * @rproc: rproc handle
1281  *
1282  * This function will free all resources acquired for @rproc, and it
1283  * is called whenever @rproc either shuts down or fails to boot.
1284  */
1285 void rproc_resource_cleanup(struct rproc *rproc)
1286 {
1287 	struct rproc_mem_entry *entry, *tmp;
1288 	struct rproc_debug_trace *trace, *ttmp;
1289 	struct rproc_vdev *rvdev, *rvtmp;
1290 	struct device *dev = &rproc->dev;
1291 
1292 	/* clean up debugfs trace entries */
1293 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1294 		rproc_remove_trace_file(trace->tfile);
1295 		rproc->num_traces--;
1296 		list_del(&trace->node);
1297 		kfree(trace);
1298 	}
1299 
1300 	/* clean up iommu mapping entries */
1301 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1302 		size_t unmapped;
1303 
1304 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1305 		if (unmapped != entry->len) {
1306 			/* nothing much to do besides complaining */
1307 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1308 				unmapped);
1309 		}
1310 
1311 		list_del(&entry->node);
1312 		kfree(entry);
1313 	}
1314 
1315 	/* clean up carveout allocations */
1316 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1317 		if (entry->release)
1318 			entry->release(rproc, entry);
1319 		list_del(&entry->node);
1320 		kfree(entry);
1321 	}
1322 
1323 	/* clean up remote vdev entries */
1324 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1325 		kref_put(&rvdev->refcount, rproc_vdev_release);
1326 
1327 	rproc_coredump_cleanup(rproc);
1328 }
1329 EXPORT_SYMBOL(rproc_resource_cleanup);
1330 
1331 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1332 {
1333 	struct resource_table *loaded_table;
1334 	struct device *dev = &rproc->dev;
1335 	int ret;
1336 
1337 	/* load the ELF segments to memory */
1338 	ret = rproc_load_segments(rproc, fw);
1339 	if (ret) {
1340 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1341 		return ret;
1342 	}
1343 
1344 	/*
1345 	 * The starting device has been given the rproc->cached_table as the
1346 	 * resource table. The address of the vring along with the other
1347 	 * allocated resources (carveouts etc) is stored in cached_table.
1348 	 * In order to pass this information to the remote device we must copy
1349 	 * this information to device memory. We also update the table_ptr so
1350 	 * that any subsequent changes will be applied to the loaded version.
1351 	 */
1352 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1353 	if (loaded_table) {
1354 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1355 		rproc->table_ptr = loaded_table;
1356 	}
1357 
1358 	ret = rproc_prepare_subdevices(rproc);
1359 	if (ret) {
1360 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1361 			rproc->name, ret);
1362 		goto reset_table_ptr;
1363 	}
1364 
1365 	/* power up the remote processor */
1366 	ret = rproc->ops->start(rproc);
1367 	if (ret) {
1368 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1369 		goto unprepare_subdevices;
1370 	}
1371 
1372 	/* Start any subdevices for the remote processor */
1373 	ret = rproc_start_subdevices(rproc);
1374 	if (ret) {
1375 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1376 			rproc->name, ret);
1377 		goto stop_rproc;
1378 	}
1379 
1380 	rproc->state = RPROC_RUNNING;
1381 
1382 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1383 
1384 	return 0;
1385 
1386 stop_rproc:
1387 	rproc->ops->stop(rproc);
1388 unprepare_subdevices:
1389 	rproc_unprepare_subdevices(rproc);
1390 reset_table_ptr:
1391 	rproc->table_ptr = rproc->cached_table;
1392 
1393 	return ret;
1394 }
1395 
1396 static int rproc_attach(struct rproc *rproc)
1397 {
1398 	struct device *dev = &rproc->dev;
1399 	int ret;
1400 
1401 	ret = rproc_prepare_subdevices(rproc);
1402 	if (ret) {
1403 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1404 			rproc->name, ret);
1405 		goto out;
1406 	}
1407 
1408 	/* Attach to the remote processor */
1409 	ret = rproc_attach_device(rproc);
1410 	if (ret) {
1411 		dev_err(dev, "can't attach to rproc %s: %d\n",
1412 			rproc->name, ret);
1413 		goto unprepare_subdevices;
1414 	}
1415 
1416 	/* Start any subdevices for the remote processor */
1417 	ret = rproc_start_subdevices(rproc);
1418 	if (ret) {
1419 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1420 			rproc->name, ret);
1421 		goto stop_rproc;
1422 	}
1423 
1424 	rproc->state = RPROC_RUNNING;
1425 
1426 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1427 
1428 	return 0;
1429 
1430 stop_rproc:
1431 	rproc->ops->stop(rproc);
1432 unprepare_subdevices:
1433 	rproc_unprepare_subdevices(rproc);
1434 out:
1435 	return ret;
1436 }
1437 
1438 /*
1439  * take a firmware and boot a remote processor with it.
1440  */
1441 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1442 {
1443 	struct device *dev = &rproc->dev;
1444 	const char *name = rproc->firmware;
1445 	int ret;
1446 
1447 	ret = rproc_fw_sanity_check(rproc, fw);
1448 	if (ret)
1449 		return ret;
1450 
1451 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1452 
1453 	/*
1454 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1455 	 * just a nop
1456 	 */
1457 	ret = rproc_enable_iommu(rproc);
1458 	if (ret) {
1459 		dev_err(dev, "can't enable iommu: %d\n", ret);
1460 		return ret;
1461 	}
1462 
1463 	/* Prepare rproc for firmware loading if needed */
1464 	ret = rproc_prepare_device(rproc);
1465 	if (ret) {
1466 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1467 		goto disable_iommu;
1468 	}
1469 
1470 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1471 
1472 	/* Load resource table, core dump segment list etc from the firmware */
1473 	ret = rproc_parse_fw(rproc, fw);
1474 	if (ret)
1475 		goto unprepare_rproc;
1476 
1477 	/* reset max_notifyid */
1478 	rproc->max_notifyid = -1;
1479 
1480 	/* reset handled vdev */
1481 	rproc->nb_vdev = 0;
1482 
1483 	/* handle fw resources which are required to boot rproc */
1484 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1485 	if (ret) {
1486 		dev_err(dev, "Failed to process resources: %d\n", ret);
1487 		goto clean_up_resources;
1488 	}
1489 
1490 	/* Allocate carveout resources associated to rproc */
1491 	ret = rproc_alloc_registered_carveouts(rproc);
1492 	if (ret) {
1493 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1494 			ret);
1495 		goto clean_up_resources;
1496 	}
1497 
1498 	ret = rproc_start(rproc, fw);
1499 	if (ret)
1500 		goto clean_up_resources;
1501 
1502 	return 0;
1503 
1504 clean_up_resources:
1505 	rproc_resource_cleanup(rproc);
1506 	kfree(rproc->cached_table);
1507 	rproc->cached_table = NULL;
1508 	rproc->table_ptr = NULL;
1509 unprepare_rproc:
1510 	/* release HW resources if needed */
1511 	rproc_unprepare_device(rproc);
1512 disable_iommu:
1513 	rproc_disable_iommu(rproc);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * Attach to remote processor - similar to rproc_fw_boot() but without
1519  * the steps that deal with the firmware image.
1520  */
1521 static int rproc_actuate(struct rproc *rproc)
1522 {
1523 	struct device *dev = &rproc->dev;
1524 	int ret;
1525 
1526 	/*
1527 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1528 	 * just a nop
1529 	 */
1530 	ret = rproc_enable_iommu(rproc);
1531 	if (ret) {
1532 		dev_err(dev, "can't enable iommu: %d\n", ret);
1533 		return ret;
1534 	}
1535 
1536 	/* reset max_notifyid */
1537 	rproc->max_notifyid = -1;
1538 
1539 	/* reset handled vdev */
1540 	rproc->nb_vdev = 0;
1541 
1542 	/*
1543 	 * Handle firmware resources required to attach to a remote processor.
1544 	 * Because we are attaching rather than booting the remote processor,
1545 	 * we expect the platform driver to properly set rproc->table_ptr.
1546 	 */
1547 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1548 	if (ret) {
1549 		dev_err(dev, "Failed to process resources: %d\n", ret);
1550 		goto disable_iommu;
1551 	}
1552 
1553 	/* Allocate carveout resources associated to rproc */
1554 	ret = rproc_alloc_registered_carveouts(rproc);
1555 	if (ret) {
1556 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1557 			ret);
1558 		goto clean_up_resources;
1559 	}
1560 
1561 	ret = rproc_attach(rproc);
1562 	if (ret)
1563 		goto clean_up_resources;
1564 
1565 	return 0;
1566 
1567 clean_up_resources:
1568 	rproc_resource_cleanup(rproc);
1569 disable_iommu:
1570 	rproc_disable_iommu(rproc);
1571 	return ret;
1572 }
1573 
1574 /*
1575  * take a firmware and boot it up.
1576  *
1577  * Note: this function is called asynchronously upon registration of the
1578  * remote processor (so we must wait until it completes before we try
1579  * to unregister the device. one other option is just to use kref here,
1580  * that might be cleaner).
1581  */
1582 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1583 {
1584 	struct rproc *rproc = context;
1585 
1586 	rproc_boot(rproc);
1587 
1588 	release_firmware(fw);
1589 }
1590 
1591 static int rproc_trigger_auto_boot(struct rproc *rproc)
1592 {
1593 	int ret;
1594 
1595 	/*
1596 	 * Since the remote processor is in a detached state, it has already
1597 	 * been booted by another entity.  As such there is no point in waiting
1598 	 * for a firmware image to be loaded, we can simply initiate the process
1599 	 * of attaching to it immediately.
1600 	 */
1601 	if (rproc->state == RPROC_DETACHED)
1602 		return rproc_boot(rproc);
1603 
1604 	/*
1605 	 * We're initiating an asynchronous firmware loading, so we can
1606 	 * be built-in kernel code, without hanging the boot process.
1607 	 */
1608 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1609 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1610 				      rproc, rproc_auto_boot_callback);
1611 	if (ret < 0)
1612 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1613 
1614 	return ret;
1615 }
1616 
1617 static int rproc_stop(struct rproc *rproc, bool crashed)
1618 {
1619 	struct device *dev = &rproc->dev;
1620 	int ret;
1621 
1622 	/* Stop any subdevices for the remote processor */
1623 	rproc_stop_subdevices(rproc, crashed);
1624 
1625 	/* the installed resource table is no longer accessible */
1626 	rproc->table_ptr = rproc->cached_table;
1627 
1628 	/* power off the remote processor */
1629 	ret = rproc->ops->stop(rproc);
1630 	if (ret) {
1631 		dev_err(dev, "can't stop rproc: %d\n", ret);
1632 		return ret;
1633 	}
1634 
1635 	rproc_unprepare_subdevices(rproc);
1636 
1637 	rproc->state = RPROC_OFFLINE;
1638 
1639 	/*
1640 	 * The remote processor has been stopped and is now offline, which means
1641 	 * that the next time it is brought back online the remoteproc core will
1642 	 * be responsible to load its firmware.  As such it is no longer
1643 	 * autonomous.
1644 	 */
1645 	rproc->autonomous = false;
1646 
1647 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1648 
1649 	return 0;
1650 }
1651 
1652 
1653 /**
1654  * rproc_trigger_recovery() - recover a remoteproc
1655  * @rproc: the remote processor
1656  *
1657  * The recovery is done by resetting all the virtio devices, that way all the
1658  * rpmsg drivers will be reseted along with the remote processor making the
1659  * remoteproc functional again.
1660  *
1661  * This function can sleep, so it cannot be called from atomic context.
1662  */
1663 int rproc_trigger_recovery(struct rproc *rproc)
1664 {
1665 	const struct firmware *firmware_p;
1666 	struct device *dev = &rproc->dev;
1667 	int ret;
1668 
1669 	ret = mutex_lock_interruptible(&rproc->lock);
1670 	if (ret)
1671 		return ret;
1672 
1673 	/* State could have changed before we got the mutex */
1674 	if (rproc->state != RPROC_CRASHED)
1675 		goto unlock_mutex;
1676 
1677 	dev_err(dev, "recovering %s\n", rproc->name);
1678 
1679 	ret = rproc_stop(rproc, true);
1680 	if (ret)
1681 		goto unlock_mutex;
1682 
1683 	/* generate coredump */
1684 	rproc_coredump(rproc);
1685 
1686 	/* load firmware */
1687 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1688 	if (ret < 0) {
1689 		dev_err(dev, "request_firmware failed: %d\n", ret);
1690 		goto unlock_mutex;
1691 	}
1692 
1693 	/* boot the remote processor up again */
1694 	ret = rproc_start(rproc, firmware_p);
1695 
1696 	release_firmware(firmware_p);
1697 
1698 unlock_mutex:
1699 	mutex_unlock(&rproc->lock);
1700 	return ret;
1701 }
1702 
1703 /**
1704  * rproc_crash_handler_work() - handle a crash
1705  * @work: work treating the crash
1706  *
1707  * This function needs to handle everything related to a crash, like cpu
1708  * registers and stack dump, information to help to debug the fatal error, etc.
1709  */
1710 static void rproc_crash_handler_work(struct work_struct *work)
1711 {
1712 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1713 	struct device *dev = &rproc->dev;
1714 
1715 	dev_dbg(dev, "enter %s\n", __func__);
1716 
1717 	mutex_lock(&rproc->lock);
1718 
1719 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1720 		/* handle only the first crash detected */
1721 		mutex_unlock(&rproc->lock);
1722 		return;
1723 	}
1724 
1725 	rproc->state = RPROC_CRASHED;
1726 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1727 		rproc->name);
1728 
1729 	mutex_unlock(&rproc->lock);
1730 
1731 	if (!rproc->recovery_disabled)
1732 		rproc_trigger_recovery(rproc);
1733 
1734 	pm_relax(rproc->dev.parent);
1735 }
1736 
1737 /**
1738  * rproc_boot() - boot a remote processor
1739  * @rproc: handle of a remote processor
1740  *
1741  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1742  *
1743  * If the remote processor is already powered on, this function immediately
1744  * returns (successfully).
1745  *
1746  * Returns 0 on success, and an appropriate error value otherwise.
1747  */
1748 int rproc_boot(struct rproc *rproc)
1749 {
1750 	const struct firmware *firmware_p;
1751 	struct device *dev;
1752 	int ret;
1753 
1754 	if (!rproc) {
1755 		pr_err("invalid rproc handle\n");
1756 		return -EINVAL;
1757 	}
1758 
1759 	dev = &rproc->dev;
1760 
1761 	ret = mutex_lock_interruptible(&rproc->lock);
1762 	if (ret) {
1763 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1764 		return ret;
1765 	}
1766 
1767 	if (rproc->state == RPROC_DELETED) {
1768 		ret = -ENODEV;
1769 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1770 		goto unlock_mutex;
1771 	}
1772 
1773 	/* skip the boot or attach process if rproc is already powered up */
1774 	if (atomic_inc_return(&rproc->power) > 1) {
1775 		ret = 0;
1776 		goto unlock_mutex;
1777 	}
1778 
1779 	if (rproc->state == RPROC_DETACHED) {
1780 		dev_info(dev, "attaching to %s\n", rproc->name);
1781 
1782 		ret = rproc_actuate(rproc);
1783 	} else {
1784 		dev_info(dev, "powering up %s\n", rproc->name);
1785 
1786 		/* load firmware */
1787 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1788 		if (ret < 0) {
1789 			dev_err(dev, "request_firmware failed: %d\n", ret);
1790 			goto downref_rproc;
1791 		}
1792 
1793 		ret = rproc_fw_boot(rproc, firmware_p);
1794 
1795 		release_firmware(firmware_p);
1796 	}
1797 
1798 downref_rproc:
1799 	if (ret)
1800 		atomic_dec(&rproc->power);
1801 unlock_mutex:
1802 	mutex_unlock(&rproc->lock);
1803 	return ret;
1804 }
1805 EXPORT_SYMBOL(rproc_boot);
1806 
1807 /**
1808  * rproc_shutdown() - power off the remote processor
1809  * @rproc: the remote processor
1810  *
1811  * Power off a remote processor (previously booted with rproc_boot()).
1812  *
1813  * In case @rproc is still being used by an additional user(s), then
1814  * this function will just decrement the power refcount and exit,
1815  * without really powering off the device.
1816  *
1817  * Every call to rproc_boot() must (eventually) be accompanied by a call
1818  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1819  *
1820  * Notes:
1821  * - we're not decrementing the rproc's refcount, only the power refcount.
1822  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1823  *   returns, and users can still use it with a subsequent rproc_boot(), if
1824  *   needed.
1825  */
1826 void rproc_shutdown(struct rproc *rproc)
1827 {
1828 	struct device *dev = &rproc->dev;
1829 	int ret;
1830 
1831 	ret = mutex_lock_interruptible(&rproc->lock);
1832 	if (ret) {
1833 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1834 		return;
1835 	}
1836 
1837 	/* if the remote proc is still needed, bail out */
1838 	if (!atomic_dec_and_test(&rproc->power))
1839 		goto out;
1840 
1841 	ret = rproc_stop(rproc, false);
1842 	if (ret) {
1843 		atomic_inc(&rproc->power);
1844 		goto out;
1845 	}
1846 
1847 	/* clean up all acquired resources */
1848 	rproc_resource_cleanup(rproc);
1849 
1850 	/* release HW resources if needed */
1851 	rproc_unprepare_device(rproc);
1852 
1853 	rproc_disable_iommu(rproc);
1854 
1855 	/* Free the copy of the resource table */
1856 	kfree(rproc->cached_table);
1857 	rproc->cached_table = NULL;
1858 	rproc->table_ptr = NULL;
1859 out:
1860 	mutex_unlock(&rproc->lock);
1861 }
1862 EXPORT_SYMBOL(rproc_shutdown);
1863 
1864 /**
1865  * rproc_get_by_phandle() - find a remote processor by phandle
1866  * @phandle: phandle to the rproc
1867  *
1868  * Finds an rproc handle using the remote processor's phandle, and then
1869  * return a handle to the rproc.
1870  *
1871  * This function increments the remote processor's refcount, so always
1872  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1873  *
1874  * Returns the rproc handle on success, and NULL on failure.
1875  */
1876 #ifdef CONFIG_OF
1877 struct rproc *rproc_get_by_phandle(phandle phandle)
1878 {
1879 	struct rproc *rproc = NULL, *r;
1880 	struct device_node *np;
1881 
1882 	np = of_find_node_by_phandle(phandle);
1883 	if (!np)
1884 		return NULL;
1885 
1886 	rcu_read_lock();
1887 	list_for_each_entry_rcu(r, &rproc_list, node) {
1888 		if (r->dev.parent && r->dev.parent->of_node == np) {
1889 			/* prevent underlying implementation from being removed */
1890 			if (!try_module_get(r->dev.parent->driver->owner)) {
1891 				dev_err(&r->dev, "can't get owner\n");
1892 				break;
1893 			}
1894 
1895 			rproc = r;
1896 			get_device(&rproc->dev);
1897 			break;
1898 		}
1899 	}
1900 	rcu_read_unlock();
1901 
1902 	of_node_put(np);
1903 
1904 	return rproc;
1905 }
1906 #else
1907 struct rproc *rproc_get_by_phandle(phandle phandle)
1908 {
1909 	return NULL;
1910 }
1911 #endif
1912 EXPORT_SYMBOL(rproc_get_by_phandle);
1913 
1914 static int rproc_validate(struct rproc *rproc)
1915 {
1916 	switch (rproc->state) {
1917 	case RPROC_OFFLINE:
1918 		/*
1919 		 * An offline processor without a start()
1920 		 * function makes no sense.
1921 		 */
1922 		if (!rproc->ops->start)
1923 			return -EINVAL;
1924 		break;
1925 	case RPROC_DETACHED:
1926 		/*
1927 		 * A remote processor in a detached state without an
1928 		 * attach() function makes not sense.
1929 		 */
1930 		if (!rproc->ops->attach)
1931 			return -EINVAL;
1932 		/*
1933 		 * When attaching to a remote processor the device memory
1934 		 * is already available and as such there is no need to have a
1935 		 * cached table.
1936 		 */
1937 		if (rproc->cached_table)
1938 			return -EINVAL;
1939 		break;
1940 	default:
1941 		/*
1942 		 * When adding a remote processor, the state of the device
1943 		 * can be offline or detached, nothing else.
1944 		 */
1945 		return -EINVAL;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 /**
1952  * rproc_add() - register a remote processor
1953  * @rproc: the remote processor handle to register
1954  *
1955  * Registers @rproc with the remoteproc framework, after it has been
1956  * allocated with rproc_alloc().
1957  *
1958  * This is called by the platform-specific rproc implementation, whenever
1959  * a new remote processor device is probed.
1960  *
1961  * Returns 0 on success and an appropriate error code otherwise.
1962  *
1963  * Note: this function initiates an asynchronous firmware loading
1964  * context, which will look for virtio devices supported by the rproc's
1965  * firmware.
1966  *
1967  * If found, those virtio devices will be created and added, so as a result
1968  * of registering this remote processor, additional virtio drivers might be
1969  * probed.
1970  */
1971 int rproc_add(struct rproc *rproc)
1972 {
1973 	struct device *dev = &rproc->dev;
1974 	int ret;
1975 
1976 	ret = device_add(dev);
1977 	if (ret < 0)
1978 		return ret;
1979 
1980 	ret = rproc_validate(rproc);
1981 	if (ret < 0)
1982 		return ret;
1983 
1984 	dev_info(dev, "%s is available\n", rproc->name);
1985 
1986 	/* create debugfs entries */
1987 	rproc_create_debug_dir(rproc);
1988 
1989 	/* add char device for this remoteproc */
1990 	ret = rproc_char_device_add(rproc);
1991 	if (ret < 0)
1992 		return ret;
1993 
1994 	/*
1995 	 * Remind ourselves the remote processor has been attached to rather
1996 	 * than booted by the remoteproc core.  This is important because the
1997 	 * RPROC_DETACHED state will be lost as soon as the remote processor
1998 	 * has been attached to.  Used in firmware_show() and reset in
1999 	 * rproc_stop().
2000 	 */
2001 	if (rproc->state == RPROC_DETACHED)
2002 		rproc->autonomous = true;
2003 
2004 	/* if rproc is marked always-on, request it to boot */
2005 	if (rproc->auto_boot) {
2006 		ret = rproc_trigger_auto_boot(rproc);
2007 		if (ret < 0)
2008 			return ret;
2009 	}
2010 
2011 	/* expose to rproc_get_by_phandle users */
2012 	mutex_lock(&rproc_list_mutex);
2013 	list_add_rcu(&rproc->node, &rproc_list);
2014 	mutex_unlock(&rproc_list_mutex);
2015 
2016 	return 0;
2017 }
2018 EXPORT_SYMBOL(rproc_add);
2019 
2020 static void devm_rproc_remove(void *rproc)
2021 {
2022 	rproc_del(rproc);
2023 }
2024 
2025 /**
2026  * devm_rproc_add() - resource managed rproc_add()
2027  * @dev: the underlying device
2028  * @rproc: the remote processor handle to register
2029  *
2030  * This function performs like rproc_add() but the registered rproc device will
2031  * automatically be removed on driver detach.
2032  *
2033  * Returns: 0 on success, negative errno on failure
2034  */
2035 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2036 {
2037 	int err;
2038 
2039 	err = rproc_add(rproc);
2040 	if (err)
2041 		return err;
2042 
2043 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2044 }
2045 EXPORT_SYMBOL(devm_rproc_add);
2046 
2047 /**
2048  * rproc_type_release() - release a remote processor instance
2049  * @dev: the rproc's device
2050  *
2051  * This function should _never_ be called directly.
2052  *
2053  * It will be called by the driver core when no one holds a valid pointer
2054  * to @dev anymore.
2055  */
2056 static void rproc_type_release(struct device *dev)
2057 {
2058 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2059 
2060 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2061 
2062 	idr_destroy(&rproc->notifyids);
2063 
2064 	if (rproc->index >= 0)
2065 		ida_simple_remove(&rproc_dev_index, rproc->index);
2066 
2067 	kfree_const(rproc->firmware);
2068 	kfree_const(rproc->name);
2069 	kfree(rproc->ops);
2070 	kfree(rproc);
2071 }
2072 
2073 static const struct device_type rproc_type = {
2074 	.name		= "remoteproc",
2075 	.release	= rproc_type_release,
2076 };
2077 
2078 static int rproc_alloc_firmware(struct rproc *rproc,
2079 				const char *name, const char *firmware)
2080 {
2081 	const char *p;
2082 
2083 	/*
2084 	 * Allocate a firmware name if the caller gave us one to work
2085 	 * with.  Otherwise construct a new one using a default pattern.
2086 	 */
2087 	if (firmware)
2088 		p = kstrdup_const(firmware, GFP_KERNEL);
2089 	else
2090 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2091 
2092 	if (!p)
2093 		return -ENOMEM;
2094 
2095 	rproc->firmware = p;
2096 
2097 	return 0;
2098 }
2099 
2100 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2101 {
2102 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2103 	if (!rproc->ops)
2104 		return -ENOMEM;
2105 
2106 	if (rproc->ops->load)
2107 		return 0;
2108 
2109 	/* Default to ELF loader if no load function is specified */
2110 	rproc->ops->load = rproc_elf_load_segments;
2111 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2112 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2113 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2114 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2115 
2116 	return 0;
2117 }
2118 
2119 /**
2120  * rproc_alloc() - allocate a remote processor handle
2121  * @dev: the underlying device
2122  * @name: name of this remote processor
2123  * @ops: platform-specific handlers (mainly start/stop)
2124  * @firmware: name of firmware file to load, can be NULL
2125  * @len: length of private data needed by the rproc driver (in bytes)
2126  *
2127  * Allocates a new remote processor handle, but does not register
2128  * it yet. if @firmware is NULL, a default name is used.
2129  *
2130  * This function should be used by rproc implementations during initialization
2131  * of the remote processor.
2132  *
2133  * After creating an rproc handle using this function, and when ready,
2134  * implementations should then call rproc_add() to complete
2135  * the registration of the remote processor.
2136  *
2137  * On success the new rproc is returned, and on failure, NULL.
2138  *
2139  * Note: _never_ directly deallocate @rproc, even if it was not registered
2140  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2141  */
2142 struct rproc *rproc_alloc(struct device *dev, const char *name,
2143 			  const struct rproc_ops *ops,
2144 			  const char *firmware, int len)
2145 {
2146 	struct rproc *rproc;
2147 
2148 	if (!dev || !name || !ops)
2149 		return NULL;
2150 
2151 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2152 	if (!rproc)
2153 		return NULL;
2154 
2155 	rproc->priv = &rproc[1];
2156 	rproc->auto_boot = true;
2157 	rproc->elf_class = ELFCLASSNONE;
2158 	rproc->elf_machine = EM_NONE;
2159 
2160 	device_initialize(&rproc->dev);
2161 	rproc->dev.parent = dev;
2162 	rproc->dev.type = &rproc_type;
2163 	rproc->dev.class = &rproc_class;
2164 	rproc->dev.driver_data = rproc;
2165 	idr_init(&rproc->notifyids);
2166 
2167 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2168 	if (!rproc->name)
2169 		goto put_device;
2170 
2171 	if (rproc_alloc_firmware(rproc, name, firmware))
2172 		goto put_device;
2173 
2174 	if (rproc_alloc_ops(rproc, ops))
2175 		goto put_device;
2176 
2177 	/* Assign a unique device index and name */
2178 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2179 	if (rproc->index < 0) {
2180 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2181 		goto put_device;
2182 	}
2183 
2184 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2185 
2186 	atomic_set(&rproc->power, 0);
2187 
2188 	mutex_init(&rproc->lock);
2189 
2190 	INIT_LIST_HEAD(&rproc->carveouts);
2191 	INIT_LIST_HEAD(&rproc->mappings);
2192 	INIT_LIST_HEAD(&rproc->traces);
2193 	INIT_LIST_HEAD(&rproc->rvdevs);
2194 	INIT_LIST_HEAD(&rproc->subdevs);
2195 	INIT_LIST_HEAD(&rproc->dump_segments);
2196 
2197 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2198 
2199 	rproc->state = RPROC_OFFLINE;
2200 
2201 	return rproc;
2202 
2203 put_device:
2204 	put_device(&rproc->dev);
2205 	return NULL;
2206 }
2207 EXPORT_SYMBOL(rproc_alloc);
2208 
2209 /**
2210  * rproc_free() - unroll rproc_alloc()
2211  * @rproc: the remote processor handle
2212  *
2213  * This function decrements the rproc dev refcount.
2214  *
2215  * If no one holds any reference to rproc anymore, then its refcount would
2216  * now drop to zero, and it would be freed.
2217  */
2218 void rproc_free(struct rproc *rproc)
2219 {
2220 	put_device(&rproc->dev);
2221 }
2222 EXPORT_SYMBOL(rproc_free);
2223 
2224 /**
2225  * rproc_put() - release rproc reference
2226  * @rproc: the remote processor handle
2227  *
2228  * This function decrements the rproc dev refcount.
2229  *
2230  * If no one holds any reference to rproc anymore, then its refcount would
2231  * now drop to zero, and it would be freed.
2232  */
2233 void rproc_put(struct rproc *rproc)
2234 {
2235 	module_put(rproc->dev.parent->driver->owner);
2236 	put_device(&rproc->dev);
2237 }
2238 EXPORT_SYMBOL(rproc_put);
2239 
2240 /**
2241  * rproc_del() - unregister a remote processor
2242  * @rproc: rproc handle to unregister
2243  *
2244  * This function should be called when the platform specific rproc
2245  * implementation decides to remove the rproc device. it should
2246  * _only_ be called if a previous invocation of rproc_add()
2247  * has completed successfully.
2248  *
2249  * After rproc_del() returns, @rproc isn't freed yet, because
2250  * of the outstanding reference created by rproc_alloc. To decrement that
2251  * one last refcount, one still needs to call rproc_free().
2252  *
2253  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2254  */
2255 int rproc_del(struct rproc *rproc)
2256 {
2257 	if (!rproc)
2258 		return -EINVAL;
2259 
2260 	/* if rproc is marked always-on, rproc_add() booted it */
2261 	/* TODO: make sure this works with rproc->power > 1 */
2262 	if (rproc->auto_boot)
2263 		rproc_shutdown(rproc);
2264 
2265 	mutex_lock(&rproc->lock);
2266 	rproc->state = RPROC_DELETED;
2267 	mutex_unlock(&rproc->lock);
2268 
2269 	rproc_delete_debug_dir(rproc);
2270 	rproc_char_device_remove(rproc);
2271 
2272 	/* the rproc is downref'ed as soon as it's removed from the klist */
2273 	mutex_lock(&rproc_list_mutex);
2274 	list_del_rcu(&rproc->node);
2275 	mutex_unlock(&rproc_list_mutex);
2276 
2277 	/* Ensure that no readers of rproc_list are still active */
2278 	synchronize_rcu();
2279 
2280 	device_del(&rproc->dev);
2281 
2282 	return 0;
2283 }
2284 EXPORT_SYMBOL(rproc_del);
2285 
2286 static void devm_rproc_free(struct device *dev, void *res)
2287 {
2288 	rproc_free(*(struct rproc **)res);
2289 }
2290 
2291 /**
2292  * devm_rproc_alloc() - resource managed rproc_alloc()
2293  * @dev: the underlying device
2294  * @name: name of this remote processor
2295  * @ops: platform-specific handlers (mainly start/stop)
2296  * @firmware: name of firmware file to load, can be NULL
2297  * @len: length of private data needed by the rproc driver (in bytes)
2298  *
2299  * This function performs like rproc_alloc() but the acquired rproc device will
2300  * automatically be released on driver detach.
2301  *
2302  * Returns: new rproc instance, or NULL on failure
2303  */
2304 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2305 			       const struct rproc_ops *ops,
2306 			       const char *firmware, int len)
2307 {
2308 	struct rproc **ptr, *rproc;
2309 
2310 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2311 	if (!ptr)
2312 		return NULL;
2313 
2314 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2315 	if (rproc) {
2316 		*ptr = rproc;
2317 		devres_add(dev, ptr);
2318 	} else {
2319 		devres_free(ptr);
2320 	}
2321 
2322 	return rproc;
2323 }
2324 EXPORT_SYMBOL(devm_rproc_alloc);
2325 
2326 /**
2327  * rproc_add_subdev() - add a subdevice to a remoteproc
2328  * @rproc: rproc handle to add the subdevice to
2329  * @subdev: subdev handle to register
2330  *
2331  * Caller is responsible for populating optional subdevice function pointers.
2332  */
2333 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2334 {
2335 	list_add_tail(&subdev->node, &rproc->subdevs);
2336 }
2337 EXPORT_SYMBOL(rproc_add_subdev);
2338 
2339 /**
2340  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2341  * @rproc: rproc handle to remove the subdevice from
2342  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2343  */
2344 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2345 {
2346 	list_del(&subdev->node);
2347 }
2348 EXPORT_SYMBOL(rproc_remove_subdev);
2349 
2350 /**
2351  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2352  * @dev:	child device to find ancestor of
2353  *
2354  * Returns the ancestor rproc instance, or NULL if not found.
2355  */
2356 struct rproc *rproc_get_by_child(struct device *dev)
2357 {
2358 	for (dev = dev->parent; dev; dev = dev->parent) {
2359 		if (dev->type == &rproc_type)
2360 			return dev->driver_data;
2361 	}
2362 
2363 	return NULL;
2364 }
2365 EXPORT_SYMBOL(rproc_get_by_child);
2366 
2367 /**
2368  * rproc_report_crash() - rproc crash reporter function
2369  * @rproc: remote processor
2370  * @type: crash type
2371  *
2372  * This function must be called every time a crash is detected by the low-level
2373  * drivers implementing a specific remoteproc. This should not be called from a
2374  * non-remoteproc driver.
2375  *
2376  * This function can be called from atomic/interrupt context.
2377  */
2378 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2379 {
2380 	if (!rproc) {
2381 		pr_err("NULL rproc pointer\n");
2382 		return;
2383 	}
2384 
2385 	/* Prevent suspend while the remoteproc is being recovered */
2386 	pm_stay_awake(rproc->dev.parent);
2387 
2388 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2389 		rproc->name, rproc_crash_to_string(type));
2390 
2391 	/* create a new task to handle the error */
2392 	schedule_work(&rproc->crash_handler);
2393 }
2394 EXPORT_SYMBOL(rproc_report_crash);
2395 
2396 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2397 			       void *ptr)
2398 {
2399 	unsigned int longest = 0;
2400 	struct rproc *rproc;
2401 	unsigned int d;
2402 
2403 	rcu_read_lock();
2404 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2405 		if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2406 			continue;
2407 
2408 		d = rproc->ops->panic(rproc);
2409 		longest = max(longest, d);
2410 	}
2411 	rcu_read_unlock();
2412 
2413 	/*
2414 	 * Delay for the longest requested duration before returning. This can
2415 	 * be used by the remoteproc drivers to give the remote processor time
2416 	 * to perform any requested operations (such as flush caches), when
2417 	 * it's not possible to signal the Linux side due to the panic.
2418 	 */
2419 	mdelay(longest);
2420 
2421 	return NOTIFY_DONE;
2422 }
2423 
2424 static void __init rproc_init_panic(void)
2425 {
2426 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2427 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2428 }
2429 
2430 static void __exit rproc_exit_panic(void)
2431 {
2432 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2433 }
2434 
2435 static int __init remoteproc_init(void)
2436 {
2437 	rproc_init_sysfs();
2438 	rproc_init_debugfs();
2439 	rproc_init_cdev();
2440 	rproc_init_panic();
2441 
2442 	return 0;
2443 }
2444 subsys_initcall(remoteproc_init);
2445 
2446 static void __exit remoteproc_exit(void)
2447 {
2448 	ida_destroy(&rproc_dev_index);
2449 
2450 	rproc_exit_panic();
2451 	rproc_exit_debugfs();
2452 	rproc_exit_sysfs();
2453 }
2454 module_exit(remoteproc_exit);
2455 
2456 MODULE_LICENSE("GPL v2");
2457 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2458