1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/mutex.h> 25 #include <linux/dma-map-ops.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */ 28 #include <linux/firmware.h> 29 #include <linux/string.h> 30 #include <linux/debugfs.h> 31 #include <linux/rculist.h> 32 #include <linux/remoteproc.h> 33 #include <linux/iommu.h> 34 #include <linux/idr.h> 35 #include <linux/elf.h> 36 #include <linux/crc32.h> 37 #include <linux/of_reserved_mem.h> 38 #include <linux/virtio_ids.h> 39 #include <linux/virtio_ring.h> 40 #include <asm/byteorder.h> 41 #include <linux/platform_device.h> 42 43 #include "remoteproc_internal.h" 44 45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 static struct notifier_block rproc_panic_nb; 50 51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 52 void *, int offset, int avail); 53 54 static int rproc_alloc_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56 static int rproc_release_carveout(struct rproc *rproc, 57 struct rproc_mem_entry *mem); 58 59 /* Unique indices for remoteproc devices */ 60 static DEFINE_IDA(rproc_dev_index); 61 62 static const char * const rproc_crash_names[] = { 63 [RPROC_MMUFAULT] = "mmufault", 64 [RPROC_WATCHDOG] = "watchdog", 65 [RPROC_FATAL_ERROR] = "fatal error", 66 }; 67 68 /* translate rproc_crash_type to string */ 69 static const char *rproc_crash_to_string(enum rproc_crash_type type) 70 { 71 if (type < ARRAY_SIZE(rproc_crash_names)) 72 return rproc_crash_names[type]; 73 return "unknown"; 74 } 75 76 /* 77 * This is the IOMMU fault handler we register with the IOMMU API 78 * (when relevant; not all remote processors access memory through 79 * an IOMMU). 80 * 81 * IOMMU core will invoke this handler whenever the remote processor 82 * will try to access an unmapped device address. 83 */ 84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 85 unsigned long iova, int flags, void *token) 86 { 87 struct rproc *rproc = token; 88 89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 90 91 rproc_report_crash(rproc, RPROC_MMUFAULT); 92 93 /* 94 * Let the iommu core know we're not really handling this fault; 95 * we just used it as a recovery trigger. 96 */ 97 return -ENOSYS; 98 } 99 100 static int rproc_enable_iommu(struct rproc *rproc) 101 { 102 struct iommu_domain *domain; 103 struct device *dev = rproc->dev.parent; 104 int ret; 105 106 if (!rproc->has_iommu) { 107 dev_dbg(dev, "iommu not present\n"); 108 return 0; 109 } 110 111 domain = iommu_domain_alloc(dev->bus); 112 if (!domain) { 113 dev_err(dev, "can't alloc iommu domain\n"); 114 return -ENOMEM; 115 } 116 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 118 119 ret = iommu_attach_device(domain, dev); 120 if (ret) { 121 dev_err(dev, "can't attach iommu device: %d\n", ret); 122 goto free_domain; 123 } 124 125 rproc->domain = domain; 126 127 return 0; 128 129 free_domain: 130 iommu_domain_free(domain); 131 return ret; 132 } 133 134 static void rproc_disable_iommu(struct rproc *rproc) 135 { 136 struct iommu_domain *domain = rproc->domain; 137 struct device *dev = rproc->dev.parent; 138 139 if (!domain) 140 return; 141 142 iommu_detach_device(domain, dev); 143 iommu_domain_free(domain); 144 } 145 146 phys_addr_t rproc_va_to_pa(void *cpu_addr) 147 { 148 /* 149 * Return physical address according to virtual address location 150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 151 * - in kernel: if region allocated in generic dma memory pool 152 */ 153 if (is_vmalloc_addr(cpu_addr)) { 154 return page_to_phys(vmalloc_to_page(cpu_addr)) + 155 offset_in_page(cpu_addr); 156 } 157 158 WARN_ON(!virt_addr_valid(cpu_addr)); 159 return virt_to_phys(cpu_addr); 160 } 161 EXPORT_SYMBOL(rproc_va_to_pa); 162 163 /** 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 165 * @rproc: handle of a remote processor 166 * @da: remoteproc device address to translate 167 * @len: length of the memory region @da is pointing to 168 * 169 * Some remote processors will ask us to allocate them physically contiguous 170 * memory regions (which we call "carveouts"), and map them to specific 171 * device addresses (which are hardcoded in the firmware). They may also have 172 * dedicated memory regions internal to the processors, and use them either 173 * exclusively or alongside carveouts. 174 * 175 * They may then ask us to copy objects into specific device addresses (e.g. 176 * code/data sections) or expose us certain symbols in other device address 177 * (e.g. their trace buffer). 178 * 179 * This function is a helper function with which we can go over the allocated 180 * carveouts and translate specific device addresses to kernel virtual addresses 181 * so we can access the referenced memory. This function also allows to perform 182 * translations on the internal remoteproc memory regions through a platform 183 * implementation specific da_to_va ops, if present. 184 * 185 * The function returns a valid kernel address on success or NULL on failure. 186 * 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 188 * but only on kernel direct mapped RAM memory. Instead, we're just using 189 * here the output of the DMA API for the carveouts, which should be more 190 * correct. 191 */ 192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 193 { 194 struct rproc_mem_entry *carveout; 195 void *ptr = NULL; 196 197 if (rproc->ops->da_to_va) { 198 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 199 if (ptr) 200 goto out; 201 } 202 203 list_for_each_entry(carveout, &rproc->carveouts, node) { 204 int offset = da - carveout->da; 205 206 /* Verify that carveout is allocated */ 207 if (!carveout->va) 208 continue; 209 210 /* try next carveout if da is too small */ 211 if (offset < 0) 212 continue; 213 214 /* try next carveout if da is too large */ 215 if (offset + len > carveout->len) 216 continue; 217 218 ptr = carveout->va + offset; 219 220 if (is_iomem) 221 *is_iomem = carveout->is_iomem; 222 223 break; 224 } 225 226 out: 227 return ptr; 228 } 229 EXPORT_SYMBOL(rproc_da_to_va); 230 231 /** 232 * rproc_find_carveout_by_name() - lookup the carveout region by a name 233 * @rproc: handle of a remote processor 234 * @name: carveout name to find (format string) 235 * @...: optional parameters matching @name string 236 * 237 * Platform driver has the capability to register some pre-allacoted carveout 238 * (physically contiguous memory regions) before rproc firmware loading and 239 * associated resource table analysis. These regions may be dedicated memory 240 * regions internal to the coprocessor or specified DDR region with specific 241 * attributes 242 * 243 * This function is a helper function with which we can go over the 244 * allocated carveouts and return associated region characteristics like 245 * coprocessor address, length or processor virtual address. 246 * 247 * Return: a valid pointer on carveout entry on success or NULL on failure. 248 */ 249 __printf(2, 3) 250 struct rproc_mem_entry * 251 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 252 { 253 va_list args; 254 char _name[32]; 255 struct rproc_mem_entry *carveout, *mem = NULL; 256 257 if (!name) 258 return NULL; 259 260 va_start(args, name); 261 vsnprintf(_name, sizeof(_name), name, args); 262 va_end(args); 263 264 list_for_each_entry(carveout, &rproc->carveouts, node) { 265 /* Compare carveout and requested names */ 266 if (!strcmp(carveout->name, _name)) { 267 mem = carveout; 268 break; 269 } 270 } 271 272 return mem; 273 } 274 275 /** 276 * rproc_check_carveout_da() - Check specified carveout da configuration 277 * @rproc: handle of a remote processor 278 * @mem: pointer on carveout to check 279 * @da: area device address 280 * @len: associated area size 281 * 282 * This function is a helper function to verify requested device area (couple 283 * da, len) is part of specified carveout. 284 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 285 * checked. 286 * 287 * Return: 0 if carveout matches request else error 288 */ 289 static int rproc_check_carveout_da(struct rproc *rproc, 290 struct rproc_mem_entry *mem, u32 da, u32 len) 291 { 292 struct device *dev = &rproc->dev; 293 int delta; 294 295 /* Check requested resource length */ 296 if (len > mem->len) { 297 dev_err(dev, "Registered carveout doesn't fit len request\n"); 298 return -EINVAL; 299 } 300 301 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 302 /* Address doesn't match registered carveout configuration */ 303 return -EINVAL; 304 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 305 delta = da - mem->da; 306 307 /* Check requested resource belongs to registered carveout */ 308 if (delta < 0) { 309 dev_err(dev, 310 "Registered carveout doesn't fit da request\n"); 311 return -EINVAL; 312 } 313 314 if (delta + len > mem->len) { 315 dev_err(dev, 316 "Registered carveout doesn't fit len request\n"); 317 return -EINVAL; 318 } 319 } 320 321 return 0; 322 } 323 324 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 325 { 326 struct rproc *rproc = rvdev->rproc; 327 struct device *dev = &rproc->dev; 328 struct rproc_vring *rvring = &rvdev->vring[i]; 329 struct fw_rsc_vdev *rsc; 330 int ret, notifyid; 331 struct rproc_mem_entry *mem; 332 size_t size; 333 334 /* actual size of vring (in bytes) */ 335 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 336 337 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 338 339 /* Search for pre-registered carveout */ 340 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 341 i); 342 if (mem) { 343 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 344 return -ENOMEM; 345 } else { 346 /* Register carveout in in list */ 347 mem = rproc_mem_entry_init(dev, NULL, 0, 348 size, rsc->vring[i].da, 349 rproc_alloc_carveout, 350 rproc_release_carveout, 351 "vdev%dvring%d", 352 rvdev->index, i); 353 if (!mem) { 354 dev_err(dev, "Can't allocate memory entry structure\n"); 355 return -ENOMEM; 356 } 357 358 rproc_add_carveout(rproc, mem); 359 } 360 361 /* 362 * Assign an rproc-wide unique index for this vring 363 * TODO: assign a notifyid for rvdev updates as well 364 * TODO: support predefined notifyids (via resource table) 365 */ 366 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 367 if (ret < 0) { 368 dev_err(dev, "idr_alloc failed: %d\n", ret); 369 return ret; 370 } 371 notifyid = ret; 372 373 /* Potentially bump max_notifyid */ 374 if (notifyid > rproc->max_notifyid) 375 rproc->max_notifyid = notifyid; 376 377 rvring->notifyid = notifyid; 378 379 /* Let the rproc know the notifyid of this vring.*/ 380 rsc->vring[i].notifyid = notifyid; 381 return 0; 382 } 383 384 static int 385 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 386 { 387 struct rproc *rproc = rvdev->rproc; 388 struct device *dev = &rproc->dev; 389 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 390 struct rproc_vring *rvring = &rvdev->vring[i]; 391 392 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 393 i, vring->da, vring->num, vring->align); 394 395 /* verify queue size and vring alignment are sane */ 396 if (!vring->num || !vring->align) { 397 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 398 vring->num, vring->align); 399 return -EINVAL; 400 } 401 402 rvring->len = vring->num; 403 rvring->align = vring->align; 404 rvring->rvdev = rvdev; 405 406 return 0; 407 } 408 409 void rproc_free_vring(struct rproc_vring *rvring) 410 { 411 struct rproc *rproc = rvring->rvdev->rproc; 412 int idx = rvring - rvring->rvdev->vring; 413 struct fw_rsc_vdev *rsc; 414 415 idr_remove(&rproc->notifyids, rvring->notifyid); 416 417 /* 418 * At this point rproc_stop() has been called and the installed resource 419 * table in the remote processor memory may no longer be accessible. As 420 * such and as per rproc_stop(), rproc->table_ptr points to the cached 421 * resource table (rproc->cached_table). The cached resource table is 422 * only available when a remote processor has been booted by the 423 * remoteproc core, otherwise it is NULL. 424 * 425 * Based on the above, reset the virtio device section in the cached 426 * resource table only if there is one to work with. 427 */ 428 if (rproc->table_ptr) { 429 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 430 rsc->vring[idx].da = 0; 431 rsc->vring[idx].notifyid = -1; 432 } 433 } 434 435 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 436 { 437 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 438 439 return rproc_add_virtio_dev(rvdev, rvdev->id); 440 } 441 442 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 443 { 444 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 445 int ret; 446 447 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 448 if (ret) 449 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 450 } 451 452 /** 453 * rproc_rvdev_release() - release the existence of a rvdev 454 * 455 * @dev: the subdevice's dev 456 */ 457 static void rproc_rvdev_release(struct device *dev) 458 { 459 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 460 461 of_reserved_mem_device_release(dev); 462 463 kfree(rvdev); 464 } 465 466 static int copy_dma_range_map(struct device *to, struct device *from) 467 { 468 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; 469 int num_ranges = 0; 470 471 if (!map) 472 return 0; 473 474 for (r = map; r->size; r++) 475 num_ranges++; 476 477 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), 478 GFP_KERNEL); 479 if (!new_map) 480 return -ENOMEM; 481 to->dma_range_map = new_map; 482 return 0; 483 } 484 485 /** 486 * rproc_handle_vdev() - handle a vdev fw resource 487 * @rproc: the remote processor 488 * @ptr: the vring resource descriptor 489 * @offset: offset of the resource entry 490 * @avail: size of available data (for sanity checking the image) 491 * 492 * This resource entry requests the host to statically register a virtio 493 * device (vdev), and setup everything needed to support it. It contains 494 * everything needed to make it possible: the virtio device id, virtio 495 * device features, vrings information, virtio config space, etc... 496 * 497 * Before registering the vdev, the vrings are allocated from non-cacheable 498 * physically contiguous memory. Currently we only support two vrings per 499 * remote processor (temporary limitation). We might also want to consider 500 * doing the vring allocation only later when ->find_vqs() is invoked, and 501 * then release them upon ->del_vqs(). 502 * 503 * Note: @da is currently not really handled correctly: we dynamically 504 * allocate it using the DMA API, ignoring requested hard coded addresses, 505 * and we don't take care of any required IOMMU programming. This is all 506 * going to be taken care of when the generic iommu-based DMA API will be 507 * merged. Meanwhile, statically-addressed iommu-based firmware images should 508 * use RSC_DEVMEM resource entries to map their required @da to the physical 509 * address of their base CMA region (ouch, hacky!). 510 * 511 * Returns 0 on success, or an appropriate error code otherwise 512 */ 513 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 514 int offset, int avail) 515 { 516 struct fw_rsc_vdev *rsc = ptr; 517 struct device *dev = &rproc->dev; 518 struct rproc_vdev *rvdev; 519 int i, ret; 520 char name[16]; 521 522 /* make sure resource isn't truncated */ 523 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 524 avail) { 525 dev_err(dev, "vdev rsc is truncated\n"); 526 return -EINVAL; 527 } 528 529 /* make sure reserved bytes are zeroes */ 530 if (rsc->reserved[0] || rsc->reserved[1]) { 531 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 532 return -EINVAL; 533 } 534 535 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 536 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 537 538 /* we currently support only two vrings per rvdev */ 539 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 540 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 541 return -EINVAL; 542 } 543 544 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 545 if (!rvdev) 546 return -ENOMEM; 547 548 kref_init(&rvdev->refcount); 549 550 rvdev->id = rsc->id; 551 rvdev->rproc = rproc; 552 rvdev->index = rproc->nb_vdev++; 553 554 /* Initialise vdev subdevice */ 555 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 556 rvdev->dev.parent = &rproc->dev; 557 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); 558 if (ret) 559 return ret; 560 rvdev->dev.release = rproc_rvdev_release; 561 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 562 dev_set_drvdata(&rvdev->dev, rvdev); 563 564 ret = device_register(&rvdev->dev); 565 if (ret) { 566 put_device(&rvdev->dev); 567 return ret; 568 } 569 /* Make device dma capable by inheriting from parent's capabilities */ 570 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 571 572 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 573 dma_get_mask(rproc->dev.parent)); 574 if (ret) { 575 dev_warn(dev, 576 "Failed to set DMA mask %llx. Trying to continue... %x\n", 577 dma_get_mask(rproc->dev.parent), ret); 578 } 579 580 /* parse the vrings */ 581 for (i = 0; i < rsc->num_of_vrings; i++) { 582 ret = rproc_parse_vring(rvdev, rsc, i); 583 if (ret) 584 goto free_rvdev; 585 } 586 587 /* remember the resource offset*/ 588 rvdev->rsc_offset = offset; 589 590 /* allocate the vring resources */ 591 for (i = 0; i < rsc->num_of_vrings; i++) { 592 ret = rproc_alloc_vring(rvdev, i); 593 if (ret) 594 goto unwind_vring_allocations; 595 } 596 597 list_add_tail(&rvdev->node, &rproc->rvdevs); 598 599 rvdev->subdev.start = rproc_vdev_do_start; 600 rvdev->subdev.stop = rproc_vdev_do_stop; 601 602 rproc_add_subdev(rproc, &rvdev->subdev); 603 604 return 0; 605 606 unwind_vring_allocations: 607 for (i--; i >= 0; i--) 608 rproc_free_vring(&rvdev->vring[i]); 609 free_rvdev: 610 device_unregister(&rvdev->dev); 611 return ret; 612 } 613 614 void rproc_vdev_release(struct kref *ref) 615 { 616 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 617 struct rproc_vring *rvring; 618 struct rproc *rproc = rvdev->rproc; 619 int id; 620 621 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 622 rvring = &rvdev->vring[id]; 623 rproc_free_vring(rvring); 624 } 625 626 rproc_remove_subdev(rproc, &rvdev->subdev); 627 list_del(&rvdev->node); 628 device_unregister(&rvdev->dev); 629 } 630 631 /** 632 * rproc_handle_trace() - handle a shared trace buffer resource 633 * @rproc: the remote processor 634 * @ptr: the trace resource descriptor 635 * @offset: offset of the resource entry 636 * @avail: size of available data (for sanity checking the image) 637 * 638 * In case the remote processor dumps trace logs into memory, 639 * export it via debugfs. 640 * 641 * Currently, the 'da' member of @rsc should contain the device address 642 * where the remote processor is dumping the traces. Later we could also 643 * support dynamically allocating this address using the generic 644 * DMA API (but currently there isn't a use case for that). 645 * 646 * Returns 0 on success, or an appropriate error code otherwise 647 */ 648 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 649 int offset, int avail) 650 { 651 struct fw_rsc_trace *rsc = ptr; 652 struct rproc_debug_trace *trace; 653 struct device *dev = &rproc->dev; 654 char name[15]; 655 656 if (sizeof(*rsc) > avail) { 657 dev_err(dev, "trace rsc is truncated\n"); 658 return -EINVAL; 659 } 660 661 /* make sure reserved bytes are zeroes */ 662 if (rsc->reserved) { 663 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 664 return -EINVAL; 665 } 666 667 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 668 if (!trace) 669 return -ENOMEM; 670 671 /* set the trace buffer dma properties */ 672 trace->trace_mem.len = rsc->len; 673 trace->trace_mem.da = rsc->da; 674 675 /* set pointer on rproc device */ 676 trace->rproc = rproc; 677 678 /* make sure snprintf always null terminates, even if truncating */ 679 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 680 681 /* create the debugfs entry */ 682 trace->tfile = rproc_create_trace_file(name, rproc, trace); 683 if (!trace->tfile) { 684 kfree(trace); 685 return -EINVAL; 686 } 687 688 list_add_tail(&trace->node, &rproc->traces); 689 690 rproc->num_traces++; 691 692 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 693 name, rsc->da, rsc->len); 694 695 return 0; 696 } 697 698 /** 699 * rproc_handle_devmem() - handle devmem resource entry 700 * @rproc: remote processor handle 701 * @ptr: the devmem resource entry 702 * @offset: offset of the resource entry 703 * @avail: size of available data (for sanity checking the image) 704 * 705 * Remote processors commonly need to access certain on-chip peripherals. 706 * 707 * Some of these remote processors access memory via an iommu device, 708 * and might require us to configure their iommu before they can access 709 * the on-chip peripherals they need. 710 * 711 * This resource entry is a request to map such a peripheral device. 712 * 713 * These devmem entries will contain the physical address of the device in 714 * the 'pa' member. If a specific device address is expected, then 'da' will 715 * contain it (currently this is the only use case supported). 'len' will 716 * contain the size of the physical region we need to map. 717 * 718 * Currently we just "trust" those devmem entries to contain valid physical 719 * addresses, but this is going to change: we want the implementations to 720 * tell us ranges of physical addresses the firmware is allowed to request, 721 * and not allow firmwares to request access to physical addresses that 722 * are outside those ranges. 723 */ 724 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 725 int offset, int avail) 726 { 727 struct fw_rsc_devmem *rsc = ptr; 728 struct rproc_mem_entry *mapping; 729 struct device *dev = &rproc->dev; 730 int ret; 731 732 /* no point in handling this resource without a valid iommu domain */ 733 if (!rproc->domain) 734 return -EINVAL; 735 736 if (sizeof(*rsc) > avail) { 737 dev_err(dev, "devmem rsc is truncated\n"); 738 return -EINVAL; 739 } 740 741 /* make sure reserved bytes are zeroes */ 742 if (rsc->reserved) { 743 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 744 return -EINVAL; 745 } 746 747 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 748 if (!mapping) 749 return -ENOMEM; 750 751 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 752 if (ret) { 753 dev_err(dev, "failed to map devmem: %d\n", ret); 754 goto out; 755 } 756 757 /* 758 * We'll need this info later when we'll want to unmap everything 759 * (e.g. on shutdown). 760 * 761 * We can't trust the remote processor not to change the resource 762 * table, so we must maintain this info independently. 763 */ 764 mapping->da = rsc->da; 765 mapping->len = rsc->len; 766 list_add_tail(&mapping->node, &rproc->mappings); 767 768 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 769 rsc->pa, rsc->da, rsc->len); 770 771 return 0; 772 773 out: 774 kfree(mapping); 775 return ret; 776 } 777 778 /** 779 * rproc_alloc_carveout() - allocated specified carveout 780 * @rproc: rproc handle 781 * @mem: the memory entry to allocate 782 * 783 * This function allocate specified memory entry @mem using 784 * dma_alloc_coherent() as default allocator 785 */ 786 static int rproc_alloc_carveout(struct rproc *rproc, 787 struct rproc_mem_entry *mem) 788 { 789 struct rproc_mem_entry *mapping = NULL; 790 struct device *dev = &rproc->dev; 791 dma_addr_t dma; 792 void *va; 793 int ret; 794 795 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 796 if (!va) { 797 dev_err(dev->parent, 798 "failed to allocate dma memory: len 0x%zx\n", 799 mem->len); 800 return -ENOMEM; 801 } 802 803 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 804 va, &dma, mem->len); 805 806 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 807 /* 808 * Check requested da is equal to dma address 809 * and print a warn message in case of missalignment. 810 * Don't stop rproc_start sequence as coprocessor may 811 * build pa to da translation on its side. 812 */ 813 if (mem->da != (u32)dma) 814 dev_warn(dev->parent, 815 "Allocated carveout doesn't fit device address request\n"); 816 } 817 818 /* 819 * Ok, this is non-standard. 820 * 821 * Sometimes we can't rely on the generic iommu-based DMA API 822 * to dynamically allocate the device address and then set the IOMMU 823 * tables accordingly, because some remote processors might 824 * _require_ us to use hard coded device addresses that their 825 * firmware was compiled with. 826 * 827 * In this case, we must use the IOMMU API directly and map 828 * the memory to the device address as expected by the remote 829 * processor. 830 * 831 * Obviously such remote processor devices should not be configured 832 * to use the iommu-based DMA API: we expect 'dma' to contain the 833 * physical address in this case. 834 */ 835 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 836 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 837 if (!mapping) { 838 ret = -ENOMEM; 839 goto dma_free; 840 } 841 842 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 843 mem->flags); 844 if (ret) { 845 dev_err(dev, "iommu_map failed: %d\n", ret); 846 goto free_mapping; 847 } 848 849 /* 850 * We'll need this info later when we'll want to unmap 851 * everything (e.g. on shutdown). 852 * 853 * We can't trust the remote processor not to change the 854 * resource table, so we must maintain this info independently. 855 */ 856 mapping->da = mem->da; 857 mapping->len = mem->len; 858 list_add_tail(&mapping->node, &rproc->mappings); 859 860 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 861 mem->da, &dma); 862 } 863 864 if (mem->da == FW_RSC_ADDR_ANY) { 865 /* Update device address as undefined by requester */ 866 if ((u64)dma & HIGH_BITS_MASK) 867 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 868 869 mem->da = (u32)dma; 870 } 871 872 mem->dma = dma; 873 mem->va = va; 874 875 return 0; 876 877 free_mapping: 878 kfree(mapping); 879 dma_free: 880 dma_free_coherent(dev->parent, mem->len, va, dma); 881 return ret; 882 } 883 884 /** 885 * rproc_release_carveout() - release acquired carveout 886 * @rproc: rproc handle 887 * @mem: the memory entry to release 888 * 889 * This function releases specified memory entry @mem allocated via 890 * rproc_alloc_carveout() function by @rproc. 891 */ 892 static int rproc_release_carveout(struct rproc *rproc, 893 struct rproc_mem_entry *mem) 894 { 895 struct device *dev = &rproc->dev; 896 897 /* clean up carveout allocations */ 898 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 899 return 0; 900 } 901 902 /** 903 * rproc_handle_carveout() - handle phys contig memory allocation requests 904 * @rproc: rproc handle 905 * @ptr: the resource entry 906 * @offset: offset of the resource entry 907 * @avail: size of available data (for image validation) 908 * 909 * This function will handle firmware requests for allocation of physically 910 * contiguous memory regions. 911 * 912 * These request entries should come first in the firmware's resource table, 913 * as other firmware entries might request placing other data objects inside 914 * these memory regions (e.g. data/code segments, trace resource entries, ...). 915 * 916 * Allocating memory this way helps utilizing the reserved physical memory 917 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 918 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 919 * pressure is important; it may have a substantial impact on performance. 920 */ 921 static int rproc_handle_carveout(struct rproc *rproc, 922 void *ptr, int offset, int avail) 923 { 924 struct fw_rsc_carveout *rsc = ptr; 925 struct rproc_mem_entry *carveout; 926 struct device *dev = &rproc->dev; 927 928 if (sizeof(*rsc) > avail) { 929 dev_err(dev, "carveout rsc is truncated\n"); 930 return -EINVAL; 931 } 932 933 /* make sure reserved bytes are zeroes */ 934 if (rsc->reserved) { 935 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 936 return -EINVAL; 937 } 938 939 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 940 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 941 942 /* 943 * Check carveout rsc already part of a registered carveout, 944 * Search by name, then check the da and length 945 */ 946 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 947 948 if (carveout) { 949 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 950 dev_err(dev, 951 "Carveout already associated to resource table\n"); 952 return -ENOMEM; 953 } 954 955 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 956 return -ENOMEM; 957 958 /* Update memory carveout with resource table info */ 959 carveout->rsc_offset = offset; 960 carveout->flags = rsc->flags; 961 962 return 0; 963 } 964 965 /* Register carveout in in list */ 966 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 967 rproc_alloc_carveout, 968 rproc_release_carveout, rsc->name); 969 if (!carveout) { 970 dev_err(dev, "Can't allocate memory entry structure\n"); 971 return -ENOMEM; 972 } 973 974 carveout->flags = rsc->flags; 975 carveout->rsc_offset = offset; 976 rproc_add_carveout(rproc, carveout); 977 978 return 0; 979 } 980 981 /** 982 * rproc_add_carveout() - register an allocated carveout region 983 * @rproc: rproc handle 984 * @mem: memory entry to register 985 * 986 * This function registers specified memory entry in @rproc carveouts list. 987 * Specified carveout should have been allocated before registering. 988 */ 989 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 990 { 991 list_add_tail(&mem->node, &rproc->carveouts); 992 } 993 EXPORT_SYMBOL(rproc_add_carveout); 994 995 /** 996 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 997 * @dev: pointer on device struct 998 * @va: virtual address 999 * @dma: dma address 1000 * @len: memory carveout length 1001 * @da: device address 1002 * @alloc: memory carveout allocation function 1003 * @release: memory carveout release function 1004 * @name: carveout name 1005 * 1006 * This function allocates a rproc_mem_entry struct and fill it with parameters 1007 * provided by client. 1008 */ 1009 __printf(8, 9) 1010 struct rproc_mem_entry * 1011 rproc_mem_entry_init(struct device *dev, 1012 void *va, dma_addr_t dma, size_t len, u32 da, 1013 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 1014 int (*release)(struct rproc *, struct rproc_mem_entry *), 1015 const char *name, ...) 1016 { 1017 struct rproc_mem_entry *mem; 1018 va_list args; 1019 1020 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1021 if (!mem) 1022 return mem; 1023 1024 mem->va = va; 1025 mem->dma = dma; 1026 mem->da = da; 1027 mem->len = len; 1028 mem->alloc = alloc; 1029 mem->release = release; 1030 mem->rsc_offset = FW_RSC_ADDR_ANY; 1031 mem->of_resm_idx = -1; 1032 1033 va_start(args, name); 1034 vsnprintf(mem->name, sizeof(mem->name), name, args); 1035 va_end(args); 1036 1037 return mem; 1038 } 1039 EXPORT_SYMBOL(rproc_mem_entry_init); 1040 1041 /** 1042 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1043 * from a reserved memory phandle 1044 * @dev: pointer on device struct 1045 * @of_resm_idx: reserved memory phandle index in "memory-region" 1046 * @len: memory carveout length 1047 * @da: device address 1048 * @name: carveout name 1049 * 1050 * This function allocates a rproc_mem_entry struct and fill it with parameters 1051 * provided by client. 1052 */ 1053 __printf(5, 6) 1054 struct rproc_mem_entry * 1055 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1056 u32 da, const char *name, ...) 1057 { 1058 struct rproc_mem_entry *mem; 1059 va_list args; 1060 1061 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1062 if (!mem) 1063 return mem; 1064 1065 mem->da = da; 1066 mem->len = len; 1067 mem->rsc_offset = FW_RSC_ADDR_ANY; 1068 mem->of_resm_idx = of_resm_idx; 1069 1070 va_start(args, name); 1071 vsnprintf(mem->name, sizeof(mem->name), name, args); 1072 va_end(args); 1073 1074 return mem; 1075 } 1076 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1077 1078 /** 1079 * rproc_of_parse_firmware() - parse and return the firmware-name 1080 * @dev: pointer on device struct representing a rproc 1081 * @index: index to use for the firmware-name retrieval 1082 * @fw_name: pointer to a character string, in which the firmware 1083 * name is returned on success and unmodified otherwise. 1084 * 1085 * This is an OF helper function that parses a device's DT node for 1086 * the "firmware-name" property and returns the firmware name pointer 1087 * in @fw_name on success. 1088 * 1089 * Return: 0 on success, or an appropriate failure. 1090 */ 1091 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1092 { 1093 int ret; 1094 1095 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1096 index, fw_name); 1097 return ret ? ret : 0; 1098 } 1099 EXPORT_SYMBOL(rproc_of_parse_firmware); 1100 1101 /* 1102 * A lookup table for resource handlers. The indices are defined in 1103 * enum fw_resource_type. 1104 */ 1105 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1106 [RSC_CARVEOUT] = rproc_handle_carveout, 1107 [RSC_DEVMEM] = rproc_handle_devmem, 1108 [RSC_TRACE] = rproc_handle_trace, 1109 [RSC_VDEV] = rproc_handle_vdev, 1110 }; 1111 1112 /* handle firmware resource entries before booting the remote processor */ 1113 static int rproc_handle_resources(struct rproc *rproc, 1114 rproc_handle_resource_t handlers[RSC_LAST]) 1115 { 1116 struct device *dev = &rproc->dev; 1117 rproc_handle_resource_t handler; 1118 int ret = 0, i; 1119 1120 if (!rproc->table_ptr) 1121 return 0; 1122 1123 for (i = 0; i < rproc->table_ptr->num; i++) { 1124 int offset = rproc->table_ptr->offset[i]; 1125 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1126 int avail = rproc->table_sz - offset - sizeof(*hdr); 1127 void *rsc = (void *)hdr + sizeof(*hdr); 1128 1129 /* make sure table isn't truncated */ 1130 if (avail < 0) { 1131 dev_err(dev, "rsc table is truncated\n"); 1132 return -EINVAL; 1133 } 1134 1135 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1136 1137 if (hdr->type >= RSC_VENDOR_START && 1138 hdr->type <= RSC_VENDOR_END) { 1139 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1140 offset + sizeof(*hdr), avail); 1141 if (ret == RSC_HANDLED) 1142 continue; 1143 else if (ret < 0) 1144 break; 1145 1146 dev_warn(dev, "unsupported vendor resource %d\n", 1147 hdr->type); 1148 continue; 1149 } 1150 1151 if (hdr->type >= RSC_LAST) { 1152 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1153 continue; 1154 } 1155 1156 handler = handlers[hdr->type]; 1157 if (!handler) 1158 continue; 1159 1160 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1161 if (ret) 1162 break; 1163 } 1164 1165 return ret; 1166 } 1167 1168 static int rproc_prepare_subdevices(struct rproc *rproc) 1169 { 1170 struct rproc_subdev *subdev; 1171 int ret; 1172 1173 list_for_each_entry(subdev, &rproc->subdevs, node) { 1174 if (subdev->prepare) { 1175 ret = subdev->prepare(subdev); 1176 if (ret) 1177 goto unroll_preparation; 1178 } 1179 } 1180 1181 return 0; 1182 1183 unroll_preparation: 1184 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1185 if (subdev->unprepare) 1186 subdev->unprepare(subdev); 1187 } 1188 1189 return ret; 1190 } 1191 1192 static int rproc_start_subdevices(struct rproc *rproc) 1193 { 1194 struct rproc_subdev *subdev; 1195 int ret; 1196 1197 list_for_each_entry(subdev, &rproc->subdevs, node) { 1198 if (subdev->start) { 1199 ret = subdev->start(subdev); 1200 if (ret) 1201 goto unroll_registration; 1202 } 1203 } 1204 1205 return 0; 1206 1207 unroll_registration: 1208 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1209 if (subdev->stop) 1210 subdev->stop(subdev, true); 1211 } 1212 1213 return ret; 1214 } 1215 1216 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1217 { 1218 struct rproc_subdev *subdev; 1219 1220 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1221 if (subdev->stop) 1222 subdev->stop(subdev, crashed); 1223 } 1224 } 1225 1226 static void rproc_unprepare_subdevices(struct rproc *rproc) 1227 { 1228 struct rproc_subdev *subdev; 1229 1230 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1231 if (subdev->unprepare) 1232 subdev->unprepare(subdev); 1233 } 1234 } 1235 1236 /** 1237 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1238 * in the list 1239 * @rproc: the remote processor handle 1240 * 1241 * This function parses registered carveout list, performs allocation 1242 * if alloc() ops registered and updates resource table information 1243 * if rsc_offset set. 1244 * 1245 * Return: 0 on success 1246 */ 1247 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1248 { 1249 struct rproc_mem_entry *entry, *tmp; 1250 struct fw_rsc_carveout *rsc; 1251 struct device *dev = &rproc->dev; 1252 u64 pa; 1253 int ret; 1254 1255 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1256 if (entry->alloc) { 1257 ret = entry->alloc(rproc, entry); 1258 if (ret) { 1259 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1260 entry->name, ret); 1261 return -ENOMEM; 1262 } 1263 } 1264 1265 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1266 /* update resource table */ 1267 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1268 1269 /* 1270 * Some remote processors might need to know the pa 1271 * even though they are behind an IOMMU. E.g., OMAP4's 1272 * remote M3 processor needs this so it can control 1273 * on-chip hardware accelerators that are not behind 1274 * the IOMMU, and therefor must know the pa. 1275 * 1276 * Generally we don't want to expose physical addresses 1277 * if we don't have to (remote processors are generally 1278 * _not_ trusted), so we might want to do this only for 1279 * remote processor that _must_ have this (e.g. OMAP4's 1280 * dual M3 subsystem). 1281 * 1282 * Non-IOMMU processors might also want to have this info. 1283 * In this case, the device address and the physical address 1284 * are the same. 1285 */ 1286 1287 /* Use va if defined else dma to generate pa */ 1288 if (entry->va) 1289 pa = (u64)rproc_va_to_pa(entry->va); 1290 else 1291 pa = (u64)entry->dma; 1292 1293 if (((u64)pa) & HIGH_BITS_MASK) 1294 dev_warn(dev, 1295 "Physical address cast in 32bit to fit resource table format\n"); 1296 1297 rsc->pa = (u32)pa; 1298 rsc->da = entry->da; 1299 rsc->len = entry->len; 1300 } 1301 } 1302 1303 return 0; 1304 } 1305 1306 1307 /** 1308 * rproc_resource_cleanup() - clean up and free all acquired resources 1309 * @rproc: rproc handle 1310 * 1311 * This function will free all resources acquired for @rproc, and it 1312 * is called whenever @rproc either shuts down or fails to boot. 1313 */ 1314 void rproc_resource_cleanup(struct rproc *rproc) 1315 { 1316 struct rproc_mem_entry *entry, *tmp; 1317 struct rproc_debug_trace *trace, *ttmp; 1318 struct rproc_vdev *rvdev, *rvtmp; 1319 struct device *dev = &rproc->dev; 1320 1321 /* clean up debugfs trace entries */ 1322 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1323 rproc_remove_trace_file(trace->tfile); 1324 rproc->num_traces--; 1325 list_del(&trace->node); 1326 kfree(trace); 1327 } 1328 1329 /* clean up iommu mapping entries */ 1330 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1331 size_t unmapped; 1332 1333 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1334 if (unmapped != entry->len) { 1335 /* nothing much to do besides complaining */ 1336 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1337 unmapped); 1338 } 1339 1340 list_del(&entry->node); 1341 kfree(entry); 1342 } 1343 1344 /* clean up carveout allocations */ 1345 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1346 if (entry->release) 1347 entry->release(rproc, entry); 1348 list_del(&entry->node); 1349 kfree(entry); 1350 } 1351 1352 /* clean up remote vdev entries */ 1353 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1354 kref_put(&rvdev->refcount, rproc_vdev_release); 1355 1356 rproc_coredump_cleanup(rproc); 1357 } 1358 EXPORT_SYMBOL(rproc_resource_cleanup); 1359 1360 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1361 { 1362 struct resource_table *loaded_table; 1363 struct device *dev = &rproc->dev; 1364 int ret; 1365 1366 /* load the ELF segments to memory */ 1367 ret = rproc_load_segments(rproc, fw); 1368 if (ret) { 1369 dev_err(dev, "Failed to load program segments: %d\n", ret); 1370 return ret; 1371 } 1372 1373 /* 1374 * The starting device has been given the rproc->cached_table as the 1375 * resource table. The address of the vring along with the other 1376 * allocated resources (carveouts etc) is stored in cached_table. 1377 * In order to pass this information to the remote device we must copy 1378 * this information to device memory. We also update the table_ptr so 1379 * that any subsequent changes will be applied to the loaded version. 1380 */ 1381 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1382 if (loaded_table) { 1383 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1384 rproc->table_ptr = loaded_table; 1385 } 1386 1387 ret = rproc_prepare_subdevices(rproc); 1388 if (ret) { 1389 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1390 rproc->name, ret); 1391 goto reset_table_ptr; 1392 } 1393 1394 /* power up the remote processor */ 1395 ret = rproc->ops->start(rproc); 1396 if (ret) { 1397 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1398 goto unprepare_subdevices; 1399 } 1400 1401 /* Start any subdevices for the remote processor */ 1402 ret = rproc_start_subdevices(rproc); 1403 if (ret) { 1404 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1405 rproc->name, ret); 1406 goto stop_rproc; 1407 } 1408 1409 rproc->state = RPROC_RUNNING; 1410 1411 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1412 1413 return 0; 1414 1415 stop_rproc: 1416 rproc->ops->stop(rproc); 1417 unprepare_subdevices: 1418 rproc_unprepare_subdevices(rproc); 1419 reset_table_ptr: 1420 rproc->table_ptr = rproc->cached_table; 1421 1422 return ret; 1423 } 1424 1425 static int __rproc_attach(struct rproc *rproc) 1426 { 1427 struct device *dev = &rproc->dev; 1428 int ret; 1429 1430 ret = rproc_prepare_subdevices(rproc); 1431 if (ret) { 1432 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1433 rproc->name, ret); 1434 goto out; 1435 } 1436 1437 /* Attach to the remote processor */ 1438 ret = rproc_attach_device(rproc); 1439 if (ret) { 1440 dev_err(dev, "can't attach to rproc %s: %d\n", 1441 rproc->name, ret); 1442 goto unprepare_subdevices; 1443 } 1444 1445 /* Start any subdevices for the remote processor */ 1446 ret = rproc_start_subdevices(rproc); 1447 if (ret) { 1448 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1449 rproc->name, ret); 1450 goto stop_rproc; 1451 } 1452 1453 rproc->state = RPROC_ATTACHED; 1454 1455 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1456 1457 return 0; 1458 1459 stop_rproc: 1460 rproc->ops->stop(rproc); 1461 unprepare_subdevices: 1462 rproc_unprepare_subdevices(rproc); 1463 out: 1464 return ret; 1465 } 1466 1467 /* 1468 * take a firmware and boot a remote processor with it. 1469 */ 1470 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1471 { 1472 struct device *dev = &rproc->dev; 1473 const char *name = rproc->firmware; 1474 int ret; 1475 1476 ret = rproc_fw_sanity_check(rproc, fw); 1477 if (ret) 1478 return ret; 1479 1480 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1481 1482 /* 1483 * if enabling an IOMMU isn't relevant for this rproc, this is 1484 * just a nop 1485 */ 1486 ret = rproc_enable_iommu(rproc); 1487 if (ret) { 1488 dev_err(dev, "can't enable iommu: %d\n", ret); 1489 return ret; 1490 } 1491 1492 /* Prepare rproc for firmware loading if needed */ 1493 ret = rproc_prepare_device(rproc); 1494 if (ret) { 1495 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1496 goto disable_iommu; 1497 } 1498 1499 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1500 1501 /* Load resource table, core dump segment list etc from the firmware */ 1502 ret = rproc_parse_fw(rproc, fw); 1503 if (ret) 1504 goto unprepare_rproc; 1505 1506 /* reset max_notifyid */ 1507 rproc->max_notifyid = -1; 1508 1509 /* reset handled vdev */ 1510 rproc->nb_vdev = 0; 1511 1512 /* handle fw resources which are required to boot rproc */ 1513 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1514 if (ret) { 1515 dev_err(dev, "Failed to process resources: %d\n", ret); 1516 goto clean_up_resources; 1517 } 1518 1519 /* Allocate carveout resources associated to rproc */ 1520 ret = rproc_alloc_registered_carveouts(rproc); 1521 if (ret) { 1522 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1523 ret); 1524 goto clean_up_resources; 1525 } 1526 1527 ret = rproc_start(rproc, fw); 1528 if (ret) 1529 goto clean_up_resources; 1530 1531 return 0; 1532 1533 clean_up_resources: 1534 rproc_resource_cleanup(rproc); 1535 kfree(rproc->cached_table); 1536 rproc->cached_table = NULL; 1537 rproc->table_ptr = NULL; 1538 unprepare_rproc: 1539 /* release HW resources if needed */ 1540 rproc_unprepare_device(rproc); 1541 disable_iommu: 1542 rproc_disable_iommu(rproc); 1543 return ret; 1544 } 1545 1546 static int rproc_set_rsc_table(struct rproc *rproc) 1547 { 1548 struct resource_table *table_ptr; 1549 struct device *dev = &rproc->dev; 1550 size_t table_sz; 1551 int ret; 1552 1553 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1554 if (!table_ptr) { 1555 /* Not having a resource table is acceptable */ 1556 return 0; 1557 } 1558 1559 if (IS_ERR(table_ptr)) { 1560 ret = PTR_ERR(table_ptr); 1561 dev_err(dev, "can't load resource table: %d\n", ret); 1562 return ret; 1563 } 1564 1565 /* 1566 * If it is possible to detach the remote processor, keep an untouched 1567 * copy of the resource table. That way we can start fresh again when 1568 * the remote processor is re-attached, that is: 1569 * 1570 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1571 * 1572 * Free'd in rproc_reset_rsc_table_on_detach() and 1573 * rproc_reset_rsc_table_on_stop(). 1574 */ 1575 if (rproc->ops->detach) { 1576 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1577 if (!rproc->clean_table) 1578 return -ENOMEM; 1579 } else { 1580 rproc->clean_table = NULL; 1581 } 1582 1583 rproc->cached_table = NULL; 1584 rproc->table_ptr = table_ptr; 1585 rproc->table_sz = table_sz; 1586 1587 return 0; 1588 } 1589 1590 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1591 { 1592 struct resource_table *table_ptr; 1593 1594 /* A resource table was never retrieved, nothing to do here */ 1595 if (!rproc->table_ptr) 1596 return 0; 1597 1598 /* 1599 * If we made it to this point a clean_table _must_ have been 1600 * allocated in rproc_set_rsc_table(). If one isn't present 1601 * something went really wrong and we must complain. 1602 */ 1603 if (WARN_ON(!rproc->clean_table)) 1604 return -EINVAL; 1605 1606 /* Remember where the external entity installed the resource table */ 1607 table_ptr = rproc->table_ptr; 1608 1609 /* 1610 * If we made it here the remote processor was started by another 1611 * entity and a cache table doesn't exist. As such make a copy of 1612 * the resource table currently used by the remote processor and 1613 * use that for the rest of the shutdown process. The memory 1614 * allocated here is free'd in rproc_detach(). 1615 */ 1616 rproc->cached_table = kmemdup(rproc->table_ptr, 1617 rproc->table_sz, GFP_KERNEL); 1618 if (!rproc->cached_table) 1619 return -ENOMEM; 1620 1621 /* 1622 * Use a copy of the resource table for the remainder of the 1623 * shutdown process. 1624 */ 1625 rproc->table_ptr = rproc->cached_table; 1626 1627 /* 1628 * Reset the memory area where the firmware loaded the resource table 1629 * to its original value. That way when we re-attach the remote 1630 * processor the resource table is clean and ready to be used again. 1631 */ 1632 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1633 1634 /* 1635 * The clean resource table is no longer needed. Allocated in 1636 * rproc_set_rsc_table(). 1637 */ 1638 kfree(rproc->clean_table); 1639 1640 return 0; 1641 } 1642 1643 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1644 { 1645 /* A resource table was never retrieved, nothing to do here */ 1646 if (!rproc->table_ptr) 1647 return 0; 1648 1649 /* 1650 * If a cache table exists the remote processor was started by 1651 * the remoteproc core. That cache table should be used for 1652 * the rest of the shutdown process. 1653 */ 1654 if (rproc->cached_table) 1655 goto out; 1656 1657 /* 1658 * If we made it here the remote processor was started by another 1659 * entity and a cache table doesn't exist. As such make a copy of 1660 * the resource table currently used by the remote processor and 1661 * use that for the rest of the shutdown process. The memory 1662 * allocated here is free'd in rproc_shutdown(). 1663 */ 1664 rproc->cached_table = kmemdup(rproc->table_ptr, 1665 rproc->table_sz, GFP_KERNEL); 1666 if (!rproc->cached_table) 1667 return -ENOMEM; 1668 1669 /* 1670 * Since the remote processor is being switched off the clean table 1671 * won't be needed. Allocated in rproc_set_rsc_table(). 1672 */ 1673 kfree(rproc->clean_table); 1674 1675 out: 1676 /* 1677 * Use a copy of the resource table for the remainder of the 1678 * shutdown process. 1679 */ 1680 rproc->table_ptr = rproc->cached_table; 1681 return 0; 1682 } 1683 1684 /* 1685 * Attach to remote processor - similar to rproc_fw_boot() but without 1686 * the steps that deal with the firmware image. 1687 */ 1688 static int rproc_attach(struct rproc *rproc) 1689 { 1690 struct device *dev = &rproc->dev; 1691 int ret; 1692 1693 /* 1694 * if enabling an IOMMU isn't relevant for this rproc, this is 1695 * just a nop 1696 */ 1697 ret = rproc_enable_iommu(rproc); 1698 if (ret) { 1699 dev_err(dev, "can't enable iommu: %d\n", ret); 1700 return ret; 1701 } 1702 1703 /* Do anything that is needed to boot the remote processor */ 1704 ret = rproc_prepare_device(rproc); 1705 if (ret) { 1706 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1707 goto disable_iommu; 1708 } 1709 1710 ret = rproc_set_rsc_table(rproc); 1711 if (ret) { 1712 dev_err(dev, "can't load resource table: %d\n", ret); 1713 goto unprepare_device; 1714 } 1715 1716 /* reset max_notifyid */ 1717 rproc->max_notifyid = -1; 1718 1719 /* reset handled vdev */ 1720 rproc->nb_vdev = 0; 1721 1722 /* 1723 * Handle firmware resources required to attach to a remote processor. 1724 * Because we are attaching rather than booting the remote processor, 1725 * we expect the platform driver to properly set rproc->table_ptr. 1726 */ 1727 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1728 if (ret) { 1729 dev_err(dev, "Failed to process resources: %d\n", ret); 1730 goto unprepare_device; 1731 } 1732 1733 /* Allocate carveout resources associated to rproc */ 1734 ret = rproc_alloc_registered_carveouts(rproc); 1735 if (ret) { 1736 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1737 ret); 1738 goto clean_up_resources; 1739 } 1740 1741 ret = __rproc_attach(rproc); 1742 if (ret) 1743 goto clean_up_resources; 1744 1745 return 0; 1746 1747 clean_up_resources: 1748 rproc_resource_cleanup(rproc); 1749 unprepare_device: 1750 /* release HW resources if needed */ 1751 rproc_unprepare_device(rproc); 1752 disable_iommu: 1753 rproc_disable_iommu(rproc); 1754 return ret; 1755 } 1756 1757 /* 1758 * take a firmware and boot it up. 1759 * 1760 * Note: this function is called asynchronously upon registration of the 1761 * remote processor (so we must wait until it completes before we try 1762 * to unregister the device. one other option is just to use kref here, 1763 * that might be cleaner). 1764 */ 1765 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1766 { 1767 struct rproc *rproc = context; 1768 1769 rproc_boot(rproc); 1770 1771 release_firmware(fw); 1772 } 1773 1774 static int rproc_trigger_auto_boot(struct rproc *rproc) 1775 { 1776 int ret; 1777 1778 /* 1779 * Since the remote processor is in a detached state, it has already 1780 * been booted by another entity. As such there is no point in waiting 1781 * for a firmware image to be loaded, we can simply initiate the process 1782 * of attaching to it immediately. 1783 */ 1784 if (rproc->state == RPROC_DETACHED) 1785 return rproc_boot(rproc); 1786 1787 /* 1788 * We're initiating an asynchronous firmware loading, so we can 1789 * be built-in kernel code, without hanging the boot process. 1790 */ 1791 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1792 rproc->firmware, &rproc->dev, GFP_KERNEL, 1793 rproc, rproc_auto_boot_callback); 1794 if (ret < 0) 1795 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1796 1797 return ret; 1798 } 1799 1800 static int rproc_stop(struct rproc *rproc, bool crashed) 1801 { 1802 struct device *dev = &rproc->dev; 1803 int ret; 1804 1805 /* No need to continue if a stop() operation has not been provided */ 1806 if (!rproc->ops->stop) 1807 return -EINVAL; 1808 1809 /* Stop any subdevices for the remote processor */ 1810 rproc_stop_subdevices(rproc, crashed); 1811 1812 /* the installed resource table is no longer accessible */ 1813 ret = rproc_reset_rsc_table_on_stop(rproc); 1814 if (ret) { 1815 dev_err(dev, "can't reset resource table: %d\n", ret); 1816 return ret; 1817 } 1818 1819 1820 /* power off the remote processor */ 1821 ret = rproc->ops->stop(rproc); 1822 if (ret) { 1823 dev_err(dev, "can't stop rproc: %d\n", ret); 1824 return ret; 1825 } 1826 1827 rproc_unprepare_subdevices(rproc); 1828 1829 rproc->state = RPROC_OFFLINE; 1830 1831 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1832 1833 return 0; 1834 } 1835 1836 /* 1837 * __rproc_detach(): Does the opposite of __rproc_attach() 1838 */ 1839 static int __rproc_detach(struct rproc *rproc) 1840 { 1841 struct device *dev = &rproc->dev; 1842 int ret; 1843 1844 /* No need to continue if a detach() operation has not been provided */ 1845 if (!rproc->ops->detach) 1846 return -EINVAL; 1847 1848 /* Stop any subdevices for the remote processor */ 1849 rproc_stop_subdevices(rproc, false); 1850 1851 /* the installed resource table is no longer accessible */ 1852 ret = rproc_reset_rsc_table_on_detach(rproc); 1853 if (ret) { 1854 dev_err(dev, "can't reset resource table: %d\n", ret); 1855 return ret; 1856 } 1857 1858 /* Tell the remote processor the core isn't available anymore */ 1859 ret = rproc->ops->detach(rproc); 1860 if (ret) { 1861 dev_err(dev, "can't detach from rproc: %d\n", ret); 1862 return ret; 1863 } 1864 1865 rproc_unprepare_subdevices(rproc); 1866 1867 rproc->state = RPROC_DETACHED; 1868 1869 dev_info(dev, "detached remote processor %s\n", rproc->name); 1870 1871 return 0; 1872 } 1873 1874 /** 1875 * rproc_trigger_recovery() - recover a remoteproc 1876 * @rproc: the remote processor 1877 * 1878 * The recovery is done by resetting all the virtio devices, that way all the 1879 * rpmsg drivers will be reseted along with the remote processor making the 1880 * remoteproc functional again. 1881 * 1882 * This function can sleep, so it cannot be called from atomic context. 1883 */ 1884 int rproc_trigger_recovery(struct rproc *rproc) 1885 { 1886 const struct firmware *firmware_p; 1887 struct device *dev = &rproc->dev; 1888 int ret; 1889 1890 ret = mutex_lock_interruptible(&rproc->lock); 1891 if (ret) 1892 return ret; 1893 1894 /* State could have changed before we got the mutex */ 1895 if (rproc->state != RPROC_CRASHED) 1896 goto unlock_mutex; 1897 1898 dev_err(dev, "recovering %s\n", rproc->name); 1899 1900 ret = rproc_stop(rproc, true); 1901 if (ret) 1902 goto unlock_mutex; 1903 1904 /* generate coredump */ 1905 rproc->ops->coredump(rproc); 1906 1907 /* load firmware */ 1908 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1909 if (ret < 0) { 1910 dev_err(dev, "request_firmware failed: %d\n", ret); 1911 goto unlock_mutex; 1912 } 1913 1914 /* boot the remote processor up again */ 1915 ret = rproc_start(rproc, firmware_p); 1916 1917 release_firmware(firmware_p); 1918 1919 unlock_mutex: 1920 mutex_unlock(&rproc->lock); 1921 return ret; 1922 } 1923 1924 /** 1925 * rproc_crash_handler_work() - handle a crash 1926 * @work: work treating the crash 1927 * 1928 * This function needs to handle everything related to a crash, like cpu 1929 * registers and stack dump, information to help to debug the fatal error, etc. 1930 */ 1931 static void rproc_crash_handler_work(struct work_struct *work) 1932 { 1933 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1934 struct device *dev = &rproc->dev; 1935 1936 dev_dbg(dev, "enter %s\n", __func__); 1937 1938 mutex_lock(&rproc->lock); 1939 1940 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1941 /* handle only the first crash detected */ 1942 mutex_unlock(&rproc->lock); 1943 return; 1944 } 1945 1946 rproc->state = RPROC_CRASHED; 1947 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1948 rproc->name); 1949 1950 mutex_unlock(&rproc->lock); 1951 1952 if (!rproc->recovery_disabled) 1953 rproc_trigger_recovery(rproc); 1954 1955 pm_relax(rproc->dev.parent); 1956 } 1957 1958 /** 1959 * rproc_boot() - boot a remote processor 1960 * @rproc: handle of a remote processor 1961 * 1962 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1963 * 1964 * If the remote processor is already powered on, this function immediately 1965 * returns (successfully). 1966 * 1967 * Returns 0 on success, and an appropriate error value otherwise. 1968 */ 1969 int rproc_boot(struct rproc *rproc) 1970 { 1971 const struct firmware *firmware_p; 1972 struct device *dev; 1973 int ret; 1974 1975 if (!rproc) { 1976 pr_err("invalid rproc handle\n"); 1977 return -EINVAL; 1978 } 1979 1980 dev = &rproc->dev; 1981 1982 ret = mutex_lock_interruptible(&rproc->lock); 1983 if (ret) { 1984 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1985 return ret; 1986 } 1987 1988 if (rproc->state == RPROC_DELETED) { 1989 ret = -ENODEV; 1990 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1991 goto unlock_mutex; 1992 } 1993 1994 /* skip the boot or attach process if rproc is already powered up */ 1995 if (atomic_inc_return(&rproc->power) > 1) { 1996 ret = 0; 1997 goto unlock_mutex; 1998 } 1999 2000 if (rproc->state == RPROC_DETACHED) { 2001 dev_info(dev, "attaching to %s\n", rproc->name); 2002 2003 ret = rproc_attach(rproc); 2004 } else { 2005 dev_info(dev, "powering up %s\n", rproc->name); 2006 2007 /* load firmware */ 2008 ret = request_firmware(&firmware_p, rproc->firmware, dev); 2009 if (ret < 0) { 2010 dev_err(dev, "request_firmware failed: %d\n", ret); 2011 goto downref_rproc; 2012 } 2013 2014 ret = rproc_fw_boot(rproc, firmware_p); 2015 2016 release_firmware(firmware_p); 2017 } 2018 2019 downref_rproc: 2020 if (ret) 2021 atomic_dec(&rproc->power); 2022 unlock_mutex: 2023 mutex_unlock(&rproc->lock); 2024 return ret; 2025 } 2026 EXPORT_SYMBOL(rproc_boot); 2027 2028 /** 2029 * rproc_shutdown() - power off the remote processor 2030 * @rproc: the remote processor 2031 * 2032 * Power off a remote processor (previously booted with rproc_boot()). 2033 * 2034 * In case @rproc is still being used by an additional user(s), then 2035 * this function will just decrement the power refcount and exit, 2036 * without really powering off the device. 2037 * 2038 * Every call to rproc_boot() must (eventually) be accompanied by a call 2039 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 2040 * 2041 * Notes: 2042 * - we're not decrementing the rproc's refcount, only the power refcount. 2043 * which means that the @rproc handle stays valid even after rproc_shutdown() 2044 * returns, and users can still use it with a subsequent rproc_boot(), if 2045 * needed. 2046 */ 2047 void rproc_shutdown(struct rproc *rproc) 2048 { 2049 struct device *dev = &rproc->dev; 2050 int ret; 2051 2052 ret = mutex_lock_interruptible(&rproc->lock); 2053 if (ret) { 2054 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2055 return; 2056 } 2057 2058 /* if the remote proc is still needed, bail out */ 2059 if (!atomic_dec_and_test(&rproc->power)) 2060 goto out; 2061 2062 ret = rproc_stop(rproc, false); 2063 if (ret) { 2064 atomic_inc(&rproc->power); 2065 goto out; 2066 } 2067 2068 /* clean up all acquired resources */ 2069 rproc_resource_cleanup(rproc); 2070 2071 /* release HW resources if needed */ 2072 rproc_unprepare_device(rproc); 2073 2074 rproc_disable_iommu(rproc); 2075 2076 /* Free the copy of the resource table */ 2077 kfree(rproc->cached_table); 2078 rproc->cached_table = NULL; 2079 rproc->table_ptr = NULL; 2080 out: 2081 mutex_unlock(&rproc->lock); 2082 } 2083 EXPORT_SYMBOL(rproc_shutdown); 2084 2085 /** 2086 * rproc_detach() - Detach the remote processor from the 2087 * remoteproc core 2088 * 2089 * @rproc: the remote processor 2090 * 2091 * Detach a remote processor (previously attached to with rproc_attach()). 2092 * 2093 * In case @rproc is still being used by an additional user(s), then 2094 * this function will just decrement the power refcount and exit, 2095 * without disconnecting the device. 2096 * 2097 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2098 * processor know that services provided by the application processor are 2099 * no longer available. From there it should be possible to remove the 2100 * platform driver and even power cycle the application processor (if the HW 2101 * supports it) without needing to switch off the remote processor. 2102 */ 2103 int rproc_detach(struct rproc *rproc) 2104 { 2105 struct device *dev = &rproc->dev; 2106 int ret; 2107 2108 ret = mutex_lock_interruptible(&rproc->lock); 2109 if (ret) { 2110 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2111 return ret; 2112 } 2113 2114 /* if the remote proc is still needed, bail out */ 2115 if (!atomic_dec_and_test(&rproc->power)) { 2116 ret = 0; 2117 goto out; 2118 } 2119 2120 ret = __rproc_detach(rproc); 2121 if (ret) { 2122 atomic_inc(&rproc->power); 2123 goto out; 2124 } 2125 2126 /* clean up all acquired resources */ 2127 rproc_resource_cleanup(rproc); 2128 2129 /* release HW resources if needed */ 2130 rproc_unprepare_device(rproc); 2131 2132 rproc_disable_iommu(rproc); 2133 2134 /* Free the copy of the resource table */ 2135 kfree(rproc->cached_table); 2136 rproc->cached_table = NULL; 2137 rproc->table_ptr = NULL; 2138 out: 2139 mutex_unlock(&rproc->lock); 2140 return ret; 2141 } 2142 EXPORT_SYMBOL(rproc_detach); 2143 2144 /** 2145 * rproc_get_by_phandle() - find a remote processor by phandle 2146 * @phandle: phandle to the rproc 2147 * 2148 * Finds an rproc handle using the remote processor's phandle, and then 2149 * return a handle to the rproc. 2150 * 2151 * This function increments the remote processor's refcount, so always 2152 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2153 * 2154 * Returns the rproc handle on success, and NULL on failure. 2155 */ 2156 #ifdef CONFIG_OF 2157 struct rproc *rproc_get_by_phandle(phandle phandle) 2158 { 2159 struct rproc *rproc = NULL, *r; 2160 struct device_node *np; 2161 2162 np = of_find_node_by_phandle(phandle); 2163 if (!np) 2164 return NULL; 2165 2166 rcu_read_lock(); 2167 list_for_each_entry_rcu(r, &rproc_list, node) { 2168 if (r->dev.parent && r->dev.parent->of_node == np) { 2169 /* prevent underlying implementation from being removed */ 2170 if (!try_module_get(r->dev.parent->driver->owner)) { 2171 dev_err(&r->dev, "can't get owner\n"); 2172 break; 2173 } 2174 2175 rproc = r; 2176 get_device(&rproc->dev); 2177 break; 2178 } 2179 } 2180 rcu_read_unlock(); 2181 2182 of_node_put(np); 2183 2184 return rproc; 2185 } 2186 #else 2187 struct rproc *rproc_get_by_phandle(phandle phandle) 2188 { 2189 return NULL; 2190 } 2191 #endif 2192 EXPORT_SYMBOL(rproc_get_by_phandle); 2193 2194 /** 2195 * rproc_set_firmware() - assign a new firmware 2196 * @rproc: rproc handle to which the new firmware is being assigned 2197 * @fw_name: new firmware name to be assigned 2198 * 2199 * This function allows remoteproc drivers or clients to configure a custom 2200 * firmware name that is different from the default name used during remoteproc 2201 * registration. The function does not trigger a remote processor boot, 2202 * only sets the firmware name used for a subsequent boot. This function 2203 * should also be called only when the remote processor is offline. 2204 * 2205 * This allows either the userspace to configure a different name through 2206 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2207 * a specific firmware when it is controlling the boot and shutdown of the 2208 * remote processor. 2209 * 2210 * Return: 0 on success or a negative value upon failure 2211 */ 2212 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2213 { 2214 struct device *dev; 2215 int ret, len; 2216 char *p; 2217 2218 if (!rproc || !fw_name) 2219 return -EINVAL; 2220 2221 dev = rproc->dev.parent; 2222 2223 ret = mutex_lock_interruptible(&rproc->lock); 2224 if (ret) { 2225 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2226 return -EINVAL; 2227 } 2228 2229 if (rproc->state != RPROC_OFFLINE) { 2230 dev_err(dev, "can't change firmware while running\n"); 2231 ret = -EBUSY; 2232 goto out; 2233 } 2234 2235 len = strcspn(fw_name, "\n"); 2236 if (!len) { 2237 dev_err(dev, "can't provide empty string for firmware name\n"); 2238 ret = -EINVAL; 2239 goto out; 2240 } 2241 2242 p = kstrndup(fw_name, len, GFP_KERNEL); 2243 if (!p) { 2244 ret = -ENOMEM; 2245 goto out; 2246 } 2247 2248 kfree_const(rproc->firmware); 2249 rproc->firmware = p; 2250 2251 out: 2252 mutex_unlock(&rproc->lock); 2253 return ret; 2254 } 2255 EXPORT_SYMBOL(rproc_set_firmware); 2256 2257 static int rproc_validate(struct rproc *rproc) 2258 { 2259 switch (rproc->state) { 2260 case RPROC_OFFLINE: 2261 /* 2262 * An offline processor without a start() 2263 * function makes no sense. 2264 */ 2265 if (!rproc->ops->start) 2266 return -EINVAL; 2267 break; 2268 case RPROC_DETACHED: 2269 /* 2270 * A remote processor in a detached state without an 2271 * attach() function makes not sense. 2272 */ 2273 if (!rproc->ops->attach) 2274 return -EINVAL; 2275 /* 2276 * When attaching to a remote processor the device memory 2277 * is already available and as such there is no need to have a 2278 * cached table. 2279 */ 2280 if (rproc->cached_table) 2281 return -EINVAL; 2282 break; 2283 default: 2284 /* 2285 * When adding a remote processor, the state of the device 2286 * can be offline or detached, nothing else. 2287 */ 2288 return -EINVAL; 2289 } 2290 2291 return 0; 2292 } 2293 2294 /** 2295 * rproc_add() - register a remote processor 2296 * @rproc: the remote processor handle to register 2297 * 2298 * Registers @rproc with the remoteproc framework, after it has been 2299 * allocated with rproc_alloc(). 2300 * 2301 * This is called by the platform-specific rproc implementation, whenever 2302 * a new remote processor device is probed. 2303 * 2304 * Returns 0 on success and an appropriate error code otherwise. 2305 * 2306 * Note: this function initiates an asynchronous firmware loading 2307 * context, which will look for virtio devices supported by the rproc's 2308 * firmware. 2309 * 2310 * If found, those virtio devices will be created and added, so as a result 2311 * of registering this remote processor, additional virtio drivers might be 2312 * probed. 2313 */ 2314 int rproc_add(struct rproc *rproc) 2315 { 2316 struct device *dev = &rproc->dev; 2317 int ret; 2318 2319 ret = device_add(dev); 2320 if (ret < 0) 2321 return ret; 2322 2323 ret = rproc_validate(rproc); 2324 if (ret < 0) 2325 return ret; 2326 2327 dev_info(dev, "%s is available\n", rproc->name); 2328 2329 /* create debugfs entries */ 2330 rproc_create_debug_dir(rproc); 2331 2332 /* add char device for this remoteproc */ 2333 ret = rproc_char_device_add(rproc); 2334 if (ret < 0) 2335 return ret; 2336 2337 /* if rproc is marked always-on, request it to boot */ 2338 if (rproc->auto_boot) { 2339 ret = rproc_trigger_auto_boot(rproc); 2340 if (ret < 0) 2341 return ret; 2342 } 2343 2344 /* expose to rproc_get_by_phandle users */ 2345 mutex_lock(&rproc_list_mutex); 2346 list_add_rcu(&rproc->node, &rproc_list); 2347 mutex_unlock(&rproc_list_mutex); 2348 2349 return 0; 2350 } 2351 EXPORT_SYMBOL(rproc_add); 2352 2353 static void devm_rproc_remove(void *rproc) 2354 { 2355 rproc_del(rproc); 2356 } 2357 2358 /** 2359 * devm_rproc_add() - resource managed rproc_add() 2360 * @dev: the underlying device 2361 * @rproc: the remote processor handle to register 2362 * 2363 * This function performs like rproc_add() but the registered rproc device will 2364 * automatically be removed on driver detach. 2365 * 2366 * Returns: 0 on success, negative errno on failure 2367 */ 2368 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2369 { 2370 int err; 2371 2372 err = rproc_add(rproc); 2373 if (err) 2374 return err; 2375 2376 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2377 } 2378 EXPORT_SYMBOL(devm_rproc_add); 2379 2380 /** 2381 * rproc_type_release() - release a remote processor instance 2382 * @dev: the rproc's device 2383 * 2384 * This function should _never_ be called directly. 2385 * 2386 * It will be called by the driver core when no one holds a valid pointer 2387 * to @dev anymore. 2388 */ 2389 static void rproc_type_release(struct device *dev) 2390 { 2391 struct rproc *rproc = container_of(dev, struct rproc, dev); 2392 2393 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2394 2395 idr_destroy(&rproc->notifyids); 2396 2397 if (rproc->index >= 0) 2398 ida_simple_remove(&rproc_dev_index, rproc->index); 2399 2400 kfree_const(rproc->firmware); 2401 kfree_const(rproc->name); 2402 kfree(rproc->ops); 2403 kfree(rproc); 2404 } 2405 2406 static const struct device_type rproc_type = { 2407 .name = "remoteproc", 2408 .release = rproc_type_release, 2409 }; 2410 2411 static int rproc_alloc_firmware(struct rproc *rproc, 2412 const char *name, const char *firmware) 2413 { 2414 const char *p; 2415 2416 /* 2417 * Allocate a firmware name if the caller gave us one to work 2418 * with. Otherwise construct a new one using a default pattern. 2419 */ 2420 if (firmware) 2421 p = kstrdup_const(firmware, GFP_KERNEL); 2422 else 2423 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2424 2425 if (!p) 2426 return -ENOMEM; 2427 2428 rproc->firmware = p; 2429 2430 return 0; 2431 } 2432 2433 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2434 { 2435 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2436 if (!rproc->ops) 2437 return -ENOMEM; 2438 2439 /* Default to rproc_coredump if no coredump function is specified */ 2440 if (!rproc->ops->coredump) 2441 rproc->ops->coredump = rproc_coredump; 2442 2443 if (rproc->ops->load) 2444 return 0; 2445 2446 /* Default to ELF loader if no load function is specified */ 2447 rproc->ops->load = rproc_elf_load_segments; 2448 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2449 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2450 rproc->ops->sanity_check = rproc_elf_sanity_check; 2451 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2452 2453 return 0; 2454 } 2455 2456 /** 2457 * rproc_alloc() - allocate a remote processor handle 2458 * @dev: the underlying device 2459 * @name: name of this remote processor 2460 * @ops: platform-specific handlers (mainly start/stop) 2461 * @firmware: name of firmware file to load, can be NULL 2462 * @len: length of private data needed by the rproc driver (in bytes) 2463 * 2464 * Allocates a new remote processor handle, but does not register 2465 * it yet. if @firmware is NULL, a default name is used. 2466 * 2467 * This function should be used by rproc implementations during initialization 2468 * of the remote processor. 2469 * 2470 * After creating an rproc handle using this function, and when ready, 2471 * implementations should then call rproc_add() to complete 2472 * the registration of the remote processor. 2473 * 2474 * On success the new rproc is returned, and on failure, NULL. 2475 * 2476 * Note: _never_ directly deallocate @rproc, even if it was not registered 2477 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2478 */ 2479 struct rproc *rproc_alloc(struct device *dev, const char *name, 2480 const struct rproc_ops *ops, 2481 const char *firmware, int len) 2482 { 2483 struct rproc *rproc; 2484 2485 if (!dev || !name || !ops) 2486 return NULL; 2487 2488 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2489 if (!rproc) 2490 return NULL; 2491 2492 rproc->priv = &rproc[1]; 2493 rproc->auto_boot = true; 2494 rproc->elf_class = ELFCLASSNONE; 2495 rproc->elf_machine = EM_NONE; 2496 2497 device_initialize(&rproc->dev); 2498 rproc->dev.parent = dev; 2499 rproc->dev.type = &rproc_type; 2500 rproc->dev.class = &rproc_class; 2501 rproc->dev.driver_data = rproc; 2502 idr_init(&rproc->notifyids); 2503 2504 rproc->name = kstrdup_const(name, GFP_KERNEL); 2505 if (!rproc->name) 2506 goto put_device; 2507 2508 if (rproc_alloc_firmware(rproc, name, firmware)) 2509 goto put_device; 2510 2511 if (rproc_alloc_ops(rproc, ops)) 2512 goto put_device; 2513 2514 /* Assign a unique device index and name */ 2515 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2516 if (rproc->index < 0) { 2517 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2518 goto put_device; 2519 } 2520 2521 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2522 2523 atomic_set(&rproc->power, 0); 2524 2525 mutex_init(&rproc->lock); 2526 2527 INIT_LIST_HEAD(&rproc->carveouts); 2528 INIT_LIST_HEAD(&rproc->mappings); 2529 INIT_LIST_HEAD(&rproc->traces); 2530 INIT_LIST_HEAD(&rproc->rvdevs); 2531 INIT_LIST_HEAD(&rproc->subdevs); 2532 INIT_LIST_HEAD(&rproc->dump_segments); 2533 2534 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2535 2536 rproc->state = RPROC_OFFLINE; 2537 2538 return rproc; 2539 2540 put_device: 2541 put_device(&rproc->dev); 2542 return NULL; 2543 } 2544 EXPORT_SYMBOL(rproc_alloc); 2545 2546 /** 2547 * rproc_free() - unroll rproc_alloc() 2548 * @rproc: the remote processor handle 2549 * 2550 * This function decrements the rproc dev refcount. 2551 * 2552 * If no one holds any reference to rproc anymore, then its refcount would 2553 * now drop to zero, and it would be freed. 2554 */ 2555 void rproc_free(struct rproc *rproc) 2556 { 2557 put_device(&rproc->dev); 2558 } 2559 EXPORT_SYMBOL(rproc_free); 2560 2561 /** 2562 * rproc_put() - release rproc reference 2563 * @rproc: the remote processor handle 2564 * 2565 * This function decrements the rproc dev refcount. 2566 * 2567 * If no one holds any reference to rproc anymore, then its refcount would 2568 * now drop to zero, and it would be freed. 2569 */ 2570 void rproc_put(struct rproc *rproc) 2571 { 2572 module_put(rproc->dev.parent->driver->owner); 2573 put_device(&rproc->dev); 2574 } 2575 EXPORT_SYMBOL(rproc_put); 2576 2577 /** 2578 * rproc_del() - unregister a remote processor 2579 * @rproc: rproc handle to unregister 2580 * 2581 * This function should be called when the platform specific rproc 2582 * implementation decides to remove the rproc device. it should 2583 * _only_ be called if a previous invocation of rproc_add() 2584 * has completed successfully. 2585 * 2586 * After rproc_del() returns, @rproc isn't freed yet, because 2587 * of the outstanding reference created by rproc_alloc. To decrement that 2588 * one last refcount, one still needs to call rproc_free(). 2589 * 2590 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2591 */ 2592 int rproc_del(struct rproc *rproc) 2593 { 2594 if (!rproc) 2595 return -EINVAL; 2596 2597 /* TODO: make sure this works with rproc->power > 1 */ 2598 rproc_shutdown(rproc); 2599 2600 mutex_lock(&rproc->lock); 2601 rproc->state = RPROC_DELETED; 2602 mutex_unlock(&rproc->lock); 2603 2604 rproc_delete_debug_dir(rproc); 2605 rproc_char_device_remove(rproc); 2606 2607 /* the rproc is downref'ed as soon as it's removed from the klist */ 2608 mutex_lock(&rproc_list_mutex); 2609 list_del_rcu(&rproc->node); 2610 mutex_unlock(&rproc_list_mutex); 2611 2612 /* Ensure that no readers of rproc_list are still active */ 2613 synchronize_rcu(); 2614 2615 device_del(&rproc->dev); 2616 2617 return 0; 2618 } 2619 EXPORT_SYMBOL(rproc_del); 2620 2621 static void devm_rproc_free(struct device *dev, void *res) 2622 { 2623 rproc_free(*(struct rproc **)res); 2624 } 2625 2626 /** 2627 * devm_rproc_alloc() - resource managed rproc_alloc() 2628 * @dev: the underlying device 2629 * @name: name of this remote processor 2630 * @ops: platform-specific handlers (mainly start/stop) 2631 * @firmware: name of firmware file to load, can be NULL 2632 * @len: length of private data needed by the rproc driver (in bytes) 2633 * 2634 * This function performs like rproc_alloc() but the acquired rproc device will 2635 * automatically be released on driver detach. 2636 * 2637 * Returns: new rproc instance, or NULL on failure 2638 */ 2639 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2640 const struct rproc_ops *ops, 2641 const char *firmware, int len) 2642 { 2643 struct rproc **ptr, *rproc; 2644 2645 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2646 if (!ptr) 2647 return NULL; 2648 2649 rproc = rproc_alloc(dev, name, ops, firmware, len); 2650 if (rproc) { 2651 *ptr = rproc; 2652 devres_add(dev, ptr); 2653 } else { 2654 devres_free(ptr); 2655 } 2656 2657 return rproc; 2658 } 2659 EXPORT_SYMBOL(devm_rproc_alloc); 2660 2661 /** 2662 * rproc_add_subdev() - add a subdevice to a remoteproc 2663 * @rproc: rproc handle to add the subdevice to 2664 * @subdev: subdev handle to register 2665 * 2666 * Caller is responsible for populating optional subdevice function pointers. 2667 */ 2668 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2669 { 2670 list_add_tail(&subdev->node, &rproc->subdevs); 2671 } 2672 EXPORT_SYMBOL(rproc_add_subdev); 2673 2674 /** 2675 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2676 * @rproc: rproc handle to remove the subdevice from 2677 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2678 */ 2679 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2680 { 2681 list_del(&subdev->node); 2682 } 2683 EXPORT_SYMBOL(rproc_remove_subdev); 2684 2685 /** 2686 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2687 * @dev: child device to find ancestor of 2688 * 2689 * Returns the ancestor rproc instance, or NULL if not found. 2690 */ 2691 struct rproc *rproc_get_by_child(struct device *dev) 2692 { 2693 for (dev = dev->parent; dev; dev = dev->parent) { 2694 if (dev->type == &rproc_type) 2695 return dev->driver_data; 2696 } 2697 2698 return NULL; 2699 } 2700 EXPORT_SYMBOL(rproc_get_by_child); 2701 2702 /** 2703 * rproc_report_crash() - rproc crash reporter function 2704 * @rproc: remote processor 2705 * @type: crash type 2706 * 2707 * This function must be called every time a crash is detected by the low-level 2708 * drivers implementing a specific remoteproc. This should not be called from a 2709 * non-remoteproc driver. 2710 * 2711 * This function can be called from atomic/interrupt context. 2712 */ 2713 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2714 { 2715 if (!rproc) { 2716 pr_err("NULL rproc pointer\n"); 2717 return; 2718 } 2719 2720 /* Prevent suspend while the remoteproc is being recovered */ 2721 pm_stay_awake(rproc->dev.parent); 2722 2723 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2724 rproc->name, rproc_crash_to_string(type)); 2725 2726 /* create a new task to handle the error */ 2727 schedule_work(&rproc->crash_handler); 2728 } 2729 EXPORT_SYMBOL(rproc_report_crash); 2730 2731 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2732 void *ptr) 2733 { 2734 unsigned int longest = 0; 2735 struct rproc *rproc; 2736 unsigned int d; 2737 2738 rcu_read_lock(); 2739 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2740 if (!rproc->ops->panic) 2741 continue; 2742 2743 if (rproc->state != RPROC_RUNNING && 2744 rproc->state != RPROC_ATTACHED) 2745 continue; 2746 2747 d = rproc->ops->panic(rproc); 2748 longest = max(longest, d); 2749 } 2750 rcu_read_unlock(); 2751 2752 /* 2753 * Delay for the longest requested duration before returning. This can 2754 * be used by the remoteproc drivers to give the remote processor time 2755 * to perform any requested operations (such as flush caches), when 2756 * it's not possible to signal the Linux side due to the panic. 2757 */ 2758 mdelay(longest); 2759 2760 return NOTIFY_DONE; 2761 } 2762 2763 static void __init rproc_init_panic(void) 2764 { 2765 rproc_panic_nb.notifier_call = rproc_panic_handler; 2766 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2767 } 2768 2769 static void __exit rproc_exit_panic(void) 2770 { 2771 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2772 } 2773 2774 static int __init remoteproc_init(void) 2775 { 2776 rproc_init_sysfs(); 2777 rproc_init_debugfs(); 2778 rproc_init_cdev(); 2779 rproc_init_panic(); 2780 2781 return 0; 2782 } 2783 subsys_initcall(remoteproc_init); 2784 2785 static void __exit remoteproc_exit(void) 2786 { 2787 ida_destroy(&rproc_dev_index); 2788 2789 rproc_exit_panic(); 2790 rproc_exit_debugfs(); 2791 rproc_exit_sysfs(); 2792 } 2793 module_exit(remoteproc_exit); 2794 2795 MODULE_LICENSE("GPL v2"); 2796 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2797