1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/firmware.h> 26 #include <linux/string.h> 27 #include <linux/debugfs.h> 28 #include <linux/devcoredump.h> 29 #include <linux/remoteproc.h> 30 #include <linux/iommu.h> 31 #include <linux/idr.h> 32 #include <linux/elf.h> 33 #include <linux/crc32.h> 34 #include <linux/of_reserved_mem.h> 35 #include <linux/virtio_ids.h> 36 #include <linux/virtio_ring.h> 37 #include <asm/byteorder.h> 38 #include <linux/platform_device.h> 39 40 #include "remoteproc_internal.h" 41 42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 43 44 static DEFINE_MUTEX(rproc_list_mutex); 45 static LIST_HEAD(rproc_list); 46 47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 48 struct resource_table *table, int len); 49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 50 void *, int offset, int avail); 51 52 static int rproc_alloc_carveout(struct rproc *rproc, 53 struct rproc_mem_entry *mem); 54 static int rproc_release_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56 57 /* Unique indices for remoteproc devices */ 58 static DEFINE_IDA(rproc_dev_index); 59 60 static const char * const rproc_crash_names[] = { 61 [RPROC_MMUFAULT] = "mmufault", 62 [RPROC_WATCHDOG] = "watchdog", 63 [RPROC_FATAL_ERROR] = "fatal error", 64 }; 65 66 /* translate rproc_crash_type to string */ 67 static const char *rproc_crash_to_string(enum rproc_crash_type type) 68 { 69 if (type < ARRAY_SIZE(rproc_crash_names)) 70 return rproc_crash_names[type]; 71 return "unknown"; 72 } 73 74 /* 75 * This is the IOMMU fault handler we register with the IOMMU API 76 * (when relevant; not all remote processors access memory through 77 * an IOMMU). 78 * 79 * IOMMU core will invoke this handler whenever the remote processor 80 * will try to access an unmapped device address. 81 */ 82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 83 unsigned long iova, int flags, void *token) 84 { 85 struct rproc *rproc = token; 86 87 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 88 89 rproc_report_crash(rproc, RPROC_MMUFAULT); 90 91 /* 92 * Let the iommu core know we're not really handling this fault; 93 * we just used it as a recovery trigger. 94 */ 95 return -ENOSYS; 96 } 97 98 static int rproc_enable_iommu(struct rproc *rproc) 99 { 100 struct iommu_domain *domain; 101 struct device *dev = rproc->dev.parent; 102 int ret; 103 104 if (!rproc->has_iommu) { 105 dev_dbg(dev, "iommu not present\n"); 106 return 0; 107 } 108 109 domain = iommu_domain_alloc(dev->bus); 110 if (!domain) { 111 dev_err(dev, "can't alloc iommu domain\n"); 112 return -ENOMEM; 113 } 114 115 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 116 117 ret = iommu_attach_device(domain, dev); 118 if (ret) { 119 dev_err(dev, "can't attach iommu device: %d\n", ret); 120 goto free_domain; 121 } 122 123 rproc->domain = domain; 124 125 return 0; 126 127 free_domain: 128 iommu_domain_free(domain); 129 return ret; 130 } 131 132 static void rproc_disable_iommu(struct rproc *rproc) 133 { 134 struct iommu_domain *domain = rproc->domain; 135 struct device *dev = rproc->dev.parent; 136 137 if (!domain) 138 return; 139 140 iommu_detach_device(domain, dev); 141 iommu_domain_free(domain); 142 } 143 144 phys_addr_t rproc_va_to_pa(void *cpu_addr) 145 { 146 /* 147 * Return physical address according to virtual address location 148 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 149 * - in kernel: if region allocated in generic dma memory pool 150 */ 151 if (is_vmalloc_addr(cpu_addr)) { 152 return page_to_phys(vmalloc_to_page(cpu_addr)) + 153 offset_in_page(cpu_addr); 154 } 155 156 WARN_ON(!virt_addr_valid(cpu_addr)); 157 return virt_to_phys(cpu_addr); 158 } 159 EXPORT_SYMBOL(rproc_va_to_pa); 160 161 /** 162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 163 * @rproc: handle of a remote processor 164 * @da: remoteproc device address to translate 165 * @len: length of the memory region @da is pointing to 166 * 167 * Some remote processors will ask us to allocate them physically contiguous 168 * memory regions (which we call "carveouts"), and map them to specific 169 * device addresses (which are hardcoded in the firmware). They may also have 170 * dedicated memory regions internal to the processors, and use them either 171 * exclusively or alongside carveouts. 172 * 173 * They may then ask us to copy objects into specific device addresses (e.g. 174 * code/data sections) or expose us certain symbols in other device address 175 * (e.g. their trace buffer). 176 * 177 * This function is a helper function with which we can go over the allocated 178 * carveouts and translate specific device addresses to kernel virtual addresses 179 * so we can access the referenced memory. This function also allows to perform 180 * translations on the internal remoteproc memory regions through a platform 181 * implementation specific da_to_va ops, if present. 182 * 183 * The function returns a valid kernel address on success or NULL on failure. 184 * 185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 186 * but only on kernel direct mapped RAM memory. Instead, we're just using 187 * here the output of the DMA API for the carveouts, which should be more 188 * correct. 189 */ 190 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 191 { 192 struct rproc_mem_entry *carveout; 193 void *ptr = NULL; 194 195 if (rproc->ops->da_to_va) { 196 ptr = rproc->ops->da_to_va(rproc, da, len); 197 if (ptr) 198 goto out; 199 } 200 201 list_for_each_entry(carveout, &rproc->carveouts, node) { 202 int offset = da - carveout->da; 203 204 /* Verify that carveout is allocated */ 205 if (!carveout->va) 206 continue; 207 208 /* try next carveout if da is too small */ 209 if (offset < 0) 210 continue; 211 212 /* try next carveout if da is too large */ 213 if (offset + len > carveout->len) 214 continue; 215 216 ptr = carveout->va + offset; 217 218 break; 219 } 220 221 out: 222 return ptr; 223 } 224 EXPORT_SYMBOL(rproc_da_to_va); 225 226 /** 227 * rproc_find_carveout_by_name() - lookup the carveout region by a name 228 * @rproc: handle of a remote processor 229 * @name,..: carveout name to find (standard printf format) 230 * 231 * Platform driver has the capability to register some pre-allacoted carveout 232 * (physically contiguous memory regions) before rproc firmware loading and 233 * associated resource table analysis. These regions may be dedicated memory 234 * regions internal to the coprocessor or specified DDR region with specific 235 * attributes 236 * 237 * This function is a helper function with which we can go over the 238 * allocated carveouts and return associated region characteristics like 239 * coprocessor address, length or processor virtual address. 240 * 241 * Return: a valid pointer on carveout entry on success or NULL on failure. 242 */ 243 struct rproc_mem_entry * 244 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 245 { 246 va_list args; 247 char _name[32]; 248 struct rproc_mem_entry *carveout, *mem = NULL; 249 250 if (!name) 251 return NULL; 252 253 va_start(args, name); 254 vsnprintf(_name, sizeof(_name), name, args); 255 va_end(args); 256 257 list_for_each_entry(carveout, &rproc->carveouts, node) { 258 /* Compare carveout and requested names */ 259 if (!strcmp(carveout->name, _name)) { 260 mem = carveout; 261 break; 262 } 263 } 264 265 return mem; 266 } 267 268 /** 269 * rproc_check_carveout_da() - Check specified carveout da configuration 270 * @rproc: handle of a remote processor 271 * @mem: pointer on carveout to check 272 * @da: area device address 273 * @len: associated area size 274 * 275 * This function is a helper function to verify requested device area (couple 276 * da, len) is part of specified carveout. 277 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 278 * checked. 279 * 280 * Return: 0 if carveout matches request else error 281 */ 282 static int rproc_check_carveout_da(struct rproc *rproc, 283 struct rproc_mem_entry *mem, u32 da, u32 len) 284 { 285 struct device *dev = &rproc->dev; 286 int delta; 287 288 /* Check requested resource length */ 289 if (len > mem->len) { 290 dev_err(dev, "Registered carveout doesn't fit len request\n"); 291 return -EINVAL; 292 } 293 294 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 295 /* Address doesn't match registered carveout configuration */ 296 return -EINVAL; 297 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 298 delta = da - mem->da; 299 300 /* Check requested resource belongs to registered carveout */ 301 if (delta < 0) { 302 dev_err(dev, 303 "Registered carveout doesn't fit da request\n"); 304 return -EINVAL; 305 } 306 307 if (delta + len > mem->len) { 308 dev_err(dev, 309 "Registered carveout doesn't fit len request\n"); 310 return -EINVAL; 311 } 312 } 313 314 return 0; 315 } 316 317 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 318 { 319 struct rproc *rproc = rvdev->rproc; 320 struct device *dev = &rproc->dev; 321 struct rproc_vring *rvring = &rvdev->vring[i]; 322 struct fw_rsc_vdev *rsc; 323 int ret, size, notifyid; 324 struct rproc_mem_entry *mem; 325 326 /* actual size of vring (in bytes) */ 327 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 328 329 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 330 331 /* Search for pre-registered carveout */ 332 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 333 i); 334 if (mem) { 335 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 336 return -ENOMEM; 337 } else { 338 /* Register carveout in in list */ 339 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da, 340 rproc_alloc_carveout, 341 rproc_release_carveout, 342 "vdev%dvring%d", 343 rvdev->index, i); 344 if (!mem) { 345 dev_err(dev, "Can't allocate memory entry structure\n"); 346 return -ENOMEM; 347 } 348 349 rproc_add_carveout(rproc, mem); 350 } 351 352 /* 353 * Assign an rproc-wide unique index for this vring 354 * TODO: assign a notifyid for rvdev updates as well 355 * TODO: support predefined notifyids (via resource table) 356 */ 357 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 358 if (ret < 0) { 359 dev_err(dev, "idr_alloc failed: %d\n", ret); 360 return ret; 361 } 362 notifyid = ret; 363 364 /* Potentially bump max_notifyid */ 365 if (notifyid > rproc->max_notifyid) 366 rproc->max_notifyid = notifyid; 367 368 rvring->notifyid = notifyid; 369 370 /* Let the rproc know the notifyid of this vring.*/ 371 rsc->vring[i].notifyid = notifyid; 372 return 0; 373 } 374 375 static int 376 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 377 { 378 struct rproc *rproc = rvdev->rproc; 379 struct device *dev = &rproc->dev; 380 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 381 struct rproc_vring *rvring = &rvdev->vring[i]; 382 383 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 384 i, vring->da, vring->num, vring->align); 385 386 /* verify queue size and vring alignment are sane */ 387 if (!vring->num || !vring->align) { 388 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 389 vring->num, vring->align); 390 return -EINVAL; 391 } 392 393 rvring->len = vring->num; 394 rvring->align = vring->align; 395 rvring->rvdev = rvdev; 396 397 return 0; 398 } 399 400 void rproc_free_vring(struct rproc_vring *rvring) 401 { 402 struct rproc *rproc = rvring->rvdev->rproc; 403 int idx = rvring->rvdev->vring - rvring; 404 struct fw_rsc_vdev *rsc; 405 406 idr_remove(&rproc->notifyids, rvring->notifyid); 407 408 /* reset resource entry info */ 409 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 410 rsc->vring[idx].da = 0; 411 rsc->vring[idx].notifyid = -1; 412 } 413 414 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 415 { 416 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 417 418 return rproc_add_virtio_dev(rvdev, rvdev->id); 419 } 420 421 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 422 { 423 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 424 int ret; 425 426 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 427 if (ret) 428 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 429 } 430 431 /** 432 * rproc_rvdev_release() - release the existence of a rvdev 433 * 434 * @dev: the subdevice's dev 435 */ 436 static void rproc_rvdev_release(struct device *dev) 437 { 438 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 439 440 of_reserved_mem_device_release(dev); 441 442 kfree(rvdev); 443 } 444 445 /** 446 * rproc_handle_vdev() - handle a vdev fw resource 447 * @rproc: the remote processor 448 * @rsc: the vring resource descriptor 449 * @avail: size of available data (for sanity checking the image) 450 * 451 * This resource entry requests the host to statically register a virtio 452 * device (vdev), and setup everything needed to support it. It contains 453 * everything needed to make it possible: the virtio device id, virtio 454 * device features, vrings information, virtio config space, etc... 455 * 456 * Before registering the vdev, the vrings are allocated from non-cacheable 457 * physically contiguous memory. Currently we only support two vrings per 458 * remote processor (temporary limitation). We might also want to consider 459 * doing the vring allocation only later when ->find_vqs() is invoked, and 460 * then release them upon ->del_vqs(). 461 * 462 * Note: @da is currently not really handled correctly: we dynamically 463 * allocate it using the DMA API, ignoring requested hard coded addresses, 464 * and we don't take care of any required IOMMU programming. This is all 465 * going to be taken care of when the generic iommu-based DMA API will be 466 * merged. Meanwhile, statically-addressed iommu-based firmware images should 467 * use RSC_DEVMEM resource entries to map their required @da to the physical 468 * address of their base CMA region (ouch, hacky!). 469 * 470 * Returns 0 on success, or an appropriate error code otherwise 471 */ 472 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 473 int offset, int avail) 474 { 475 struct device *dev = &rproc->dev; 476 struct rproc_vdev *rvdev; 477 int i, ret; 478 char name[16]; 479 480 /* make sure resource isn't truncated */ 481 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 482 + rsc->config_len > avail) { 483 dev_err(dev, "vdev rsc is truncated\n"); 484 return -EINVAL; 485 } 486 487 /* make sure reserved bytes are zeroes */ 488 if (rsc->reserved[0] || rsc->reserved[1]) { 489 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 490 return -EINVAL; 491 } 492 493 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 494 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 495 496 /* we currently support only two vrings per rvdev */ 497 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 498 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 499 return -EINVAL; 500 } 501 502 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 503 if (!rvdev) 504 return -ENOMEM; 505 506 kref_init(&rvdev->refcount); 507 508 rvdev->id = rsc->id; 509 rvdev->rproc = rproc; 510 rvdev->index = rproc->nb_vdev++; 511 512 /* Initialise vdev subdevice */ 513 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 514 rvdev->dev.parent = rproc->dev.parent; 515 rvdev->dev.release = rproc_rvdev_release; 516 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 517 dev_set_drvdata(&rvdev->dev, rvdev); 518 519 ret = device_register(&rvdev->dev); 520 if (ret) { 521 put_device(&rvdev->dev); 522 return ret; 523 } 524 /* Make device dma capable by inheriting from parent's capabilities */ 525 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 526 527 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 528 dma_get_mask(rproc->dev.parent)); 529 if (ret) { 530 dev_warn(dev, 531 "Failed to set DMA mask %llx. Trying to continue... %x\n", 532 dma_get_mask(rproc->dev.parent), ret); 533 } 534 535 /* parse the vrings */ 536 for (i = 0; i < rsc->num_of_vrings; i++) { 537 ret = rproc_parse_vring(rvdev, rsc, i); 538 if (ret) 539 goto free_rvdev; 540 } 541 542 /* remember the resource offset*/ 543 rvdev->rsc_offset = offset; 544 545 /* allocate the vring resources */ 546 for (i = 0; i < rsc->num_of_vrings; i++) { 547 ret = rproc_alloc_vring(rvdev, i); 548 if (ret) 549 goto unwind_vring_allocations; 550 } 551 552 list_add_tail(&rvdev->node, &rproc->rvdevs); 553 554 rvdev->subdev.start = rproc_vdev_do_start; 555 rvdev->subdev.stop = rproc_vdev_do_stop; 556 557 rproc_add_subdev(rproc, &rvdev->subdev); 558 559 return 0; 560 561 unwind_vring_allocations: 562 for (i--; i >= 0; i--) 563 rproc_free_vring(&rvdev->vring[i]); 564 free_rvdev: 565 device_unregister(&rvdev->dev); 566 return ret; 567 } 568 569 void rproc_vdev_release(struct kref *ref) 570 { 571 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 572 struct rproc_vring *rvring; 573 struct rproc *rproc = rvdev->rproc; 574 int id; 575 576 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 577 rvring = &rvdev->vring[id]; 578 rproc_free_vring(rvring); 579 } 580 581 rproc_remove_subdev(rproc, &rvdev->subdev); 582 list_del(&rvdev->node); 583 device_unregister(&rvdev->dev); 584 } 585 586 /** 587 * rproc_handle_trace() - handle a shared trace buffer resource 588 * @rproc: the remote processor 589 * @rsc: the trace resource descriptor 590 * @avail: size of available data (for sanity checking the image) 591 * 592 * In case the remote processor dumps trace logs into memory, 593 * export it via debugfs. 594 * 595 * Currently, the 'da' member of @rsc should contain the device address 596 * where the remote processor is dumping the traces. Later we could also 597 * support dynamically allocating this address using the generic 598 * DMA API (but currently there isn't a use case for that). 599 * 600 * Returns 0 on success, or an appropriate error code otherwise 601 */ 602 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 603 int offset, int avail) 604 { 605 struct rproc_debug_trace *trace; 606 struct device *dev = &rproc->dev; 607 char name[15]; 608 609 if (sizeof(*rsc) > avail) { 610 dev_err(dev, "trace rsc is truncated\n"); 611 return -EINVAL; 612 } 613 614 /* make sure reserved bytes are zeroes */ 615 if (rsc->reserved) { 616 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 617 return -EINVAL; 618 } 619 620 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 621 if (!trace) 622 return -ENOMEM; 623 624 /* set the trace buffer dma properties */ 625 trace->trace_mem.len = rsc->len; 626 trace->trace_mem.da = rsc->da; 627 628 /* set pointer on rproc device */ 629 trace->rproc = rproc; 630 631 /* make sure snprintf always null terminates, even if truncating */ 632 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 633 634 /* create the debugfs entry */ 635 trace->tfile = rproc_create_trace_file(name, rproc, trace); 636 if (!trace->tfile) { 637 kfree(trace); 638 return -EINVAL; 639 } 640 641 list_add_tail(&trace->node, &rproc->traces); 642 643 rproc->num_traces++; 644 645 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 646 name, rsc->da, rsc->len); 647 648 return 0; 649 } 650 651 /** 652 * rproc_handle_devmem() - handle devmem resource entry 653 * @rproc: remote processor handle 654 * @rsc: the devmem resource entry 655 * @avail: size of available data (for sanity checking the image) 656 * 657 * Remote processors commonly need to access certain on-chip peripherals. 658 * 659 * Some of these remote processors access memory via an iommu device, 660 * and might require us to configure their iommu before they can access 661 * the on-chip peripherals they need. 662 * 663 * This resource entry is a request to map such a peripheral device. 664 * 665 * These devmem entries will contain the physical address of the device in 666 * the 'pa' member. If a specific device address is expected, then 'da' will 667 * contain it (currently this is the only use case supported). 'len' will 668 * contain the size of the physical region we need to map. 669 * 670 * Currently we just "trust" those devmem entries to contain valid physical 671 * addresses, but this is going to change: we want the implementations to 672 * tell us ranges of physical addresses the firmware is allowed to request, 673 * and not allow firmwares to request access to physical addresses that 674 * are outside those ranges. 675 */ 676 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 677 int offset, int avail) 678 { 679 struct rproc_mem_entry *mapping; 680 struct device *dev = &rproc->dev; 681 int ret; 682 683 /* no point in handling this resource without a valid iommu domain */ 684 if (!rproc->domain) 685 return -EINVAL; 686 687 if (sizeof(*rsc) > avail) { 688 dev_err(dev, "devmem rsc is truncated\n"); 689 return -EINVAL; 690 } 691 692 /* make sure reserved bytes are zeroes */ 693 if (rsc->reserved) { 694 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 695 return -EINVAL; 696 } 697 698 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 699 if (!mapping) 700 return -ENOMEM; 701 702 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 703 if (ret) { 704 dev_err(dev, "failed to map devmem: %d\n", ret); 705 goto out; 706 } 707 708 /* 709 * We'll need this info later when we'll want to unmap everything 710 * (e.g. on shutdown). 711 * 712 * We can't trust the remote processor not to change the resource 713 * table, so we must maintain this info independently. 714 */ 715 mapping->da = rsc->da; 716 mapping->len = rsc->len; 717 list_add_tail(&mapping->node, &rproc->mappings); 718 719 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 720 rsc->pa, rsc->da, rsc->len); 721 722 return 0; 723 724 out: 725 kfree(mapping); 726 return ret; 727 } 728 729 /** 730 * rproc_alloc_carveout() - allocated specified carveout 731 * @rproc: rproc handle 732 * @mem: the memory entry to allocate 733 * 734 * This function allocate specified memory entry @mem using 735 * dma_alloc_coherent() as default allocator 736 */ 737 static int rproc_alloc_carveout(struct rproc *rproc, 738 struct rproc_mem_entry *mem) 739 { 740 struct rproc_mem_entry *mapping = NULL; 741 struct device *dev = &rproc->dev; 742 dma_addr_t dma; 743 void *va; 744 int ret; 745 746 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 747 if (!va) { 748 dev_err(dev->parent, 749 "failed to allocate dma memory: len 0x%x\n", mem->len); 750 return -ENOMEM; 751 } 752 753 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n", 754 va, &dma, mem->len); 755 756 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 757 /* 758 * Check requested da is equal to dma address 759 * and print a warn message in case of missalignment. 760 * Don't stop rproc_start sequence as coprocessor may 761 * build pa to da translation on its side. 762 */ 763 if (mem->da != (u32)dma) 764 dev_warn(dev->parent, 765 "Allocated carveout doesn't fit device address request\n"); 766 } 767 768 /* 769 * Ok, this is non-standard. 770 * 771 * Sometimes we can't rely on the generic iommu-based DMA API 772 * to dynamically allocate the device address and then set the IOMMU 773 * tables accordingly, because some remote processors might 774 * _require_ us to use hard coded device addresses that their 775 * firmware was compiled with. 776 * 777 * In this case, we must use the IOMMU API directly and map 778 * the memory to the device address as expected by the remote 779 * processor. 780 * 781 * Obviously such remote processor devices should not be configured 782 * to use the iommu-based DMA API: we expect 'dma' to contain the 783 * physical address in this case. 784 */ 785 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 786 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 787 if (!mapping) { 788 ret = -ENOMEM; 789 goto dma_free; 790 } 791 792 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 793 mem->flags); 794 if (ret) { 795 dev_err(dev, "iommu_map failed: %d\n", ret); 796 goto free_mapping; 797 } 798 799 /* 800 * We'll need this info later when we'll want to unmap 801 * everything (e.g. on shutdown). 802 * 803 * We can't trust the remote processor not to change the 804 * resource table, so we must maintain this info independently. 805 */ 806 mapping->da = mem->da; 807 mapping->len = mem->len; 808 list_add_tail(&mapping->node, &rproc->mappings); 809 810 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 811 mem->da, &dma); 812 } 813 814 if (mem->da == FW_RSC_ADDR_ANY) { 815 /* Update device address as undefined by requester */ 816 if ((u64)dma & HIGH_BITS_MASK) 817 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 818 819 mem->da = (u32)dma; 820 } 821 822 mem->dma = dma; 823 mem->va = va; 824 825 return 0; 826 827 free_mapping: 828 kfree(mapping); 829 dma_free: 830 dma_free_coherent(dev->parent, mem->len, va, dma); 831 return ret; 832 } 833 834 /** 835 * rproc_release_carveout() - release acquired carveout 836 * @rproc: rproc handle 837 * @mem: the memory entry to release 838 * 839 * This function releases specified memory entry @mem allocated via 840 * rproc_alloc_carveout() function by @rproc. 841 */ 842 static int rproc_release_carveout(struct rproc *rproc, 843 struct rproc_mem_entry *mem) 844 { 845 struct device *dev = &rproc->dev; 846 847 /* clean up carveout allocations */ 848 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 849 return 0; 850 } 851 852 /** 853 * rproc_handle_carveout() - handle phys contig memory allocation requests 854 * @rproc: rproc handle 855 * @rsc: the resource entry 856 * @avail: size of available data (for image validation) 857 * 858 * This function will handle firmware requests for allocation of physically 859 * contiguous memory regions. 860 * 861 * These request entries should come first in the firmware's resource table, 862 * as other firmware entries might request placing other data objects inside 863 * these memory regions (e.g. data/code segments, trace resource entries, ...). 864 * 865 * Allocating memory this way helps utilizing the reserved physical memory 866 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 867 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 868 * pressure is important; it may have a substantial impact on performance. 869 */ 870 static int rproc_handle_carveout(struct rproc *rproc, 871 struct fw_rsc_carveout *rsc, 872 int offset, int avail) 873 { 874 struct rproc_mem_entry *carveout; 875 struct device *dev = &rproc->dev; 876 877 if (sizeof(*rsc) > avail) { 878 dev_err(dev, "carveout rsc is truncated\n"); 879 return -EINVAL; 880 } 881 882 /* make sure reserved bytes are zeroes */ 883 if (rsc->reserved) { 884 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 885 return -EINVAL; 886 } 887 888 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 889 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 890 891 /* 892 * Check carveout rsc already part of a registered carveout, 893 * Search by name, then check the da and length 894 */ 895 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 896 897 if (carveout) { 898 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 899 dev_err(dev, 900 "Carveout already associated to resource table\n"); 901 return -ENOMEM; 902 } 903 904 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 905 return -ENOMEM; 906 907 /* Update memory carveout with resource table info */ 908 carveout->rsc_offset = offset; 909 carveout->flags = rsc->flags; 910 911 return 0; 912 } 913 914 /* Register carveout in in list */ 915 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da, 916 rproc_alloc_carveout, 917 rproc_release_carveout, rsc->name); 918 if (!carveout) { 919 dev_err(dev, "Can't allocate memory entry structure\n"); 920 return -ENOMEM; 921 } 922 923 carveout->flags = rsc->flags; 924 carveout->rsc_offset = offset; 925 rproc_add_carveout(rproc, carveout); 926 927 return 0; 928 } 929 930 /** 931 * rproc_add_carveout() - register an allocated carveout region 932 * @rproc: rproc handle 933 * @mem: memory entry to register 934 * 935 * This function registers specified memory entry in @rproc carveouts list. 936 * Specified carveout should have been allocated before registering. 937 */ 938 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 939 { 940 list_add_tail(&mem->node, &rproc->carveouts); 941 } 942 EXPORT_SYMBOL(rproc_add_carveout); 943 944 /** 945 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 946 * @dev: pointer on device struct 947 * @va: virtual address 948 * @dma: dma address 949 * @len: memory carveout length 950 * @da: device address 951 * @alloc: memory carveout allocation function 952 * @release: memory carveout release function 953 * @name: carveout name 954 * 955 * This function allocates a rproc_mem_entry struct and fill it with parameters 956 * provided by client. 957 */ 958 struct rproc_mem_entry * 959 rproc_mem_entry_init(struct device *dev, 960 void *va, dma_addr_t dma, int len, u32 da, 961 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 962 int (*release)(struct rproc *, struct rproc_mem_entry *), 963 const char *name, ...) 964 { 965 struct rproc_mem_entry *mem; 966 va_list args; 967 968 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 969 if (!mem) 970 return mem; 971 972 mem->va = va; 973 mem->dma = dma; 974 mem->da = da; 975 mem->len = len; 976 mem->alloc = alloc; 977 mem->release = release; 978 mem->rsc_offset = FW_RSC_ADDR_ANY; 979 mem->of_resm_idx = -1; 980 981 va_start(args, name); 982 vsnprintf(mem->name, sizeof(mem->name), name, args); 983 va_end(args); 984 985 return mem; 986 } 987 EXPORT_SYMBOL(rproc_mem_entry_init); 988 989 /** 990 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 991 * from a reserved memory phandle 992 * @dev: pointer on device struct 993 * @of_resm_idx: reserved memory phandle index in "memory-region" 994 * @len: memory carveout length 995 * @da: device address 996 * @name: carveout name 997 * 998 * This function allocates a rproc_mem_entry struct and fill it with parameters 999 * provided by client. 1000 */ 1001 struct rproc_mem_entry * 1002 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len, 1003 u32 da, const char *name, ...) 1004 { 1005 struct rproc_mem_entry *mem; 1006 va_list args; 1007 1008 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1009 if (!mem) 1010 return mem; 1011 1012 mem->da = da; 1013 mem->len = len; 1014 mem->rsc_offset = FW_RSC_ADDR_ANY; 1015 mem->of_resm_idx = of_resm_idx; 1016 1017 va_start(args, name); 1018 vsnprintf(mem->name, sizeof(mem->name), name, args); 1019 va_end(args); 1020 1021 return mem; 1022 } 1023 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1024 1025 /** 1026 * A lookup table for resource handlers. The indices are defined in 1027 * enum fw_resource_type. 1028 */ 1029 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1030 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1031 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1032 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1033 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1034 }; 1035 1036 /* handle firmware resource entries before booting the remote processor */ 1037 static int rproc_handle_resources(struct rproc *rproc, 1038 rproc_handle_resource_t handlers[RSC_LAST]) 1039 { 1040 struct device *dev = &rproc->dev; 1041 rproc_handle_resource_t handler; 1042 int ret = 0, i; 1043 1044 if (!rproc->table_ptr) 1045 return 0; 1046 1047 for (i = 0; i < rproc->table_ptr->num; i++) { 1048 int offset = rproc->table_ptr->offset[i]; 1049 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1050 int avail = rproc->table_sz - offset - sizeof(*hdr); 1051 void *rsc = (void *)hdr + sizeof(*hdr); 1052 1053 /* make sure table isn't truncated */ 1054 if (avail < 0) { 1055 dev_err(dev, "rsc table is truncated\n"); 1056 return -EINVAL; 1057 } 1058 1059 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1060 1061 if (hdr->type >= RSC_LAST) { 1062 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1063 continue; 1064 } 1065 1066 handler = handlers[hdr->type]; 1067 if (!handler) 1068 continue; 1069 1070 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1071 if (ret) 1072 break; 1073 } 1074 1075 return ret; 1076 } 1077 1078 static int rproc_prepare_subdevices(struct rproc *rproc) 1079 { 1080 struct rproc_subdev *subdev; 1081 int ret; 1082 1083 list_for_each_entry(subdev, &rproc->subdevs, node) { 1084 if (subdev->prepare) { 1085 ret = subdev->prepare(subdev); 1086 if (ret) 1087 goto unroll_preparation; 1088 } 1089 } 1090 1091 return 0; 1092 1093 unroll_preparation: 1094 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1095 if (subdev->unprepare) 1096 subdev->unprepare(subdev); 1097 } 1098 1099 return ret; 1100 } 1101 1102 static int rproc_start_subdevices(struct rproc *rproc) 1103 { 1104 struct rproc_subdev *subdev; 1105 int ret; 1106 1107 list_for_each_entry(subdev, &rproc->subdevs, node) { 1108 if (subdev->start) { 1109 ret = subdev->start(subdev); 1110 if (ret) 1111 goto unroll_registration; 1112 } 1113 } 1114 1115 return 0; 1116 1117 unroll_registration: 1118 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1119 if (subdev->stop) 1120 subdev->stop(subdev, true); 1121 } 1122 1123 return ret; 1124 } 1125 1126 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1127 { 1128 struct rproc_subdev *subdev; 1129 1130 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1131 if (subdev->stop) 1132 subdev->stop(subdev, crashed); 1133 } 1134 } 1135 1136 static void rproc_unprepare_subdevices(struct rproc *rproc) 1137 { 1138 struct rproc_subdev *subdev; 1139 1140 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1141 if (subdev->unprepare) 1142 subdev->unprepare(subdev); 1143 } 1144 } 1145 1146 /** 1147 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1148 * in the list 1149 * @rproc: the remote processor handle 1150 * 1151 * This function parses registered carveout list, performs allocation 1152 * if alloc() ops registered and updates resource table information 1153 * if rsc_offset set. 1154 * 1155 * Return: 0 on success 1156 */ 1157 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1158 { 1159 struct rproc_mem_entry *entry, *tmp; 1160 struct fw_rsc_carveout *rsc; 1161 struct device *dev = &rproc->dev; 1162 u64 pa; 1163 int ret; 1164 1165 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1166 if (entry->alloc) { 1167 ret = entry->alloc(rproc, entry); 1168 if (ret) { 1169 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1170 entry->name, ret); 1171 return -ENOMEM; 1172 } 1173 } 1174 1175 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1176 /* update resource table */ 1177 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1178 1179 /* 1180 * Some remote processors might need to know the pa 1181 * even though they are behind an IOMMU. E.g., OMAP4's 1182 * remote M3 processor needs this so it can control 1183 * on-chip hardware accelerators that are not behind 1184 * the IOMMU, and therefor must know the pa. 1185 * 1186 * Generally we don't want to expose physical addresses 1187 * if we don't have to (remote processors are generally 1188 * _not_ trusted), so we might want to do this only for 1189 * remote processor that _must_ have this (e.g. OMAP4's 1190 * dual M3 subsystem). 1191 * 1192 * Non-IOMMU processors might also want to have this info. 1193 * In this case, the device address and the physical address 1194 * are the same. 1195 */ 1196 1197 /* Use va if defined else dma to generate pa */ 1198 if (entry->va) 1199 pa = (u64)rproc_va_to_pa(entry->va); 1200 else 1201 pa = (u64)entry->dma; 1202 1203 if (((u64)pa) & HIGH_BITS_MASK) 1204 dev_warn(dev, 1205 "Physical address cast in 32bit to fit resource table format\n"); 1206 1207 rsc->pa = (u32)pa; 1208 rsc->da = entry->da; 1209 rsc->len = entry->len; 1210 } 1211 } 1212 1213 return 0; 1214 } 1215 1216 /** 1217 * rproc_coredump_cleanup() - clean up dump_segments list 1218 * @rproc: the remote processor handle 1219 */ 1220 static void rproc_coredump_cleanup(struct rproc *rproc) 1221 { 1222 struct rproc_dump_segment *entry, *tmp; 1223 1224 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { 1225 list_del(&entry->node); 1226 kfree(entry); 1227 } 1228 } 1229 1230 /** 1231 * rproc_resource_cleanup() - clean up and free all acquired resources 1232 * @rproc: rproc handle 1233 * 1234 * This function will free all resources acquired for @rproc, and it 1235 * is called whenever @rproc either shuts down or fails to boot. 1236 */ 1237 static void rproc_resource_cleanup(struct rproc *rproc) 1238 { 1239 struct rproc_mem_entry *entry, *tmp; 1240 struct rproc_debug_trace *trace, *ttmp; 1241 struct rproc_vdev *rvdev, *rvtmp; 1242 struct device *dev = &rproc->dev; 1243 1244 /* clean up debugfs trace entries */ 1245 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1246 rproc_remove_trace_file(trace->tfile); 1247 rproc->num_traces--; 1248 list_del(&trace->node); 1249 kfree(trace); 1250 } 1251 1252 /* clean up iommu mapping entries */ 1253 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1254 size_t unmapped; 1255 1256 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1257 if (unmapped != entry->len) { 1258 /* nothing much to do besides complaining */ 1259 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 1260 unmapped); 1261 } 1262 1263 list_del(&entry->node); 1264 kfree(entry); 1265 } 1266 1267 /* clean up carveout allocations */ 1268 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1269 if (entry->release) 1270 entry->release(rproc, entry); 1271 list_del(&entry->node); 1272 kfree(entry); 1273 } 1274 1275 /* clean up remote vdev entries */ 1276 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1277 kref_put(&rvdev->refcount, rproc_vdev_release); 1278 1279 rproc_coredump_cleanup(rproc); 1280 } 1281 1282 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1283 { 1284 struct resource_table *loaded_table; 1285 struct device *dev = &rproc->dev; 1286 int ret; 1287 1288 /* load the ELF segments to memory */ 1289 ret = rproc_load_segments(rproc, fw); 1290 if (ret) { 1291 dev_err(dev, "Failed to load program segments: %d\n", ret); 1292 return ret; 1293 } 1294 1295 /* 1296 * The starting device has been given the rproc->cached_table as the 1297 * resource table. The address of the vring along with the other 1298 * allocated resources (carveouts etc) is stored in cached_table. 1299 * In order to pass this information to the remote device we must copy 1300 * this information to device memory. We also update the table_ptr so 1301 * that any subsequent changes will be applied to the loaded version. 1302 */ 1303 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1304 if (loaded_table) { 1305 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1306 rproc->table_ptr = loaded_table; 1307 } 1308 1309 ret = rproc_prepare_subdevices(rproc); 1310 if (ret) { 1311 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1312 rproc->name, ret); 1313 goto reset_table_ptr; 1314 } 1315 1316 /* power up the remote processor */ 1317 ret = rproc->ops->start(rproc); 1318 if (ret) { 1319 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1320 goto unprepare_subdevices; 1321 } 1322 1323 /* Start any subdevices for the remote processor */ 1324 ret = rproc_start_subdevices(rproc); 1325 if (ret) { 1326 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1327 rproc->name, ret); 1328 goto stop_rproc; 1329 } 1330 1331 rproc->state = RPROC_RUNNING; 1332 1333 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1334 1335 return 0; 1336 1337 stop_rproc: 1338 rproc->ops->stop(rproc); 1339 unprepare_subdevices: 1340 rproc_unprepare_subdevices(rproc); 1341 reset_table_ptr: 1342 rproc->table_ptr = rproc->cached_table; 1343 1344 return ret; 1345 } 1346 1347 /* 1348 * take a firmware and boot a remote processor with it. 1349 */ 1350 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1351 { 1352 struct device *dev = &rproc->dev; 1353 const char *name = rproc->firmware; 1354 int ret; 1355 1356 ret = rproc_fw_sanity_check(rproc, fw); 1357 if (ret) 1358 return ret; 1359 1360 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1361 1362 /* 1363 * if enabling an IOMMU isn't relevant for this rproc, this is 1364 * just a nop 1365 */ 1366 ret = rproc_enable_iommu(rproc); 1367 if (ret) { 1368 dev_err(dev, "can't enable iommu: %d\n", ret); 1369 return ret; 1370 } 1371 1372 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1373 1374 /* Load resource table, core dump segment list etc from the firmware */ 1375 ret = rproc_parse_fw(rproc, fw); 1376 if (ret) 1377 goto disable_iommu; 1378 1379 /* reset max_notifyid */ 1380 rproc->max_notifyid = -1; 1381 1382 /* reset handled vdev */ 1383 rproc->nb_vdev = 0; 1384 1385 /* handle fw resources which are required to boot rproc */ 1386 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1387 if (ret) { 1388 dev_err(dev, "Failed to process resources: %d\n", ret); 1389 goto clean_up_resources; 1390 } 1391 1392 /* Allocate carveout resources associated to rproc */ 1393 ret = rproc_alloc_registered_carveouts(rproc); 1394 if (ret) { 1395 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1396 ret); 1397 goto clean_up_resources; 1398 } 1399 1400 ret = rproc_start(rproc, fw); 1401 if (ret) 1402 goto clean_up_resources; 1403 1404 return 0; 1405 1406 clean_up_resources: 1407 rproc_resource_cleanup(rproc); 1408 kfree(rproc->cached_table); 1409 rproc->cached_table = NULL; 1410 rproc->table_ptr = NULL; 1411 disable_iommu: 1412 rproc_disable_iommu(rproc); 1413 return ret; 1414 } 1415 1416 /* 1417 * take a firmware and boot it up. 1418 * 1419 * Note: this function is called asynchronously upon registration of the 1420 * remote processor (so we must wait until it completes before we try 1421 * to unregister the device. one other option is just to use kref here, 1422 * that might be cleaner). 1423 */ 1424 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1425 { 1426 struct rproc *rproc = context; 1427 1428 rproc_boot(rproc); 1429 1430 release_firmware(fw); 1431 } 1432 1433 static int rproc_trigger_auto_boot(struct rproc *rproc) 1434 { 1435 int ret; 1436 1437 /* 1438 * We're initiating an asynchronous firmware loading, so we can 1439 * be built-in kernel code, without hanging the boot process. 1440 */ 1441 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1442 rproc->firmware, &rproc->dev, GFP_KERNEL, 1443 rproc, rproc_auto_boot_callback); 1444 if (ret < 0) 1445 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1446 1447 return ret; 1448 } 1449 1450 static int rproc_stop(struct rproc *rproc, bool crashed) 1451 { 1452 struct device *dev = &rproc->dev; 1453 int ret; 1454 1455 /* Stop any subdevices for the remote processor */ 1456 rproc_stop_subdevices(rproc, crashed); 1457 1458 /* the installed resource table is no longer accessible */ 1459 rproc->table_ptr = rproc->cached_table; 1460 1461 /* power off the remote processor */ 1462 ret = rproc->ops->stop(rproc); 1463 if (ret) { 1464 dev_err(dev, "can't stop rproc: %d\n", ret); 1465 return ret; 1466 } 1467 1468 rproc_unprepare_subdevices(rproc); 1469 1470 rproc->state = RPROC_OFFLINE; 1471 1472 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1473 1474 return 0; 1475 } 1476 1477 /** 1478 * rproc_coredump_add_segment() - add segment of device memory to coredump 1479 * @rproc: handle of a remote processor 1480 * @da: device address 1481 * @size: size of segment 1482 * 1483 * Add device memory to the list of segments to be included in a coredump for 1484 * the remoteproc. 1485 * 1486 * Return: 0 on success, negative errno on error. 1487 */ 1488 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) 1489 { 1490 struct rproc_dump_segment *segment; 1491 1492 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1493 if (!segment) 1494 return -ENOMEM; 1495 1496 segment->da = da; 1497 segment->size = size; 1498 1499 list_add_tail(&segment->node, &rproc->dump_segments); 1500 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(rproc_coredump_add_segment); 1504 1505 /** 1506 * rproc_coredump_add_custom_segment() - add custom coredump segment 1507 * @rproc: handle of a remote processor 1508 * @da: device address 1509 * @size: size of segment 1510 * @dumpfn: custom dump function called for each segment during coredump 1511 * @priv: private data 1512 * 1513 * Add device memory to the list of segments to be included in the coredump 1514 * and associate the segment with the given custom dump function and private 1515 * data. 1516 * 1517 * Return: 0 on success, negative errno on error. 1518 */ 1519 int rproc_coredump_add_custom_segment(struct rproc *rproc, 1520 dma_addr_t da, size_t size, 1521 void (*dumpfn)(struct rproc *rproc, 1522 struct rproc_dump_segment *segment, 1523 void *dest), 1524 void *priv) 1525 { 1526 struct rproc_dump_segment *segment; 1527 1528 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1529 if (!segment) 1530 return -ENOMEM; 1531 1532 segment->da = da; 1533 segment->size = size; 1534 segment->priv = priv; 1535 segment->dump = dumpfn; 1536 1537 list_add_tail(&segment->node, &rproc->dump_segments); 1538 1539 return 0; 1540 } 1541 EXPORT_SYMBOL(rproc_coredump_add_custom_segment); 1542 1543 /** 1544 * rproc_coredump() - perform coredump 1545 * @rproc: rproc handle 1546 * 1547 * This function will generate an ELF header for the registered segments 1548 * and create a devcoredump device associated with rproc. 1549 */ 1550 static void rproc_coredump(struct rproc *rproc) 1551 { 1552 struct rproc_dump_segment *segment; 1553 struct elf32_phdr *phdr; 1554 struct elf32_hdr *ehdr; 1555 size_t data_size; 1556 size_t offset; 1557 void *data; 1558 void *ptr; 1559 int phnum = 0; 1560 1561 if (list_empty(&rproc->dump_segments)) 1562 return; 1563 1564 data_size = sizeof(*ehdr); 1565 list_for_each_entry(segment, &rproc->dump_segments, node) { 1566 data_size += sizeof(*phdr) + segment->size; 1567 1568 phnum++; 1569 } 1570 1571 data = vmalloc(data_size); 1572 if (!data) 1573 return; 1574 1575 ehdr = data; 1576 1577 memset(ehdr, 0, sizeof(*ehdr)); 1578 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1579 ehdr->e_ident[EI_CLASS] = ELFCLASS32; 1580 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1581 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1582 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; 1583 ehdr->e_type = ET_CORE; 1584 ehdr->e_machine = EM_NONE; 1585 ehdr->e_version = EV_CURRENT; 1586 ehdr->e_entry = rproc->bootaddr; 1587 ehdr->e_phoff = sizeof(*ehdr); 1588 ehdr->e_ehsize = sizeof(*ehdr); 1589 ehdr->e_phentsize = sizeof(*phdr); 1590 ehdr->e_phnum = phnum; 1591 1592 phdr = data + ehdr->e_phoff; 1593 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum; 1594 list_for_each_entry(segment, &rproc->dump_segments, node) { 1595 memset(phdr, 0, sizeof(*phdr)); 1596 phdr->p_type = PT_LOAD; 1597 phdr->p_offset = offset; 1598 phdr->p_vaddr = segment->da; 1599 phdr->p_paddr = segment->da; 1600 phdr->p_filesz = segment->size; 1601 phdr->p_memsz = segment->size; 1602 phdr->p_flags = PF_R | PF_W | PF_X; 1603 phdr->p_align = 0; 1604 1605 if (segment->dump) { 1606 segment->dump(rproc, segment, data + offset); 1607 } else { 1608 ptr = rproc_da_to_va(rproc, segment->da, segment->size); 1609 if (!ptr) { 1610 dev_err(&rproc->dev, 1611 "invalid coredump segment (%pad, %zu)\n", 1612 &segment->da, segment->size); 1613 memset(data + offset, 0xff, segment->size); 1614 } else { 1615 memcpy(data + offset, ptr, segment->size); 1616 } 1617 } 1618 1619 offset += phdr->p_filesz; 1620 phdr++; 1621 } 1622 1623 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); 1624 } 1625 1626 /** 1627 * rproc_trigger_recovery() - recover a remoteproc 1628 * @rproc: the remote processor 1629 * 1630 * The recovery is done by resetting all the virtio devices, that way all the 1631 * rpmsg drivers will be reseted along with the remote processor making the 1632 * remoteproc functional again. 1633 * 1634 * This function can sleep, so it cannot be called from atomic context. 1635 */ 1636 int rproc_trigger_recovery(struct rproc *rproc) 1637 { 1638 const struct firmware *firmware_p; 1639 struct device *dev = &rproc->dev; 1640 int ret; 1641 1642 dev_err(dev, "recovering %s\n", rproc->name); 1643 1644 ret = mutex_lock_interruptible(&rproc->lock); 1645 if (ret) 1646 return ret; 1647 1648 ret = rproc_stop(rproc, true); 1649 if (ret) 1650 goto unlock_mutex; 1651 1652 /* generate coredump */ 1653 rproc_coredump(rproc); 1654 1655 /* load firmware */ 1656 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1657 if (ret < 0) { 1658 dev_err(dev, "request_firmware failed: %d\n", ret); 1659 goto unlock_mutex; 1660 } 1661 1662 /* boot the remote processor up again */ 1663 ret = rproc_start(rproc, firmware_p); 1664 1665 release_firmware(firmware_p); 1666 1667 unlock_mutex: 1668 mutex_unlock(&rproc->lock); 1669 return ret; 1670 } 1671 1672 /** 1673 * rproc_crash_handler_work() - handle a crash 1674 * 1675 * This function needs to handle everything related to a crash, like cpu 1676 * registers and stack dump, information to help to debug the fatal error, etc. 1677 */ 1678 static void rproc_crash_handler_work(struct work_struct *work) 1679 { 1680 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1681 struct device *dev = &rproc->dev; 1682 1683 dev_dbg(dev, "enter %s\n", __func__); 1684 1685 mutex_lock(&rproc->lock); 1686 1687 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1688 /* handle only the first crash detected */ 1689 mutex_unlock(&rproc->lock); 1690 return; 1691 } 1692 1693 rproc->state = RPROC_CRASHED; 1694 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1695 rproc->name); 1696 1697 mutex_unlock(&rproc->lock); 1698 1699 if (!rproc->recovery_disabled) 1700 rproc_trigger_recovery(rproc); 1701 } 1702 1703 /** 1704 * rproc_boot() - boot a remote processor 1705 * @rproc: handle of a remote processor 1706 * 1707 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1708 * 1709 * If the remote processor is already powered on, this function immediately 1710 * returns (successfully). 1711 * 1712 * Returns 0 on success, and an appropriate error value otherwise. 1713 */ 1714 int rproc_boot(struct rproc *rproc) 1715 { 1716 const struct firmware *firmware_p; 1717 struct device *dev; 1718 int ret; 1719 1720 if (!rproc) { 1721 pr_err("invalid rproc handle\n"); 1722 return -EINVAL; 1723 } 1724 1725 dev = &rproc->dev; 1726 1727 ret = mutex_lock_interruptible(&rproc->lock); 1728 if (ret) { 1729 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1730 return ret; 1731 } 1732 1733 if (rproc->state == RPROC_DELETED) { 1734 ret = -ENODEV; 1735 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1736 goto unlock_mutex; 1737 } 1738 1739 /* skip the boot process if rproc is already powered up */ 1740 if (atomic_inc_return(&rproc->power) > 1) { 1741 ret = 0; 1742 goto unlock_mutex; 1743 } 1744 1745 dev_info(dev, "powering up %s\n", rproc->name); 1746 1747 /* load firmware */ 1748 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1749 if (ret < 0) { 1750 dev_err(dev, "request_firmware failed: %d\n", ret); 1751 goto downref_rproc; 1752 } 1753 1754 ret = rproc_fw_boot(rproc, firmware_p); 1755 1756 release_firmware(firmware_p); 1757 1758 downref_rproc: 1759 if (ret) 1760 atomic_dec(&rproc->power); 1761 unlock_mutex: 1762 mutex_unlock(&rproc->lock); 1763 return ret; 1764 } 1765 EXPORT_SYMBOL(rproc_boot); 1766 1767 /** 1768 * rproc_shutdown() - power off the remote processor 1769 * @rproc: the remote processor 1770 * 1771 * Power off a remote processor (previously booted with rproc_boot()). 1772 * 1773 * In case @rproc is still being used by an additional user(s), then 1774 * this function will just decrement the power refcount and exit, 1775 * without really powering off the device. 1776 * 1777 * Every call to rproc_boot() must (eventually) be accompanied by a call 1778 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1779 * 1780 * Notes: 1781 * - we're not decrementing the rproc's refcount, only the power refcount. 1782 * which means that the @rproc handle stays valid even after rproc_shutdown() 1783 * returns, and users can still use it with a subsequent rproc_boot(), if 1784 * needed. 1785 */ 1786 void rproc_shutdown(struct rproc *rproc) 1787 { 1788 struct device *dev = &rproc->dev; 1789 int ret; 1790 1791 ret = mutex_lock_interruptible(&rproc->lock); 1792 if (ret) { 1793 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1794 return; 1795 } 1796 1797 /* if the remote proc is still needed, bail out */ 1798 if (!atomic_dec_and_test(&rproc->power)) 1799 goto out; 1800 1801 ret = rproc_stop(rproc, false); 1802 if (ret) { 1803 atomic_inc(&rproc->power); 1804 goto out; 1805 } 1806 1807 /* clean up all acquired resources */ 1808 rproc_resource_cleanup(rproc); 1809 1810 rproc_disable_iommu(rproc); 1811 1812 /* Free the copy of the resource table */ 1813 kfree(rproc->cached_table); 1814 rproc->cached_table = NULL; 1815 rproc->table_ptr = NULL; 1816 out: 1817 mutex_unlock(&rproc->lock); 1818 } 1819 EXPORT_SYMBOL(rproc_shutdown); 1820 1821 /** 1822 * rproc_get_by_phandle() - find a remote processor by phandle 1823 * @phandle: phandle to the rproc 1824 * 1825 * Finds an rproc handle using the remote processor's phandle, and then 1826 * return a handle to the rproc. 1827 * 1828 * This function increments the remote processor's refcount, so always 1829 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1830 * 1831 * Returns the rproc handle on success, and NULL on failure. 1832 */ 1833 #ifdef CONFIG_OF 1834 struct rproc *rproc_get_by_phandle(phandle phandle) 1835 { 1836 struct rproc *rproc = NULL, *r; 1837 struct device_node *np; 1838 1839 np = of_find_node_by_phandle(phandle); 1840 if (!np) 1841 return NULL; 1842 1843 mutex_lock(&rproc_list_mutex); 1844 list_for_each_entry(r, &rproc_list, node) { 1845 if (r->dev.parent && r->dev.parent->of_node == np) { 1846 /* prevent underlying implementation from being removed */ 1847 if (!try_module_get(r->dev.parent->driver->owner)) { 1848 dev_err(&r->dev, "can't get owner\n"); 1849 break; 1850 } 1851 1852 rproc = r; 1853 get_device(&rproc->dev); 1854 break; 1855 } 1856 } 1857 mutex_unlock(&rproc_list_mutex); 1858 1859 of_node_put(np); 1860 1861 return rproc; 1862 } 1863 #else 1864 struct rproc *rproc_get_by_phandle(phandle phandle) 1865 { 1866 return NULL; 1867 } 1868 #endif 1869 EXPORT_SYMBOL(rproc_get_by_phandle); 1870 1871 /** 1872 * rproc_add() - register a remote processor 1873 * @rproc: the remote processor handle to register 1874 * 1875 * Registers @rproc with the remoteproc framework, after it has been 1876 * allocated with rproc_alloc(). 1877 * 1878 * This is called by the platform-specific rproc implementation, whenever 1879 * a new remote processor device is probed. 1880 * 1881 * Returns 0 on success and an appropriate error code otherwise. 1882 * 1883 * Note: this function initiates an asynchronous firmware loading 1884 * context, which will look for virtio devices supported by the rproc's 1885 * firmware. 1886 * 1887 * If found, those virtio devices will be created and added, so as a result 1888 * of registering this remote processor, additional virtio drivers might be 1889 * probed. 1890 */ 1891 int rproc_add(struct rproc *rproc) 1892 { 1893 struct device *dev = &rproc->dev; 1894 int ret; 1895 1896 ret = device_add(dev); 1897 if (ret < 0) 1898 return ret; 1899 1900 dev_info(dev, "%s is available\n", rproc->name); 1901 1902 /* create debugfs entries */ 1903 rproc_create_debug_dir(rproc); 1904 1905 /* if rproc is marked always-on, request it to boot */ 1906 if (rproc->auto_boot) { 1907 ret = rproc_trigger_auto_boot(rproc); 1908 if (ret < 0) 1909 return ret; 1910 } 1911 1912 /* expose to rproc_get_by_phandle users */ 1913 mutex_lock(&rproc_list_mutex); 1914 list_add(&rproc->node, &rproc_list); 1915 mutex_unlock(&rproc_list_mutex); 1916 1917 return 0; 1918 } 1919 EXPORT_SYMBOL(rproc_add); 1920 1921 /** 1922 * rproc_type_release() - release a remote processor instance 1923 * @dev: the rproc's device 1924 * 1925 * This function should _never_ be called directly. 1926 * 1927 * It will be called by the driver core when no one holds a valid pointer 1928 * to @dev anymore. 1929 */ 1930 static void rproc_type_release(struct device *dev) 1931 { 1932 struct rproc *rproc = container_of(dev, struct rproc, dev); 1933 1934 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1935 1936 idr_destroy(&rproc->notifyids); 1937 1938 if (rproc->index >= 0) 1939 ida_simple_remove(&rproc_dev_index, rproc->index); 1940 1941 kfree(rproc->firmware); 1942 kfree(rproc->ops); 1943 kfree(rproc); 1944 } 1945 1946 static const struct device_type rproc_type = { 1947 .name = "remoteproc", 1948 .release = rproc_type_release, 1949 }; 1950 1951 /** 1952 * rproc_alloc() - allocate a remote processor handle 1953 * @dev: the underlying device 1954 * @name: name of this remote processor 1955 * @ops: platform-specific handlers (mainly start/stop) 1956 * @firmware: name of firmware file to load, can be NULL 1957 * @len: length of private data needed by the rproc driver (in bytes) 1958 * 1959 * Allocates a new remote processor handle, but does not register 1960 * it yet. if @firmware is NULL, a default name is used. 1961 * 1962 * This function should be used by rproc implementations during initialization 1963 * of the remote processor. 1964 * 1965 * After creating an rproc handle using this function, and when ready, 1966 * implementations should then call rproc_add() to complete 1967 * the registration of the remote processor. 1968 * 1969 * On success the new rproc is returned, and on failure, NULL. 1970 * 1971 * Note: _never_ directly deallocate @rproc, even if it was not registered 1972 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1973 */ 1974 struct rproc *rproc_alloc(struct device *dev, const char *name, 1975 const struct rproc_ops *ops, 1976 const char *firmware, int len) 1977 { 1978 struct rproc *rproc; 1979 char *p, *template = "rproc-%s-fw"; 1980 int name_len; 1981 1982 if (!dev || !name || !ops) 1983 return NULL; 1984 1985 if (!firmware) { 1986 /* 1987 * If the caller didn't pass in a firmware name then 1988 * construct a default name. 1989 */ 1990 name_len = strlen(name) + strlen(template) - 2 + 1; 1991 p = kmalloc(name_len, GFP_KERNEL); 1992 if (!p) 1993 return NULL; 1994 snprintf(p, name_len, template, name); 1995 } else { 1996 p = kstrdup(firmware, GFP_KERNEL); 1997 if (!p) 1998 return NULL; 1999 } 2000 2001 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2002 if (!rproc) { 2003 kfree(p); 2004 return NULL; 2005 } 2006 2007 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2008 if (!rproc->ops) { 2009 kfree(p); 2010 kfree(rproc); 2011 return NULL; 2012 } 2013 2014 rproc->firmware = p; 2015 rproc->name = name; 2016 rproc->priv = &rproc[1]; 2017 rproc->auto_boot = true; 2018 2019 device_initialize(&rproc->dev); 2020 rproc->dev.parent = dev; 2021 rproc->dev.type = &rproc_type; 2022 rproc->dev.class = &rproc_class; 2023 rproc->dev.driver_data = rproc; 2024 2025 /* Assign a unique device index and name */ 2026 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2027 if (rproc->index < 0) { 2028 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2029 put_device(&rproc->dev); 2030 return NULL; 2031 } 2032 2033 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2034 2035 atomic_set(&rproc->power, 0); 2036 2037 /* Default to ELF loader if no load function is specified */ 2038 if (!rproc->ops->load) { 2039 rproc->ops->load = rproc_elf_load_segments; 2040 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2041 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2042 rproc->ops->sanity_check = rproc_elf_sanity_check; 2043 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2044 } 2045 2046 mutex_init(&rproc->lock); 2047 2048 idr_init(&rproc->notifyids); 2049 2050 INIT_LIST_HEAD(&rproc->carveouts); 2051 INIT_LIST_HEAD(&rproc->mappings); 2052 INIT_LIST_HEAD(&rproc->traces); 2053 INIT_LIST_HEAD(&rproc->rvdevs); 2054 INIT_LIST_HEAD(&rproc->subdevs); 2055 INIT_LIST_HEAD(&rproc->dump_segments); 2056 2057 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2058 2059 rproc->state = RPROC_OFFLINE; 2060 2061 return rproc; 2062 } 2063 EXPORT_SYMBOL(rproc_alloc); 2064 2065 /** 2066 * rproc_free() - unroll rproc_alloc() 2067 * @rproc: the remote processor handle 2068 * 2069 * This function decrements the rproc dev refcount. 2070 * 2071 * If no one holds any reference to rproc anymore, then its refcount would 2072 * now drop to zero, and it would be freed. 2073 */ 2074 void rproc_free(struct rproc *rproc) 2075 { 2076 put_device(&rproc->dev); 2077 } 2078 EXPORT_SYMBOL(rproc_free); 2079 2080 /** 2081 * rproc_put() - release rproc reference 2082 * @rproc: the remote processor handle 2083 * 2084 * This function decrements the rproc dev refcount. 2085 * 2086 * If no one holds any reference to rproc anymore, then its refcount would 2087 * now drop to zero, and it would be freed. 2088 */ 2089 void rproc_put(struct rproc *rproc) 2090 { 2091 module_put(rproc->dev.parent->driver->owner); 2092 put_device(&rproc->dev); 2093 } 2094 EXPORT_SYMBOL(rproc_put); 2095 2096 /** 2097 * rproc_del() - unregister a remote processor 2098 * @rproc: rproc handle to unregister 2099 * 2100 * This function should be called when the platform specific rproc 2101 * implementation decides to remove the rproc device. it should 2102 * _only_ be called if a previous invocation of rproc_add() 2103 * has completed successfully. 2104 * 2105 * After rproc_del() returns, @rproc isn't freed yet, because 2106 * of the outstanding reference created by rproc_alloc. To decrement that 2107 * one last refcount, one still needs to call rproc_free(). 2108 * 2109 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2110 */ 2111 int rproc_del(struct rproc *rproc) 2112 { 2113 if (!rproc) 2114 return -EINVAL; 2115 2116 /* if rproc is marked always-on, rproc_add() booted it */ 2117 /* TODO: make sure this works with rproc->power > 1 */ 2118 if (rproc->auto_boot) 2119 rproc_shutdown(rproc); 2120 2121 mutex_lock(&rproc->lock); 2122 rproc->state = RPROC_DELETED; 2123 mutex_unlock(&rproc->lock); 2124 2125 rproc_delete_debug_dir(rproc); 2126 2127 /* the rproc is downref'ed as soon as it's removed from the klist */ 2128 mutex_lock(&rproc_list_mutex); 2129 list_del(&rproc->node); 2130 mutex_unlock(&rproc_list_mutex); 2131 2132 device_del(&rproc->dev); 2133 2134 return 0; 2135 } 2136 EXPORT_SYMBOL(rproc_del); 2137 2138 /** 2139 * rproc_add_subdev() - add a subdevice to a remoteproc 2140 * @rproc: rproc handle to add the subdevice to 2141 * @subdev: subdev handle to register 2142 * 2143 * Caller is responsible for populating optional subdevice function pointers. 2144 */ 2145 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2146 { 2147 list_add_tail(&subdev->node, &rproc->subdevs); 2148 } 2149 EXPORT_SYMBOL(rproc_add_subdev); 2150 2151 /** 2152 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2153 * @rproc: rproc handle to remove the subdevice from 2154 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2155 */ 2156 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2157 { 2158 list_del(&subdev->node); 2159 } 2160 EXPORT_SYMBOL(rproc_remove_subdev); 2161 2162 /** 2163 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2164 * @dev: child device to find ancestor of 2165 * 2166 * Returns the ancestor rproc instance, or NULL if not found. 2167 */ 2168 struct rproc *rproc_get_by_child(struct device *dev) 2169 { 2170 for (dev = dev->parent; dev; dev = dev->parent) { 2171 if (dev->type == &rproc_type) 2172 return dev->driver_data; 2173 } 2174 2175 return NULL; 2176 } 2177 EXPORT_SYMBOL(rproc_get_by_child); 2178 2179 /** 2180 * rproc_report_crash() - rproc crash reporter function 2181 * @rproc: remote processor 2182 * @type: crash type 2183 * 2184 * This function must be called every time a crash is detected by the low-level 2185 * drivers implementing a specific remoteproc. This should not be called from a 2186 * non-remoteproc driver. 2187 * 2188 * This function can be called from atomic/interrupt context. 2189 */ 2190 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2191 { 2192 if (!rproc) { 2193 pr_err("NULL rproc pointer\n"); 2194 return; 2195 } 2196 2197 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2198 rproc->name, rproc_crash_to_string(type)); 2199 2200 /* create a new task to handle the error */ 2201 schedule_work(&rproc->crash_handler); 2202 } 2203 EXPORT_SYMBOL(rproc_report_crash); 2204 2205 static int __init remoteproc_init(void) 2206 { 2207 rproc_init_sysfs(); 2208 rproc_init_debugfs(); 2209 2210 return 0; 2211 } 2212 module_init(remoteproc_init); 2213 2214 static void __exit remoteproc_exit(void) 2215 { 2216 ida_destroy(&rproc_dev_index); 2217 2218 rproc_exit_debugfs(); 2219 rproc_exit_sysfs(); 2220 } 2221 module_exit(remoteproc_exit); 2222 2223 MODULE_LICENSE("GPL v2"); 2224 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2225