1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/devcoredump.h> 37 #include <linux/remoteproc.h> 38 #include <linux/iommu.h> 39 #include <linux/idr.h> 40 #include <linux/elf.h> 41 #include <linux/crc32.h> 42 #include <linux/of_reserved_mem.h> 43 #include <linux/virtio_ids.h> 44 #include <linux/virtio_ring.h> 45 #include <asm/byteorder.h> 46 #include <linux/platform_device.h> 47 48 #include "remoteproc_internal.h" 49 50 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 51 52 static DEFINE_MUTEX(rproc_list_mutex); 53 static LIST_HEAD(rproc_list); 54 55 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 56 struct resource_table *table, int len); 57 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 58 void *, int offset, int avail); 59 60 static int rproc_alloc_carveout(struct rproc *rproc, 61 struct rproc_mem_entry *mem); 62 static int rproc_release_carveout(struct rproc *rproc, 63 struct rproc_mem_entry *mem); 64 65 /* Unique indices for remoteproc devices */ 66 static DEFINE_IDA(rproc_dev_index); 67 68 static const char * const rproc_crash_names[] = { 69 [RPROC_MMUFAULT] = "mmufault", 70 [RPROC_WATCHDOG] = "watchdog", 71 [RPROC_FATAL_ERROR] = "fatal error", 72 }; 73 74 /* translate rproc_crash_type to string */ 75 static const char *rproc_crash_to_string(enum rproc_crash_type type) 76 { 77 if (type < ARRAY_SIZE(rproc_crash_names)) 78 return rproc_crash_names[type]; 79 return "unknown"; 80 } 81 82 /* 83 * This is the IOMMU fault handler we register with the IOMMU API 84 * (when relevant; not all remote processors access memory through 85 * an IOMMU). 86 * 87 * IOMMU core will invoke this handler whenever the remote processor 88 * will try to access an unmapped device address. 89 */ 90 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 91 unsigned long iova, int flags, void *token) 92 { 93 struct rproc *rproc = token; 94 95 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 96 97 rproc_report_crash(rproc, RPROC_MMUFAULT); 98 99 /* 100 * Let the iommu core know we're not really handling this fault; 101 * we just used it as a recovery trigger. 102 */ 103 return -ENOSYS; 104 } 105 106 static int rproc_enable_iommu(struct rproc *rproc) 107 { 108 struct iommu_domain *domain; 109 struct device *dev = rproc->dev.parent; 110 int ret; 111 112 if (!rproc->has_iommu) { 113 dev_dbg(dev, "iommu not present\n"); 114 return 0; 115 } 116 117 domain = iommu_domain_alloc(dev->bus); 118 if (!domain) { 119 dev_err(dev, "can't alloc iommu domain\n"); 120 return -ENOMEM; 121 } 122 123 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 124 125 ret = iommu_attach_device(domain, dev); 126 if (ret) { 127 dev_err(dev, "can't attach iommu device: %d\n", ret); 128 goto free_domain; 129 } 130 131 rproc->domain = domain; 132 133 return 0; 134 135 free_domain: 136 iommu_domain_free(domain); 137 return ret; 138 } 139 140 static void rproc_disable_iommu(struct rproc *rproc) 141 { 142 struct iommu_domain *domain = rproc->domain; 143 struct device *dev = rproc->dev.parent; 144 145 if (!domain) 146 return; 147 148 iommu_detach_device(domain, dev); 149 iommu_domain_free(domain); 150 } 151 152 phys_addr_t rproc_va_to_pa(void *cpu_addr) 153 { 154 /* 155 * Return physical address according to virtual address location 156 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 157 * - in kernel: if region allocated in generic dma memory pool 158 */ 159 if (is_vmalloc_addr(cpu_addr)) { 160 return page_to_phys(vmalloc_to_page(cpu_addr)) + 161 offset_in_page(cpu_addr); 162 } 163 164 WARN_ON(!virt_addr_valid(cpu_addr)); 165 return virt_to_phys(cpu_addr); 166 } 167 EXPORT_SYMBOL(rproc_va_to_pa); 168 169 /** 170 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 171 * @rproc: handle of a remote processor 172 * @da: remoteproc device address to translate 173 * @len: length of the memory region @da is pointing to 174 * 175 * Some remote processors will ask us to allocate them physically contiguous 176 * memory regions (which we call "carveouts"), and map them to specific 177 * device addresses (which are hardcoded in the firmware). They may also have 178 * dedicated memory regions internal to the processors, and use them either 179 * exclusively or alongside carveouts. 180 * 181 * They may then ask us to copy objects into specific device addresses (e.g. 182 * code/data sections) or expose us certain symbols in other device address 183 * (e.g. their trace buffer). 184 * 185 * This function is a helper function with which we can go over the allocated 186 * carveouts and translate specific device addresses to kernel virtual addresses 187 * so we can access the referenced memory. This function also allows to perform 188 * translations on the internal remoteproc memory regions through a platform 189 * implementation specific da_to_va ops, if present. 190 * 191 * The function returns a valid kernel address on success or NULL on failure. 192 * 193 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 194 * but only on kernel direct mapped RAM memory. Instead, we're just using 195 * here the output of the DMA API for the carveouts, which should be more 196 * correct. 197 */ 198 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 199 { 200 struct rproc_mem_entry *carveout; 201 void *ptr = NULL; 202 203 if (rproc->ops->da_to_va) { 204 ptr = rproc->ops->da_to_va(rproc, da, len); 205 if (ptr) 206 goto out; 207 } 208 209 list_for_each_entry(carveout, &rproc->carveouts, node) { 210 int offset = da - carveout->da; 211 212 /* Verify that carveout is allocated */ 213 if (!carveout->va) 214 continue; 215 216 /* try next carveout if da is too small */ 217 if (offset < 0) 218 continue; 219 220 /* try next carveout if da is too large */ 221 if (offset + len > carveout->len) 222 continue; 223 224 ptr = carveout->va + offset; 225 226 break; 227 } 228 229 out: 230 return ptr; 231 } 232 EXPORT_SYMBOL(rproc_da_to_va); 233 234 /** 235 * rproc_find_carveout_by_name() - lookup the carveout region by a name 236 * @rproc: handle of a remote processor 237 * @name,..: carveout name to find (standard printf format) 238 * 239 * Platform driver has the capability to register some pre-allacoted carveout 240 * (physically contiguous memory regions) before rproc firmware loading and 241 * associated resource table analysis. These regions may be dedicated memory 242 * regions internal to the coprocessor or specified DDR region with specific 243 * attributes 244 * 245 * This function is a helper function with which we can go over the 246 * allocated carveouts and return associated region characteristics like 247 * coprocessor address, length or processor virtual address. 248 * 249 * Return: a valid pointer on carveout entry on success or NULL on failure. 250 */ 251 struct rproc_mem_entry * 252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 253 { 254 va_list args; 255 char _name[32]; 256 struct rproc_mem_entry *carveout, *mem = NULL; 257 258 if (!name) 259 return NULL; 260 261 va_start(args, name); 262 vsnprintf(_name, sizeof(_name), name, args); 263 va_end(args); 264 265 list_for_each_entry(carveout, &rproc->carveouts, node) { 266 /* Compare carveout and requested names */ 267 if (!strcmp(carveout->name, _name)) { 268 mem = carveout; 269 break; 270 } 271 } 272 273 return mem; 274 } 275 276 /** 277 * rproc_check_carveout_da() - Check specified carveout da configuration 278 * @rproc: handle of a remote processor 279 * @mem: pointer on carveout to check 280 * @da: area device address 281 * @len: associated area size 282 * 283 * This function is a helper function to verify requested device area (couple 284 * da, len) is part of specified carveout. 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 286 * checked. 287 * 288 * Return: 0 if carveout matches request else error 289 */ 290 static int rproc_check_carveout_da(struct rproc *rproc, 291 struct rproc_mem_entry *mem, u32 da, u32 len) 292 { 293 struct device *dev = &rproc->dev; 294 int delta; 295 296 /* Check requested resource length */ 297 if (len > mem->len) { 298 dev_err(dev, "Registered carveout doesn't fit len request\n"); 299 return -EINVAL; 300 } 301 302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 303 /* Address doesn't match registered carveout configuration */ 304 return -EINVAL; 305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 306 delta = da - mem->da; 307 308 /* Check requested resource belongs to registered carveout */ 309 if (delta < 0) { 310 dev_err(dev, 311 "Registered carveout doesn't fit da request\n"); 312 return -EINVAL; 313 } 314 315 if (delta + len > mem->len) { 316 dev_err(dev, 317 "Registered carveout doesn't fit len request\n"); 318 return -EINVAL; 319 } 320 } 321 322 return 0; 323 } 324 325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 326 { 327 struct rproc *rproc = rvdev->rproc; 328 struct device *dev = &rproc->dev; 329 struct rproc_vring *rvring = &rvdev->vring[i]; 330 struct fw_rsc_vdev *rsc; 331 int ret, size, notifyid; 332 struct rproc_mem_entry *mem; 333 334 /* actual size of vring (in bytes) */ 335 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 336 337 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 338 339 /* Search for pre-registered carveout */ 340 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 341 i); 342 if (mem) { 343 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 344 return -ENOMEM; 345 } else { 346 /* Register carveout in in list */ 347 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da, 348 rproc_alloc_carveout, 349 rproc_release_carveout, 350 "vdev%dvring%d", 351 rvdev->index, i); 352 if (!mem) { 353 dev_err(dev, "Can't allocate memory entry structure\n"); 354 return -ENOMEM; 355 } 356 357 rproc_add_carveout(rproc, mem); 358 } 359 360 /* 361 * Assign an rproc-wide unique index for this vring 362 * TODO: assign a notifyid for rvdev updates as well 363 * TODO: support predefined notifyids (via resource table) 364 */ 365 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 366 if (ret < 0) { 367 dev_err(dev, "idr_alloc failed: %d\n", ret); 368 return ret; 369 } 370 notifyid = ret; 371 372 /* Potentially bump max_notifyid */ 373 if (notifyid > rproc->max_notifyid) 374 rproc->max_notifyid = notifyid; 375 376 rvring->notifyid = notifyid; 377 378 /* Let the rproc know the notifyid of this vring.*/ 379 rsc->vring[i].notifyid = notifyid; 380 return 0; 381 } 382 383 static int 384 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 385 { 386 struct rproc *rproc = rvdev->rproc; 387 struct device *dev = &rproc->dev; 388 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 389 struct rproc_vring *rvring = &rvdev->vring[i]; 390 391 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 392 i, vring->da, vring->num, vring->align); 393 394 /* verify queue size and vring alignment are sane */ 395 if (!vring->num || !vring->align) { 396 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 397 vring->num, vring->align); 398 return -EINVAL; 399 } 400 401 rvring->len = vring->num; 402 rvring->align = vring->align; 403 rvring->rvdev = rvdev; 404 405 return 0; 406 } 407 408 void rproc_free_vring(struct rproc_vring *rvring) 409 { 410 struct rproc *rproc = rvring->rvdev->rproc; 411 int idx = rvring->rvdev->vring - rvring; 412 struct fw_rsc_vdev *rsc; 413 414 idr_remove(&rproc->notifyids, rvring->notifyid); 415 416 /* reset resource entry info */ 417 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 418 rsc->vring[idx].da = 0; 419 rsc->vring[idx].notifyid = -1; 420 } 421 422 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 423 { 424 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 425 426 return rproc_add_virtio_dev(rvdev, rvdev->id); 427 } 428 429 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 430 { 431 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 432 int ret; 433 434 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 435 if (ret) 436 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 437 } 438 439 /** 440 * rproc_rvdev_release() - release the existence of a rvdev 441 * 442 * @dev: the subdevice's dev 443 */ 444 static void rproc_rvdev_release(struct device *dev) 445 { 446 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 447 448 of_reserved_mem_device_release(dev); 449 450 kfree(rvdev); 451 } 452 453 /** 454 * rproc_handle_vdev() - handle a vdev fw resource 455 * @rproc: the remote processor 456 * @rsc: the vring resource descriptor 457 * @avail: size of available data (for sanity checking the image) 458 * 459 * This resource entry requests the host to statically register a virtio 460 * device (vdev), and setup everything needed to support it. It contains 461 * everything needed to make it possible: the virtio device id, virtio 462 * device features, vrings information, virtio config space, etc... 463 * 464 * Before registering the vdev, the vrings are allocated from non-cacheable 465 * physically contiguous memory. Currently we only support two vrings per 466 * remote processor (temporary limitation). We might also want to consider 467 * doing the vring allocation only later when ->find_vqs() is invoked, and 468 * then release them upon ->del_vqs(). 469 * 470 * Note: @da is currently not really handled correctly: we dynamically 471 * allocate it using the DMA API, ignoring requested hard coded addresses, 472 * and we don't take care of any required IOMMU programming. This is all 473 * going to be taken care of when the generic iommu-based DMA API will be 474 * merged. Meanwhile, statically-addressed iommu-based firmware images should 475 * use RSC_DEVMEM resource entries to map their required @da to the physical 476 * address of their base CMA region (ouch, hacky!). 477 * 478 * Returns 0 on success, or an appropriate error code otherwise 479 */ 480 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 481 int offset, int avail) 482 { 483 struct device *dev = &rproc->dev; 484 struct rproc_vdev *rvdev; 485 int i, ret; 486 char name[16]; 487 488 /* make sure resource isn't truncated */ 489 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 490 + rsc->config_len > avail) { 491 dev_err(dev, "vdev rsc is truncated\n"); 492 return -EINVAL; 493 } 494 495 /* make sure reserved bytes are zeroes */ 496 if (rsc->reserved[0] || rsc->reserved[1]) { 497 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 498 return -EINVAL; 499 } 500 501 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 502 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 503 504 /* we currently support only two vrings per rvdev */ 505 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 506 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 507 return -EINVAL; 508 } 509 510 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 511 if (!rvdev) 512 return -ENOMEM; 513 514 kref_init(&rvdev->refcount); 515 516 rvdev->id = rsc->id; 517 rvdev->rproc = rproc; 518 rvdev->index = rproc->nb_vdev++; 519 520 /* Initialise vdev subdevice */ 521 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 522 rvdev->dev.parent = rproc->dev.parent; 523 rvdev->dev.release = rproc_rvdev_release; 524 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 525 dev_set_drvdata(&rvdev->dev, rvdev); 526 527 ret = device_register(&rvdev->dev); 528 if (ret) { 529 put_device(&rvdev->dev); 530 return ret; 531 } 532 /* Make device dma capable by inheriting from parent's capabilities */ 533 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 534 535 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 536 dma_get_mask(rproc->dev.parent)); 537 if (ret) { 538 dev_warn(dev, 539 "Failed to set DMA mask %llx. Trying to continue... %x\n", 540 dma_get_mask(rproc->dev.parent), ret); 541 } 542 543 /* parse the vrings */ 544 for (i = 0; i < rsc->num_of_vrings; i++) { 545 ret = rproc_parse_vring(rvdev, rsc, i); 546 if (ret) 547 goto free_rvdev; 548 } 549 550 /* remember the resource offset*/ 551 rvdev->rsc_offset = offset; 552 553 /* allocate the vring resources */ 554 for (i = 0; i < rsc->num_of_vrings; i++) { 555 ret = rproc_alloc_vring(rvdev, i); 556 if (ret) 557 goto unwind_vring_allocations; 558 } 559 560 list_add_tail(&rvdev->node, &rproc->rvdevs); 561 562 rvdev->subdev.start = rproc_vdev_do_start; 563 rvdev->subdev.stop = rproc_vdev_do_stop; 564 565 rproc_add_subdev(rproc, &rvdev->subdev); 566 567 return 0; 568 569 unwind_vring_allocations: 570 for (i--; i >= 0; i--) 571 rproc_free_vring(&rvdev->vring[i]); 572 free_rvdev: 573 device_unregister(&rvdev->dev); 574 return ret; 575 } 576 577 void rproc_vdev_release(struct kref *ref) 578 { 579 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 580 struct rproc_vring *rvring; 581 struct rproc *rproc = rvdev->rproc; 582 int id; 583 584 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 585 rvring = &rvdev->vring[id]; 586 rproc_free_vring(rvring); 587 } 588 589 rproc_remove_subdev(rproc, &rvdev->subdev); 590 list_del(&rvdev->node); 591 device_unregister(&rvdev->dev); 592 } 593 594 /** 595 * rproc_handle_trace() - handle a shared trace buffer resource 596 * @rproc: the remote processor 597 * @rsc: the trace resource descriptor 598 * @avail: size of available data (for sanity checking the image) 599 * 600 * In case the remote processor dumps trace logs into memory, 601 * export it via debugfs. 602 * 603 * Currently, the 'da' member of @rsc should contain the device address 604 * where the remote processor is dumping the traces. Later we could also 605 * support dynamically allocating this address using the generic 606 * DMA API (but currently there isn't a use case for that). 607 * 608 * Returns 0 on success, or an appropriate error code otherwise 609 */ 610 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 611 int offset, int avail) 612 { 613 struct rproc_debug_trace *trace; 614 struct device *dev = &rproc->dev; 615 char name[15]; 616 617 if (sizeof(*rsc) > avail) { 618 dev_err(dev, "trace rsc is truncated\n"); 619 return -EINVAL; 620 } 621 622 /* make sure reserved bytes are zeroes */ 623 if (rsc->reserved) { 624 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 625 return -EINVAL; 626 } 627 628 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 629 if (!trace) 630 return -ENOMEM; 631 632 /* set the trace buffer dma properties */ 633 trace->trace_mem.len = rsc->len; 634 trace->trace_mem.da = rsc->da; 635 636 /* set pointer on rproc device */ 637 trace->rproc = rproc; 638 639 /* make sure snprintf always null terminates, even if truncating */ 640 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 641 642 /* create the debugfs entry */ 643 trace->tfile = rproc_create_trace_file(name, rproc, trace); 644 if (!trace->tfile) { 645 kfree(trace); 646 return -EINVAL; 647 } 648 649 list_add_tail(&trace->node, &rproc->traces); 650 651 rproc->num_traces++; 652 653 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 654 name, rsc->da, rsc->len); 655 656 return 0; 657 } 658 659 /** 660 * rproc_handle_devmem() - handle devmem resource entry 661 * @rproc: remote processor handle 662 * @rsc: the devmem resource entry 663 * @avail: size of available data (for sanity checking the image) 664 * 665 * Remote processors commonly need to access certain on-chip peripherals. 666 * 667 * Some of these remote processors access memory via an iommu device, 668 * and might require us to configure their iommu before they can access 669 * the on-chip peripherals they need. 670 * 671 * This resource entry is a request to map such a peripheral device. 672 * 673 * These devmem entries will contain the physical address of the device in 674 * the 'pa' member. If a specific device address is expected, then 'da' will 675 * contain it (currently this is the only use case supported). 'len' will 676 * contain the size of the physical region we need to map. 677 * 678 * Currently we just "trust" those devmem entries to contain valid physical 679 * addresses, but this is going to change: we want the implementations to 680 * tell us ranges of physical addresses the firmware is allowed to request, 681 * and not allow firmwares to request access to physical addresses that 682 * are outside those ranges. 683 */ 684 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 685 int offset, int avail) 686 { 687 struct rproc_mem_entry *mapping; 688 struct device *dev = &rproc->dev; 689 int ret; 690 691 /* no point in handling this resource without a valid iommu domain */ 692 if (!rproc->domain) 693 return -EINVAL; 694 695 if (sizeof(*rsc) > avail) { 696 dev_err(dev, "devmem rsc is truncated\n"); 697 return -EINVAL; 698 } 699 700 /* make sure reserved bytes are zeroes */ 701 if (rsc->reserved) { 702 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 703 return -EINVAL; 704 } 705 706 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 707 if (!mapping) 708 return -ENOMEM; 709 710 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 711 if (ret) { 712 dev_err(dev, "failed to map devmem: %d\n", ret); 713 goto out; 714 } 715 716 /* 717 * We'll need this info later when we'll want to unmap everything 718 * (e.g. on shutdown). 719 * 720 * We can't trust the remote processor not to change the resource 721 * table, so we must maintain this info independently. 722 */ 723 mapping->da = rsc->da; 724 mapping->len = rsc->len; 725 list_add_tail(&mapping->node, &rproc->mappings); 726 727 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 728 rsc->pa, rsc->da, rsc->len); 729 730 return 0; 731 732 out: 733 kfree(mapping); 734 return ret; 735 } 736 737 /** 738 * rproc_alloc_carveout() - allocated specified carveout 739 * @rproc: rproc handle 740 * @mem: the memory entry to allocate 741 * 742 * This function allocate specified memory entry @mem using 743 * dma_alloc_coherent() as default allocator 744 */ 745 static int rproc_alloc_carveout(struct rproc *rproc, 746 struct rproc_mem_entry *mem) 747 { 748 struct rproc_mem_entry *mapping = NULL; 749 struct device *dev = &rproc->dev; 750 dma_addr_t dma; 751 void *va; 752 int ret; 753 754 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 755 if (!va) { 756 dev_err(dev->parent, 757 "failed to allocate dma memory: len 0x%x\n", mem->len); 758 return -ENOMEM; 759 } 760 761 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n", 762 va, &dma, mem->len); 763 764 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 765 /* 766 * Check requested da is equal to dma address 767 * and print a warn message in case of missalignment. 768 * Don't stop rproc_start sequence as coprocessor may 769 * build pa to da translation on its side. 770 */ 771 if (mem->da != (u32)dma) 772 dev_warn(dev->parent, 773 "Allocated carveout doesn't fit device address request\n"); 774 } 775 776 /* 777 * Ok, this is non-standard. 778 * 779 * Sometimes we can't rely on the generic iommu-based DMA API 780 * to dynamically allocate the device address and then set the IOMMU 781 * tables accordingly, because some remote processors might 782 * _require_ us to use hard coded device addresses that their 783 * firmware was compiled with. 784 * 785 * In this case, we must use the IOMMU API directly and map 786 * the memory to the device address as expected by the remote 787 * processor. 788 * 789 * Obviously such remote processor devices should not be configured 790 * to use the iommu-based DMA API: we expect 'dma' to contain the 791 * physical address in this case. 792 */ 793 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 794 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 795 if (!mapping) { 796 ret = -ENOMEM; 797 goto dma_free; 798 } 799 800 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 801 mem->flags); 802 if (ret) { 803 dev_err(dev, "iommu_map failed: %d\n", ret); 804 goto free_mapping; 805 } 806 807 /* 808 * We'll need this info later when we'll want to unmap 809 * everything (e.g. on shutdown). 810 * 811 * We can't trust the remote processor not to change the 812 * resource table, so we must maintain this info independently. 813 */ 814 mapping->da = mem->da; 815 mapping->len = mem->len; 816 list_add_tail(&mapping->node, &rproc->mappings); 817 818 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 819 mem->da, &dma); 820 } 821 822 if (mem->da == FW_RSC_ADDR_ANY) { 823 /* Update device address as undefined by requester */ 824 if ((u64)dma & HIGH_BITS_MASK) 825 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 826 827 mem->da = (u32)dma; 828 } 829 830 mem->dma = dma; 831 mem->va = va; 832 833 return 0; 834 835 free_mapping: 836 kfree(mapping); 837 dma_free: 838 dma_free_coherent(dev->parent, mem->len, va, dma); 839 return ret; 840 } 841 842 /** 843 * rproc_release_carveout() - release acquired carveout 844 * @rproc: rproc handle 845 * @mem: the memory entry to release 846 * 847 * This function releases specified memory entry @mem allocated via 848 * rproc_alloc_carveout() function by @rproc. 849 */ 850 static int rproc_release_carveout(struct rproc *rproc, 851 struct rproc_mem_entry *mem) 852 { 853 struct device *dev = &rproc->dev; 854 855 /* clean up carveout allocations */ 856 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 857 return 0; 858 } 859 860 /** 861 * rproc_handle_carveout() - handle phys contig memory allocation requests 862 * @rproc: rproc handle 863 * @rsc: the resource entry 864 * @avail: size of available data (for image validation) 865 * 866 * This function will handle firmware requests for allocation of physically 867 * contiguous memory regions. 868 * 869 * These request entries should come first in the firmware's resource table, 870 * as other firmware entries might request placing other data objects inside 871 * these memory regions (e.g. data/code segments, trace resource entries, ...). 872 * 873 * Allocating memory this way helps utilizing the reserved physical memory 874 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 875 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 876 * pressure is important; it may have a substantial impact on performance. 877 */ 878 static int rproc_handle_carveout(struct rproc *rproc, 879 struct fw_rsc_carveout *rsc, 880 int offset, int avail) 881 { 882 struct rproc_mem_entry *carveout; 883 struct device *dev = &rproc->dev; 884 885 if (sizeof(*rsc) > avail) { 886 dev_err(dev, "carveout rsc is truncated\n"); 887 return -EINVAL; 888 } 889 890 /* make sure reserved bytes are zeroes */ 891 if (rsc->reserved) { 892 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 893 return -EINVAL; 894 } 895 896 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 897 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 898 899 /* 900 * Check carveout rsc already part of a registered carveout, 901 * Search by name, then check the da and length 902 */ 903 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 904 905 if (carveout) { 906 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 907 dev_err(dev, 908 "Carveout already associated to resource table\n"); 909 return -ENOMEM; 910 } 911 912 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 913 return -ENOMEM; 914 915 /* Update memory carveout with resource table info */ 916 carveout->rsc_offset = offset; 917 carveout->flags = rsc->flags; 918 919 return 0; 920 } 921 922 /* Register carveout in in list */ 923 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da, 924 rproc_alloc_carveout, 925 rproc_release_carveout, rsc->name); 926 if (!carveout) { 927 dev_err(dev, "Can't allocate memory entry structure\n"); 928 return -ENOMEM; 929 } 930 931 carveout->flags = rsc->flags; 932 carveout->rsc_offset = offset; 933 rproc_add_carveout(rproc, carveout); 934 935 return 0; 936 } 937 938 /** 939 * rproc_add_carveout() - register an allocated carveout region 940 * @rproc: rproc handle 941 * @mem: memory entry to register 942 * 943 * This function registers specified memory entry in @rproc carveouts list. 944 * Specified carveout should have been allocated before registering. 945 */ 946 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 947 { 948 list_add_tail(&mem->node, &rproc->carveouts); 949 } 950 EXPORT_SYMBOL(rproc_add_carveout); 951 952 /** 953 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 954 * @dev: pointer on device struct 955 * @va: virtual address 956 * @dma: dma address 957 * @len: memory carveout length 958 * @da: device address 959 * @alloc: memory carveout allocation function 960 * @release: memory carveout release function 961 * @name: carveout name 962 * 963 * This function allocates a rproc_mem_entry struct and fill it with parameters 964 * provided by client. 965 */ 966 struct rproc_mem_entry * 967 rproc_mem_entry_init(struct device *dev, 968 void *va, dma_addr_t dma, int len, u32 da, 969 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 970 int (*release)(struct rproc *, struct rproc_mem_entry *), 971 const char *name, ...) 972 { 973 struct rproc_mem_entry *mem; 974 va_list args; 975 976 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 977 if (!mem) 978 return mem; 979 980 mem->va = va; 981 mem->dma = dma; 982 mem->da = da; 983 mem->len = len; 984 mem->alloc = alloc; 985 mem->release = release; 986 mem->rsc_offset = FW_RSC_ADDR_ANY; 987 mem->of_resm_idx = -1; 988 989 va_start(args, name); 990 vsnprintf(mem->name, sizeof(mem->name), name, args); 991 va_end(args); 992 993 return mem; 994 } 995 EXPORT_SYMBOL(rproc_mem_entry_init); 996 997 /** 998 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 999 * from a reserved memory phandle 1000 * @dev: pointer on device struct 1001 * @of_resm_idx: reserved memory phandle index in "memory-region" 1002 * @len: memory carveout length 1003 * @da: device address 1004 * @name: carveout name 1005 * 1006 * This function allocates a rproc_mem_entry struct and fill it with parameters 1007 * provided by client. 1008 */ 1009 struct rproc_mem_entry * 1010 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len, 1011 u32 da, const char *name, ...) 1012 { 1013 struct rproc_mem_entry *mem; 1014 va_list args; 1015 1016 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1017 if (!mem) 1018 return mem; 1019 1020 mem->da = da; 1021 mem->len = len; 1022 mem->rsc_offset = FW_RSC_ADDR_ANY; 1023 mem->of_resm_idx = of_resm_idx; 1024 1025 va_start(args, name); 1026 vsnprintf(mem->name, sizeof(mem->name), name, args); 1027 va_end(args); 1028 1029 return mem; 1030 } 1031 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1032 1033 /** 1034 * A lookup table for resource handlers. The indices are defined in 1035 * enum fw_resource_type. 1036 */ 1037 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1038 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1039 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1040 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1041 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1042 }; 1043 1044 /* handle firmware resource entries before booting the remote processor */ 1045 static int rproc_handle_resources(struct rproc *rproc, 1046 rproc_handle_resource_t handlers[RSC_LAST]) 1047 { 1048 struct device *dev = &rproc->dev; 1049 rproc_handle_resource_t handler; 1050 int ret = 0, i; 1051 1052 if (!rproc->table_ptr) 1053 return 0; 1054 1055 for (i = 0; i < rproc->table_ptr->num; i++) { 1056 int offset = rproc->table_ptr->offset[i]; 1057 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1058 int avail = rproc->table_sz - offset - sizeof(*hdr); 1059 void *rsc = (void *)hdr + sizeof(*hdr); 1060 1061 /* make sure table isn't truncated */ 1062 if (avail < 0) { 1063 dev_err(dev, "rsc table is truncated\n"); 1064 return -EINVAL; 1065 } 1066 1067 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1068 1069 if (hdr->type >= RSC_LAST) { 1070 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1071 continue; 1072 } 1073 1074 handler = handlers[hdr->type]; 1075 if (!handler) 1076 continue; 1077 1078 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1079 if (ret) 1080 break; 1081 } 1082 1083 return ret; 1084 } 1085 1086 static int rproc_prepare_subdevices(struct rproc *rproc) 1087 { 1088 struct rproc_subdev *subdev; 1089 int ret; 1090 1091 list_for_each_entry(subdev, &rproc->subdevs, node) { 1092 if (subdev->prepare) { 1093 ret = subdev->prepare(subdev); 1094 if (ret) 1095 goto unroll_preparation; 1096 } 1097 } 1098 1099 return 0; 1100 1101 unroll_preparation: 1102 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1103 if (subdev->unprepare) 1104 subdev->unprepare(subdev); 1105 } 1106 1107 return ret; 1108 } 1109 1110 static int rproc_start_subdevices(struct rproc *rproc) 1111 { 1112 struct rproc_subdev *subdev; 1113 int ret; 1114 1115 list_for_each_entry(subdev, &rproc->subdevs, node) { 1116 if (subdev->start) { 1117 ret = subdev->start(subdev); 1118 if (ret) 1119 goto unroll_registration; 1120 } 1121 } 1122 1123 return 0; 1124 1125 unroll_registration: 1126 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1127 if (subdev->stop) 1128 subdev->stop(subdev, true); 1129 } 1130 1131 return ret; 1132 } 1133 1134 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1135 { 1136 struct rproc_subdev *subdev; 1137 1138 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1139 if (subdev->stop) 1140 subdev->stop(subdev, crashed); 1141 } 1142 } 1143 1144 static void rproc_unprepare_subdevices(struct rproc *rproc) 1145 { 1146 struct rproc_subdev *subdev; 1147 1148 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1149 if (subdev->unprepare) 1150 subdev->unprepare(subdev); 1151 } 1152 } 1153 1154 /** 1155 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1156 * in the list 1157 * @rproc: the remote processor handle 1158 * 1159 * This function parses registered carveout list, performs allocation 1160 * if alloc() ops registered and updates resource table information 1161 * if rsc_offset set. 1162 * 1163 * Return: 0 on success 1164 */ 1165 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1166 { 1167 struct rproc_mem_entry *entry, *tmp; 1168 struct fw_rsc_carveout *rsc; 1169 struct device *dev = &rproc->dev; 1170 u64 pa; 1171 int ret; 1172 1173 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1174 if (entry->alloc) { 1175 ret = entry->alloc(rproc, entry); 1176 if (ret) { 1177 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1178 entry->name, ret); 1179 return -ENOMEM; 1180 } 1181 } 1182 1183 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1184 /* update resource table */ 1185 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1186 1187 /* 1188 * Some remote processors might need to know the pa 1189 * even though they are behind an IOMMU. E.g., OMAP4's 1190 * remote M3 processor needs this so it can control 1191 * on-chip hardware accelerators that are not behind 1192 * the IOMMU, and therefor must know the pa. 1193 * 1194 * Generally we don't want to expose physical addresses 1195 * if we don't have to (remote processors are generally 1196 * _not_ trusted), so we might want to do this only for 1197 * remote processor that _must_ have this (e.g. OMAP4's 1198 * dual M3 subsystem). 1199 * 1200 * Non-IOMMU processors might also want to have this info. 1201 * In this case, the device address and the physical address 1202 * are the same. 1203 */ 1204 1205 /* Use va if defined else dma to generate pa */ 1206 if (entry->va) 1207 pa = (u64)rproc_va_to_pa(entry->va); 1208 else 1209 pa = (u64)entry->dma; 1210 1211 if (((u64)pa) & HIGH_BITS_MASK) 1212 dev_warn(dev, 1213 "Physical address cast in 32bit to fit resource table format\n"); 1214 1215 rsc->pa = (u32)pa; 1216 rsc->da = entry->da; 1217 rsc->len = entry->len; 1218 } 1219 } 1220 1221 return 0; 1222 } 1223 1224 /** 1225 * rproc_coredump_cleanup() - clean up dump_segments list 1226 * @rproc: the remote processor handle 1227 */ 1228 static void rproc_coredump_cleanup(struct rproc *rproc) 1229 { 1230 struct rproc_dump_segment *entry, *tmp; 1231 1232 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { 1233 list_del(&entry->node); 1234 kfree(entry); 1235 } 1236 } 1237 1238 /** 1239 * rproc_resource_cleanup() - clean up and free all acquired resources 1240 * @rproc: rproc handle 1241 * 1242 * This function will free all resources acquired for @rproc, and it 1243 * is called whenever @rproc either shuts down or fails to boot. 1244 */ 1245 static void rproc_resource_cleanup(struct rproc *rproc) 1246 { 1247 struct rproc_mem_entry *entry, *tmp; 1248 struct rproc_debug_trace *trace, *ttmp; 1249 struct rproc_vdev *rvdev, *rvtmp; 1250 struct device *dev = &rproc->dev; 1251 1252 /* clean up debugfs trace entries */ 1253 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1254 rproc_remove_trace_file(trace->tfile); 1255 rproc->num_traces--; 1256 list_del(&trace->node); 1257 kfree(trace); 1258 } 1259 1260 /* clean up iommu mapping entries */ 1261 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1262 size_t unmapped; 1263 1264 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1265 if (unmapped != entry->len) { 1266 /* nothing much to do besides complaining */ 1267 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 1268 unmapped); 1269 } 1270 1271 list_del(&entry->node); 1272 kfree(entry); 1273 } 1274 1275 /* clean up carveout allocations */ 1276 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1277 if (entry->release) 1278 entry->release(rproc, entry); 1279 list_del(&entry->node); 1280 kfree(entry); 1281 } 1282 1283 /* clean up remote vdev entries */ 1284 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1285 kref_put(&rvdev->refcount, rproc_vdev_release); 1286 1287 rproc_coredump_cleanup(rproc); 1288 } 1289 1290 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1291 { 1292 struct resource_table *loaded_table; 1293 struct device *dev = &rproc->dev; 1294 int ret; 1295 1296 /* load the ELF segments to memory */ 1297 ret = rproc_load_segments(rproc, fw); 1298 if (ret) { 1299 dev_err(dev, "Failed to load program segments: %d\n", ret); 1300 return ret; 1301 } 1302 1303 /* 1304 * The starting device has been given the rproc->cached_table as the 1305 * resource table. The address of the vring along with the other 1306 * allocated resources (carveouts etc) is stored in cached_table. 1307 * In order to pass this information to the remote device we must copy 1308 * this information to device memory. We also update the table_ptr so 1309 * that any subsequent changes will be applied to the loaded version. 1310 */ 1311 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1312 if (loaded_table) { 1313 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1314 rproc->table_ptr = loaded_table; 1315 } 1316 1317 ret = rproc_prepare_subdevices(rproc); 1318 if (ret) { 1319 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1320 rproc->name, ret); 1321 goto reset_table_ptr; 1322 } 1323 1324 /* power up the remote processor */ 1325 ret = rproc->ops->start(rproc); 1326 if (ret) { 1327 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1328 goto unprepare_subdevices; 1329 } 1330 1331 /* Start any subdevices for the remote processor */ 1332 ret = rproc_start_subdevices(rproc); 1333 if (ret) { 1334 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1335 rproc->name, ret); 1336 goto stop_rproc; 1337 } 1338 1339 rproc->state = RPROC_RUNNING; 1340 1341 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1342 1343 return 0; 1344 1345 stop_rproc: 1346 rproc->ops->stop(rproc); 1347 unprepare_subdevices: 1348 rproc_unprepare_subdevices(rproc); 1349 reset_table_ptr: 1350 rproc->table_ptr = rproc->cached_table; 1351 1352 return ret; 1353 } 1354 1355 /* 1356 * take a firmware and boot a remote processor with it. 1357 */ 1358 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1359 { 1360 struct device *dev = &rproc->dev; 1361 const char *name = rproc->firmware; 1362 int ret; 1363 1364 ret = rproc_fw_sanity_check(rproc, fw); 1365 if (ret) 1366 return ret; 1367 1368 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1369 1370 /* 1371 * if enabling an IOMMU isn't relevant for this rproc, this is 1372 * just a nop 1373 */ 1374 ret = rproc_enable_iommu(rproc); 1375 if (ret) { 1376 dev_err(dev, "can't enable iommu: %d\n", ret); 1377 return ret; 1378 } 1379 1380 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1381 1382 /* Load resource table, core dump segment list etc from the firmware */ 1383 ret = rproc_parse_fw(rproc, fw); 1384 if (ret) 1385 goto disable_iommu; 1386 1387 /* reset max_notifyid */ 1388 rproc->max_notifyid = -1; 1389 1390 /* reset handled vdev */ 1391 rproc->nb_vdev = 0; 1392 1393 /* handle fw resources which are required to boot rproc */ 1394 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1395 if (ret) { 1396 dev_err(dev, "Failed to process resources: %d\n", ret); 1397 goto clean_up_resources; 1398 } 1399 1400 /* Allocate carveout resources associated to rproc */ 1401 ret = rproc_alloc_registered_carveouts(rproc); 1402 if (ret) { 1403 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1404 ret); 1405 goto clean_up_resources; 1406 } 1407 1408 ret = rproc_start(rproc, fw); 1409 if (ret) 1410 goto clean_up_resources; 1411 1412 return 0; 1413 1414 clean_up_resources: 1415 rproc_resource_cleanup(rproc); 1416 kfree(rproc->cached_table); 1417 rproc->cached_table = NULL; 1418 rproc->table_ptr = NULL; 1419 disable_iommu: 1420 rproc_disable_iommu(rproc); 1421 return ret; 1422 } 1423 1424 /* 1425 * take a firmware and boot it up. 1426 * 1427 * Note: this function is called asynchronously upon registration of the 1428 * remote processor (so we must wait until it completes before we try 1429 * to unregister the device. one other option is just to use kref here, 1430 * that might be cleaner). 1431 */ 1432 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1433 { 1434 struct rproc *rproc = context; 1435 1436 rproc_boot(rproc); 1437 1438 release_firmware(fw); 1439 } 1440 1441 static int rproc_trigger_auto_boot(struct rproc *rproc) 1442 { 1443 int ret; 1444 1445 /* 1446 * We're initiating an asynchronous firmware loading, so we can 1447 * be built-in kernel code, without hanging the boot process. 1448 */ 1449 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1450 rproc->firmware, &rproc->dev, GFP_KERNEL, 1451 rproc, rproc_auto_boot_callback); 1452 if (ret < 0) 1453 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1454 1455 return ret; 1456 } 1457 1458 static int rproc_stop(struct rproc *rproc, bool crashed) 1459 { 1460 struct device *dev = &rproc->dev; 1461 int ret; 1462 1463 /* Stop any subdevices for the remote processor */ 1464 rproc_stop_subdevices(rproc, crashed); 1465 1466 /* the installed resource table is no longer accessible */ 1467 rproc->table_ptr = rproc->cached_table; 1468 1469 /* power off the remote processor */ 1470 ret = rproc->ops->stop(rproc); 1471 if (ret) { 1472 dev_err(dev, "can't stop rproc: %d\n", ret); 1473 return ret; 1474 } 1475 1476 rproc_unprepare_subdevices(rproc); 1477 1478 rproc->state = RPROC_OFFLINE; 1479 1480 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1481 1482 return 0; 1483 } 1484 1485 /** 1486 * rproc_coredump_add_segment() - add segment of device memory to coredump 1487 * @rproc: handle of a remote processor 1488 * @da: device address 1489 * @size: size of segment 1490 * 1491 * Add device memory to the list of segments to be included in a coredump for 1492 * the remoteproc. 1493 * 1494 * Return: 0 on success, negative errno on error. 1495 */ 1496 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) 1497 { 1498 struct rproc_dump_segment *segment; 1499 1500 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1501 if (!segment) 1502 return -ENOMEM; 1503 1504 segment->da = da; 1505 segment->size = size; 1506 1507 list_add_tail(&segment->node, &rproc->dump_segments); 1508 1509 return 0; 1510 } 1511 EXPORT_SYMBOL(rproc_coredump_add_segment); 1512 1513 /** 1514 * rproc_coredump_add_custom_segment() - add custom coredump segment 1515 * @rproc: handle of a remote processor 1516 * @da: device address 1517 * @size: size of segment 1518 * @dumpfn: custom dump function called for each segment during coredump 1519 * @priv: private data 1520 * 1521 * Add device memory to the list of segments to be included in the coredump 1522 * and associate the segment with the given custom dump function and private 1523 * data. 1524 * 1525 * Return: 0 on success, negative errno on error. 1526 */ 1527 int rproc_coredump_add_custom_segment(struct rproc *rproc, 1528 dma_addr_t da, size_t size, 1529 void (*dumpfn)(struct rproc *rproc, 1530 struct rproc_dump_segment *segment, 1531 void *dest), 1532 void *priv) 1533 { 1534 struct rproc_dump_segment *segment; 1535 1536 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1537 if (!segment) 1538 return -ENOMEM; 1539 1540 segment->da = da; 1541 segment->size = size; 1542 segment->priv = priv; 1543 segment->dump = dumpfn; 1544 1545 list_add_tail(&segment->node, &rproc->dump_segments); 1546 1547 return 0; 1548 } 1549 EXPORT_SYMBOL(rproc_coredump_add_custom_segment); 1550 1551 /** 1552 * rproc_coredump() - perform coredump 1553 * @rproc: rproc handle 1554 * 1555 * This function will generate an ELF header for the registered segments 1556 * and create a devcoredump device associated with rproc. 1557 */ 1558 static void rproc_coredump(struct rproc *rproc) 1559 { 1560 struct rproc_dump_segment *segment; 1561 struct elf32_phdr *phdr; 1562 struct elf32_hdr *ehdr; 1563 size_t data_size; 1564 size_t offset; 1565 void *data; 1566 void *ptr; 1567 int phnum = 0; 1568 1569 if (list_empty(&rproc->dump_segments)) 1570 return; 1571 1572 data_size = sizeof(*ehdr); 1573 list_for_each_entry(segment, &rproc->dump_segments, node) { 1574 data_size += sizeof(*phdr) + segment->size; 1575 1576 phnum++; 1577 } 1578 1579 data = vmalloc(data_size); 1580 if (!data) 1581 return; 1582 1583 ehdr = data; 1584 1585 memset(ehdr, 0, sizeof(*ehdr)); 1586 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1587 ehdr->e_ident[EI_CLASS] = ELFCLASS32; 1588 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1589 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1590 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; 1591 ehdr->e_type = ET_CORE; 1592 ehdr->e_machine = EM_NONE; 1593 ehdr->e_version = EV_CURRENT; 1594 ehdr->e_entry = rproc->bootaddr; 1595 ehdr->e_phoff = sizeof(*ehdr); 1596 ehdr->e_ehsize = sizeof(*ehdr); 1597 ehdr->e_phentsize = sizeof(*phdr); 1598 ehdr->e_phnum = phnum; 1599 1600 phdr = data + ehdr->e_phoff; 1601 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum; 1602 list_for_each_entry(segment, &rproc->dump_segments, node) { 1603 memset(phdr, 0, sizeof(*phdr)); 1604 phdr->p_type = PT_LOAD; 1605 phdr->p_offset = offset; 1606 phdr->p_vaddr = segment->da; 1607 phdr->p_paddr = segment->da; 1608 phdr->p_filesz = segment->size; 1609 phdr->p_memsz = segment->size; 1610 phdr->p_flags = PF_R | PF_W | PF_X; 1611 phdr->p_align = 0; 1612 1613 if (segment->dump) { 1614 segment->dump(rproc, segment, data + offset); 1615 } else { 1616 ptr = rproc_da_to_va(rproc, segment->da, segment->size); 1617 if (!ptr) { 1618 dev_err(&rproc->dev, 1619 "invalid coredump segment (%pad, %zu)\n", 1620 &segment->da, segment->size); 1621 memset(data + offset, 0xff, segment->size); 1622 } else { 1623 memcpy(data + offset, ptr, segment->size); 1624 } 1625 } 1626 1627 offset += phdr->p_filesz; 1628 phdr++; 1629 } 1630 1631 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); 1632 } 1633 1634 /** 1635 * rproc_trigger_recovery() - recover a remoteproc 1636 * @rproc: the remote processor 1637 * 1638 * The recovery is done by resetting all the virtio devices, that way all the 1639 * rpmsg drivers will be reseted along with the remote processor making the 1640 * remoteproc functional again. 1641 * 1642 * This function can sleep, so it cannot be called from atomic context. 1643 */ 1644 int rproc_trigger_recovery(struct rproc *rproc) 1645 { 1646 const struct firmware *firmware_p; 1647 struct device *dev = &rproc->dev; 1648 int ret; 1649 1650 dev_err(dev, "recovering %s\n", rproc->name); 1651 1652 ret = mutex_lock_interruptible(&rproc->lock); 1653 if (ret) 1654 return ret; 1655 1656 ret = rproc_stop(rproc, true); 1657 if (ret) 1658 goto unlock_mutex; 1659 1660 /* generate coredump */ 1661 rproc_coredump(rproc); 1662 1663 /* load firmware */ 1664 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1665 if (ret < 0) { 1666 dev_err(dev, "request_firmware failed: %d\n", ret); 1667 goto unlock_mutex; 1668 } 1669 1670 /* boot the remote processor up again */ 1671 ret = rproc_start(rproc, firmware_p); 1672 1673 release_firmware(firmware_p); 1674 1675 unlock_mutex: 1676 mutex_unlock(&rproc->lock); 1677 return ret; 1678 } 1679 1680 /** 1681 * rproc_crash_handler_work() - handle a crash 1682 * 1683 * This function needs to handle everything related to a crash, like cpu 1684 * registers and stack dump, information to help to debug the fatal error, etc. 1685 */ 1686 static void rproc_crash_handler_work(struct work_struct *work) 1687 { 1688 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1689 struct device *dev = &rproc->dev; 1690 1691 dev_dbg(dev, "enter %s\n", __func__); 1692 1693 mutex_lock(&rproc->lock); 1694 1695 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1696 /* handle only the first crash detected */ 1697 mutex_unlock(&rproc->lock); 1698 return; 1699 } 1700 1701 rproc->state = RPROC_CRASHED; 1702 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1703 rproc->name); 1704 1705 mutex_unlock(&rproc->lock); 1706 1707 if (!rproc->recovery_disabled) 1708 rproc_trigger_recovery(rproc); 1709 } 1710 1711 /** 1712 * rproc_boot() - boot a remote processor 1713 * @rproc: handle of a remote processor 1714 * 1715 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1716 * 1717 * If the remote processor is already powered on, this function immediately 1718 * returns (successfully). 1719 * 1720 * Returns 0 on success, and an appropriate error value otherwise. 1721 */ 1722 int rproc_boot(struct rproc *rproc) 1723 { 1724 const struct firmware *firmware_p; 1725 struct device *dev; 1726 int ret; 1727 1728 if (!rproc) { 1729 pr_err("invalid rproc handle\n"); 1730 return -EINVAL; 1731 } 1732 1733 dev = &rproc->dev; 1734 1735 ret = mutex_lock_interruptible(&rproc->lock); 1736 if (ret) { 1737 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1738 return ret; 1739 } 1740 1741 if (rproc->state == RPROC_DELETED) { 1742 ret = -ENODEV; 1743 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1744 goto unlock_mutex; 1745 } 1746 1747 /* skip the boot process if rproc is already powered up */ 1748 if (atomic_inc_return(&rproc->power) > 1) { 1749 ret = 0; 1750 goto unlock_mutex; 1751 } 1752 1753 dev_info(dev, "powering up %s\n", rproc->name); 1754 1755 /* load firmware */ 1756 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1757 if (ret < 0) { 1758 dev_err(dev, "request_firmware failed: %d\n", ret); 1759 goto downref_rproc; 1760 } 1761 1762 ret = rproc_fw_boot(rproc, firmware_p); 1763 1764 release_firmware(firmware_p); 1765 1766 downref_rproc: 1767 if (ret) 1768 atomic_dec(&rproc->power); 1769 unlock_mutex: 1770 mutex_unlock(&rproc->lock); 1771 return ret; 1772 } 1773 EXPORT_SYMBOL(rproc_boot); 1774 1775 /** 1776 * rproc_shutdown() - power off the remote processor 1777 * @rproc: the remote processor 1778 * 1779 * Power off a remote processor (previously booted with rproc_boot()). 1780 * 1781 * In case @rproc is still being used by an additional user(s), then 1782 * this function will just decrement the power refcount and exit, 1783 * without really powering off the device. 1784 * 1785 * Every call to rproc_boot() must (eventually) be accompanied by a call 1786 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1787 * 1788 * Notes: 1789 * - we're not decrementing the rproc's refcount, only the power refcount. 1790 * which means that the @rproc handle stays valid even after rproc_shutdown() 1791 * returns, and users can still use it with a subsequent rproc_boot(), if 1792 * needed. 1793 */ 1794 void rproc_shutdown(struct rproc *rproc) 1795 { 1796 struct device *dev = &rproc->dev; 1797 int ret; 1798 1799 ret = mutex_lock_interruptible(&rproc->lock); 1800 if (ret) { 1801 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1802 return; 1803 } 1804 1805 /* if the remote proc is still needed, bail out */ 1806 if (!atomic_dec_and_test(&rproc->power)) 1807 goto out; 1808 1809 ret = rproc_stop(rproc, false); 1810 if (ret) { 1811 atomic_inc(&rproc->power); 1812 goto out; 1813 } 1814 1815 /* clean up all acquired resources */ 1816 rproc_resource_cleanup(rproc); 1817 1818 rproc_disable_iommu(rproc); 1819 1820 /* Free the copy of the resource table */ 1821 kfree(rproc->cached_table); 1822 rproc->cached_table = NULL; 1823 rproc->table_ptr = NULL; 1824 out: 1825 mutex_unlock(&rproc->lock); 1826 } 1827 EXPORT_SYMBOL(rproc_shutdown); 1828 1829 /** 1830 * rproc_get_by_phandle() - find a remote processor by phandle 1831 * @phandle: phandle to the rproc 1832 * 1833 * Finds an rproc handle using the remote processor's phandle, and then 1834 * return a handle to the rproc. 1835 * 1836 * This function increments the remote processor's refcount, so always 1837 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1838 * 1839 * Returns the rproc handle on success, and NULL on failure. 1840 */ 1841 #ifdef CONFIG_OF 1842 struct rproc *rproc_get_by_phandle(phandle phandle) 1843 { 1844 struct rproc *rproc = NULL, *r; 1845 struct device_node *np; 1846 1847 np = of_find_node_by_phandle(phandle); 1848 if (!np) 1849 return NULL; 1850 1851 mutex_lock(&rproc_list_mutex); 1852 list_for_each_entry(r, &rproc_list, node) { 1853 if (r->dev.parent && r->dev.parent->of_node == np) { 1854 /* prevent underlying implementation from being removed */ 1855 if (!try_module_get(r->dev.parent->driver->owner)) { 1856 dev_err(&r->dev, "can't get owner\n"); 1857 break; 1858 } 1859 1860 rproc = r; 1861 get_device(&rproc->dev); 1862 break; 1863 } 1864 } 1865 mutex_unlock(&rproc_list_mutex); 1866 1867 of_node_put(np); 1868 1869 return rproc; 1870 } 1871 #else 1872 struct rproc *rproc_get_by_phandle(phandle phandle) 1873 { 1874 return NULL; 1875 } 1876 #endif 1877 EXPORT_SYMBOL(rproc_get_by_phandle); 1878 1879 /** 1880 * rproc_add() - register a remote processor 1881 * @rproc: the remote processor handle to register 1882 * 1883 * Registers @rproc with the remoteproc framework, after it has been 1884 * allocated with rproc_alloc(). 1885 * 1886 * This is called by the platform-specific rproc implementation, whenever 1887 * a new remote processor device is probed. 1888 * 1889 * Returns 0 on success and an appropriate error code otherwise. 1890 * 1891 * Note: this function initiates an asynchronous firmware loading 1892 * context, which will look for virtio devices supported by the rproc's 1893 * firmware. 1894 * 1895 * If found, those virtio devices will be created and added, so as a result 1896 * of registering this remote processor, additional virtio drivers might be 1897 * probed. 1898 */ 1899 int rproc_add(struct rproc *rproc) 1900 { 1901 struct device *dev = &rproc->dev; 1902 int ret; 1903 1904 ret = device_add(dev); 1905 if (ret < 0) 1906 return ret; 1907 1908 dev_info(dev, "%s is available\n", rproc->name); 1909 1910 /* create debugfs entries */ 1911 rproc_create_debug_dir(rproc); 1912 1913 /* if rproc is marked always-on, request it to boot */ 1914 if (rproc->auto_boot) { 1915 ret = rproc_trigger_auto_boot(rproc); 1916 if (ret < 0) 1917 return ret; 1918 } 1919 1920 /* expose to rproc_get_by_phandle users */ 1921 mutex_lock(&rproc_list_mutex); 1922 list_add(&rproc->node, &rproc_list); 1923 mutex_unlock(&rproc_list_mutex); 1924 1925 return 0; 1926 } 1927 EXPORT_SYMBOL(rproc_add); 1928 1929 /** 1930 * rproc_type_release() - release a remote processor instance 1931 * @dev: the rproc's device 1932 * 1933 * This function should _never_ be called directly. 1934 * 1935 * It will be called by the driver core when no one holds a valid pointer 1936 * to @dev anymore. 1937 */ 1938 static void rproc_type_release(struct device *dev) 1939 { 1940 struct rproc *rproc = container_of(dev, struct rproc, dev); 1941 1942 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1943 1944 idr_destroy(&rproc->notifyids); 1945 1946 if (rproc->index >= 0) 1947 ida_simple_remove(&rproc_dev_index, rproc->index); 1948 1949 kfree(rproc->firmware); 1950 kfree(rproc->ops); 1951 kfree(rproc); 1952 } 1953 1954 static const struct device_type rproc_type = { 1955 .name = "remoteproc", 1956 .release = rproc_type_release, 1957 }; 1958 1959 /** 1960 * rproc_alloc() - allocate a remote processor handle 1961 * @dev: the underlying device 1962 * @name: name of this remote processor 1963 * @ops: platform-specific handlers (mainly start/stop) 1964 * @firmware: name of firmware file to load, can be NULL 1965 * @len: length of private data needed by the rproc driver (in bytes) 1966 * 1967 * Allocates a new remote processor handle, but does not register 1968 * it yet. if @firmware is NULL, a default name is used. 1969 * 1970 * This function should be used by rproc implementations during initialization 1971 * of the remote processor. 1972 * 1973 * After creating an rproc handle using this function, and when ready, 1974 * implementations should then call rproc_add() to complete 1975 * the registration of the remote processor. 1976 * 1977 * On success the new rproc is returned, and on failure, NULL. 1978 * 1979 * Note: _never_ directly deallocate @rproc, even if it was not registered 1980 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1981 */ 1982 struct rproc *rproc_alloc(struct device *dev, const char *name, 1983 const struct rproc_ops *ops, 1984 const char *firmware, int len) 1985 { 1986 struct rproc *rproc; 1987 char *p, *template = "rproc-%s-fw"; 1988 int name_len; 1989 1990 if (!dev || !name || !ops) 1991 return NULL; 1992 1993 if (!firmware) { 1994 /* 1995 * If the caller didn't pass in a firmware name then 1996 * construct a default name. 1997 */ 1998 name_len = strlen(name) + strlen(template) - 2 + 1; 1999 p = kmalloc(name_len, GFP_KERNEL); 2000 if (!p) 2001 return NULL; 2002 snprintf(p, name_len, template, name); 2003 } else { 2004 p = kstrdup(firmware, GFP_KERNEL); 2005 if (!p) 2006 return NULL; 2007 } 2008 2009 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2010 if (!rproc) { 2011 kfree(p); 2012 return NULL; 2013 } 2014 2015 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2016 if (!rproc->ops) { 2017 kfree(p); 2018 kfree(rproc); 2019 return NULL; 2020 } 2021 2022 rproc->firmware = p; 2023 rproc->name = name; 2024 rproc->priv = &rproc[1]; 2025 rproc->auto_boot = true; 2026 2027 device_initialize(&rproc->dev); 2028 rproc->dev.parent = dev; 2029 rproc->dev.type = &rproc_type; 2030 rproc->dev.class = &rproc_class; 2031 rproc->dev.driver_data = rproc; 2032 2033 /* Assign a unique device index and name */ 2034 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2035 if (rproc->index < 0) { 2036 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2037 put_device(&rproc->dev); 2038 return NULL; 2039 } 2040 2041 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2042 2043 atomic_set(&rproc->power, 0); 2044 2045 /* Default to ELF loader if no load function is specified */ 2046 if (!rproc->ops->load) { 2047 rproc->ops->load = rproc_elf_load_segments; 2048 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2049 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2050 rproc->ops->sanity_check = rproc_elf_sanity_check; 2051 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2052 } 2053 2054 mutex_init(&rproc->lock); 2055 2056 idr_init(&rproc->notifyids); 2057 2058 INIT_LIST_HEAD(&rproc->carveouts); 2059 INIT_LIST_HEAD(&rproc->mappings); 2060 INIT_LIST_HEAD(&rproc->traces); 2061 INIT_LIST_HEAD(&rproc->rvdevs); 2062 INIT_LIST_HEAD(&rproc->subdevs); 2063 INIT_LIST_HEAD(&rproc->dump_segments); 2064 2065 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2066 2067 rproc->state = RPROC_OFFLINE; 2068 2069 return rproc; 2070 } 2071 EXPORT_SYMBOL(rproc_alloc); 2072 2073 /** 2074 * rproc_free() - unroll rproc_alloc() 2075 * @rproc: the remote processor handle 2076 * 2077 * This function decrements the rproc dev refcount. 2078 * 2079 * If no one holds any reference to rproc anymore, then its refcount would 2080 * now drop to zero, and it would be freed. 2081 */ 2082 void rproc_free(struct rproc *rproc) 2083 { 2084 put_device(&rproc->dev); 2085 } 2086 EXPORT_SYMBOL(rproc_free); 2087 2088 /** 2089 * rproc_put() - release rproc reference 2090 * @rproc: the remote processor handle 2091 * 2092 * This function decrements the rproc dev refcount. 2093 * 2094 * If no one holds any reference to rproc anymore, then its refcount would 2095 * now drop to zero, and it would be freed. 2096 */ 2097 void rproc_put(struct rproc *rproc) 2098 { 2099 module_put(rproc->dev.parent->driver->owner); 2100 put_device(&rproc->dev); 2101 } 2102 EXPORT_SYMBOL(rproc_put); 2103 2104 /** 2105 * rproc_del() - unregister a remote processor 2106 * @rproc: rproc handle to unregister 2107 * 2108 * This function should be called when the platform specific rproc 2109 * implementation decides to remove the rproc device. it should 2110 * _only_ be called if a previous invocation of rproc_add() 2111 * has completed successfully. 2112 * 2113 * After rproc_del() returns, @rproc isn't freed yet, because 2114 * of the outstanding reference created by rproc_alloc. To decrement that 2115 * one last refcount, one still needs to call rproc_free(). 2116 * 2117 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2118 */ 2119 int rproc_del(struct rproc *rproc) 2120 { 2121 if (!rproc) 2122 return -EINVAL; 2123 2124 /* if rproc is marked always-on, rproc_add() booted it */ 2125 /* TODO: make sure this works with rproc->power > 1 */ 2126 if (rproc->auto_boot) 2127 rproc_shutdown(rproc); 2128 2129 mutex_lock(&rproc->lock); 2130 rproc->state = RPROC_DELETED; 2131 mutex_unlock(&rproc->lock); 2132 2133 rproc_delete_debug_dir(rproc); 2134 2135 /* the rproc is downref'ed as soon as it's removed from the klist */ 2136 mutex_lock(&rproc_list_mutex); 2137 list_del(&rproc->node); 2138 mutex_unlock(&rproc_list_mutex); 2139 2140 device_del(&rproc->dev); 2141 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(rproc_del); 2145 2146 /** 2147 * rproc_add_subdev() - add a subdevice to a remoteproc 2148 * @rproc: rproc handle to add the subdevice to 2149 * @subdev: subdev handle to register 2150 * 2151 * Caller is responsible for populating optional subdevice function pointers. 2152 */ 2153 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2154 { 2155 list_add_tail(&subdev->node, &rproc->subdevs); 2156 } 2157 EXPORT_SYMBOL(rproc_add_subdev); 2158 2159 /** 2160 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2161 * @rproc: rproc handle to remove the subdevice from 2162 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2163 */ 2164 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2165 { 2166 list_del(&subdev->node); 2167 } 2168 EXPORT_SYMBOL(rproc_remove_subdev); 2169 2170 /** 2171 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2172 * @dev: child device to find ancestor of 2173 * 2174 * Returns the ancestor rproc instance, or NULL if not found. 2175 */ 2176 struct rproc *rproc_get_by_child(struct device *dev) 2177 { 2178 for (dev = dev->parent; dev; dev = dev->parent) { 2179 if (dev->type == &rproc_type) 2180 return dev->driver_data; 2181 } 2182 2183 return NULL; 2184 } 2185 EXPORT_SYMBOL(rproc_get_by_child); 2186 2187 /** 2188 * rproc_report_crash() - rproc crash reporter function 2189 * @rproc: remote processor 2190 * @type: crash type 2191 * 2192 * This function must be called every time a crash is detected by the low-level 2193 * drivers implementing a specific remoteproc. This should not be called from a 2194 * non-remoteproc driver. 2195 * 2196 * This function can be called from atomic/interrupt context. 2197 */ 2198 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2199 { 2200 if (!rproc) { 2201 pr_err("NULL rproc pointer\n"); 2202 return; 2203 } 2204 2205 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2206 rproc->name, rproc_crash_to_string(type)); 2207 2208 /* create a new task to handle the error */ 2209 schedule_work(&rproc->crash_handler); 2210 } 2211 EXPORT_SYMBOL(rproc_report_crash); 2212 2213 static int __init remoteproc_init(void) 2214 { 2215 rproc_init_sysfs(); 2216 rproc_init_debugfs(); 2217 2218 return 0; 2219 } 2220 module_init(remoteproc_init); 2221 2222 static void __exit remoteproc_exit(void) 2223 { 2224 ida_destroy(&rproc_dev_index); 2225 2226 rproc_exit_debugfs(); 2227 rproc_exit_sysfs(); 2228 } 2229 module_exit(remoteproc_exit); 2230 2231 MODULE_LICENSE("GPL v2"); 2232 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2233