1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/of_reserved_mem.h>
43 #include <linux/virtio_ids.h>
44 #include <linux/virtio_ring.h>
45 #include <asm/byteorder.h>
46 #include <linux/platform_device.h>
47 
48 #include "remoteproc_internal.h"
49 
50 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
51 
52 static DEFINE_MUTEX(rproc_list_mutex);
53 static LIST_HEAD(rproc_list);
54 
55 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
56 				struct resource_table *table, int len);
57 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
58 				 void *, int offset, int avail);
59 
60 static int rproc_alloc_carveout(struct rproc *rproc,
61 				struct rproc_mem_entry *mem);
62 static int rproc_release_carveout(struct rproc *rproc,
63 				  struct rproc_mem_entry *mem);
64 
65 /* Unique indices for remoteproc devices */
66 static DEFINE_IDA(rproc_dev_index);
67 
68 static const char * const rproc_crash_names[] = {
69 	[RPROC_MMUFAULT]	= "mmufault",
70 	[RPROC_WATCHDOG]	= "watchdog",
71 	[RPROC_FATAL_ERROR]	= "fatal error",
72 };
73 
74 /* translate rproc_crash_type to string */
75 static const char *rproc_crash_to_string(enum rproc_crash_type type)
76 {
77 	if (type < ARRAY_SIZE(rproc_crash_names))
78 		return rproc_crash_names[type];
79 	return "unknown";
80 }
81 
82 /*
83  * This is the IOMMU fault handler we register with the IOMMU API
84  * (when relevant; not all remote processors access memory through
85  * an IOMMU).
86  *
87  * IOMMU core will invoke this handler whenever the remote processor
88  * will try to access an unmapped device address.
89  */
90 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
91 			     unsigned long iova, int flags, void *token)
92 {
93 	struct rproc *rproc = token;
94 
95 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
96 
97 	rproc_report_crash(rproc, RPROC_MMUFAULT);
98 
99 	/*
100 	 * Let the iommu core know we're not really handling this fault;
101 	 * we just used it as a recovery trigger.
102 	 */
103 	return -ENOSYS;
104 }
105 
106 static int rproc_enable_iommu(struct rproc *rproc)
107 {
108 	struct iommu_domain *domain;
109 	struct device *dev = rproc->dev.parent;
110 	int ret;
111 
112 	if (!rproc->has_iommu) {
113 		dev_dbg(dev, "iommu not present\n");
114 		return 0;
115 	}
116 
117 	domain = iommu_domain_alloc(dev->bus);
118 	if (!domain) {
119 		dev_err(dev, "can't alloc iommu domain\n");
120 		return -ENOMEM;
121 	}
122 
123 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
124 
125 	ret = iommu_attach_device(domain, dev);
126 	if (ret) {
127 		dev_err(dev, "can't attach iommu device: %d\n", ret);
128 		goto free_domain;
129 	}
130 
131 	rproc->domain = domain;
132 
133 	return 0;
134 
135 free_domain:
136 	iommu_domain_free(domain);
137 	return ret;
138 }
139 
140 static void rproc_disable_iommu(struct rproc *rproc)
141 {
142 	struct iommu_domain *domain = rproc->domain;
143 	struct device *dev = rproc->dev.parent;
144 
145 	if (!domain)
146 		return;
147 
148 	iommu_detach_device(domain, dev);
149 	iommu_domain_free(domain);
150 }
151 
152 phys_addr_t rproc_va_to_pa(void *cpu_addr)
153 {
154 	/*
155 	 * Return physical address according to virtual address location
156 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
157 	 * - in kernel: if region allocated in generic dma memory pool
158 	 */
159 	if (is_vmalloc_addr(cpu_addr)) {
160 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
161 				    offset_in_page(cpu_addr);
162 	}
163 
164 	WARN_ON(!virt_addr_valid(cpu_addr));
165 	return virt_to_phys(cpu_addr);
166 }
167 EXPORT_SYMBOL(rproc_va_to_pa);
168 
169 /**
170  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
171  * @rproc: handle of a remote processor
172  * @da: remoteproc device address to translate
173  * @len: length of the memory region @da is pointing to
174  *
175  * Some remote processors will ask us to allocate them physically contiguous
176  * memory regions (which we call "carveouts"), and map them to specific
177  * device addresses (which are hardcoded in the firmware). They may also have
178  * dedicated memory regions internal to the processors, and use them either
179  * exclusively or alongside carveouts.
180  *
181  * They may then ask us to copy objects into specific device addresses (e.g.
182  * code/data sections) or expose us certain symbols in other device address
183  * (e.g. their trace buffer).
184  *
185  * This function is a helper function with which we can go over the allocated
186  * carveouts and translate specific device addresses to kernel virtual addresses
187  * so we can access the referenced memory. This function also allows to perform
188  * translations on the internal remoteproc memory regions through a platform
189  * implementation specific da_to_va ops, if present.
190  *
191  * The function returns a valid kernel address on success or NULL on failure.
192  *
193  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
194  * but only on kernel direct mapped RAM memory. Instead, we're just using
195  * here the output of the DMA API for the carveouts, which should be more
196  * correct.
197  */
198 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
199 {
200 	struct rproc_mem_entry *carveout;
201 	void *ptr = NULL;
202 
203 	if (rproc->ops->da_to_va) {
204 		ptr = rproc->ops->da_to_va(rproc, da, len);
205 		if (ptr)
206 			goto out;
207 	}
208 
209 	list_for_each_entry(carveout, &rproc->carveouts, node) {
210 		int offset = da - carveout->da;
211 
212 		/*  Verify that carveout is allocated */
213 		if (!carveout->va)
214 			continue;
215 
216 		/* try next carveout if da is too small */
217 		if (offset < 0)
218 			continue;
219 
220 		/* try next carveout if da is too large */
221 		if (offset + len > carveout->len)
222 			continue;
223 
224 		ptr = carveout->va + offset;
225 
226 		break;
227 	}
228 
229 out:
230 	return ptr;
231 }
232 EXPORT_SYMBOL(rproc_da_to_va);
233 
234 /**
235  * rproc_find_carveout_by_name() - lookup the carveout region by a name
236  * @rproc: handle of a remote processor
237  * @name,..: carveout name to find (standard printf format)
238  *
239  * Platform driver has the capability to register some pre-allacoted carveout
240  * (physically contiguous memory regions) before rproc firmware loading and
241  * associated resource table analysis. These regions may be dedicated memory
242  * regions internal to the coprocessor or specified DDR region with specific
243  * attributes
244  *
245  * This function is a helper function with which we can go over the
246  * allocated carveouts and return associated region characteristics like
247  * coprocessor address, length or processor virtual address.
248  *
249  * Return: a valid pointer on carveout entry on success or NULL on failure.
250  */
251 struct rproc_mem_entry *
252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 	va_list args;
255 	char _name[32];
256 	struct rproc_mem_entry *carveout, *mem = NULL;
257 
258 	if (!name)
259 		return NULL;
260 
261 	va_start(args, name);
262 	vsnprintf(_name, sizeof(_name), name, args);
263 	va_end(args);
264 
265 	list_for_each_entry(carveout, &rproc->carveouts, node) {
266 		/* Compare carveout and requested names */
267 		if (!strcmp(carveout->name, _name)) {
268 			mem = carveout;
269 			break;
270 		}
271 	}
272 
273 	return mem;
274 }
275 
276 /**
277  * rproc_check_carveout_da() - Check specified carveout da configuration
278  * @rproc: handle of a remote processor
279  * @mem: pointer on carveout to check
280  * @da: area device address
281  * @len: associated area size
282  *
283  * This function is a helper function to verify requested device area (couple
284  * da, len) is part of specified carveout.
285  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286  * checked.
287  *
288  * Return: 0 if carveout matches request else error
289  */
290 static int rproc_check_carveout_da(struct rproc *rproc,
291 				   struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 	struct device *dev = &rproc->dev;
294 	int delta;
295 
296 	/* Check requested resource length */
297 	if (len > mem->len) {
298 		dev_err(dev, "Registered carveout doesn't fit len request\n");
299 		return -EINVAL;
300 	}
301 
302 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 		/* Address doesn't match registered carveout configuration */
304 		return -EINVAL;
305 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 		delta = da - mem->da;
307 
308 		/* Check requested resource belongs to registered carveout */
309 		if (delta < 0) {
310 			dev_err(dev,
311 				"Registered carveout doesn't fit da request\n");
312 			return -EINVAL;
313 		}
314 
315 		if (delta + len > mem->len) {
316 			dev_err(dev,
317 				"Registered carveout doesn't fit len request\n");
318 			return -EINVAL;
319 		}
320 	}
321 
322 	return 0;
323 }
324 
325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 	struct rproc *rproc = rvdev->rproc;
328 	struct device *dev = &rproc->dev;
329 	struct rproc_vring *rvring = &rvdev->vring[i];
330 	struct fw_rsc_vdev *rsc;
331 	int ret, size, notifyid;
332 	struct rproc_mem_entry *mem;
333 
334 	/* actual size of vring (in bytes) */
335 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
336 
337 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
338 
339 	/* Search for pre-registered carveout */
340 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
341 					  i);
342 	if (mem) {
343 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
344 			return -ENOMEM;
345 	} else {
346 		/* Register carveout in in list */
347 		mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
348 					   rproc_alloc_carveout,
349 					   rproc_release_carveout,
350 					   "vdev%dvring%d",
351 					   rvdev->index, i);
352 		if (!mem) {
353 			dev_err(dev, "Can't allocate memory entry structure\n");
354 			return -ENOMEM;
355 		}
356 
357 		rproc_add_carveout(rproc, mem);
358 	}
359 
360 	/*
361 	 * Assign an rproc-wide unique index for this vring
362 	 * TODO: assign a notifyid for rvdev updates as well
363 	 * TODO: support predefined notifyids (via resource table)
364 	 */
365 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
366 	if (ret < 0) {
367 		dev_err(dev, "idr_alloc failed: %d\n", ret);
368 		return ret;
369 	}
370 	notifyid = ret;
371 
372 	/* Potentially bump max_notifyid */
373 	if (notifyid > rproc->max_notifyid)
374 		rproc->max_notifyid = notifyid;
375 
376 	rvring->notifyid = notifyid;
377 
378 	/* Let the rproc know the notifyid of this vring.*/
379 	rsc->vring[i].notifyid = notifyid;
380 	return 0;
381 }
382 
383 static int
384 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
385 {
386 	struct rproc *rproc = rvdev->rproc;
387 	struct device *dev = &rproc->dev;
388 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
389 	struct rproc_vring *rvring = &rvdev->vring[i];
390 
391 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
392 		i, vring->da, vring->num, vring->align);
393 
394 	/* verify queue size and vring alignment are sane */
395 	if (!vring->num || !vring->align) {
396 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
397 			vring->num, vring->align);
398 		return -EINVAL;
399 	}
400 
401 	rvring->len = vring->num;
402 	rvring->align = vring->align;
403 	rvring->rvdev = rvdev;
404 
405 	return 0;
406 }
407 
408 void rproc_free_vring(struct rproc_vring *rvring)
409 {
410 	struct rproc *rproc = rvring->rvdev->rproc;
411 	int idx = rvring->rvdev->vring - rvring;
412 	struct fw_rsc_vdev *rsc;
413 
414 	idr_remove(&rproc->notifyids, rvring->notifyid);
415 
416 	/* reset resource entry info */
417 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
418 	rsc->vring[idx].da = 0;
419 	rsc->vring[idx].notifyid = -1;
420 }
421 
422 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
423 {
424 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
425 
426 	return rproc_add_virtio_dev(rvdev, rvdev->id);
427 }
428 
429 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
430 {
431 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
432 	int ret;
433 
434 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
435 	if (ret)
436 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
437 }
438 
439 /**
440  * rproc_rvdev_release() - release the existence of a rvdev
441  *
442  * @dev: the subdevice's dev
443  */
444 static void rproc_rvdev_release(struct device *dev)
445 {
446 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
447 
448 	of_reserved_mem_device_release(dev);
449 
450 	kfree(rvdev);
451 }
452 
453 /**
454  * rproc_handle_vdev() - handle a vdev fw resource
455  * @rproc: the remote processor
456  * @rsc: the vring resource descriptor
457  * @avail: size of available data (for sanity checking the image)
458  *
459  * This resource entry requests the host to statically register a virtio
460  * device (vdev), and setup everything needed to support it. It contains
461  * everything needed to make it possible: the virtio device id, virtio
462  * device features, vrings information, virtio config space, etc...
463  *
464  * Before registering the vdev, the vrings are allocated from non-cacheable
465  * physically contiguous memory. Currently we only support two vrings per
466  * remote processor (temporary limitation). We might also want to consider
467  * doing the vring allocation only later when ->find_vqs() is invoked, and
468  * then release them upon ->del_vqs().
469  *
470  * Note: @da is currently not really handled correctly: we dynamically
471  * allocate it using the DMA API, ignoring requested hard coded addresses,
472  * and we don't take care of any required IOMMU programming. This is all
473  * going to be taken care of when the generic iommu-based DMA API will be
474  * merged. Meanwhile, statically-addressed iommu-based firmware images should
475  * use RSC_DEVMEM resource entries to map their required @da to the physical
476  * address of their base CMA region (ouch, hacky!).
477  *
478  * Returns 0 on success, or an appropriate error code otherwise
479  */
480 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
481 			     int offset, int avail)
482 {
483 	struct device *dev = &rproc->dev;
484 	struct rproc_vdev *rvdev;
485 	int i, ret;
486 	char name[16];
487 
488 	/* make sure resource isn't truncated */
489 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
490 			+ rsc->config_len > avail) {
491 		dev_err(dev, "vdev rsc is truncated\n");
492 		return -EINVAL;
493 	}
494 
495 	/* make sure reserved bytes are zeroes */
496 	if (rsc->reserved[0] || rsc->reserved[1]) {
497 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
498 		return -EINVAL;
499 	}
500 
501 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
502 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
503 
504 	/* we currently support only two vrings per rvdev */
505 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
506 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
507 		return -EINVAL;
508 	}
509 
510 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
511 	if (!rvdev)
512 		return -ENOMEM;
513 
514 	kref_init(&rvdev->refcount);
515 
516 	rvdev->id = rsc->id;
517 	rvdev->rproc = rproc;
518 	rvdev->index = rproc->nb_vdev++;
519 
520 	/* Initialise vdev subdevice */
521 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
522 	rvdev->dev.parent = rproc->dev.parent;
523 	rvdev->dev.release = rproc_rvdev_release;
524 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
525 	dev_set_drvdata(&rvdev->dev, rvdev);
526 
527 	ret = device_register(&rvdev->dev);
528 	if (ret) {
529 		put_device(&rvdev->dev);
530 		return ret;
531 	}
532 	/* Make device dma capable by inheriting from parent's capabilities */
533 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
534 
535 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
536 					   dma_get_mask(rproc->dev.parent));
537 	if (ret) {
538 		dev_warn(dev,
539 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
540 			 dma_get_mask(rproc->dev.parent), ret);
541 	}
542 
543 	/* parse the vrings */
544 	for (i = 0; i < rsc->num_of_vrings; i++) {
545 		ret = rproc_parse_vring(rvdev, rsc, i);
546 		if (ret)
547 			goto free_rvdev;
548 	}
549 
550 	/* remember the resource offset*/
551 	rvdev->rsc_offset = offset;
552 
553 	/* allocate the vring resources */
554 	for (i = 0; i < rsc->num_of_vrings; i++) {
555 		ret = rproc_alloc_vring(rvdev, i);
556 		if (ret)
557 			goto unwind_vring_allocations;
558 	}
559 
560 	list_add_tail(&rvdev->node, &rproc->rvdevs);
561 
562 	rvdev->subdev.start = rproc_vdev_do_start;
563 	rvdev->subdev.stop = rproc_vdev_do_stop;
564 
565 	rproc_add_subdev(rproc, &rvdev->subdev);
566 
567 	return 0;
568 
569 unwind_vring_allocations:
570 	for (i--; i >= 0; i--)
571 		rproc_free_vring(&rvdev->vring[i]);
572 free_rvdev:
573 	device_unregister(&rvdev->dev);
574 	return ret;
575 }
576 
577 void rproc_vdev_release(struct kref *ref)
578 {
579 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
580 	struct rproc_vring *rvring;
581 	struct rproc *rproc = rvdev->rproc;
582 	int id;
583 
584 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
585 		rvring = &rvdev->vring[id];
586 		rproc_free_vring(rvring);
587 	}
588 
589 	rproc_remove_subdev(rproc, &rvdev->subdev);
590 	list_del(&rvdev->node);
591 	device_unregister(&rvdev->dev);
592 }
593 
594 /**
595  * rproc_handle_trace() - handle a shared trace buffer resource
596  * @rproc: the remote processor
597  * @rsc: the trace resource descriptor
598  * @avail: size of available data (for sanity checking the image)
599  *
600  * In case the remote processor dumps trace logs into memory,
601  * export it via debugfs.
602  *
603  * Currently, the 'da' member of @rsc should contain the device address
604  * where the remote processor is dumping the traces. Later we could also
605  * support dynamically allocating this address using the generic
606  * DMA API (but currently there isn't a use case for that).
607  *
608  * Returns 0 on success, or an appropriate error code otherwise
609  */
610 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
611 			      int offset, int avail)
612 {
613 	struct rproc_debug_trace *trace;
614 	struct device *dev = &rproc->dev;
615 	char name[15];
616 
617 	if (sizeof(*rsc) > avail) {
618 		dev_err(dev, "trace rsc is truncated\n");
619 		return -EINVAL;
620 	}
621 
622 	/* make sure reserved bytes are zeroes */
623 	if (rsc->reserved) {
624 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
625 		return -EINVAL;
626 	}
627 
628 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
629 	if (!trace)
630 		return -ENOMEM;
631 
632 	/* set the trace buffer dma properties */
633 	trace->trace_mem.len = rsc->len;
634 	trace->trace_mem.da = rsc->da;
635 
636 	/* set pointer on rproc device */
637 	trace->rproc = rproc;
638 
639 	/* make sure snprintf always null terminates, even if truncating */
640 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
641 
642 	/* create the debugfs entry */
643 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
644 	if (!trace->tfile) {
645 		kfree(trace);
646 		return -EINVAL;
647 	}
648 
649 	list_add_tail(&trace->node, &rproc->traces);
650 
651 	rproc->num_traces++;
652 
653 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
654 		name, rsc->da, rsc->len);
655 
656 	return 0;
657 }
658 
659 /**
660  * rproc_handle_devmem() - handle devmem resource entry
661  * @rproc: remote processor handle
662  * @rsc: the devmem resource entry
663  * @avail: size of available data (for sanity checking the image)
664  *
665  * Remote processors commonly need to access certain on-chip peripherals.
666  *
667  * Some of these remote processors access memory via an iommu device,
668  * and might require us to configure their iommu before they can access
669  * the on-chip peripherals they need.
670  *
671  * This resource entry is a request to map such a peripheral device.
672  *
673  * These devmem entries will contain the physical address of the device in
674  * the 'pa' member. If a specific device address is expected, then 'da' will
675  * contain it (currently this is the only use case supported). 'len' will
676  * contain the size of the physical region we need to map.
677  *
678  * Currently we just "trust" those devmem entries to contain valid physical
679  * addresses, but this is going to change: we want the implementations to
680  * tell us ranges of physical addresses the firmware is allowed to request,
681  * and not allow firmwares to request access to physical addresses that
682  * are outside those ranges.
683  */
684 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
685 			       int offset, int avail)
686 {
687 	struct rproc_mem_entry *mapping;
688 	struct device *dev = &rproc->dev;
689 	int ret;
690 
691 	/* no point in handling this resource without a valid iommu domain */
692 	if (!rproc->domain)
693 		return -EINVAL;
694 
695 	if (sizeof(*rsc) > avail) {
696 		dev_err(dev, "devmem rsc is truncated\n");
697 		return -EINVAL;
698 	}
699 
700 	/* make sure reserved bytes are zeroes */
701 	if (rsc->reserved) {
702 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
703 		return -EINVAL;
704 	}
705 
706 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
707 	if (!mapping)
708 		return -ENOMEM;
709 
710 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
711 	if (ret) {
712 		dev_err(dev, "failed to map devmem: %d\n", ret);
713 		goto out;
714 	}
715 
716 	/*
717 	 * We'll need this info later when we'll want to unmap everything
718 	 * (e.g. on shutdown).
719 	 *
720 	 * We can't trust the remote processor not to change the resource
721 	 * table, so we must maintain this info independently.
722 	 */
723 	mapping->da = rsc->da;
724 	mapping->len = rsc->len;
725 	list_add_tail(&mapping->node, &rproc->mappings);
726 
727 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
728 		rsc->pa, rsc->da, rsc->len);
729 
730 	return 0;
731 
732 out:
733 	kfree(mapping);
734 	return ret;
735 }
736 
737 /**
738  * rproc_alloc_carveout() - allocated specified carveout
739  * @rproc: rproc handle
740  * @mem: the memory entry to allocate
741  *
742  * This function allocate specified memory entry @mem using
743  * dma_alloc_coherent() as default allocator
744  */
745 static int rproc_alloc_carveout(struct rproc *rproc,
746 				struct rproc_mem_entry *mem)
747 {
748 	struct rproc_mem_entry *mapping = NULL;
749 	struct device *dev = &rproc->dev;
750 	dma_addr_t dma;
751 	void *va;
752 	int ret;
753 
754 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
755 	if (!va) {
756 		dev_err(dev->parent,
757 			"failed to allocate dma memory: len 0x%x\n", mem->len);
758 		return -ENOMEM;
759 	}
760 
761 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
762 		va, &dma, mem->len);
763 
764 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
765 		/*
766 		 * Check requested da is equal to dma address
767 		 * and print a warn message in case of missalignment.
768 		 * Don't stop rproc_start sequence as coprocessor may
769 		 * build pa to da translation on its side.
770 		 */
771 		if (mem->da != (u32)dma)
772 			dev_warn(dev->parent,
773 				 "Allocated carveout doesn't fit device address request\n");
774 	}
775 
776 	/*
777 	 * Ok, this is non-standard.
778 	 *
779 	 * Sometimes we can't rely on the generic iommu-based DMA API
780 	 * to dynamically allocate the device address and then set the IOMMU
781 	 * tables accordingly, because some remote processors might
782 	 * _require_ us to use hard coded device addresses that their
783 	 * firmware was compiled with.
784 	 *
785 	 * In this case, we must use the IOMMU API directly and map
786 	 * the memory to the device address as expected by the remote
787 	 * processor.
788 	 *
789 	 * Obviously such remote processor devices should not be configured
790 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
791 	 * physical address in this case.
792 	 */
793 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
794 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
795 		if (!mapping) {
796 			ret = -ENOMEM;
797 			goto dma_free;
798 		}
799 
800 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
801 				mem->flags);
802 		if (ret) {
803 			dev_err(dev, "iommu_map failed: %d\n", ret);
804 			goto free_mapping;
805 		}
806 
807 		/*
808 		 * We'll need this info later when we'll want to unmap
809 		 * everything (e.g. on shutdown).
810 		 *
811 		 * We can't trust the remote processor not to change the
812 		 * resource table, so we must maintain this info independently.
813 		 */
814 		mapping->da = mem->da;
815 		mapping->len = mem->len;
816 		list_add_tail(&mapping->node, &rproc->mappings);
817 
818 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
819 			mem->da, &dma);
820 	}
821 
822 	if (mem->da == FW_RSC_ADDR_ANY) {
823 		/* Update device address as undefined by requester */
824 		if ((u64)dma & HIGH_BITS_MASK)
825 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
826 
827 		mem->da = (u32)dma;
828 	}
829 
830 	mem->dma = dma;
831 	mem->va = va;
832 
833 	return 0;
834 
835 free_mapping:
836 	kfree(mapping);
837 dma_free:
838 	dma_free_coherent(dev->parent, mem->len, va, dma);
839 	return ret;
840 }
841 
842 /**
843  * rproc_release_carveout() - release acquired carveout
844  * @rproc: rproc handle
845  * @mem: the memory entry to release
846  *
847  * This function releases specified memory entry @mem allocated via
848  * rproc_alloc_carveout() function by @rproc.
849  */
850 static int rproc_release_carveout(struct rproc *rproc,
851 				  struct rproc_mem_entry *mem)
852 {
853 	struct device *dev = &rproc->dev;
854 
855 	/* clean up carveout allocations */
856 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
857 	return 0;
858 }
859 
860 /**
861  * rproc_handle_carveout() - handle phys contig memory allocation requests
862  * @rproc: rproc handle
863  * @rsc: the resource entry
864  * @avail: size of available data (for image validation)
865  *
866  * This function will handle firmware requests for allocation of physically
867  * contiguous memory regions.
868  *
869  * These request entries should come first in the firmware's resource table,
870  * as other firmware entries might request placing other data objects inside
871  * these memory regions (e.g. data/code segments, trace resource entries, ...).
872  *
873  * Allocating memory this way helps utilizing the reserved physical memory
874  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
875  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
876  * pressure is important; it may have a substantial impact on performance.
877  */
878 static int rproc_handle_carveout(struct rproc *rproc,
879 				 struct fw_rsc_carveout *rsc,
880 				 int offset, int avail)
881 {
882 	struct rproc_mem_entry *carveout;
883 	struct device *dev = &rproc->dev;
884 
885 	if (sizeof(*rsc) > avail) {
886 		dev_err(dev, "carveout rsc is truncated\n");
887 		return -EINVAL;
888 	}
889 
890 	/* make sure reserved bytes are zeroes */
891 	if (rsc->reserved) {
892 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
893 		return -EINVAL;
894 	}
895 
896 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
897 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
898 
899 	/*
900 	 * Check carveout rsc already part of a registered carveout,
901 	 * Search by name, then check the da and length
902 	 */
903 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
904 
905 	if (carveout) {
906 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
907 			dev_err(dev,
908 				"Carveout already associated to resource table\n");
909 			return -ENOMEM;
910 		}
911 
912 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
913 			return -ENOMEM;
914 
915 		/* Update memory carveout with resource table info */
916 		carveout->rsc_offset = offset;
917 		carveout->flags = rsc->flags;
918 
919 		return 0;
920 	}
921 
922 	/* Register carveout in in list */
923 	carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
924 					rproc_alloc_carveout,
925 					rproc_release_carveout, rsc->name);
926 	if (!carveout) {
927 		dev_err(dev, "Can't allocate memory entry structure\n");
928 		return -ENOMEM;
929 	}
930 
931 	carveout->flags = rsc->flags;
932 	carveout->rsc_offset = offset;
933 	rproc_add_carveout(rproc, carveout);
934 
935 	return 0;
936 }
937 
938 /**
939  * rproc_add_carveout() - register an allocated carveout region
940  * @rproc: rproc handle
941  * @mem: memory entry to register
942  *
943  * This function registers specified memory entry in @rproc carveouts list.
944  * Specified carveout should have been allocated before registering.
945  */
946 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
947 {
948 	list_add_tail(&mem->node, &rproc->carveouts);
949 }
950 EXPORT_SYMBOL(rproc_add_carveout);
951 
952 /**
953  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
954  * @dev: pointer on device struct
955  * @va: virtual address
956  * @dma: dma address
957  * @len: memory carveout length
958  * @da: device address
959  * @alloc: memory carveout allocation function
960  * @release: memory carveout release function
961  * @name: carveout name
962  *
963  * This function allocates a rproc_mem_entry struct and fill it with parameters
964  * provided by client.
965  */
966 struct rproc_mem_entry *
967 rproc_mem_entry_init(struct device *dev,
968 		     void *va, dma_addr_t dma, int len, u32 da,
969 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
970 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
971 		     const char *name, ...)
972 {
973 	struct rproc_mem_entry *mem;
974 	va_list args;
975 
976 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
977 	if (!mem)
978 		return mem;
979 
980 	mem->va = va;
981 	mem->dma = dma;
982 	mem->da = da;
983 	mem->len = len;
984 	mem->alloc = alloc;
985 	mem->release = release;
986 	mem->rsc_offset = FW_RSC_ADDR_ANY;
987 	mem->of_resm_idx = -1;
988 
989 	va_start(args, name);
990 	vsnprintf(mem->name, sizeof(mem->name), name, args);
991 	va_end(args);
992 
993 	return mem;
994 }
995 EXPORT_SYMBOL(rproc_mem_entry_init);
996 
997 /**
998  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
999  * from a reserved memory phandle
1000  * @dev: pointer on device struct
1001  * @of_resm_idx: reserved memory phandle index in "memory-region"
1002  * @len: memory carveout length
1003  * @da: device address
1004  * @name: carveout name
1005  *
1006  * This function allocates a rproc_mem_entry struct and fill it with parameters
1007  * provided by client.
1008  */
1009 struct rproc_mem_entry *
1010 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1011 			     u32 da, const char *name, ...)
1012 {
1013 	struct rproc_mem_entry *mem;
1014 	va_list args;
1015 
1016 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1017 	if (!mem)
1018 		return mem;
1019 
1020 	mem->da = da;
1021 	mem->len = len;
1022 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1023 	mem->of_resm_idx = of_resm_idx;
1024 
1025 	va_start(args, name);
1026 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1027 	va_end(args);
1028 
1029 	return mem;
1030 }
1031 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1032 
1033 /**
1034  * A lookup table for resource handlers. The indices are defined in
1035  * enum fw_resource_type.
1036  */
1037 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1038 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1039 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1040 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1041 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1042 };
1043 
1044 /* handle firmware resource entries before booting the remote processor */
1045 static int rproc_handle_resources(struct rproc *rproc,
1046 				  rproc_handle_resource_t handlers[RSC_LAST])
1047 {
1048 	struct device *dev = &rproc->dev;
1049 	rproc_handle_resource_t handler;
1050 	int ret = 0, i;
1051 
1052 	if (!rproc->table_ptr)
1053 		return 0;
1054 
1055 	for (i = 0; i < rproc->table_ptr->num; i++) {
1056 		int offset = rproc->table_ptr->offset[i];
1057 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1058 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1059 		void *rsc = (void *)hdr + sizeof(*hdr);
1060 
1061 		/* make sure table isn't truncated */
1062 		if (avail < 0) {
1063 			dev_err(dev, "rsc table is truncated\n");
1064 			return -EINVAL;
1065 		}
1066 
1067 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1068 
1069 		if (hdr->type >= RSC_LAST) {
1070 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1071 			continue;
1072 		}
1073 
1074 		handler = handlers[hdr->type];
1075 		if (!handler)
1076 			continue;
1077 
1078 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1079 		if (ret)
1080 			break;
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 static int rproc_prepare_subdevices(struct rproc *rproc)
1087 {
1088 	struct rproc_subdev *subdev;
1089 	int ret;
1090 
1091 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1092 		if (subdev->prepare) {
1093 			ret = subdev->prepare(subdev);
1094 			if (ret)
1095 				goto unroll_preparation;
1096 		}
1097 	}
1098 
1099 	return 0;
1100 
1101 unroll_preparation:
1102 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1103 		if (subdev->unprepare)
1104 			subdev->unprepare(subdev);
1105 	}
1106 
1107 	return ret;
1108 }
1109 
1110 static int rproc_start_subdevices(struct rproc *rproc)
1111 {
1112 	struct rproc_subdev *subdev;
1113 	int ret;
1114 
1115 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1116 		if (subdev->start) {
1117 			ret = subdev->start(subdev);
1118 			if (ret)
1119 				goto unroll_registration;
1120 		}
1121 	}
1122 
1123 	return 0;
1124 
1125 unroll_registration:
1126 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1127 		if (subdev->stop)
1128 			subdev->stop(subdev, true);
1129 	}
1130 
1131 	return ret;
1132 }
1133 
1134 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1135 {
1136 	struct rproc_subdev *subdev;
1137 
1138 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1139 		if (subdev->stop)
1140 			subdev->stop(subdev, crashed);
1141 	}
1142 }
1143 
1144 static void rproc_unprepare_subdevices(struct rproc *rproc)
1145 {
1146 	struct rproc_subdev *subdev;
1147 
1148 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1149 		if (subdev->unprepare)
1150 			subdev->unprepare(subdev);
1151 	}
1152 }
1153 
1154 /**
1155  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1156  * in the list
1157  * @rproc: the remote processor handle
1158  *
1159  * This function parses registered carveout list, performs allocation
1160  * if alloc() ops registered and updates resource table information
1161  * if rsc_offset set.
1162  *
1163  * Return: 0 on success
1164  */
1165 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1166 {
1167 	struct rproc_mem_entry *entry, *tmp;
1168 	struct fw_rsc_carveout *rsc;
1169 	struct device *dev = &rproc->dev;
1170 	u64 pa;
1171 	int ret;
1172 
1173 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1174 		if (entry->alloc) {
1175 			ret = entry->alloc(rproc, entry);
1176 			if (ret) {
1177 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1178 					entry->name, ret);
1179 				return -ENOMEM;
1180 			}
1181 		}
1182 
1183 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1184 			/* update resource table */
1185 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1186 
1187 			/*
1188 			 * Some remote processors might need to know the pa
1189 			 * even though they are behind an IOMMU. E.g., OMAP4's
1190 			 * remote M3 processor needs this so it can control
1191 			 * on-chip hardware accelerators that are not behind
1192 			 * the IOMMU, and therefor must know the pa.
1193 			 *
1194 			 * Generally we don't want to expose physical addresses
1195 			 * if we don't have to (remote processors are generally
1196 			 * _not_ trusted), so we might want to do this only for
1197 			 * remote processor that _must_ have this (e.g. OMAP4's
1198 			 * dual M3 subsystem).
1199 			 *
1200 			 * Non-IOMMU processors might also want to have this info.
1201 			 * In this case, the device address and the physical address
1202 			 * are the same.
1203 			 */
1204 
1205 			/* Use va if defined else dma to generate pa */
1206 			if (entry->va)
1207 				pa = (u64)rproc_va_to_pa(entry->va);
1208 			else
1209 				pa = (u64)entry->dma;
1210 
1211 			if (((u64)pa) & HIGH_BITS_MASK)
1212 				dev_warn(dev,
1213 					 "Physical address cast in 32bit to fit resource table format\n");
1214 
1215 			rsc->pa = (u32)pa;
1216 			rsc->da = entry->da;
1217 			rsc->len = entry->len;
1218 		}
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 /**
1225  * rproc_coredump_cleanup() - clean up dump_segments list
1226  * @rproc: the remote processor handle
1227  */
1228 static void rproc_coredump_cleanup(struct rproc *rproc)
1229 {
1230 	struct rproc_dump_segment *entry, *tmp;
1231 
1232 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1233 		list_del(&entry->node);
1234 		kfree(entry);
1235 	}
1236 }
1237 
1238 /**
1239  * rproc_resource_cleanup() - clean up and free all acquired resources
1240  * @rproc: rproc handle
1241  *
1242  * This function will free all resources acquired for @rproc, and it
1243  * is called whenever @rproc either shuts down or fails to boot.
1244  */
1245 static void rproc_resource_cleanup(struct rproc *rproc)
1246 {
1247 	struct rproc_mem_entry *entry, *tmp;
1248 	struct rproc_debug_trace *trace, *ttmp;
1249 	struct rproc_vdev *rvdev, *rvtmp;
1250 	struct device *dev = &rproc->dev;
1251 
1252 	/* clean up debugfs trace entries */
1253 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1254 		rproc_remove_trace_file(trace->tfile);
1255 		rproc->num_traces--;
1256 		list_del(&trace->node);
1257 		kfree(trace);
1258 	}
1259 
1260 	/* clean up iommu mapping entries */
1261 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1262 		size_t unmapped;
1263 
1264 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1265 		if (unmapped != entry->len) {
1266 			/* nothing much to do besides complaining */
1267 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1268 				unmapped);
1269 		}
1270 
1271 		list_del(&entry->node);
1272 		kfree(entry);
1273 	}
1274 
1275 	/* clean up carveout allocations */
1276 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1277 		if (entry->release)
1278 			entry->release(rproc, entry);
1279 		list_del(&entry->node);
1280 		kfree(entry);
1281 	}
1282 
1283 	/* clean up remote vdev entries */
1284 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1285 		kref_put(&rvdev->refcount, rproc_vdev_release);
1286 
1287 	rproc_coredump_cleanup(rproc);
1288 }
1289 
1290 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1291 {
1292 	struct resource_table *loaded_table;
1293 	struct device *dev = &rproc->dev;
1294 	int ret;
1295 
1296 	/* load the ELF segments to memory */
1297 	ret = rproc_load_segments(rproc, fw);
1298 	if (ret) {
1299 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1300 		return ret;
1301 	}
1302 
1303 	/*
1304 	 * The starting device has been given the rproc->cached_table as the
1305 	 * resource table. The address of the vring along with the other
1306 	 * allocated resources (carveouts etc) is stored in cached_table.
1307 	 * In order to pass this information to the remote device we must copy
1308 	 * this information to device memory. We also update the table_ptr so
1309 	 * that any subsequent changes will be applied to the loaded version.
1310 	 */
1311 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1312 	if (loaded_table) {
1313 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1314 		rproc->table_ptr = loaded_table;
1315 	}
1316 
1317 	ret = rproc_prepare_subdevices(rproc);
1318 	if (ret) {
1319 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1320 			rproc->name, ret);
1321 		goto reset_table_ptr;
1322 	}
1323 
1324 	/* power up the remote processor */
1325 	ret = rproc->ops->start(rproc);
1326 	if (ret) {
1327 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1328 		goto unprepare_subdevices;
1329 	}
1330 
1331 	/* Start any subdevices for the remote processor */
1332 	ret = rproc_start_subdevices(rproc);
1333 	if (ret) {
1334 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1335 			rproc->name, ret);
1336 		goto stop_rproc;
1337 	}
1338 
1339 	rproc->state = RPROC_RUNNING;
1340 
1341 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1342 
1343 	return 0;
1344 
1345 stop_rproc:
1346 	rproc->ops->stop(rproc);
1347 unprepare_subdevices:
1348 	rproc_unprepare_subdevices(rproc);
1349 reset_table_ptr:
1350 	rproc->table_ptr = rproc->cached_table;
1351 
1352 	return ret;
1353 }
1354 
1355 /*
1356  * take a firmware and boot a remote processor with it.
1357  */
1358 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1359 {
1360 	struct device *dev = &rproc->dev;
1361 	const char *name = rproc->firmware;
1362 	int ret;
1363 
1364 	ret = rproc_fw_sanity_check(rproc, fw);
1365 	if (ret)
1366 		return ret;
1367 
1368 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1369 
1370 	/*
1371 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1372 	 * just a nop
1373 	 */
1374 	ret = rproc_enable_iommu(rproc);
1375 	if (ret) {
1376 		dev_err(dev, "can't enable iommu: %d\n", ret);
1377 		return ret;
1378 	}
1379 
1380 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1381 
1382 	/* Load resource table, core dump segment list etc from the firmware */
1383 	ret = rproc_parse_fw(rproc, fw);
1384 	if (ret)
1385 		goto disable_iommu;
1386 
1387 	/* reset max_notifyid */
1388 	rproc->max_notifyid = -1;
1389 
1390 	/* reset handled vdev */
1391 	rproc->nb_vdev = 0;
1392 
1393 	/* handle fw resources which are required to boot rproc */
1394 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1395 	if (ret) {
1396 		dev_err(dev, "Failed to process resources: %d\n", ret);
1397 		goto clean_up_resources;
1398 	}
1399 
1400 	/* Allocate carveout resources associated to rproc */
1401 	ret = rproc_alloc_registered_carveouts(rproc);
1402 	if (ret) {
1403 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1404 			ret);
1405 		goto clean_up_resources;
1406 	}
1407 
1408 	ret = rproc_start(rproc, fw);
1409 	if (ret)
1410 		goto clean_up_resources;
1411 
1412 	return 0;
1413 
1414 clean_up_resources:
1415 	rproc_resource_cleanup(rproc);
1416 	kfree(rproc->cached_table);
1417 	rproc->cached_table = NULL;
1418 	rproc->table_ptr = NULL;
1419 disable_iommu:
1420 	rproc_disable_iommu(rproc);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * take a firmware and boot it up.
1426  *
1427  * Note: this function is called asynchronously upon registration of the
1428  * remote processor (so we must wait until it completes before we try
1429  * to unregister the device. one other option is just to use kref here,
1430  * that might be cleaner).
1431  */
1432 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1433 {
1434 	struct rproc *rproc = context;
1435 
1436 	rproc_boot(rproc);
1437 
1438 	release_firmware(fw);
1439 }
1440 
1441 static int rproc_trigger_auto_boot(struct rproc *rproc)
1442 {
1443 	int ret;
1444 
1445 	/*
1446 	 * We're initiating an asynchronous firmware loading, so we can
1447 	 * be built-in kernel code, without hanging the boot process.
1448 	 */
1449 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1450 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1451 				      rproc, rproc_auto_boot_callback);
1452 	if (ret < 0)
1453 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1454 
1455 	return ret;
1456 }
1457 
1458 static int rproc_stop(struct rproc *rproc, bool crashed)
1459 {
1460 	struct device *dev = &rproc->dev;
1461 	int ret;
1462 
1463 	/* Stop any subdevices for the remote processor */
1464 	rproc_stop_subdevices(rproc, crashed);
1465 
1466 	/* the installed resource table is no longer accessible */
1467 	rproc->table_ptr = rproc->cached_table;
1468 
1469 	/* power off the remote processor */
1470 	ret = rproc->ops->stop(rproc);
1471 	if (ret) {
1472 		dev_err(dev, "can't stop rproc: %d\n", ret);
1473 		return ret;
1474 	}
1475 
1476 	rproc_unprepare_subdevices(rproc);
1477 
1478 	rproc->state = RPROC_OFFLINE;
1479 
1480 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * rproc_coredump_add_segment() - add segment of device memory to coredump
1487  * @rproc:	handle of a remote processor
1488  * @da:		device address
1489  * @size:	size of segment
1490  *
1491  * Add device memory to the list of segments to be included in a coredump for
1492  * the remoteproc.
1493  *
1494  * Return: 0 on success, negative errno on error.
1495  */
1496 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1497 {
1498 	struct rproc_dump_segment *segment;
1499 
1500 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1501 	if (!segment)
1502 		return -ENOMEM;
1503 
1504 	segment->da = da;
1505 	segment->size = size;
1506 
1507 	list_add_tail(&segment->node, &rproc->dump_segments);
1508 
1509 	return 0;
1510 }
1511 EXPORT_SYMBOL(rproc_coredump_add_segment);
1512 
1513 /**
1514  * rproc_coredump_add_custom_segment() - add custom coredump segment
1515  * @rproc:	handle of a remote processor
1516  * @da:		device address
1517  * @size:	size of segment
1518  * @dumpfn:	custom dump function called for each segment during coredump
1519  * @priv:	private data
1520  *
1521  * Add device memory to the list of segments to be included in the coredump
1522  * and associate the segment with the given custom dump function and private
1523  * data.
1524  *
1525  * Return: 0 on success, negative errno on error.
1526  */
1527 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1528 				      dma_addr_t da, size_t size,
1529 				      void (*dumpfn)(struct rproc *rproc,
1530 						     struct rproc_dump_segment *segment,
1531 						     void *dest),
1532 				      void *priv)
1533 {
1534 	struct rproc_dump_segment *segment;
1535 
1536 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1537 	if (!segment)
1538 		return -ENOMEM;
1539 
1540 	segment->da = da;
1541 	segment->size = size;
1542 	segment->priv = priv;
1543 	segment->dump = dumpfn;
1544 
1545 	list_add_tail(&segment->node, &rproc->dump_segments);
1546 
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1550 
1551 /**
1552  * rproc_coredump() - perform coredump
1553  * @rproc:	rproc handle
1554  *
1555  * This function will generate an ELF header for the registered segments
1556  * and create a devcoredump device associated with rproc.
1557  */
1558 static void rproc_coredump(struct rproc *rproc)
1559 {
1560 	struct rproc_dump_segment *segment;
1561 	struct elf32_phdr *phdr;
1562 	struct elf32_hdr *ehdr;
1563 	size_t data_size;
1564 	size_t offset;
1565 	void *data;
1566 	void *ptr;
1567 	int phnum = 0;
1568 
1569 	if (list_empty(&rproc->dump_segments))
1570 		return;
1571 
1572 	data_size = sizeof(*ehdr);
1573 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1574 		data_size += sizeof(*phdr) + segment->size;
1575 
1576 		phnum++;
1577 	}
1578 
1579 	data = vmalloc(data_size);
1580 	if (!data)
1581 		return;
1582 
1583 	ehdr = data;
1584 
1585 	memset(ehdr, 0, sizeof(*ehdr));
1586 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1587 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1588 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1589 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1590 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1591 	ehdr->e_type = ET_CORE;
1592 	ehdr->e_machine = EM_NONE;
1593 	ehdr->e_version = EV_CURRENT;
1594 	ehdr->e_entry = rproc->bootaddr;
1595 	ehdr->e_phoff = sizeof(*ehdr);
1596 	ehdr->e_ehsize = sizeof(*ehdr);
1597 	ehdr->e_phentsize = sizeof(*phdr);
1598 	ehdr->e_phnum = phnum;
1599 
1600 	phdr = data + ehdr->e_phoff;
1601 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1602 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1603 		memset(phdr, 0, sizeof(*phdr));
1604 		phdr->p_type = PT_LOAD;
1605 		phdr->p_offset = offset;
1606 		phdr->p_vaddr = segment->da;
1607 		phdr->p_paddr = segment->da;
1608 		phdr->p_filesz = segment->size;
1609 		phdr->p_memsz = segment->size;
1610 		phdr->p_flags = PF_R | PF_W | PF_X;
1611 		phdr->p_align = 0;
1612 
1613 		if (segment->dump) {
1614 			segment->dump(rproc, segment, data + offset);
1615 		} else {
1616 			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1617 			if (!ptr) {
1618 				dev_err(&rproc->dev,
1619 					"invalid coredump segment (%pad, %zu)\n",
1620 					&segment->da, segment->size);
1621 				memset(data + offset, 0xff, segment->size);
1622 			} else {
1623 				memcpy(data + offset, ptr, segment->size);
1624 			}
1625 		}
1626 
1627 		offset += phdr->p_filesz;
1628 		phdr++;
1629 	}
1630 
1631 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1632 }
1633 
1634 /**
1635  * rproc_trigger_recovery() - recover a remoteproc
1636  * @rproc: the remote processor
1637  *
1638  * The recovery is done by resetting all the virtio devices, that way all the
1639  * rpmsg drivers will be reseted along with the remote processor making the
1640  * remoteproc functional again.
1641  *
1642  * This function can sleep, so it cannot be called from atomic context.
1643  */
1644 int rproc_trigger_recovery(struct rproc *rproc)
1645 {
1646 	const struct firmware *firmware_p;
1647 	struct device *dev = &rproc->dev;
1648 	int ret;
1649 
1650 	dev_err(dev, "recovering %s\n", rproc->name);
1651 
1652 	ret = mutex_lock_interruptible(&rproc->lock);
1653 	if (ret)
1654 		return ret;
1655 
1656 	ret = rproc_stop(rproc, true);
1657 	if (ret)
1658 		goto unlock_mutex;
1659 
1660 	/* generate coredump */
1661 	rproc_coredump(rproc);
1662 
1663 	/* load firmware */
1664 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1665 	if (ret < 0) {
1666 		dev_err(dev, "request_firmware failed: %d\n", ret);
1667 		goto unlock_mutex;
1668 	}
1669 
1670 	/* boot the remote processor up again */
1671 	ret = rproc_start(rproc, firmware_p);
1672 
1673 	release_firmware(firmware_p);
1674 
1675 unlock_mutex:
1676 	mutex_unlock(&rproc->lock);
1677 	return ret;
1678 }
1679 
1680 /**
1681  * rproc_crash_handler_work() - handle a crash
1682  *
1683  * This function needs to handle everything related to a crash, like cpu
1684  * registers and stack dump, information to help to debug the fatal error, etc.
1685  */
1686 static void rproc_crash_handler_work(struct work_struct *work)
1687 {
1688 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1689 	struct device *dev = &rproc->dev;
1690 
1691 	dev_dbg(dev, "enter %s\n", __func__);
1692 
1693 	mutex_lock(&rproc->lock);
1694 
1695 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1696 		/* handle only the first crash detected */
1697 		mutex_unlock(&rproc->lock);
1698 		return;
1699 	}
1700 
1701 	rproc->state = RPROC_CRASHED;
1702 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1703 		rproc->name);
1704 
1705 	mutex_unlock(&rproc->lock);
1706 
1707 	if (!rproc->recovery_disabled)
1708 		rproc_trigger_recovery(rproc);
1709 }
1710 
1711 /**
1712  * rproc_boot() - boot a remote processor
1713  * @rproc: handle of a remote processor
1714  *
1715  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1716  *
1717  * If the remote processor is already powered on, this function immediately
1718  * returns (successfully).
1719  *
1720  * Returns 0 on success, and an appropriate error value otherwise.
1721  */
1722 int rproc_boot(struct rproc *rproc)
1723 {
1724 	const struct firmware *firmware_p;
1725 	struct device *dev;
1726 	int ret;
1727 
1728 	if (!rproc) {
1729 		pr_err("invalid rproc handle\n");
1730 		return -EINVAL;
1731 	}
1732 
1733 	dev = &rproc->dev;
1734 
1735 	ret = mutex_lock_interruptible(&rproc->lock);
1736 	if (ret) {
1737 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1738 		return ret;
1739 	}
1740 
1741 	if (rproc->state == RPROC_DELETED) {
1742 		ret = -ENODEV;
1743 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1744 		goto unlock_mutex;
1745 	}
1746 
1747 	/* skip the boot process if rproc is already powered up */
1748 	if (atomic_inc_return(&rproc->power) > 1) {
1749 		ret = 0;
1750 		goto unlock_mutex;
1751 	}
1752 
1753 	dev_info(dev, "powering up %s\n", rproc->name);
1754 
1755 	/* load firmware */
1756 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1757 	if (ret < 0) {
1758 		dev_err(dev, "request_firmware failed: %d\n", ret);
1759 		goto downref_rproc;
1760 	}
1761 
1762 	ret = rproc_fw_boot(rproc, firmware_p);
1763 
1764 	release_firmware(firmware_p);
1765 
1766 downref_rproc:
1767 	if (ret)
1768 		atomic_dec(&rproc->power);
1769 unlock_mutex:
1770 	mutex_unlock(&rproc->lock);
1771 	return ret;
1772 }
1773 EXPORT_SYMBOL(rproc_boot);
1774 
1775 /**
1776  * rproc_shutdown() - power off the remote processor
1777  * @rproc: the remote processor
1778  *
1779  * Power off a remote processor (previously booted with rproc_boot()).
1780  *
1781  * In case @rproc is still being used by an additional user(s), then
1782  * this function will just decrement the power refcount and exit,
1783  * without really powering off the device.
1784  *
1785  * Every call to rproc_boot() must (eventually) be accompanied by a call
1786  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1787  *
1788  * Notes:
1789  * - we're not decrementing the rproc's refcount, only the power refcount.
1790  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1791  *   returns, and users can still use it with a subsequent rproc_boot(), if
1792  *   needed.
1793  */
1794 void rproc_shutdown(struct rproc *rproc)
1795 {
1796 	struct device *dev = &rproc->dev;
1797 	int ret;
1798 
1799 	ret = mutex_lock_interruptible(&rproc->lock);
1800 	if (ret) {
1801 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1802 		return;
1803 	}
1804 
1805 	/* if the remote proc is still needed, bail out */
1806 	if (!atomic_dec_and_test(&rproc->power))
1807 		goto out;
1808 
1809 	ret = rproc_stop(rproc, false);
1810 	if (ret) {
1811 		atomic_inc(&rproc->power);
1812 		goto out;
1813 	}
1814 
1815 	/* clean up all acquired resources */
1816 	rproc_resource_cleanup(rproc);
1817 
1818 	rproc_disable_iommu(rproc);
1819 
1820 	/* Free the copy of the resource table */
1821 	kfree(rproc->cached_table);
1822 	rproc->cached_table = NULL;
1823 	rproc->table_ptr = NULL;
1824 out:
1825 	mutex_unlock(&rproc->lock);
1826 }
1827 EXPORT_SYMBOL(rproc_shutdown);
1828 
1829 /**
1830  * rproc_get_by_phandle() - find a remote processor by phandle
1831  * @phandle: phandle to the rproc
1832  *
1833  * Finds an rproc handle using the remote processor's phandle, and then
1834  * return a handle to the rproc.
1835  *
1836  * This function increments the remote processor's refcount, so always
1837  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1838  *
1839  * Returns the rproc handle on success, and NULL on failure.
1840  */
1841 #ifdef CONFIG_OF
1842 struct rproc *rproc_get_by_phandle(phandle phandle)
1843 {
1844 	struct rproc *rproc = NULL, *r;
1845 	struct device_node *np;
1846 
1847 	np = of_find_node_by_phandle(phandle);
1848 	if (!np)
1849 		return NULL;
1850 
1851 	mutex_lock(&rproc_list_mutex);
1852 	list_for_each_entry(r, &rproc_list, node) {
1853 		if (r->dev.parent && r->dev.parent->of_node == np) {
1854 			/* prevent underlying implementation from being removed */
1855 			if (!try_module_get(r->dev.parent->driver->owner)) {
1856 				dev_err(&r->dev, "can't get owner\n");
1857 				break;
1858 			}
1859 
1860 			rproc = r;
1861 			get_device(&rproc->dev);
1862 			break;
1863 		}
1864 	}
1865 	mutex_unlock(&rproc_list_mutex);
1866 
1867 	of_node_put(np);
1868 
1869 	return rproc;
1870 }
1871 #else
1872 struct rproc *rproc_get_by_phandle(phandle phandle)
1873 {
1874 	return NULL;
1875 }
1876 #endif
1877 EXPORT_SYMBOL(rproc_get_by_phandle);
1878 
1879 /**
1880  * rproc_add() - register a remote processor
1881  * @rproc: the remote processor handle to register
1882  *
1883  * Registers @rproc with the remoteproc framework, after it has been
1884  * allocated with rproc_alloc().
1885  *
1886  * This is called by the platform-specific rproc implementation, whenever
1887  * a new remote processor device is probed.
1888  *
1889  * Returns 0 on success and an appropriate error code otherwise.
1890  *
1891  * Note: this function initiates an asynchronous firmware loading
1892  * context, which will look for virtio devices supported by the rproc's
1893  * firmware.
1894  *
1895  * If found, those virtio devices will be created and added, so as a result
1896  * of registering this remote processor, additional virtio drivers might be
1897  * probed.
1898  */
1899 int rproc_add(struct rproc *rproc)
1900 {
1901 	struct device *dev = &rproc->dev;
1902 	int ret;
1903 
1904 	ret = device_add(dev);
1905 	if (ret < 0)
1906 		return ret;
1907 
1908 	dev_info(dev, "%s is available\n", rproc->name);
1909 
1910 	/* create debugfs entries */
1911 	rproc_create_debug_dir(rproc);
1912 
1913 	/* if rproc is marked always-on, request it to boot */
1914 	if (rproc->auto_boot) {
1915 		ret = rproc_trigger_auto_boot(rproc);
1916 		if (ret < 0)
1917 			return ret;
1918 	}
1919 
1920 	/* expose to rproc_get_by_phandle users */
1921 	mutex_lock(&rproc_list_mutex);
1922 	list_add(&rproc->node, &rproc_list);
1923 	mutex_unlock(&rproc_list_mutex);
1924 
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL(rproc_add);
1928 
1929 /**
1930  * rproc_type_release() - release a remote processor instance
1931  * @dev: the rproc's device
1932  *
1933  * This function should _never_ be called directly.
1934  *
1935  * It will be called by the driver core when no one holds a valid pointer
1936  * to @dev anymore.
1937  */
1938 static void rproc_type_release(struct device *dev)
1939 {
1940 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1941 
1942 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1943 
1944 	idr_destroy(&rproc->notifyids);
1945 
1946 	if (rproc->index >= 0)
1947 		ida_simple_remove(&rproc_dev_index, rproc->index);
1948 
1949 	kfree(rproc->firmware);
1950 	kfree(rproc->ops);
1951 	kfree(rproc);
1952 }
1953 
1954 static const struct device_type rproc_type = {
1955 	.name		= "remoteproc",
1956 	.release	= rproc_type_release,
1957 };
1958 
1959 /**
1960  * rproc_alloc() - allocate a remote processor handle
1961  * @dev: the underlying device
1962  * @name: name of this remote processor
1963  * @ops: platform-specific handlers (mainly start/stop)
1964  * @firmware: name of firmware file to load, can be NULL
1965  * @len: length of private data needed by the rproc driver (in bytes)
1966  *
1967  * Allocates a new remote processor handle, but does not register
1968  * it yet. if @firmware is NULL, a default name is used.
1969  *
1970  * This function should be used by rproc implementations during initialization
1971  * of the remote processor.
1972  *
1973  * After creating an rproc handle using this function, and when ready,
1974  * implementations should then call rproc_add() to complete
1975  * the registration of the remote processor.
1976  *
1977  * On success the new rproc is returned, and on failure, NULL.
1978  *
1979  * Note: _never_ directly deallocate @rproc, even if it was not registered
1980  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1981  */
1982 struct rproc *rproc_alloc(struct device *dev, const char *name,
1983 			  const struct rproc_ops *ops,
1984 			  const char *firmware, int len)
1985 {
1986 	struct rproc *rproc;
1987 	char *p, *template = "rproc-%s-fw";
1988 	int name_len;
1989 
1990 	if (!dev || !name || !ops)
1991 		return NULL;
1992 
1993 	if (!firmware) {
1994 		/*
1995 		 * If the caller didn't pass in a firmware name then
1996 		 * construct a default name.
1997 		 */
1998 		name_len = strlen(name) + strlen(template) - 2 + 1;
1999 		p = kmalloc(name_len, GFP_KERNEL);
2000 		if (!p)
2001 			return NULL;
2002 		snprintf(p, name_len, template, name);
2003 	} else {
2004 		p = kstrdup(firmware, GFP_KERNEL);
2005 		if (!p)
2006 			return NULL;
2007 	}
2008 
2009 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2010 	if (!rproc) {
2011 		kfree(p);
2012 		return NULL;
2013 	}
2014 
2015 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2016 	if (!rproc->ops) {
2017 		kfree(p);
2018 		kfree(rproc);
2019 		return NULL;
2020 	}
2021 
2022 	rproc->firmware = p;
2023 	rproc->name = name;
2024 	rproc->priv = &rproc[1];
2025 	rproc->auto_boot = true;
2026 
2027 	device_initialize(&rproc->dev);
2028 	rproc->dev.parent = dev;
2029 	rproc->dev.type = &rproc_type;
2030 	rproc->dev.class = &rproc_class;
2031 	rproc->dev.driver_data = rproc;
2032 
2033 	/* Assign a unique device index and name */
2034 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2035 	if (rproc->index < 0) {
2036 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2037 		put_device(&rproc->dev);
2038 		return NULL;
2039 	}
2040 
2041 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2042 
2043 	atomic_set(&rproc->power, 0);
2044 
2045 	/* Default to ELF loader if no load function is specified */
2046 	if (!rproc->ops->load) {
2047 		rproc->ops->load = rproc_elf_load_segments;
2048 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2049 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2050 		rproc->ops->sanity_check = rproc_elf_sanity_check;
2051 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2052 	}
2053 
2054 	mutex_init(&rproc->lock);
2055 
2056 	idr_init(&rproc->notifyids);
2057 
2058 	INIT_LIST_HEAD(&rproc->carveouts);
2059 	INIT_LIST_HEAD(&rproc->mappings);
2060 	INIT_LIST_HEAD(&rproc->traces);
2061 	INIT_LIST_HEAD(&rproc->rvdevs);
2062 	INIT_LIST_HEAD(&rproc->subdevs);
2063 	INIT_LIST_HEAD(&rproc->dump_segments);
2064 
2065 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2066 
2067 	rproc->state = RPROC_OFFLINE;
2068 
2069 	return rproc;
2070 }
2071 EXPORT_SYMBOL(rproc_alloc);
2072 
2073 /**
2074  * rproc_free() - unroll rproc_alloc()
2075  * @rproc: the remote processor handle
2076  *
2077  * This function decrements the rproc dev refcount.
2078  *
2079  * If no one holds any reference to rproc anymore, then its refcount would
2080  * now drop to zero, and it would be freed.
2081  */
2082 void rproc_free(struct rproc *rproc)
2083 {
2084 	put_device(&rproc->dev);
2085 }
2086 EXPORT_SYMBOL(rproc_free);
2087 
2088 /**
2089  * rproc_put() - release rproc reference
2090  * @rproc: the remote processor handle
2091  *
2092  * This function decrements the rproc dev refcount.
2093  *
2094  * If no one holds any reference to rproc anymore, then its refcount would
2095  * now drop to zero, and it would be freed.
2096  */
2097 void rproc_put(struct rproc *rproc)
2098 {
2099 	module_put(rproc->dev.parent->driver->owner);
2100 	put_device(&rproc->dev);
2101 }
2102 EXPORT_SYMBOL(rproc_put);
2103 
2104 /**
2105  * rproc_del() - unregister a remote processor
2106  * @rproc: rproc handle to unregister
2107  *
2108  * This function should be called when the platform specific rproc
2109  * implementation decides to remove the rproc device. it should
2110  * _only_ be called if a previous invocation of rproc_add()
2111  * has completed successfully.
2112  *
2113  * After rproc_del() returns, @rproc isn't freed yet, because
2114  * of the outstanding reference created by rproc_alloc. To decrement that
2115  * one last refcount, one still needs to call rproc_free().
2116  *
2117  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2118  */
2119 int rproc_del(struct rproc *rproc)
2120 {
2121 	if (!rproc)
2122 		return -EINVAL;
2123 
2124 	/* if rproc is marked always-on, rproc_add() booted it */
2125 	/* TODO: make sure this works with rproc->power > 1 */
2126 	if (rproc->auto_boot)
2127 		rproc_shutdown(rproc);
2128 
2129 	mutex_lock(&rproc->lock);
2130 	rproc->state = RPROC_DELETED;
2131 	mutex_unlock(&rproc->lock);
2132 
2133 	rproc_delete_debug_dir(rproc);
2134 
2135 	/* the rproc is downref'ed as soon as it's removed from the klist */
2136 	mutex_lock(&rproc_list_mutex);
2137 	list_del(&rproc->node);
2138 	mutex_unlock(&rproc_list_mutex);
2139 
2140 	device_del(&rproc->dev);
2141 
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL(rproc_del);
2145 
2146 /**
2147  * rproc_add_subdev() - add a subdevice to a remoteproc
2148  * @rproc: rproc handle to add the subdevice to
2149  * @subdev: subdev handle to register
2150  *
2151  * Caller is responsible for populating optional subdevice function pointers.
2152  */
2153 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2154 {
2155 	list_add_tail(&subdev->node, &rproc->subdevs);
2156 }
2157 EXPORT_SYMBOL(rproc_add_subdev);
2158 
2159 /**
2160  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2161  * @rproc: rproc handle to remove the subdevice from
2162  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2163  */
2164 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2165 {
2166 	list_del(&subdev->node);
2167 }
2168 EXPORT_SYMBOL(rproc_remove_subdev);
2169 
2170 /**
2171  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2172  * @dev:	child device to find ancestor of
2173  *
2174  * Returns the ancestor rproc instance, or NULL if not found.
2175  */
2176 struct rproc *rproc_get_by_child(struct device *dev)
2177 {
2178 	for (dev = dev->parent; dev; dev = dev->parent) {
2179 		if (dev->type == &rproc_type)
2180 			return dev->driver_data;
2181 	}
2182 
2183 	return NULL;
2184 }
2185 EXPORT_SYMBOL(rproc_get_by_child);
2186 
2187 /**
2188  * rproc_report_crash() - rproc crash reporter function
2189  * @rproc: remote processor
2190  * @type: crash type
2191  *
2192  * This function must be called every time a crash is detected by the low-level
2193  * drivers implementing a specific remoteproc. This should not be called from a
2194  * non-remoteproc driver.
2195  *
2196  * This function can be called from atomic/interrupt context.
2197  */
2198 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2199 {
2200 	if (!rproc) {
2201 		pr_err("NULL rproc pointer\n");
2202 		return;
2203 	}
2204 
2205 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2206 		rproc->name, rproc_crash_to_string(type));
2207 
2208 	/* create a new task to handle the error */
2209 	schedule_work(&rproc->crash_handler);
2210 }
2211 EXPORT_SYMBOL(rproc_report_crash);
2212 
2213 static int __init remoteproc_init(void)
2214 {
2215 	rproc_init_sysfs();
2216 	rproc_init_debugfs();
2217 
2218 	return 0;
2219 }
2220 module_init(remoteproc_init);
2221 
2222 static void __exit remoteproc_exit(void)
2223 {
2224 	ida_destroy(&rproc_dev_index);
2225 
2226 	rproc_exit_debugfs();
2227 	rproc_exit_sysfs();
2228 }
2229 module_exit(remoteproc_exit);
2230 
2231 MODULE_LICENSE("GPL v2");
2232 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2233