1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/devcoredump.h> 37 #include <linux/remoteproc.h> 38 #include <linux/iommu.h> 39 #include <linux/idr.h> 40 #include <linux/elf.h> 41 #include <linux/crc32.h> 42 #include <linux/virtio_ids.h> 43 #include <linux/virtio_ring.h> 44 #include <asm/byteorder.h> 45 46 #include "remoteproc_internal.h" 47 48 static DEFINE_MUTEX(rproc_list_mutex); 49 static LIST_HEAD(rproc_list); 50 51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 52 struct resource_table *table, int len); 53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 54 void *, int offset, int avail); 55 56 static int rproc_alloc_carveout(struct rproc *rproc, 57 struct rproc_mem_entry *mem); 58 static int rproc_release_carveout(struct rproc *rproc, 59 struct rproc_mem_entry *mem); 60 61 /* Unique indices for remoteproc devices */ 62 static DEFINE_IDA(rproc_dev_index); 63 64 static const char * const rproc_crash_names[] = { 65 [RPROC_MMUFAULT] = "mmufault", 66 [RPROC_WATCHDOG] = "watchdog", 67 [RPROC_FATAL_ERROR] = "fatal error", 68 }; 69 70 /* translate rproc_crash_type to string */ 71 static const char *rproc_crash_to_string(enum rproc_crash_type type) 72 { 73 if (type < ARRAY_SIZE(rproc_crash_names)) 74 return rproc_crash_names[type]; 75 return "unknown"; 76 } 77 78 /* 79 * This is the IOMMU fault handler we register with the IOMMU API 80 * (when relevant; not all remote processors access memory through 81 * an IOMMU). 82 * 83 * IOMMU core will invoke this handler whenever the remote processor 84 * will try to access an unmapped device address. 85 */ 86 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 87 unsigned long iova, int flags, void *token) 88 { 89 struct rproc *rproc = token; 90 91 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 92 93 rproc_report_crash(rproc, RPROC_MMUFAULT); 94 95 /* 96 * Let the iommu core know we're not really handling this fault; 97 * we just used it as a recovery trigger. 98 */ 99 return -ENOSYS; 100 } 101 102 static int rproc_enable_iommu(struct rproc *rproc) 103 { 104 struct iommu_domain *domain; 105 struct device *dev = rproc->dev.parent; 106 int ret; 107 108 if (!rproc->has_iommu) { 109 dev_dbg(dev, "iommu not present\n"); 110 return 0; 111 } 112 113 domain = iommu_domain_alloc(dev->bus); 114 if (!domain) { 115 dev_err(dev, "can't alloc iommu domain\n"); 116 return -ENOMEM; 117 } 118 119 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 120 121 ret = iommu_attach_device(domain, dev); 122 if (ret) { 123 dev_err(dev, "can't attach iommu device: %d\n", ret); 124 goto free_domain; 125 } 126 127 rproc->domain = domain; 128 129 return 0; 130 131 free_domain: 132 iommu_domain_free(domain); 133 return ret; 134 } 135 136 static void rproc_disable_iommu(struct rproc *rproc) 137 { 138 struct iommu_domain *domain = rproc->domain; 139 struct device *dev = rproc->dev.parent; 140 141 if (!domain) 142 return; 143 144 iommu_detach_device(domain, dev); 145 iommu_domain_free(domain); 146 } 147 148 static phys_addr_t rproc_va_to_pa(void *cpu_addr) 149 { 150 /* 151 * Return physical address according to virtual address location 152 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 153 * - in kernel: if region allocated in generic dma memory pool 154 */ 155 if (is_vmalloc_addr(cpu_addr)) { 156 return page_to_phys(vmalloc_to_page(cpu_addr)) + 157 offset_in_page(cpu_addr); 158 } 159 160 WARN_ON(!virt_addr_valid(cpu_addr)); 161 return virt_to_phys(cpu_addr); 162 } 163 164 /** 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 166 * @rproc: handle of a remote processor 167 * @da: remoteproc device address to translate 168 * @len: length of the memory region @da is pointing to 169 * 170 * Some remote processors will ask us to allocate them physically contiguous 171 * memory regions (which we call "carveouts"), and map them to specific 172 * device addresses (which are hardcoded in the firmware). They may also have 173 * dedicated memory regions internal to the processors, and use them either 174 * exclusively or alongside carveouts. 175 * 176 * They may then ask us to copy objects into specific device addresses (e.g. 177 * code/data sections) or expose us certain symbols in other device address 178 * (e.g. their trace buffer). 179 * 180 * This function is a helper function with which we can go over the allocated 181 * carveouts and translate specific device addresses to kernel virtual addresses 182 * so we can access the referenced memory. This function also allows to perform 183 * translations on the internal remoteproc memory regions through a platform 184 * implementation specific da_to_va ops, if present. 185 * 186 * The function returns a valid kernel address on success or NULL on failure. 187 * 188 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 189 * but only on kernel direct mapped RAM memory. Instead, we're just using 190 * here the output of the DMA API for the carveouts, which should be more 191 * correct. 192 */ 193 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 194 { 195 struct rproc_mem_entry *carveout; 196 void *ptr = NULL; 197 198 if (rproc->ops->da_to_va) { 199 ptr = rproc->ops->da_to_va(rproc, da, len); 200 if (ptr) 201 goto out; 202 } 203 204 list_for_each_entry(carveout, &rproc->carveouts, node) { 205 int offset = da - carveout->da; 206 207 /* try next carveout if da is too small */ 208 if (offset < 0) 209 continue; 210 211 /* try next carveout if da is too large */ 212 if (offset + len > carveout->len) 213 continue; 214 215 ptr = carveout->va + offset; 216 217 break; 218 } 219 220 out: 221 return ptr; 222 } 223 EXPORT_SYMBOL(rproc_da_to_va); 224 225 /** 226 * rproc_find_carveout_by_name() - lookup the carveout region by a name 227 * @rproc: handle of a remote processor 228 * @name,..: carveout name to find (standard printf format) 229 * 230 * Platform driver has the capability to register some pre-allacoted carveout 231 * (physically contiguous memory regions) before rproc firmware loading and 232 * associated resource table analysis. These regions may be dedicated memory 233 * regions internal to the coprocessor or specified DDR region with specific 234 * attributes 235 * 236 * This function is a helper function with which we can go over the 237 * allocated carveouts and return associated region characteristics like 238 * coprocessor address, length or processor virtual address. 239 * 240 * Return: a valid pointer on carveout entry on success or NULL on failure. 241 */ 242 struct rproc_mem_entry * 243 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 244 { 245 va_list args; 246 char _name[32]; 247 struct rproc_mem_entry *carveout, *mem = NULL; 248 249 if (!name) 250 return NULL; 251 252 va_start(args, name); 253 vsnprintf(_name, sizeof(_name), name, args); 254 va_end(args); 255 256 list_for_each_entry(carveout, &rproc->carveouts, node) { 257 /* Compare carveout and requested names */ 258 if (!strcmp(carveout->name, _name)) { 259 mem = carveout; 260 break; 261 } 262 } 263 264 return mem; 265 } 266 267 /** 268 * rproc_check_carveout_da() - Check specified carveout da configuration 269 * @rproc: handle of a remote processor 270 * @mem: pointer on carveout to check 271 * @da: area device address 272 * @len: associated area size 273 * 274 * This function is a helper function to verify requested device area (couple 275 * da, len) is part of specified carevout. 276 * 277 * Return: 0 if carveout match request else -ENOMEM 278 */ 279 int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem, 280 u32 da, u32 len) 281 { 282 struct device *dev = &rproc->dev; 283 int delta = 0; 284 285 /* Check requested resource length */ 286 if (len > mem->len) { 287 dev_err(dev, "Registered carveout doesn't fit len request\n"); 288 return -ENOMEM; 289 } 290 291 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 292 /* Update existing carveout da */ 293 mem->da = da; 294 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 295 delta = da - mem->da; 296 297 /* Check requested resource belongs to registered carveout */ 298 if (delta < 0) { 299 dev_err(dev, 300 "Registered carveout doesn't fit da request\n"); 301 return -ENOMEM; 302 } 303 304 if (delta + len > mem->len) { 305 dev_err(dev, 306 "Registered carveout doesn't fit len request\n"); 307 return -ENOMEM; 308 } 309 } 310 311 return 0; 312 } 313 314 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 315 { 316 struct rproc *rproc = rvdev->rproc; 317 struct device *dev = &rproc->dev; 318 struct rproc_vring *rvring = &rvdev->vring[i]; 319 struct fw_rsc_vdev *rsc; 320 int ret, size, notifyid; 321 struct rproc_mem_entry *mem; 322 323 /* actual size of vring (in bytes) */ 324 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 325 326 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 327 328 /* Search for pre-registered carveout */ 329 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 330 i); 331 if (mem) { 332 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 333 return -ENOMEM; 334 } else { 335 /* Register carveout in in list */ 336 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da, 337 rproc_alloc_carveout, 338 rproc_release_carveout, 339 "vdev%dvring%d", 340 rvdev->index, i); 341 if (!mem) { 342 dev_err(dev, "Can't allocate memory entry structure\n"); 343 return -ENOMEM; 344 } 345 346 rproc_add_carveout(rproc, mem); 347 } 348 349 /* 350 * Assign an rproc-wide unique index for this vring 351 * TODO: assign a notifyid for rvdev updates as well 352 * TODO: support predefined notifyids (via resource table) 353 */ 354 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 355 if (ret < 0) { 356 dev_err(dev, "idr_alloc failed: %d\n", ret); 357 return ret; 358 } 359 notifyid = ret; 360 361 /* Potentially bump max_notifyid */ 362 if (notifyid > rproc->max_notifyid) 363 rproc->max_notifyid = notifyid; 364 365 rvring->notifyid = notifyid; 366 367 /* Let the rproc know the notifyid of this vring.*/ 368 rsc->vring[i].notifyid = notifyid; 369 return 0; 370 } 371 372 static int 373 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 374 { 375 struct rproc *rproc = rvdev->rproc; 376 struct device *dev = &rproc->dev; 377 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 378 struct rproc_vring *rvring = &rvdev->vring[i]; 379 380 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 381 i, vring->da, vring->num, vring->align); 382 383 /* verify queue size and vring alignment are sane */ 384 if (!vring->num || !vring->align) { 385 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 386 vring->num, vring->align); 387 return -EINVAL; 388 } 389 390 rvring->len = vring->num; 391 rvring->align = vring->align; 392 rvring->rvdev = rvdev; 393 394 return 0; 395 } 396 397 void rproc_free_vring(struct rproc_vring *rvring) 398 { 399 struct rproc *rproc = rvring->rvdev->rproc; 400 int idx = rvring->rvdev->vring - rvring; 401 struct fw_rsc_vdev *rsc; 402 403 idr_remove(&rproc->notifyids, rvring->notifyid); 404 405 /* reset resource entry info */ 406 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 407 rsc->vring[idx].da = 0; 408 rsc->vring[idx].notifyid = -1; 409 } 410 411 static int rproc_vdev_do_start(struct rproc_subdev *subdev) 412 { 413 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 414 415 return rproc_add_virtio_dev(rvdev, rvdev->id); 416 } 417 418 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 419 { 420 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 421 422 rproc_remove_virtio_dev(rvdev); 423 } 424 425 /** 426 * rproc_handle_vdev() - handle a vdev fw resource 427 * @rproc: the remote processor 428 * @rsc: the vring resource descriptor 429 * @avail: size of available data (for sanity checking the image) 430 * 431 * This resource entry requests the host to statically register a virtio 432 * device (vdev), and setup everything needed to support it. It contains 433 * everything needed to make it possible: the virtio device id, virtio 434 * device features, vrings information, virtio config space, etc... 435 * 436 * Before registering the vdev, the vrings are allocated from non-cacheable 437 * physically contiguous memory. Currently we only support two vrings per 438 * remote processor (temporary limitation). We might also want to consider 439 * doing the vring allocation only later when ->find_vqs() is invoked, and 440 * then release them upon ->del_vqs(). 441 * 442 * Note: @da is currently not really handled correctly: we dynamically 443 * allocate it using the DMA API, ignoring requested hard coded addresses, 444 * and we don't take care of any required IOMMU programming. This is all 445 * going to be taken care of when the generic iommu-based DMA API will be 446 * merged. Meanwhile, statically-addressed iommu-based firmware images should 447 * use RSC_DEVMEM resource entries to map their required @da to the physical 448 * address of their base CMA region (ouch, hacky!). 449 * 450 * Returns 0 on success, or an appropriate error code otherwise 451 */ 452 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 453 int offset, int avail) 454 { 455 struct device *dev = &rproc->dev; 456 struct rproc_vdev *rvdev; 457 int i, ret; 458 459 /* make sure resource isn't truncated */ 460 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 461 + rsc->config_len > avail) { 462 dev_err(dev, "vdev rsc is truncated\n"); 463 return -EINVAL; 464 } 465 466 /* make sure reserved bytes are zeroes */ 467 if (rsc->reserved[0] || rsc->reserved[1]) { 468 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 469 return -EINVAL; 470 } 471 472 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 473 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 474 475 /* we currently support only two vrings per rvdev */ 476 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 477 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 478 return -EINVAL; 479 } 480 481 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 482 if (!rvdev) 483 return -ENOMEM; 484 485 kref_init(&rvdev->refcount); 486 487 rvdev->id = rsc->id; 488 rvdev->rproc = rproc; 489 rvdev->index = rproc->nb_vdev++; 490 491 /* parse the vrings */ 492 for (i = 0; i < rsc->num_of_vrings; i++) { 493 ret = rproc_parse_vring(rvdev, rsc, i); 494 if (ret) 495 goto free_rvdev; 496 } 497 498 /* remember the resource offset*/ 499 rvdev->rsc_offset = offset; 500 501 /* allocate the vring resources */ 502 for (i = 0; i < rsc->num_of_vrings; i++) { 503 ret = rproc_alloc_vring(rvdev, i); 504 if (ret) 505 goto unwind_vring_allocations; 506 } 507 508 list_add_tail(&rvdev->node, &rproc->rvdevs); 509 510 rvdev->subdev.start = rproc_vdev_do_start; 511 rvdev->subdev.stop = rproc_vdev_do_stop; 512 513 rproc_add_subdev(rproc, &rvdev->subdev); 514 515 return 0; 516 517 unwind_vring_allocations: 518 for (i--; i >= 0; i--) 519 rproc_free_vring(&rvdev->vring[i]); 520 free_rvdev: 521 kfree(rvdev); 522 return ret; 523 } 524 525 void rproc_vdev_release(struct kref *ref) 526 { 527 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 528 struct rproc_vring *rvring; 529 struct rproc *rproc = rvdev->rproc; 530 int id; 531 532 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 533 rvring = &rvdev->vring[id]; 534 rproc_free_vring(rvring); 535 } 536 537 rproc_remove_subdev(rproc, &rvdev->subdev); 538 list_del(&rvdev->node); 539 kfree(rvdev); 540 } 541 542 /** 543 * rproc_handle_trace() - handle a shared trace buffer resource 544 * @rproc: the remote processor 545 * @rsc: the trace resource descriptor 546 * @avail: size of available data (for sanity checking the image) 547 * 548 * In case the remote processor dumps trace logs into memory, 549 * export it via debugfs. 550 * 551 * Currently, the 'da' member of @rsc should contain the device address 552 * where the remote processor is dumping the traces. Later we could also 553 * support dynamically allocating this address using the generic 554 * DMA API (but currently there isn't a use case for that). 555 * 556 * Returns 0 on success, or an appropriate error code otherwise 557 */ 558 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 559 int offset, int avail) 560 { 561 struct rproc_mem_entry *trace; 562 struct device *dev = &rproc->dev; 563 void *ptr; 564 char name[15]; 565 566 if (sizeof(*rsc) > avail) { 567 dev_err(dev, "trace rsc is truncated\n"); 568 return -EINVAL; 569 } 570 571 /* make sure reserved bytes are zeroes */ 572 if (rsc->reserved) { 573 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 574 return -EINVAL; 575 } 576 577 /* what's the kernel address of this resource ? */ 578 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 579 if (!ptr) { 580 dev_err(dev, "erroneous trace resource entry\n"); 581 return -EINVAL; 582 } 583 584 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 585 if (!trace) 586 return -ENOMEM; 587 588 /* set the trace buffer dma properties */ 589 trace->len = rsc->len; 590 trace->va = ptr; 591 592 /* make sure snprintf always null terminates, even if truncating */ 593 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 594 595 /* create the debugfs entry */ 596 trace->priv = rproc_create_trace_file(name, rproc, trace); 597 if (!trace->priv) { 598 trace->va = NULL; 599 kfree(trace); 600 return -EINVAL; 601 } 602 603 list_add_tail(&trace->node, &rproc->traces); 604 605 rproc->num_traces++; 606 607 dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n", 608 name, ptr, rsc->da, rsc->len); 609 610 return 0; 611 } 612 613 /** 614 * rproc_handle_devmem() - handle devmem resource entry 615 * @rproc: remote processor handle 616 * @rsc: the devmem resource entry 617 * @avail: size of available data (for sanity checking the image) 618 * 619 * Remote processors commonly need to access certain on-chip peripherals. 620 * 621 * Some of these remote processors access memory via an iommu device, 622 * and might require us to configure their iommu before they can access 623 * the on-chip peripherals they need. 624 * 625 * This resource entry is a request to map such a peripheral device. 626 * 627 * These devmem entries will contain the physical address of the device in 628 * the 'pa' member. If a specific device address is expected, then 'da' will 629 * contain it (currently this is the only use case supported). 'len' will 630 * contain the size of the physical region we need to map. 631 * 632 * Currently we just "trust" those devmem entries to contain valid physical 633 * addresses, but this is going to change: we want the implementations to 634 * tell us ranges of physical addresses the firmware is allowed to request, 635 * and not allow firmwares to request access to physical addresses that 636 * are outside those ranges. 637 */ 638 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 639 int offset, int avail) 640 { 641 struct rproc_mem_entry *mapping; 642 struct device *dev = &rproc->dev; 643 int ret; 644 645 /* no point in handling this resource without a valid iommu domain */ 646 if (!rproc->domain) 647 return -EINVAL; 648 649 if (sizeof(*rsc) > avail) { 650 dev_err(dev, "devmem rsc is truncated\n"); 651 return -EINVAL; 652 } 653 654 /* make sure reserved bytes are zeroes */ 655 if (rsc->reserved) { 656 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 657 return -EINVAL; 658 } 659 660 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 661 if (!mapping) 662 return -ENOMEM; 663 664 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 665 if (ret) { 666 dev_err(dev, "failed to map devmem: %d\n", ret); 667 goto out; 668 } 669 670 /* 671 * We'll need this info later when we'll want to unmap everything 672 * (e.g. on shutdown). 673 * 674 * We can't trust the remote processor not to change the resource 675 * table, so we must maintain this info independently. 676 */ 677 mapping->da = rsc->da; 678 mapping->len = rsc->len; 679 list_add_tail(&mapping->node, &rproc->mappings); 680 681 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 682 rsc->pa, rsc->da, rsc->len); 683 684 return 0; 685 686 out: 687 kfree(mapping); 688 return ret; 689 } 690 691 /** 692 * rproc_alloc_carveout() - allocated specified carveout 693 * @rproc: rproc handle 694 * @mem: the memory entry to allocate 695 * 696 * This function allocate specified memory entry @mem using 697 * dma_alloc_coherent() as default allocator 698 */ 699 static int rproc_alloc_carveout(struct rproc *rproc, 700 struct rproc_mem_entry *mem) 701 { 702 struct rproc_mem_entry *mapping = NULL; 703 struct device *dev = &rproc->dev; 704 dma_addr_t dma; 705 void *va; 706 int ret; 707 708 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 709 if (!va) { 710 dev_err(dev->parent, 711 "failed to allocate dma memory: len 0x%x\n", mem->len); 712 return -ENOMEM; 713 } 714 715 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n", 716 va, &dma, mem->len); 717 718 /* 719 * Ok, this is non-standard. 720 * 721 * Sometimes we can't rely on the generic iommu-based DMA API 722 * to dynamically allocate the device address and then set the IOMMU 723 * tables accordingly, because some remote processors might 724 * _require_ us to use hard coded device addresses that their 725 * firmware was compiled with. 726 * 727 * In this case, we must use the IOMMU API directly and map 728 * the memory to the device address as expected by the remote 729 * processor. 730 * 731 * Obviously such remote processor devices should not be configured 732 * to use the iommu-based DMA API: we expect 'dma' to contain the 733 * physical address in this case. 734 */ 735 736 if (mem->da != FW_RSC_ADDR_ANY) { 737 if (!rproc->domain) { 738 dev_err(dev->parent, 739 "Bad carveout rsc configuration\n"); 740 ret = -ENOMEM; 741 goto dma_free; 742 } 743 744 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 745 if (!mapping) { 746 ret = -ENOMEM; 747 goto dma_free; 748 } 749 750 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 751 mem->flags); 752 if (ret) { 753 dev_err(dev, "iommu_map failed: %d\n", ret); 754 goto free_mapping; 755 } 756 757 /* 758 * We'll need this info later when we'll want to unmap 759 * everything (e.g. on shutdown). 760 * 761 * We can't trust the remote processor not to change the 762 * resource table, so we must maintain this info independently. 763 */ 764 mapping->da = mem->da; 765 mapping->len = mem->len; 766 list_add_tail(&mapping->node, &rproc->mappings); 767 768 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 769 mem->da, &dma); 770 } else { 771 mem->da = (u32)dma; 772 } 773 774 mem->dma = (u32)dma; 775 mem->va = va; 776 777 return 0; 778 779 free_mapping: 780 kfree(mapping); 781 dma_free: 782 dma_free_coherent(dev->parent, mem->len, va, dma); 783 return ret; 784 } 785 786 /** 787 * rproc_release_carveout() - release acquired carveout 788 * @rproc: rproc handle 789 * @mem: the memory entry to release 790 * 791 * This function releases specified memory entry @mem allocated via 792 * rproc_alloc_carveout() function by @rproc. 793 */ 794 static int rproc_release_carveout(struct rproc *rproc, 795 struct rproc_mem_entry *mem) 796 { 797 struct device *dev = &rproc->dev; 798 799 /* clean up carveout allocations */ 800 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 801 return 0; 802 } 803 804 /** 805 * rproc_handle_carveout() - handle phys contig memory allocation requests 806 * @rproc: rproc handle 807 * @rsc: the resource entry 808 * @avail: size of available data (for image validation) 809 * 810 * This function will handle firmware requests for allocation of physically 811 * contiguous memory regions. 812 * 813 * These request entries should come first in the firmware's resource table, 814 * as other firmware entries might request placing other data objects inside 815 * these memory regions (e.g. data/code segments, trace resource entries, ...). 816 * 817 * Allocating memory this way helps utilizing the reserved physical memory 818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 820 * pressure is important; it may have a substantial impact on performance. 821 */ 822 static int rproc_handle_carveout(struct rproc *rproc, 823 struct fw_rsc_carveout *rsc, 824 int offset, int avail) 825 { 826 struct rproc_mem_entry *carveout; 827 struct device *dev = &rproc->dev; 828 829 if (sizeof(*rsc) > avail) { 830 dev_err(dev, "carveout rsc is truncated\n"); 831 return -EINVAL; 832 } 833 834 /* make sure reserved bytes are zeroes */ 835 if (rsc->reserved) { 836 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 837 return -EINVAL; 838 } 839 840 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 841 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 842 843 /* 844 * Check carveout rsc already part of a registered carveout, 845 * Search by name, then check the da and length 846 */ 847 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 848 849 if (carveout) { 850 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 851 dev_err(dev, 852 "Carveout already associated to resource table\n"); 853 return -ENOMEM; 854 } 855 856 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 857 return -ENOMEM; 858 859 /* Update memory carveout with resource table info */ 860 carveout->rsc_offset = offset; 861 carveout->flags = rsc->flags; 862 863 return 0; 864 } 865 866 /* Register carveout in in list */ 867 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da, 868 rproc_alloc_carveout, 869 rproc_release_carveout, rsc->name); 870 if (!carveout) { 871 dev_err(dev, "Can't allocate memory entry structure\n"); 872 return -ENOMEM; 873 } 874 875 carveout->flags = rsc->flags; 876 carveout->rsc_offset = offset; 877 rproc_add_carveout(rproc, carveout); 878 879 return 0; 880 } 881 882 /** 883 * rproc_add_carveout() - register an allocated carveout region 884 * @rproc: rproc handle 885 * @mem: memory entry to register 886 * 887 * This function registers specified memory entry in @rproc carveouts list. 888 * Specified carveout should have been allocated before registering. 889 */ 890 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 891 { 892 list_add_tail(&mem->node, &rproc->carveouts); 893 } 894 EXPORT_SYMBOL(rproc_add_carveout); 895 896 /** 897 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 898 * @dev: pointer on device struct 899 * @va: virtual address 900 * @dma: dma address 901 * @len: memory carveout length 902 * @da: device address 903 * @release: memory carveout function 904 * @name: carveout name 905 * 906 * This function allocates a rproc_mem_entry struct and fill it with parameters 907 * provided by client. 908 */ 909 struct rproc_mem_entry * 910 rproc_mem_entry_init(struct device *dev, 911 void *va, dma_addr_t dma, int len, u32 da, 912 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 913 int (*release)(struct rproc *, struct rproc_mem_entry *), 914 const char *name, ...) 915 { 916 struct rproc_mem_entry *mem; 917 va_list args; 918 919 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 920 if (!mem) 921 return mem; 922 923 mem->va = va; 924 mem->dma = dma; 925 mem->da = da; 926 mem->len = len; 927 mem->alloc = alloc; 928 mem->release = release; 929 mem->rsc_offset = FW_RSC_ADDR_ANY; 930 mem->of_resm_idx = -1; 931 932 va_start(args, name); 933 vsnprintf(mem->name, sizeof(mem->name), name, args); 934 va_end(args); 935 936 return mem; 937 } 938 EXPORT_SYMBOL(rproc_mem_entry_init); 939 940 /** 941 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 942 * from a reserved memory phandle 943 * @dev: pointer on device struct 944 * @of_resm_idx: reserved memory phandle index in "memory-region" 945 * @len: memory carveout length 946 * @da: device address 947 * @name: carveout name 948 * 949 * This function allocates a rproc_mem_entry struct and fill it with parameters 950 * provided by client. 951 */ 952 struct rproc_mem_entry * 953 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len, 954 u32 da, const char *name, ...) 955 { 956 struct rproc_mem_entry *mem; 957 va_list args; 958 959 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 960 if (!mem) 961 return mem; 962 963 mem->da = da; 964 mem->len = len; 965 mem->rsc_offset = FW_RSC_ADDR_ANY; 966 mem->of_resm_idx = of_resm_idx; 967 968 va_start(args, name); 969 vsnprintf(mem->name, sizeof(mem->name), name, args); 970 va_end(args); 971 972 return mem; 973 } 974 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 975 976 /** 977 * A lookup table for resource handlers. The indices are defined in 978 * enum fw_resource_type. 979 */ 980 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 981 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 982 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 983 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 984 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 985 }; 986 987 /* handle firmware resource entries before booting the remote processor */ 988 static int rproc_handle_resources(struct rproc *rproc, 989 rproc_handle_resource_t handlers[RSC_LAST]) 990 { 991 struct device *dev = &rproc->dev; 992 rproc_handle_resource_t handler; 993 int ret = 0, i; 994 995 if (!rproc->table_ptr) 996 return 0; 997 998 for (i = 0; i < rproc->table_ptr->num; i++) { 999 int offset = rproc->table_ptr->offset[i]; 1000 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1001 int avail = rproc->table_sz - offset - sizeof(*hdr); 1002 void *rsc = (void *)hdr + sizeof(*hdr); 1003 1004 /* make sure table isn't truncated */ 1005 if (avail < 0) { 1006 dev_err(dev, "rsc table is truncated\n"); 1007 return -EINVAL; 1008 } 1009 1010 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1011 1012 if (hdr->type >= RSC_LAST) { 1013 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1014 continue; 1015 } 1016 1017 handler = handlers[hdr->type]; 1018 if (!handler) 1019 continue; 1020 1021 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1022 if (ret) 1023 break; 1024 } 1025 1026 return ret; 1027 } 1028 1029 static int rproc_prepare_subdevices(struct rproc *rproc) 1030 { 1031 struct rproc_subdev *subdev; 1032 int ret; 1033 1034 list_for_each_entry(subdev, &rproc->subdevs, node) { 1035 if (subdev->prepare) { 1036 ret = subdev->prepare(subdev); 1037 if (ret) 1038 goto unroll_preparation; 1039 } 1040 } 1041 1042 return 0; 1043 1044 unroll_preparation: 1045 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1046 if (subdev->unprepare) 1047 subdev->unprepare(subdev); 1048 } 1049 1050 return ret; 1051 } 1052 1053 static int rproc_start_subdevices(struct rproc *rproc) 1054 { 1055 struct rproc_subdev *subdev; 1056 int ret; 1057 1058 list_for_each_entry(subdev, &rproc->subdevs, node) { 1059 if (subdev->start) { 1060 ret = subdev->start(subdev); 1061 if (ret) 1062 goto unroll_registration; 1063 } 1064 } 1065 1066 return 0; 1067 1068 unroll_registration: 1069 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1070 if (subdev->stop) 1071 subdev->stop(subdev, true); 1072 } 1073 1074 return ret; 1075 } 1076 1077 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1078 { 1079 struct rproc_subdev *subdev; 1080 1081 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1082 if (subdev->stop) 1083 subdev->stop(subdev, crashed); 1084 } 1085 } 1086 1087 static void rproc_unprepare_subdevices(struct rproc *rproc) 1088 { 1089 struct rproc_subdev *subdev; 1090 1091 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1092 if (subdev->unprepare) 1093 subdev->unprepare(subdev); 1094 } 1095 } 1096 1097 /** 1098 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1099 * in the list 1100 * @rproc: the remote processor handle 1101 * 1102 * This function parses registered carveout list, performs allocation 1103 * if alloc() ops registered and updates resource table information 1104 * if rsc_offset set. 1105 * 1106 * Return: 0 on success 1107 */ 1108 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1109 { 1110 struct rproc_mem_entry *entry, *tmp; 1111 struct fw_rsc_carveout *rsc; 1112 struct device *dev = &rproc->dev; 1113 int ret; 1114 1115 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1116 if (entry->alloc) { 1117 ret = entry->alloc(rproc, entry); 1118 if (ret) { 1119 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1120 entry->name, ret); 1121 return -ENOMEM; 1122 } 1123 } 1124 1125 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1126 /* update resource table */ 1127 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1128 1129 /* 1130 * Some remote processors might need to know the pa 1131 * even though they are behind an IOMMU. E.g., OMAP4's 1132 * remote M3 processor needs this so it can control 1133 * on-chip hardware accelerators that are not behind 1134 * the IOMMU, and therefor must know the pa. 1135 * 1136 * Generally we don't want to expose physical addresses 1137 * if we don't have to (remote processors are generally 1138 * _not_ trusted), so we might want to do this only for 1139 * remote processor that _must_ have this (e.g. OMAP4's 1140 * dual M3 subsystem). 1141 * 1142 * Non-IOMMU processors might also want to have this info. 1143 * In this case, the device address and the physical address 1144 * are the same. 1145 */ 1146 1147 /* Use va if defined else dma to generate pa */ 1148 if (entry->va) 1149 rsc->pa = (u32)rproc_va_to_pa(entry->va); 1150 else 1151 rsc->pa = (u32)entry->dma; 1152 1153 rsc->da = entry->da; 1154 rsc->len = entry->len; 1155 } 1156 } 1157 1158 return 0; 1159 } 1160 1161 /** 1162 * rproc_coredump_cleanup() - clean up dump_segments list 1163 * @rproc: the remote processor handle 1164 */ 1165 static void rproc_coredump_cleanup(struct rproc *rproc) 1166 { 1167 struct rproc_dump_segment *entry, *tmp; 1168 1169 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { 1170 list_del(&entry->node); 1171 kfree(entry); 1172 } 1173 } 1174 1175 /** 1176 * rproc_resource_cleanup() - clean up and free all acquired resources 1177 * @rproc: rproc handle 1178 * 1179 * This function will free all resources acquired for @rproc, and it 1180 * is called whenever @rproc either shuts down or fails to boot. 1181 */ 1182 static void rproc_resource_cleanup(struct rproc *rproc) 1183 { 1184 struct rproc_mem_entry *entry, *tmp; 1185 struct rproc_vdev *rvdev, *rvtmp; 1186 struct device *dev = &rproc->dev; 1187 1188 /* clean up debugfs trace entries */ 1189 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 1190 rproc_remove_trace_file(entry->priv); 1191 rproc->num_traces--; 1192 list_del(&entry->node); 1193 kfree(entry); 1194 } 1195 1196 /* clean up iommu mapping entries */ 1197 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1198 size_t unmapped; 1199 1200 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1201 if (unmapped != entry->len) { 1202 /* nothing much to do besides complaining */ 1203 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 1204 unmapped); 1205 } 1206 1207 list_del(&entry->node); 1208 kfree(entry); 1209 } 1210 1211 /* clean up carveout allocations */ 1212 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1213 if (entry->release) 1214 entry->release(rproc, entry); 1215 list_del(&entry->node); 1216 kfree(entry); 1217 } 1218 1219 /* clean up remote vdev entries */ 1220 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1221 kref_put(&rvdev->refcount, rproc_vdev_release); 1222 1223 rproc_coredump_cleanup(rproc); 1224 } 1225 1226 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1227 { 1228 struct resource_table *loaded_table; 1229 struct device *dev = &rproc->dev; 1230 int ret; 1231 1232 /* load the ELF segments to memory */ 1233 ret = rproc_load_segments(rproc, fw); 1234 if (ret) { 1235 dev_err(dev, "Failed to load program segments: %d\n", ret); 1236 return ret; 1237 } 1238 1239 /* 1240 * The starting device has been given the rproc->cached_table as the 1241 * resource table. The address of the vring along with the other 1242 * allocated resources (carveouts etc) is stored in cached_table. 1243 * In order to pass this information to the remote device we must copy 1244 * this information to device memory. We also update the table_ptr so 1245 * that any subsequent changes will be applied to the loaded version. 1246 */ 1247 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1248 if (loaded_table) { 1249 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1250 rproc->table_ptr = loaded_table; 1251 } 1252 1253 ret = rproc_prepare_subdevices(rproc); 1254 if (ret) { 1255 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1256 rproc->name, ret); 1257 goto reset_table_ptr; 1258 } 1259 1260 /* power up the remote processor */ 1261 ret = rproc->ops->start(rproc); 1262 if (ret) { 1263 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1264 goto unprepare_subdevices; 1265 } 1266 1267 /* Start any subdevices for the remote processor */ 1268 ret = rproc_start_subdevices(rproc); 1269 if (ret) { 1270 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1271 rproc->name, ret); 1272 goto stop_rproc; 1273 } 1274 1275 rproc->state = RPROC_RUNNING; 1276 1277 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1278 1279 return 0; 1280 1281 stop_rproc: 1282 rproc->ops->stop(rproc); 1283 unprepare_subdevices: 1284 rproc_unprepare_subdevices(rproc); 1285 reset_table_ptr: 1286 rproc->table_ptr = rproc->cached_table; 1287 1288 return ret; 1289 } 1290 1291 /* 1292 * take a firmware and boot a remote processor with it. 1293 */ 1294 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1295 { 1296 struct device *dev = &rproc->dev; 1297 const char *name = rproc->firmware; 1298 int ret; 1299 1300 ret = rproc_fw_sanity_check(rproc, fw); 1301 if (ret) 1302 return ret; 1303 1304 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1305 1306 /* 1307 * if enabling an IOMMU isn't relevant for this rproc, this is 1308 * just a nop 1309 */ 1310 ret = rproc_enable_iommu(rproc); 1311 if (ret) { 1312 dev_err(dev, "can't enable iommu: %d\n", ret); 1313 return ret; 1314 } 1315 1316 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1317 1318 /* Load resource table, core dump segment list etc from the firmware */ 1319 ret = rproc_parse_fw(rproc, fw); 1320 if (ret) 1321 goto disable_iommu; 1322 1323 /* reset max_notifyid */ 1324 rproc->max_notifyid = -1; 1325 1326 /* reset handled vdev */ 1327 rproc->nb_vdev = 0; 1328 1329 /* handle fw resources which are required to boot rproc */ 1330 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1331 if (ret) { 1332 dev_err(dev, "Failed to process resources: %d\n", ret); 1333 goto clean_up_resources; 1334 } 1335 1336 /* Allocate carveout resources associated to rproc */ 1337 ret = rproc_alloc_registered_carveouts(rproc); 1338 if (ret) { 1339 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1340 ret); 1341 goto clean_up_resources; 1342 } 1343 1344 ret = rproc_start(rproc, fw); 1345 if (ret) 1346 goto clean_up_resources; 1347 1348 return 0; 1349 1350 clean_up_resources: 1351 rproc_resource_cleanup(rproc); 1352 kfree(rproc->cached_table); 1353 rproc->cached_table = NULL; 1354 rproc->table_ptr = NULL; 1355 disable_iommu: 1356 rproc_disable_iommu(rproc); 1357 return ret; 1358 } 1359 1360 /* 1361 * take a firmware and boot it up. 1362 * 1363 * Note: this function is called asynchronously upon registration of the 1364 * remote processor (so we must wait until it completes before we try 1365 * to unregister the device. one other option is just to use kref here, 1366 * that might be cleaner). 1367 */ 1368 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1369 { 1370 struct rproc *rproc = context; 1371 1372 rproc_boot(rproc); 1373 1374 release_firmware(fw); 1375 } 1376 1377 static int rproc_trigger_auto_boot(struct rproc *rproc) 1378 { 1379 int ret; 1380 1381 /* 1382 * We're initiating an asynchronous firmware loading, so we can 1383 * be built-in kernel code, without hanging the boot process. 1384 */ 1385 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1386 rproc->firmware, &rproc->dev, GFP_KERNEL, 1387 rproc, rproc_auto_boot_callback); 1388 if (ret < 0) 1389 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1390 1391 return ret; 1392 } 1393 1394 static int rproc_stop(struct rproc *rproc, bool crashed) 1395 { 1396 struct device *dev = &rproc->dev; 1397 int ret; 1398 1399 /* Stop any subdevices for the remote processor */ 1400 rproc_stop_subdevices(rproc, crashed); 1401 1402 /* the installed resource table is no longer accessible */ 1403 rproc->table_ptr = rproc->cached_table; 1404 1405 /* power off the remote processor */ 1406 ret = rproc->ops->stop(rproc); 1407 if (ret) { 1408 dev_err(dev, "can't stop rproc: %d\n", ret); 1409 return ret; 1410 } 1411 1412 rproc_unprepare_subdevices(rproc); 1413 1414 rproc->state = RPROC_OFFLINE; 1415 1416 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1417 1418 return 0; 1419 } 1420 1421 /** 1422 * rproc_coredump_add_segment() - add segment of device memory to coredump 1423 * @rproc: handle of a remote processor 1424 * @da: device address 1425 * @size: size of segment 1426 * 1427 * Add device memory to the list of segments to be included in a coredump for 1428 * the remoteproc. 1429 * 1430 * Return: 0 on success, negative errno on error. 1431 */ 1432 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) 1433 { 1434 struct rproc_dump_segment *segment; 1435 1436 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1437 if (!segment) 1438 return -ENOMEM; 1439 1440 segment->da = da; 1441 segment->size = size; 1442 1443 list_add_tail(&segment->node, &rproc->dump_segments); 1444 1445 return 0; 1446 } 1447 EXPORT_SYMBOL(rproc_coredump_add_segment); 1448 1449 /** 1450 * rproc_coredump_add_custom_segment() - add custom coredump segment 1451 * @rproc: handle of a remote processor 1452 * @da: device address 1453 * @size: size of segment 1454 * @dumpfn: custom dump function called for each segment during coredump 1455 * @priv: private data 1456 * 1457 * Add device memory to the list of segments to be included in the coredump 1458 * and associate the segment with the given custom dump function and private 1459 * data. 1460 * 1461 * Return: 0 on success, negative errno on error. 1462 */ 1463 int rproc_coredump_add_custom_segment(struct rproc *rproc, 1464 dma_addr_t da, size_t size, 1465 void (*dumpfn)(struct rproc *rproc, 1466 struct rproc_dump_segment *segment, 1467 void *dest), 1468 void *priv) 1469 { 1470 struct rproc_dump_segment *segment; 1471 1472 segment = kzalloc(sizeof(*segment), GFP_KERNEL); 1473 if (!segment) 1474 return -ENOMEM; 1475 1476 segment->da = da; 1477 segment->size = size; 1478 segment->priv = priv; 1479 segment->dump = dumpfn; 1480 1481 list_add_tail(&segment->node, &rproc->dump_segments); 1482 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(rproc_coredump_add_custom_segment); 1486 1487 /** 1488 * rproc_coredump() - perform coredump 1489 * @rproc: rproc handle 1490 * 1491 * This function will generate an ELF header for the registered segments 1492 * and create a devcoredump device associated with rproc. 1493 */ 1494 static void rproc_coredump(struct rproc *rproc) 1495 { 1496 struct rproc_dump_segment *segment; 1497 struct elf32_phdr *phdr; 1498 struct elf32_hdr *ehdr; 1499 size_t data_size; 1500 size_t offset; 1501 void *data; 1502 void *ptr; 1503 int phnum = 0; 1504 1505 if (list_empty(&rproc->dump_segments)) 1506 return; 1507 1508 data_size = sizeof(*ehdr); 1509 list_for_each_entry(segment, &rproc->dump_segments, node) { 1510 data_size += sizeof(*phdr) + segment->size; 1511 1512 phnum++; 1513 } 1514 1515 data = vmalloc(data_size); 1516 if (!data) 1517 return; 1518 1519 ehdr = data; 1520 1521 memset(ehdr, 0, sizeof(*ehdr)); 1522 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1523 ehdr->e_ident[EI_CLASS] = ELFCLASS32; 1524 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1525 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1526 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; 1527 ehdr->e_type = ET_CORE; 1528 ehdr->e_machine = EM_NONE; 1529 ehdr->e_version = EV_CURRENT; 1530 ehdr->e_entry = rproc->bootaddr; 1531 ehdr->e_phoff = sizeof(*ehdr); 1532 ehdr->e_ehsize = sizeof(*ehdr); 1533 ehdr->e_phentsize = sizeof(*phdr); 1534 ehdr->e_phnum = phnum; 1535 1536 phdr = data + ehdr->e_phoff; 1537 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum; 1538 list_for_each_entry(segment, &rproc->dump_segments, node) { 1539 memset(phdr, 0, sizeof(*phdr)); 1540 phdr->p_type = PT_LOAD; 1541 phdr->p_offset = offset; 1542 phdr->p_vaddr = segment->da; 1543 phdr->p_paddr = segment->da; 1544 phdr->p_filesz = segment->size; 1545 phdr->p_memsz = segment->size; 1546 phdr->p_flags = PF_R | PF_W | PF_X; 1547 phdr->p_align = 0; 1548 1549 if (segment->dump) { 1550 segment->dump(rproc, segment, data + offset); 1551 } else { 1552 ptr = rproc_da_to_va(rproc, segment->da, segment->size); 1553 if (!ptr) { 1554 dev_err(&rproc->dev, 1555 "invalid coredump segment (%pad, %zu)\n", 1556 &segment->da, segment->size); 1557 memset(data + offset, 0xff, segment->size); 1558 } else { 1559 memcpy(data + offset, ptr, segment->size); 1560 } 1561 } 1562 1563 offset += phdr->p_filesz; 1564 phdr++; 1565 } 1566 1567 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); 1568 } 1569 1570 /** 1571 * rproc_trigger_recovery() - recover a remoteproc 1572 * @rproc: the remote processor 1573 * 1574 * The recovery is done by resetting all the virtio devices, that way all the 1575 * rpmsg drivers will be reseted along with the remote processor making the 1576 * remoteproc functional again. 1577 * 1578 * This function can sleep, so it cannot be called from atomic context. 1579 */ 1580 int rproc_trigger_recovery(struct rproc *rproc) 1581 { 1582 const struct firmware *firmware_p; 1583 struct device *dev = &rproc->dev; 1584 int ret; 1585 1586 dev_err(dev, "recovering %s\n", rproc->name); 1587 1588 ret = mutex_lock_interruptible(&rproc->lock); 1589 if (ret) 1590 return ret; 1591 1592 ret = rproc_stop(rproc, true); 1593 if (ret) 1594 goto unlock_mutex; 1595 1596 /* generate coredump */ 1597 rproc_coredump(rproc); 1598 1599 /* load firmware */ 1600 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1601 if (ret < 0) { 1602 dev_err(dev, "request_firmware failed: %d\n", ret); 1603 goto unlock_mutex; 1604 } 1605 1606 /* boot the remote processor up again */ 1607 ret = rproc_start(rproc, firmware_p); 1608 1609 release_firmware(firmware_p); 1610 1611 unlock_mutex: 1612 mutex_unlock(&rproc->lock); 1613 return ret; 1614 } 1615 1616 /** 1617 * rproc_crash_handler_work() - handle a crash 1618 * 1619 * This function needs to handle everything related to a crash, like cpu 1620 * registers and stack dump, information to help to debug the fatal error, etc. 1621 */ 1622 static void rproc_crash_handler_work(struct work_struct *work) 1623 { 1624 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1625 struct device *dev = &rproc->dev; 1626 1627 dev_dbg(dev, "enter %s\n", __func__); 1628 1629 mutex_lock(&rproc->lock); 1630 1631 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1632 /* handle only the first crash detected */ 1633 mutex_unlock(&rproc->lock); 1634 return; 1635 } 1636 1637 rproc->state = RPROC_CRASHED; 1638 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1639 rproc->name); 1640 1641 mutex_unlock(&rproc->lock); 1642 1643 if (!rproc->recovery_disabled) 1644 rproc_trigger_recovery(rproc); 1645 } 1646 1647 /** 1648 * rproc_boot() - boot a remote processor 1649 * @rproc: handle of a remote processor 1650 * 1651 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1652 * 1653 * If the remote processor is already powered on, this function immediately 1654 * returns (successfully). 1655 * 1656 * Returns 0 on success, and an appropriate error value otherwise. 1657 */ 1658 int rproc_boot(struct rproc *rproc) 1659 { 1660 const struct firmware *firmware_p; 1661 struct device *dev; 1662 int ret; 1663 1664 if (!rproc) { 1665 pr_err("invalid rproc handle\n"); 1666 return -EINVAL; 1667 } 1668 1669 dev = &rproc->dev; 1670 1671 ret = mutex_lock_interruptible(&rproc->lock); 1672 if (ret) { 1673 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1674 return ret; 1675 } 1676 1677 if (rproc->state == RPROC_DELETED) { 1678 ret = -ENODEV; 1679 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1680 goto unlock_mutex; 1681 } 1682 1683 /* skip the boot process if rproc is already powered up */ 1684 if (atomic_inc_return(&rproc->power) > 1) { 1685 ret = 0; 1686 goto unlock_mutex; 1687 } 1688 1689 dev_info(dev, "powering up %s\n", rproc->name); 1690 1691 /* load firmware */ 1692 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1693 if (ret < 0) { 1694 dev_err(dev, "request_firmware failed: %d\n", ret); 1695 goto downref_rproc; 1696 } 1697 1698 ret = rproc_fw_boot(rproc, firmware_p); 1699 1700 release_firmware(firmware_p); 1701 1702 downref_rproc: 1703 if (ret) 1704 atomic_dec(&rproc->power); 1705 unlock_mutex: 1706 mutex_unlock(&rproc->lock); 1707 return ret; 1708 } 1709 EXPORT_SYMBOL(rproc_boot); 1710 1711 /** 1712 * rproc_shutdown() - power off the remote processor 1713 * @rproc: the remote processor 1714 * 1715 * Power off a remote processor (previously booted with rproc_boot()). 1716 * 1717 * In case @rproc is still being used by an additional user(s), then 1718 * this function will just decrement the power refcount and exit, 1719 * without really powering off the device. 1720 * 1721 * Every call to rproc_boot() must (eventually) be accompanied by a call 1722 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1723 * 1724 * Notes: 1725 * - we're not decrementing the rproc's refcount, only the power refcount. 1726 * which means that the @rproc handle stays valid even after rproc_shutdown() 1727 * returns, and users can still use it with a subsequent rproc_boot(), if 1728 * needed. 1729 */ 1730 void rproc_shutdown(struct rproc *rproc) 1731 { 1732 struct device *dev = &rproc->dev; 1733 int ret; 1734 1735 ret = mutex_lock_interruptible(&rproc->lock); 1736 if (ret) { 1737 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1738 return; 1739 } 1740 1741 /* if the remote proc is still needed, bail out */ 1742 if (!atomic_dec_and_test(&rproc->power)) 1743 goto out; 1744 1745 ret = rproc_stop(rproc, false); 1746 if (ret) { 1747 atomic_inc(&rproc->power); 1748 goto out; 1749 } 1750 1751 /* clean up all acquired resources */ 1752 rproc_resource_cleanup(rproc); 1753 1754 rproc_disable_iommu(rproc); 1755 1756 /* Free the copy of the resource table */ 1757 kfree(rproc->cached_table); 1758 rproc->cached_table = NULL; 1759 rproc->table_ptr = NULL; 1760 out: 1761 mutex_unlock(&rproc->lock); 1762 } 1763 EXPORT_SYMBOL(rproc_shutdown); 1764 1765 /** 1766 * rproc_get_by_phandle() - find a remote processor by phandle 1767 * @phandle: phandle to the rproc 1768 * 1769 * Finds an rproc handle using the remote processor's phandle, and then 1770 * return a handle to the rproc. 1771 * 1772 * This function increments the remote processor's refcount, so always 1773 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1774 * 1775 * Returns the rproc handle on success, and NULL on failure. 1776 */ 1777 #ifdef CONFIG_OF 1778 struct rproc *rproc_get_by_phandle(phandle phandle) 1779 { 1780 struct rproc *rproc = NULL, *r; 1781 struct device_node *np; 1782 1783 np = of_find_node_by_phandle(phandle); 1784 if (!np) 1785 return NULL; 1786 1787 mutex_lock(&rproc_list_mutex); 1788 list_for_each_entry(r, &rproc_list, node) { 1789 if (r->dev.parent && r->dev.parent->of_node == np) { 1790 /* prevent underlying implementation from being removed */ 1791 if (!try_module_get(r->dev.parent->driver->owner)) { 1792 dev_err(&r->dev, "can't get owner\n"); 1793 break; 1794 } 1795 1796 rproc = r; 1797 get_device(&rproc->dev); 1798 break; 1799 } 1800 } 1801 mutex_unlock(&rproc_list_mutex); 1802 1803 of_node_put(np); 1804 1805 return rproc; 1806 } 1807 #else 1808 struct rproc *rproc_get_by_phandle(phandle phandle) 1809 { 1810 return NULL; 1811 } 1812 #endif 1813 EXPORT_SYMBOL(rproc_get_by_phandle); 1814 1815 /** 1816 * rproc_add() - register a remote processor 1817 * @rproc: the remote processor handle to register 1818 * 1819 * Registers @rproc with the remoteproc framework, after it has been 1820 * allocated with rproc_alloc(). 1821 * 1822 * This is called by the platform-specific rproc implementation, whenever 1823 * a new remote processor device is probed. 1824 * 1825 * Returns 0 on success and an appropriate error code otherwise. 1826 * 1827 * Note: this function initiates an asynchronous firmware loading 1828 * context, which will look for virtio devices supported by the rproc's 1829 * firmware. 1830 * 1831 * If found, those virtio devices will be created and added, so as a result 1832 * of registering this remote processor, additional virtio drivers might be 1833 * probed. 1834 */ 1835 int rproc_add(struct rproc *rproc) 1836 { 1837 struct device *dev = &rproc->dev; 1838 int ret; 1839 1840 ret = device_add(dev); 1841 if (ret < 0) 1842 return ret; 1843 1844 dev_info(dev, "%s is available\n", rproc->name); 1845 1846 /* create debugfs entries */ 1847 rproc_create_debug_dir(rproc); 1848 1849 /* if rproc is marked always-on, request it to boot */ 1850 if (rproc->auto_boot) { 1851 ret = rproc_trigger_auto_boot(rproc); 1852 if (ret < 0) 1853 return ret; 1854 } 1855 1856 /* expose to rproc_get_by_phandle users */ 1857 mutex_lock(&rproc_list_mutex); 1858 list_add(&rproc->node, &rproc_list); 1859 mutex_unlock(&rproc_list_mutex); 1860 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(rproc_add); 1864 1865 /** 1866 * rproc_type_release() - release a remote processor instance 1867 * @dev: the rproc's device 1868 * 1869 * This function should _never_ be called directly. 1870 * 1871 * It will be called by the driver core when no one holds a valid pointer 1872 * to @dev anymore. 1873 */ 1874 static void rproc_type_release(struct device *dev) 1875 { 1876 struct rproc *rproc = container_of(dev, struct rproc, dev); 1877 1878 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1879 1880 idr_destroy(&rproc->notifyids); 1881 1882 if (rproc->index >= 0) 1883 ida_simple_remove(&rproc_dev_index, rproc->index); 1884 1885 kfree(rproc->firmware); 1886 kfree(rproc->ops); 1887 kfree(rproc); 1888 } 1889 1890 static const struct device_type rproc_type = { 1891 .name = "remoteproc", 1892 .release = rproc_type_release, 1893 }; 1894 1895 /** 1896 * rproc_alloc() - allocate a remote processor handle 1897 * @dev: the underlying device 1898 * @name: name of this remote processor 1899 * @ops: platform-specific handlers (mainly start/stop) 1900 * @firmware: name of firmware file to load, can be NULL 1901 * @len: length of private data needed by the rproc driver (in bytes) 1902 * 1903 * Allocates a new remote processor handle, but does not register 1904 * it yet. if @firmware is NULL, a default name is used. 1905 * 1906 * This function should be used by rproc implementations during initialization 1907 * of the remote processor. 1908 * 1909 * After creating an rproc handle using this function, and when ready, 1910 * implementations should then call rproc_add() to complete 1911 * the registration of the remote processor. 1912 * 1913 * On success the new rproc is returned, and on failure, NULL. 1914 * 1915 * Note: _never_ directly deallocate @rproc, even if it was not registered 1916 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1917 */ 1918 struct rproc *rproc_alloc(struct device *dev, const char *name, 1919 const struct rproc_ops *ops, 1920 const char *firmware, int len) 1921 { 1922 struct rproc *rproc; 1923 char *p, *template = "rproc-%s-fw"; 1924 int name_len; 1925 1926 if (!dev || !name || !ops) 1927 return NULL; 1928 1929 if (!firmware) { 1930 /* 1931 * If the caller didn't pass in a firmware name then 1932 * construct a default name. 1933 */ 1934 name_len = strlen(name) + strlen(template) - 2 + 1; 1935 p = kmalloc(name_len, GFP_KERNEL); 1936 if (!p) 1937 return NULL; 1938 snprintf(p, name_len, template, name); 1939 } else { 1940 p = kstrdup(firmware, GFP_KERNEL); 1941 if (!p) 1942 return NULL; 1943 } 1944 1945 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 1946 if (!rproc) { 1947 kfree(p); 1948 return NULL; 1949 } 1950 1951 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 1952 if (!rproc->ops) { 1953 kfree(p); 1954 kfree(rproc); 1955 return NULL; 1956 } 1957 1958 rproc->firmware = p; 1959 rproc->name = name; 1960 rproc->priv = &rproc[1]; 1961 rproc->auto_boot = true; 1962 1963 device_initialize(&rproc->dev); 1964 rproc->dev.parent = dev; 1965 rproc->dev.type = &rproc_type; 1966 rproc->dev.class = &rproc_class; 1967 rproc->dev.driver_data = rproc; 1968 1969 /* Assign a unique device index and name */ 1970 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1971 if (rproc->index < 0) { 1972 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1973 put_device(&rproc->dev); 1974 return NULL; 1975 } 1976 1977 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1978 1979 atomic_set(&rproc->power, 0); 1980 1981 /* Default to ELF loader if no load function is specified */ 1982 if (!rproc->ops->load) { 1983 rproc->ops->load = rproc_elf_load_segments; 1984 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 1985 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 1986 rproc->ops->sanity_check = rproc_elf_sanity_check; 1987 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 1988 } 1989 1990 mutex_init(&rproc->lock); 1991 1992 idr_init(&rproc->notifyids); 1993 1994 INIT_LIST_HEAD(&rproc->carveouts); 1995 INIT_LIST_HEAD(&rproc->mappings); 1996 INIT_LIST_HEAD(&rproc->traces); 1997 INIT_LIST_HEAD(&rproc->rvdevs); 1998 INIT_LIST_HEAD(&rproc->subdevs); 1999 INIT_LIST_HEAD(&rproc->dump_segments); 2000 2001 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2002 2003 rproc->state = RPROC_OFFLINE; 2004 2005 return rproc; 2006 } 2007 EXPORT_SYMBOL(rproc_alloc); 2008 2009 /** 2010 * rproc_free() - unroll rproc_alloc() 2011 * @rproc: the remote processor handle 2012 * 2013 * This function decrements the rproc dev refcount. 2014 * 2015 * If no one holds any reference to rproc anymore, then its refcount would 2016 * now drop to zero, and it would be freed. 2017 */ 2018 void rproc_free(struct rproc *rproc) 2019 { 2020 put_device(&rproc->dev); 2021 } 2022 EXPORT_SYMBOL(rproc_free); 2023 2024 /** 2025 * rproc_put() - release rproc reference 2026 * @rproc: the remote processor handle 2027 * 2028 * This function decrements the rproc dev refcount. 2029 * 2030 * If no one holds any reference to rproc anymore, then its refcount would 2031 * now drop to zero, and it would be freed. 2032 */ 2033 void rproc_put(struct rproc *rproc) 2034 { 2035 module_put(rproc->dev.parent->driver->owner); 2036 put_device(&rproc->dev); 2037 } 2038 EXPORT_SYMBOL(rproc_put); 2039 2040 /** 2041 * rproc_del() - unregister a remote processor 2042 * @rproc: rproc handle to unregister 2043 * 2044 * This function should be called when the platform specific rproc 2045 * implementation decides to remove the rproc device. it should 2046 * _only_ be called if a previous invocation of rproc_add() 2047 * has completed successfully. 2048 * 2049 * After rproc_del() returns, @rproc isn't freed yet, because 2050 * of the outstanding reference created by rproc_alloc. To decrement that 2051 * one last refcount, one still needs to call rproc_free(). 2052 * 2053 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2054 */ 2055 int rproc_del(struct rproc *rproc) 2056 { 2057 if (!rproc) 2058 return -EINVAL; 2059 2060 /* if rproc is marked always-on, rproc_add() booted it */ 2061 /* TODO: make sure this works with rproc->power > 1 */ 2062 if (rproc->auto_boot) 2063 rproc_shutdown(rproc); 2064 2065 mutex_lock(&rproc->lock); 2066 rproc->state = RPROC_DELETED; 2067 mutex_unlock(&rproc->lock); 2068 2069 rproc_delete_debug_dir(rproc); 2070 2071 /* the rproc is downref'ed as soon as it's removed from the klist */ 2072 mutex_lock(&rproc_list_mutex); 2073 list_del(&rproc->node); 2074 mutex_unlock(&rproc_list_mutex); 2075 2076 device_del(&rproc->dev); 2077 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(rproc_del); 2081 2082 /** 2083 * rproc_add_subdev() - add a subdevice to a remoteproc 2084 * @rproc: rproc handle to add the subdevice to 2085 * @subdev: subdev handle to register 2086 * 2087 * Caller is responsible for populating optional subdevice function pointers. 2088 */ 2089 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2090 { 2091 list_add_tail(&subdev->node, &rproc->subdevs); 2092 } 2093 EXPORT_SYMBOL(rproc_add_subdev); 2094 2095 /** 2096 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2097 * @rproc: rproc handle to remove the subdevice from 2098 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2099 */ 2100 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2101 { 2102 list_del(&subdev->node); 2103 } 2104 EXPORT_SYMBOL(rproc_remove_subdev); 2105 2106 /** 2107 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2108 * @dev: child device to find ancestor of 2109 * 2110 * Returns the ancestor rproc instance, or NULL if not found. 2111 */ 2112 struct rproc *rproc_get_by_child(struct device *dev) 2113 { 2114 for (dev = dev->parent; dev; dev = dev->parent) { 2115 if (dev->type == &rproc_type) 2116 return dev->driver_data; 2117 } 2118 2119 return NULL; 2120 } 2121 EXPORT_SYMBOL(rproc_get_by_child); 2122 2123 /** 2124 * rproc_report_crash() - rproc crash reporter function 2125 * @rproc: remote processor 2126 * @type: crash type 2127 * 2128 * This function must be called every time a crash is detected by the low-level 2129 * drivers implementing a specific remoteproc. This should not be called from a 2130 * non-remoteproc driver. 2131 * 2132 * This function can be called from atomic/interrupt context. 2133 */ 2134 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2135 { 2136 if (!rproc) { 2137 pr_err("NULL rproc pointer\n"); 2138 return; 2139 } 2140 2141 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2142 rproc->name, rproc_crash_to_string(type)); 2143 2144 /* create a new task to handle the error */ 2145 schedule_work(&rproc->crash_handler); 2146 } 2147 EXPORT_SYMBOL(rproc_report_crash); 2148 2149 static int __init remoteproc_init(void) 2150 { 2151 rproc_init_sysfs(); 2152 rproc_init_debugfs(); 2153 2154 return 0; 2155 } 2156 module_init(remoteproc_init); 2157 2158 static void __exit remoteproc_exit(void) 2159 { 2160 ida_destroy(&rproc_dev_index); 2161 2162 rproc_exit_debugfs(); 2163 rproc_exit_sysfs(); 2164 } 2165 module_exit(remoteproc_exit); 2166 2167 MODULE_LICENSE("GPL v2"); 2168 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2169