1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
41 
42 #include "remoteproc_internal.h"
43 
44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
45 
46 static DEFINE_MUTEX(rproc_list_mutex);
47 static LIST_HEAD(rproc_list);
48 static struct notifier_block rproc_panic_nb;
49 
50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 				 void *, int offset, int avail);
52 
53 static int rproc_alloc_carveout(struct rproc *rproc,
54 				struct rproc_mem_entry *mem);
55 static int rproc_release_carveout(struct rproc *rproc,
56 				  struct rproc_mem_entry *mem);
57 
58 /* Unique indices for remoteproc devices */
59 static DEFINE_IDA(rproc_dev_index);
60 static struct workqueue_struct *rproc_recovery_wq;
61 
62 static const char * const rproc_crash_names[] = {
63 	[RPROC_MMUFAULT]	= "mmufault",
64 	[RPROC_WATCHDOG]	= "watchdog",
65 	[RPROC_FATAL_ERROR]	= "fatal error",
66 };
67 
68 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 	if (type < ARRAY_SIZE(rproc_crash_names))
72 		return rproc_crash_names[type];
73 	return "unknown";
74 }
75 
76 /*
77  * This is the IOMMU fault handler we register with the IOMMU API
78  * (when relevant; not all remote processors access memory through
79  * an IOMMU).
80  *
81  * IOMMU core will invoke this handler whenever the remote processor
82  * will try to access an unmapped device address.
83  */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 			     unsigned long iova, int flags, void *token)
86 {
87 	struct rproc *rproc = token;
88 
89 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90 
91 	rproc_report_crash(rproc, RPROC_MMUFAULT);
92 
93 	/*
94 	 * Let the iommu core know we're not really handling this fault;
95 	 * we just used it as a recovery trigger.
96 	 */
97 	return -ENOSYS;
98 }
99 
rproc_enable_iommu(struct rproc * rproc)100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 	struct iommu_domain *domain;
103 	struct device *dev = rproc->dev.parent;
104 	int ret;
105 
106 	if (!rproc->has_iommu) {
107 		dev_dbg(dev, "iommu not present\n");
108 		return 0;
109 	}
110 
111 	domain = iommu_domain_alloc(dev->bus);
112 	if (!domain) {
113 		dev_err(dev, "can't alloc iommu domain\n");
114 		return -ENOMEM;
115 	}
116 
117 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 
119 	ret = iommu_attach_device(domain, dev);
120 	if (ret) {
121 		dev_err(dev, "can't attach iommu device: %d\n", ret);
122 		goto free_domain;
123 	}
124 
125 	rproc->domain = domain;
126 
127 	return 0;
128 
129 free_domain:
130 	iommu_domain_free(domain);
131 	return ret;
132 }
133 
rproc_disable_iommu(struct rproc * rproc)134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 	struct iommu_domain *domain = rproc->domain;
137 	struct device *dev = rproc->dev.parent;
138 
139 	if (!domain)
140 		return;
141 
142 	iommu_detach_device(domain, dev);
143 	iommu_domain_free(domain);
144 }
145 
rproc_va_to_pa(void * cpu_addr)146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 	/*
149 	 * Return physical address according to virtual address location
150 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 	 * - in kernel: if region allocated in generic dma memory pool
152 	 */
153 	if (is_vmalloc_addr(cpu_addr)) {
154 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 				    offset_in_page(cpu_addr);
156 	}
157 
158 	WARN_ON(!virt_addr_valid(cpu_addr));
159 	return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162 
163 /**
164  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165  * @rproc: handle of a remote processor
166  * @da: remoteproc device address to translate
167  * @len: length of the memory region @da is pointing to
168  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
169  *
170  * Some remote processors will ask us to allocate them physically contiguous
171  * memory regions (which we call "carveouts"), and map them to specific
172  * device addresses (which are hardcoded in the firmware). They may also have
173  * dedicated memory regions internal to the processors, and use them either
174  * exclusively or alongside carveouts.
175  *
176  * They may then ask us to copy objects into specific device addresses (e.g.
177  * code/data sections) or expose us certain symbols in other device address
178  * (e.g. their trace buffer).
179  *
180  * This function is a helper function with which we can go over the allocated
181  * carveouts and translate specific device addresses to kernel virtual addresses
182  * so we can access the referenced memory. This function also allows to perform
183  * translations on the internal remoteproc memory regions through a platform
184  * implementation specific da_to_va ops, if present.
185  *
186  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187  * but only on kernel direct mapped RAM memory. Instead, we're just using
188  * here the output of the DMA API for the carveouts, which should be more
189  * correct.
190  *
191  * Return: a valid kernel address on success or NULL on failure
192  */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194 {
195 	struct rproc_mem_entry *carveout;
196 	void *ptr = NULL;
197 
198 	if (rproc->ops->da_to_va) {
199 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 		if (ptr)
201 			goto out;
202 	}
203 
204 	list_for_each_entry(carveout, &rproc->carveouts, node) {
205 		int offset = da - carveout->da;
206 
207 		/*  Verify that carveout is allocated */
208 		if (!carveout->va)
209 			continue;
210 
211 		/* try next carveout if da is too small */
212 		if (offset < 0)
213 			continue;
214 
215 		/* try next carveout if da is too large */
216 		if (offset + len > carveout->len)
217 			continue;
218 
219 		ptr = carveout->va + offset;
220 
221 		if (is_iomem)
222 			*is_iomem = carveout->is_iomem;
223 
224 		break;
225 	}
226 
227 out:
228 	return ptr;
229 }
230 EXPORT_SYMBOL(rproc_da_to_va);
231 
232 /**
233  * rproc_find_carveout_by_name() - lookup the carveout region by a name
234  * @rproc: handle of a remote processor
235  * @name: carveout name to find (format string)
236  * @...: optional parameters matching @name string
237  *
238  * Platform driver has the capability to register some pre-allacoted carveout
239  * (physically contiguous memory regions) before rproc firmware loading and
240  * associated resource table analysis. These regions may be dedicated memory
241  * regions internal to the coprocessor or specified DDR region with specific
242  * attributes
243  *
244  * This function is a helper function with which we can go over the
245  * allocated carveouts and return associated region characteristics like
246  * coprocessor address, length or processor virtual address.
247  *
248  * Return: a valid pointer on carveout entry on success or NULL on failure.
249  */
250 __printf(2, 3)
251 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 	va_list args;
255 	char _name[32];
256 	struct rproc_mem_entry *carveout, *mem = NULL;
257 
258 	if (!name)
259 		return NULL;
260 
261 	va_start(args, name);
262 	vsnprintf(_name, sizeof(_name), name, args);
263 	va_end(args);
264 
265 	list_for_each_entry(carveout, &rproc->carveouts, node) {
266 		/* Compare carveout and requested names */
267 		if (!strcmp(carveout->name, _name)) {
268 			mem = carveout;
269 			break;
270 		}
271 	}
272 
273 	return mem;
274 }
275 
276 /**
277  * rproc_check_carveout_da() - Check specified carveout da configuration
278  * @rproc: handle of a remote processor
279  * @mem: pointer on carveout to check
280  * @da: area device address
281  * @len: associated area size
282  *
283  * This function is a helper function to verify requested device area (couple
284  * da, len) is part of specified carveout.
285  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286  * checked.
287  *
288  * Return: 0 if carveout matches request else error
289  */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)290 static int rproc_check_carveout_da(struct rproc *rproc,
291 				   struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 	struct device *dev = &rproc->dev;
294 	int delta;
295 
296 	/* Check requested resource length */
297 	if (len > mem->len) {
298 		dev_err(dev, "Registered carveout doesn't fit len request\n");
299 		return -EINVAL;
300 	}
301 
302 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 		/* Address doesn't match registered carveout configuration */
304 		return -EINVAL;
305 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 		delta = da - mem->da;
307 
308 		/* Check requested resource belongs to registered carveout */
309 		if (delta < 0) {
310 			dev_err(dev,
311 				"Registered carveout doesn't fit da request\n");
312 			return -EINVAL;
313 		}
314 
315 		if (delta + len > mem->len) {
316 			dev_err(dev,
317 				"Registered carveout doesn't fit len request\n");
318 			return -EINVAL;
319 		}
320 	}
321 
322 	return 0;
323 }
324 
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 	struct rproc *rproc = rvdev->rproc;
328 	struct device *dev = &rproc->dev;
329 	struct rproc_vring *rvring = &rvdev->vring[i];
330 	struct fw_rsc_vdev *rsc;
331 	int ret, notifyid;
332 	struct rproc_mem_entry *mem;
333 	size_t size;
334 
335 	/* actual size of vring (in bytes) */
336 	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
337 
338 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339 
340 	/* Search for pre-registered carveout */
341 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
342 					  i);
343 	if (mem) {
344 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
345 			return -ENOMEM;
346 	} else {
347 		/* Register carveout in list */
348 		mem = rproc_mem_entry_init(dev, NULL, 0,
349 					   size, rsc->vring[i].da,
350 					   rproc_alloc_carveout,
351 					   rproc_release_carveout,
352 					   "vdev%dvring%d",
353 					   rvdev->index, i);
354 		if (!mem) {
355 			dev_err(dev, "Can't allocate memory entry structure\n");
356 			return -ENOMEM;
357 		}
358 
359 		rproc_add_carveout(rproc, mem);
360 	}
361 
362 	/*
363 	 * Assign an rproc-wide unique index for this vring
364 	 * TODO: assign a notifyid for rvdev updates as well
365 	 * TODO: support predefined notifyids (via resource table)
366 	 */
367 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
368 	if (ret < 0) {
369 		dev_err(dev, "idr_alloc failed: %d\n", ret);
370 		return ret;
371 	}
372 	notifyid = ret;
373 
374 	/* Potentially bump max_notifyid */
375 	if (notifyid > rproc->max_notifyid)
376 		rproc->max_notifyid = notifyid;
377 
378 	rvring->notifyid = notifyid;
379 
380 	/* Let the rproc know the notifyid of this vring.*/
381 	rsc->vring[i].notifyid = notifyid;
382 	return 0;
383 }
384 
385 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387 {
388 	struct rproc *rproc = rvdev->rproc;
389 	struct device *dev = &rproc->dev;
390 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 	struct rproc_vring *rvring = &rvdev->vring[i];
392 
393 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 		i, vring->da, vring->num, vring->align);
395 
396 	/* verify queue size and vring alignment are sane */
397 	if (!vring->num || !vring->align) {
398 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 			vring->num, vring->align);
400 		return -EINVAL;
401 	}
402 
403 	rvring->num = vring->num;
404 	rvring->align = vring->align;
405 	rvring->rvdev = rvdev;
406 
407 	return 0;
408 }
409 
rproc_free_vring(struct rproc_vring * rvring)410 void rproc_free_vring(struct rproc_vring *rvring)
411 {
412 	struct rproc *rproc = rvring->rvdev->rproc;
413 	int idx = rvring - rvring->rvdev->vring;
414 	struct fw_rsc_vdev *rsc;
415 
416 	idr_remove(&rproc->notifyids, rvring->notifyid);
417 
418 	/*
419 	 * At this point rproc_stop() has been called and the installed resource
420 	 * table in the remote processor memory may no longer be accessible. As
421 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 	 * resource table (rproc->cached_table).  The cached resource table is
423 	 * only available when a remote processor has been booted by the
424 	 * remoteproc core, otherwise it is NULL.
425 	 *
426 	 * Based on the above, reset the virtio device section in the cached
427 	 * resource table only if there is one to work with.
428 	 */
429 	if (rproc->table_ptr) {
430 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 		rsc->vring[idx].da = 0;
432 		rsc->vring[idx].notifyid = -1;
433 	}
434 }
435 
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
437 {
438 	if (rvdev && rproc)
439 		list_add_tail(&rvdev->node, &rproc->rvdevs);
440 }
441 
rproc_remove_rvdev(struct rproc_vdev * rvdev)442 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
443 {
444 	if (rvdev)
445 		list_del(&rvdev->node);
446 }
447 /**
448  * rproc_handle_vdev() - handle a vdev fw resource
449  * @rproc: the remote processor
450  * @ptr: the vring resource descriptor
451  * @offset: offset of the resource entry
452  * @avail: size of available data (for sanity checking the image)
453  *
454  * This resource entry requests the host to statically register a virtio
455  * device (vdev), and setup everything needed to support it. It contains
456  * everything needed to make it possible: the virtio device id, virtio
457  * device features, vrings information, virtio config space, etc...
458  *
459  * Before registering the vdev, the vrings are allocated from non-cacheable
460  * physically contiguous memory. Currently we only support two vrings per
461  * remote processor (temporary limitation). We might also want to consider
462  * doing the vring allocation only later when ->find_vqs() is invoked, and
463  * then release them upon ->del_vqs().
464  *
465  * Note: @da is currently not really handled correctly: we dynamically
466  * allocate it using the DMA API, ignoring requested hard coded addresses,
467  * and we don't take care of any required IOMMU programming. This is all
468  * going to be taken care of when the generic iommu-based DMA API will be
469  * merged. Meanwhile, statically-addressed iommu-based firmware images should
470  * use RSC_DEVMEM resource entries to map their required @da to the physical
471  * address of their base CMA region (ouch, hacky!).
472  *
473  * Return: 0 on success, or an appropriate error code otherwise
474  */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 			     int offset, int avail)
477 {
478 	struct fw_rsc_vdev *rsc = ptr;
479 	struct device *dev = &rproc->dev;
480 	struct rproc_vdev *rvdev;
481 	size_t rsc_size;
482 	struct rproc_vdev_data rvdev_data;
483 	struct platform_device *pdev;
484 
485 	/* make sure resource isn't truncated */
486 	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 	if (size_add(rsc_size, rsc->config_len) > avail) {
488 		dev_err(dev, "vdev rsc is truncated\n");
489 		return -EINVAL;
490 	}
491 
492 	/* make sure reserved bytes are zeroes */
493 	if (rsc->reserved[0] || rsc->reserved[1]) {
494 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
495 		return -EINVAL;
496 	}
497 
498 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
500 
501 	/* we currently support only two vrings per rvdev */
502 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
504 		return -EINVAL;
505 	}
506 
507 	rvdev_data.id = rsc->id;
508 	rvdev_data.index = rproc->nb_vdev++;
509 	rvdev_data.rsc_offset = offset;
510 	rvdev_data.rsc = rsc;
511 
512 	/*
513 	 * When there is more than one remote processor, rproc->nb_vdev number is
514 	 * same for each separate instances of "rproc". If rvdev_data.index is used
515 	 * as device id, then we get duplication in sysfs, so need to use
516 	 * PLATFORM_DEVID_AUTO to auto select device id.
517 	 */
518 	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
519 					     sizeof(rvdev_data));
520 	if (IS_ERR(pdev)) {
521 		dev_err(dev, "failed to create rproc-virtio device\n");
522 		return PTR_ERR(pdev);
523 	}
524 
525 	return 0;
526 }
527 
528 /**
529  * rproc_handle_trace() - handle a shared trace buffer resource
530  * @rproc: the remote processor
531  * @ptr: the trace resource descriptor
532  * @offset: offset of the resource entry
533  * @avail: size of available data (for sanity checking the image)
534  *
535  * In case the remote processor dumps trace logs into memory,
536  * export it via debugfs.
537  *
538  * Currently, the 'da' member of @rsc should contain the device address
539  * where the remote processor is dumping the traces. Later we could also
540  * support dynamically allocating this address using the generic
541  * DMA API (but currently there isn't a use case for that).
542  *
543  * Return: 0 on success, or an appropriate error code otherwise
544  */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)545 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
546 			      int offset, int avail)
547 {
548 	struct fw_rsc_trace *rsc = ptr;
549 	struct rproc_debug_trace *trace;
550 	struct device *dev = &rproc->dev;
551 	char name[15];
552 
553 	if (sizeof(*rsc) > avail) {
554 		dev_err(dev, "trace rsc is truncated\n");
555 		return -EINVAL;
556 	}
557 
558 	/* make sure reserved bytes are zeroes */
559 	if (rsc->reserved) {
560 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
561 		return -EINVAL;
562 	}
563 
564 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
565 	if (!trace)
566 		return -ENOMEM;
567 
568 	/* set the trace buffer dma properties */
569 	trace->trace_mem.len = rsc->len;
570 	trace->trace_mem.da = rsc->da;
571 
572 	/* set pointer on rproc device */
573 	trace->rproc = rproc;
574 
575 	/* make sure snprintf always null terminates, even if truncating */
576 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
577 
578 	/* create the debugfs entry */
579 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
580 
581 	list_add_tail(&trace->node, &rproc->traces);
582 
583 	rproc->num_traces++;
584 
585 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
586 		name, rsc->da, rsc->len);
587 
588 	return 0;
589 }
590 
591 /**
592  * rproc_handle_devmem() - handle devmem resource entry
593  * @rproc: remote processor handle
594  * @ptr: the devmem resource entry
595  * @offset: offset of the resource entry
596  * @avail: size of available data (for sanity checking the image)
597  *
598  * Remote processors commonly need to access certain on-chip peripherals.
599  *
600  * Some of these remote processors access memory via an iommu device,
601  * and might require us to configure their iommu before they can access
602  * the on-chip peripherals they need.
603  *
604  * This resource entry is a request to map such a peripheral device.
605  *
606  * These devmem entries will contain the physical address of the device in
607  * the 'pa' member. If a specific device address is expected, then 'da' will
608  * contain it (currently this is the only use case supported). 'len' will
609  * contain the size of the physical region we need to map.
610  *
611  * Currently we just "trust" those devmem entries to contain valid physical
612  * addresses, but this is going to change: we want the implementations to
613  * tell us ranges of physical addresses the firmware is allowed to request,
614  * and not allow firmwares to request access to physical addresses that
615  * are outside those ranges.
616  *
617  * Return: 0 on success, or an appropriate error code otherwise
618  */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)619 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
620 			       int offset, int avail)
621 {
622 	struct fw_rsc_devmem *rsc = ptr;
623 	struct rproc_mem_entry *mapping;
624 	struct device *dev = &rproc->dev;
625 	int ret;
626 
627 	/* no point in handling this resource without a valid iommu domain */
628 	if (!rproc->domain)
629 		return -EINVAL;
630 
631 	if (sizeof(*rsc) > avail) {
632 		dev_err(dev, "devmem rsc is truncated\n");
633 		return -EINVAL;
634 	}
635 
636 	/* make sure reserved bytes are zeroes */
637 	if (rsc->reserved) {
638 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
639 		return -EINVAL;
640 	}
641 
642 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
643 	if (!mapping)
644 		return -ENOMEM;
645 
646 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
647 			GFP_KERNEL);
648 	if (ret) {
649 		dev_err(dev, "failed to map devmem: %d\n", ret);
650 		goto out;
651 	}
652 
653 	/*
654 	 * We'll need this info later when we'll want to unmap everything
655 	 * (e.g. on shutdown).
656 	 *
657 	 * We can't trust the remote processor not to change the resource
658 	 * table, so we must maintain this info independently.
659 	 */
660 	mapping->da = rsc->da;
661 	mapping->len = rsc->len;
662 	list_add_tail(&mapping->node, &rproc->mappings);
663 
664 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
665 		rsc->pa, rsc->da, rsc->len);
666 
667 	return 0;
668 
669 out:
670 	kfree(mapping);
671 	return ret;
672 }
673 
674 /**
675  * rproc_alloc_carveout() - allocated specified carveout
676  * @rproc: rproc handle
677  * @mem: the memory entry to allocate
678  *
679  * This function allocate specified memory entry @mem using
680  * dma_alloc_coherent() as default allocator
681  *
682  * Return: 0 on success, or an appropriate error code otherwise
683  */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)684 static int rproc_alloc_carveout(struct rproc *rproc,
685 				struct rproc_mem_entry *mem)
686 {
687 	struct rproc_mem_entry *mapping = NULL;
688 	struct device *dev = &rproc->dev;
689 	dma_addr_t dma;
690 	void *va;
691 	int ret;
692 
693 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
694 	if (!va) {
695 		dev_err(dev->parent,
696 			"failed to allocate dma memory: len 0x%zx\n",
697 			mem->len);
698 		return -ENOMEM;
699 	}
700 
701 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
702 		va, &dma, mem->len);
703 
704 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
705 		/*
706 		 * Check requested da is equal to dma address
707 		 * and print a warn message in case of missalignment.
708 		 * Don't stop rproc_start sequence as coprocessor may
709 		 * build pa to da translation on its side.
710 		 */
711 		if (mem->da != (u32)dma)
712 			dev_warn(dev->parent,
713 				 "Allocated carveout doesn't fit device address request\n");
714 	}
715 
716 	/*
717 	 * Ok, this is non-standard.
718 	 *
719 	 * Sometimes we can't rely on the generic iommu-based DMA API
720 	 * to dynamically allocate the device address and then set the IOMMU
721 	 * tables accordingly, because some remote processors might
722 	 * _require_ us to use hard coded device addresses that their
723 	 * firmware was compiled with.
724 	 *
725 	 * In this case, we must use the IOMMU API directly and map
726 	 * the memory to the device address as expected by the remote
727 	 * processor.
728 	 *
729 	 * Obviously such remote processor devices should not be configured
730 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
731 	 * physical address in this case.
732 	 */
733 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
734 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
735 		if (!mapping) {
736 			ret = -ENOMEM;
737 			goto dma_free;
738 		}
739 
740 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
741 				mem->flags, GFP_KERNEL);
742 		if (ret) {
743 			dev_err(dev, "iommu_map failed: %d\n", ret);
744 			goto free_mapping;
745 		}
746 
747 		/*
748 		 * We'll need this info later when we'll want to unmap
749 		 * everything (e.g. on shutdown).
750 		 *
751 		 * We can't trust the remote processor not to change the
752 		 * resource table, so we must maintain this info independently.
753 		 */
754 		mapping->da = mem->da;
755 		mapping->len = mem->len;
756 		list_add_tail(&mapping->node, &rproc->mappings);
757 
758 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
759 			mem->da, &dma);
760 	}
761 
762 	if (mem->da == FW_RSC_ADDR_ANY) {
763 		/* Update device address as undefined by requester */
764 		if ((u64)dma & HIGH_BITS_MASK)
765 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
766 
767 		mem->da = (u32)dma;
768 	}
769 
770 	mem->dma = dma;
771 	mem->va = va;
772 
773 	return 0;
774 
775 free_mapping:
776 	kfree(mapping);
777 dma_free:
778 	dma_free_coherent(dev->parent, mem->len, va, dma);
779 	return ret;
780 }
781 
782 /**
783  * rproc_release_carveout() - release acquired carveout
784  * @rproc: rproc handle
785  * @mem: the memory entry to release
786  *
787  * This function releases specified memory entry @mem allocated via
788  * rproc_alloc_carveout() function by @rproc.
789  *
790  * Return: 0 on success, or an appropriate error code otherwise
791  */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)792 static int rproc_release_carveout(struct rproc *rproc,
793 				  struct rproc_mem_entry *mem)
794 {
795 	struct device *dev = &rproc->dev;
796 
797 	/* clean up carveout allocations */
798 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
799 	return 0;
800 }
801 
802 /**
803  * rproc_handle_carveout() - handle phys contig memory allocation requests
804  * @rproc: rproc handle
805  * @ptr: the resource entry
806  * @offset: offset of the resource entry
807  * @avail: size of available data (for image validation)
808  *
809  * This function will handle firmware requests for allocation of physically
810  * contiguous memory regions.
811  *
812  * These request entries should come first in the firmware's resource table,
813  * as other firmware entries might request placing other data objects inside
814  * these memory regions (e.g. data/code segments, trace resource entries, ...).
815  *
816  * Allocating memory this way helps utilizing the reserved physical memory
817  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
818  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
819  * pressure is important; it may have a substantial impact on performance.
820  *
821  * Return: 0 on success, or an appropriate error code otherwise
822  */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)823 static int rproc_handle_carveout(struct rproc *rproc,
824 				 void *ptr, int offset, int avail)
825 {
826 	struct fw_rsc_carveout *rsc = ptr;
827 	struct rproc_mem_entry *carveout;
828 	struct device *dev = &rproc->dev;
829 
830 	if (sizeof(*rsc) > avail) {
831 		dev_err(dev, "carveout rsc is truncated\n");
832 		return -EINVAL;
833 	}
834 
835 	/* make sure reserved bytes are zeroes */
836 	if (rsc->reserved) {
837 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
838 		return -EINVAL;
839 	}
840 
841 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
842 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
843 
844 	/*
845 	 * Check carveout rsc already part of a registered carveout,
846 	 * Search by name, then check the da and length
847 	 */
848 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
849 
850 	if (carveout) {
851 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
852 			dev_err(dev,
853 				"Carveout already associated to resource table\n");
854 			return -ENOMEM;
855 		}
856 
857 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
858 			return -ENOMEM;
859 
860 		/* Update memory carveout with resource table info */
861 		carveout->rsc_offset = offset;
862 		carveout->flags = rsc->flags;
863 
864 		return 0;
865 	}
866 
867 	/* Register carveout in list */
868 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
869 					rproc_alloc_carveout,
870 					rproc_release_carveout, rsc->name);
871 	if (!carveout) {
872 		dev_err(dev, "Can't allocate memory entry structure\n");
873 		return -ENOMEM;
874 	}
875 
876 	carveout->flags = rsc->flags;
877 	carveout->rsc_offset = offset;
878 	rproc_add_carveout(rproc, carveout);
879 
880 	return 0;
881 }
882 
883 /**
884  * rproc_add_carveout() - register an allocated carveout region
885  * @rproc: rproc handle
886  * @mem: memory entry to register
887  *
888  * This function registers specified memory entry in @rproc carveouts list.
889  * Specified carveout should have been allocated before registering.
890  */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)891 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
892 {
893 	list_add_tail(&mem->node, &rproc->carveouts);
894 }
895 EXPORT_SYMBOL(rproc_add_carveout);
896 
897 /**
898  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
899  * @dev: pointer on device struct
900  * @va: virtual address
901  * @dma: dma address
902  * @len: memory carveout length
903  * @da: device address
904  * @alloc: memory carveout allocation function
905  * @release: memory carveout release function
906  * @name: carveout name
907  *
908  * This function allocates a rproc_mem_entry struct and fill it with parameters
909  * provided by client.
910  *
911  * Return: a valid pointer on success, or NULL on failure
912  */
913 __printf(8, 9)
914 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)915 rproc_mem_entry_init(struct device *dev,
916 		     void *va, dma_addr_t dma, size_t len, u32 da,
917 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
918 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
919 		     const char *name, ...)
920 {
921 	struct rproc_mem_entry *mem;
922 	va_list args;
923 
924 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
925 	if (!mem)
926 		return mem;
927 
928 	mem->va = va;
929 	mem->dma = dma;
930 	mem->da = da;
931 	mem->len = len;
932 	mem->alloc = alloc;
933 	mem->release = release;
934 	mem->rsc_offset = FW_RSC_ADDR_ANY;
935 	mem->of_resm_idx = -1;
936 
937 	va_start(args, name);
938 	vsnprintf(mem->name, sizeof(mem->name), name, args);
939 	va_end(args);
940 
941 	return mem;
942 }
943 EXPORT_SYMBOL(rproc_mem_entry_init);
944 
945 /**
946  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947  * from a reserved memory phandle
948  * @dev: pointer on device struct
949  * @of_resm_idx: reserved memory phandle index in "memory-region"
950  * @len: memory carveout length
951  * @da: device address
952  * @name: carveout name
953  *
954  * This function allocates a rproc_mem_entry struct and fill it with parameters
955  * provided by client.
956  *
957  * Return: a valid pointer on success, or NULL on failure
958  */
959 __printf(5, 6)
960 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)961 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
962 			     u32 da, const char *name, ...)
963 {
964 	struct rproc_mem_entry *mem;
965 	va_list args;
966 
967 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
968 	if (!mem)
969 		return mem;
970 
971 	mem->da = da;
972 	mem->len = len;
973 	mem->rsc_offset = FW_RSC_ADDR_ANY;
974 	mem->of_resm_idx = of_resm_idx;
975 
976 	va_start(args, name);
977 	vsnprintf(mem->name, sizeof(mem->name), name, args);
978 	va_end(args);
979 
980 	return mem;
981 }
982 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
983 
984 /**
985  * rproc_of_parse_firmware() - parse and return the firmware-name
986  * @dev: pointer on device struct representing a rproc
987  * @index: index to use for the firmware-name retrieval
988  * @fw_name: pointer to a character string, in which the firmware
989  *           name is returned on success and unmodified otherwise.
990  *
991  * This is an OF helper function that parses a device's DT node for
992  * the "firmware-name" property and returns the firmware name pointer
993  * in @fw_name on success.
994  *
995  * Return: 0 on success, or an appropriate failure.
996  */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)997 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
998 {
999 	int ret;
1000 
1001 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1002 					    index, fw_name);
1003 	return ret ? ret : 0;
1004 }
1005 EXPORT_SYMBOL(rproc_of_parse_firmware);
1006 
1007 /*
1008  * A lookup table for resource handlers. The indices are defined in
1009  * enum fw_resource_type.
1010  */
1011 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1012 	[RSC_CARVEOUT] = rproc_handle_carveout,
1013 	[RSC_DEVMEM] = rproc_handle_devmem,
1014 	[RSC_TRACE] = rproc_handle_trace,
1015 	[RSC_VDEV] = rproc_handle_vdev,
1016 };
1017 
1018 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1019 static int rproc_handle_resources(struct rproc *rproc,
1020 				  rproc_handle_resource_t handlers[RSC_LAST])
1021 {
1022 	struct device *dev = &rproc->dev;
1023 	rproc_handle_resource_t handler;
1024 	int ret = 0, i;
1025 
1026 	if (!rproc->table_ptr)
1027 		return 0;
1028 
1029 	for (i = 0; i < rproc->table_ptr->num; i++) {
1030 		int offset = rproc->table_ptr->offset[i];
1031 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1032 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1033 		void *rsc = (void *)hdr + sizeof(*hdr);
1034 
1035 		/* make sure table isn't truncated */
1036 		if (avail < 0) {
1037 			dev_err(dev, "rsc table is truncated\n");
1038 			return -EINVAL;
1039 		}
1040 
1041 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1042 
1043 		if (hdr->type >= RSC_VENDOR_START &&
1044 		    hdr->type <= RSC_VENDOR_END) {
1045 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1046 					       offset + sizeof(*hdr), avail);
1047 			if (ret == RSC_HANDLED)
1048 				continue;
1049 			else if (ret < 0)
1050 				break;
1051 
1052 			dev_warn(dev, "unsupported vendor resource %d\n",
1053 				 hdr->type);
1054 			continue;
1055 		}
1056 
1057 		if (hdr->type >= RSC_LAST) {
1058 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1059 			continue;
1060 		}
1061 
1062 		handler = handlers[hdr->type];
1063 		if (!handler)
1064 			continue;
1065 
1066 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1067 		if (ret)
1068 			break;
1069 	}
1070 
1071 	return ret;
1072 }
1073 
rproc_prepare_subdevices(struct rproc * rproc)1074 static int rproc_prepare_subdevices(struct rproc *rproc)
1075 {
1076 	struct rproc_subdev *subdev;
1077 	int ret;
1078 
1079 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1080 		if (subdev->prepare) {
1081 			ret = subdev->prepare(subdev);
1082 			if (ret)
1083 				goto unroll_preparation;
1084 		}
1085 	}
1086 
1087 	return 0;
1088 
1089 unroll_preparation:
1090 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1091 		if (subdev->unprepare)
1092 			subdev->unprepare(subdev);
1093 	}
1094 
1095 	return ret;
1096 }
1097 
rproc_start_subdevices(struct rproc * rproc)1098 static int rproc_start_subdevices(struct rproc *rproc)
1099 {
1100 	struct rproc_subdev *subdev;
1101 	int ret;
1102 
1103 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1104 		if (subdev->start) {
1105 			ret = subdev->start(subdev);
1106 			if (ret)
1107 				goto unroll_registration;
1108 		}
1109 	}
1110 
1111 	return 0;
1112 
1113 unroll_registration:
1114 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1115 		if (subdev->stop)
1116 			subdev->stop(subdev, true);
1117 	}
1118 
1119 	return ret;
1120 }
1121 
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1122 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1123 {
1124 	struct rproc_subdev *subdev;
1125 
1126 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1127 		if (subdev->stop)
1128 			subdev->stop(subdev, crashed);
1129 	}
1130 }
1131 
rproc_unprepare_subdevices(struct rproc * rproc)1132 static void rproc_unprepare_subdevices(struct rproc *rproc)
1133 {
1134 	struct rproc_subdev *subdev;
1135 
1136 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137 		if (subdev->unprepare)
1138 			subdev->unprepare(subdev);
1139 	}
1140 }
1141 
1142 /**
1143  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1144  * in the list
1145  * @rproc: the remote processor handle
1146  *
1147  * This function parses registered carveout list, performs allocation
1148  * if alloc() ops registered and updates resource table information
1149  * if rsc_offset set.
1150  *
1151  * Return: 0 on success
1152  */
rproc_alloc_registered_carveouts(struct rproc * rproc)1153 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1154 {
1155 	struct rproc_mem_entry *entry, *tmp;
1156 	struct fw_rsc_carveout *rsc;
1157 	struct device *dev = &rproc->dev;
1158 	u64 pa;
1159 	int ret;
1160 
1161 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1162 		if (entry->alloc) {
1163 			ret = entry->alloc(rproc, entry);
1164 			if (ret) {
1165 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1166 					entry->name, ret);
1167 				return -ENOMEM;
1168 			}
1169 		}
1170 
1171 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1172 			/* update resource table */
1173 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1174 
1175 			/*
1176 			 * Some remote processors might need to know the pa
1177 			 * even though they are behind an IOMMU. E.g., OMAP4's
1178 			 * remote M3 processor needs this so it can control
1179 			 * on-chip hardware accelerators that are not behind
1180 			 * the IOMMU, and therefor must know the pa.
1181 			 *
1182 			 * Generally we don't want to expose physical addresses
1183 			 * if we don't have to (remote processors are generally
1184 			 * _not_ trusted), so we might want to do this only for
1185 			 * remote processor that _must_ have this (e.g. OMAP4's
1186 			 * dual M3 subsystem).
1187 			 *
1188 			 * Non-IOMMU processors might also want to have this info.
1189 			 * In this case, the device address and the physical address
1190 			 * are the same.
1191 			 */
1192 
1193 			/* Use va if defined else dma to generate pa */
1194 			if (entry->va)
1195 				pa = (u64)rproc_va_to_pa(entry->va);
1196 			else
1197 				pa = (u64)entry->dma;
1198 
1199 			if (((u64)pa) & HIGH_BITS_MASK)
1200 				dev_warn(dev,
1201 					 "Physical address cast in 32bit to fit resource table format\n");
1202 
1203 			rsc->pa = (u32)pa;
1204 			rsc->da = entry->da;
1205 			rsc->len = entry->len;
1206 		}
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 
1213 /**
1214  * rproc_resource_cleanup() - clean up and free all acquired resources
1215  * @rproc: rproc handle
1216  *
1217  * This function will free all resources acquired for @rproc, and it
1218  * is called whenever @rproc either shuts down or fails to boot.
1219  */
rproc_resource_cleanup(struct rproc * rproc)1220 void rproc_resource_cleanup(struct rproc *rproc)
1221 {
1222 	struct rproc_mem_entry *entry, *tmp;
1223 	struct rproc_debug_trace *trace, *ttmp;
1224 	struct rproc_vdev *rvdev, *rvtmp;
1225 	struct device *dev = &rproc->dev;
1226 
1227 	/* clean up debugfs trace entries */
1228 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1229 		rproc_remove_trace_file(trace->tfile);
1230 		rproc->num_traces--;
1231 		list_del(&trace->node);
1232 		kfree(trace);
1233 	}
1234 
1235 	/* clean up iommu mapping entries */
1236 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1237 		size_t unmapped;
1238 
1239 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1240 		if (unmapped != entry->len) {
1241 			/* nothing much to do besides complaining */
1242 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1243 				unmapped);
1244 		}
1245 
1246 		list_del(&entry->node);
1247 		kfree(entry);
1248 	}
1249 
1250 	/* clean up carveout allocations */
1251 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252 		if (entry->release)
1253 			entry->release(rproc, entry);
1254 		list_del(&entry->node);
1255 		kfree(entry);
1256 	}
1257 
1258 	/* clean up remote vdev entries */
1259 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1260 		platform_device_unregister(rvdev->pdev);
1261 
1262 	rproc_coredump_cleanup(rproc);
1263 }
1264 EXPORT_SYMBOL(rproc_resource_cleanup);
1265 
rproc_start(struct rproc * rproc,const struct firmware * fw)1266 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1267 {
1268 	struct resource_table *loaded_table;
1269 	struct device *dev = &rproc->dev;
1270 	int ret;
1271 
1272 	/* load the ELF segments to memory */
1273 	ret = rproc_load_segments(rproc, fw);
1274 	if (ret) {
1275 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1276 		return ret;
1277 	}
1278 
1279 	/*
1280 	 * The starting device has been given the rproc->cached_table as the
1281 	 * resource table. The address of the vring along with the other
1282 	 * allocated resources (carveouts etc) is stored in cached_table.
1283 	 * In order to pass this information to the remote device we must copy
1284 	 * this information to device memory. We also update the table_ptr so
1285 	 * that any subsequent changes will be applied to the loaded version.
1286 	 */
1287 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1288 	if (loaded_table) {
1289 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1290 		rproc->table_ptr = loaded_table;
1291 	}
1292 
1293 	ret = rproc_prepare_subdevices(rproc);
1294 	if (ret) {
1295 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1296 			rproc->name, ret);
1297 		goto reset_table_ptr;
1298 	}
1299 
1300 	/* power up the remote processor */
1301 	ret = rproc->ops->start(rproc);
1302 	if (ret) {
1303 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1304 		goto unprepare_subdevices;
1305 	}
1306 
1307 	/* Start any subdevices for the remote processor */
1308 	ret = rproc_start_subdevices(rproc);
1309 	if (ret) {
1310 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1311 			rproc->name, ret);
1312 		goto stop_rproc;
1313 	}
1314 
1315 	rproc->state = RPROC_RUNNING;
1316 
1317 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1318 
1319 	return 0;
1320 
1321 stop_rproc:
1322 	rproc->ops->stop(rproc);
1323 unprepare_subdevices:
1324 	rproc_unprepare_subdevices(rproc);
1325 reset_table_ptr:
1326 	rproc->table_ptr = rproc->cached_table;
1327 
1328 	return ret;
1329 }
1330 
__rproc_attach(struct rproc * rproc)1331 static int __rproc_attach(struct rproc *rproc)
1332 {
1333 	struct device *dev = &rproc->dev;
1334 	int ret;
1335 
1336 	ret = rproc_prepare_subdevices(rproc);
1337 	if (ret) {
1338 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1339 			rproc->name, ret);
1340 		goto out;
1341 	}
1342 
1343 	/* Attach to the remote processor */
1344 	ret = rproc_attach_device(rproc);
1345 	if (ret) {
1346 		dev_err(dev, "can't attach to rproc %s: %d\n",
1347 			rproc->name, ret);
1348 		goto unprepare_subdevices;
1349 	}
1350 
1351 	/* Start any subdevices for the remote processor */
1352 	ret = rproc_start_subdevices(rproc);
1353 	if (ret) {
1354 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1355 			rproc->name, ret);
1356 		goto stop_rproc;
1357 	}
1358 
1359 	rproc->state = RPROC_ATTACHED;
1360 
1361 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1362 
1363 	return 0;
1364 
1365 stop_rproc:
1366 	rproc->ops->stop(rproc);
1367 unprepare_subdevices:
1368 	rproc_unprepare_subdevices(rproc);
1369 out:
1370 	return ret;
1371 }
1372 
1373 /*
1374  * take a firmware and boot a remote processor with it.
1375  */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1376 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1377 {
1378 	struct device *dev = &rproc->dev;
1379 	const char *name = rproc->firmware;
1380 	int ret;
1381 
1382 	ret = rproc_fw_sanity_check(rproc, fw);
1383 	if (ret)
1384 		return ret;
1385 
1386 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1387 
1388 	/*
1389 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1390 	 * just a nop
1391 	 */
1392 	ret = rproc_enable_iommu(rproc);
1393 	if (ret) {
1394 		dev_err(dev, "can't enable iommu: %d\n", ret);
1395 		return ret;
1396 	}
1397 
1398 	/* Prepare rproc for firmware loading if needed */
1399 	ret = rproc_prepare_device(rproc);
1400 	if (ret) {
1401 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1402 		goto disable_iommu;
1403 	}
1404 
1405 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1406 
1407 	/* Load resource table, core dump segment list etc from the firmware */
1408 	ret = rproc_parse_fw(rproc, fw);
1409 	if (ret)
1410 		goto unprepare_rproc;
1411 
1412 	/* reset max_notifyid */
1413 	rproc->max_notifyid = -1;
1414 
1415 	/* reset handled vdev */
1416 	rproc->nb_vdev = 0;
1417 
1418 	/* handle fw resources which are required to boot rproc */
1419 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1420 	if (ret) {
1421 		dev_err(dev, "Failed to process resources: %d\n", ret);
1422 		goto clean_up_resources;
1423 	}
1424 
1425 	/* Allocate carveout resources associated to rproc */
1426 	ret = rproc_alloc_registered_carveouts(rproc);
1427 	if (ret) {
1428 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1429 			ret);
1430 		goto clean_up_resources;
1431 	}
1432 
1433 	ret = rproc_start(rproc, fw);
1434 	if (ret)
1435 		goto clean_up_resources;
1436 
1437 	return 0;
1438 
1439 clean_up_resources:
1440 	rproc_resource_cleanup(rproc);
1441 	kfree(rproc->cached_table);
1442 	rproc->cached_table = NULL;
1443 	rproc->table_ptr = NULL;
1444 unprepare_rproc:
1445 	/* release HW resources if needed */
1446 	rproc_unprepare_device(rproc);
1447 disable_iommu:
1448 	rproc_disable_iommu(rproc);
1449 	return ret;
1450 }
1451 
rproc_set_rsc_table(struct rproc * rproc)1452 static int rproc_set_rsc_table(struct rproc *rproc)
1453 {
1454 	struct resource_table *table_ptr;
1455 	struct device *dev = &rproc->dev;
1456 	size_t table_sz;
1457 	int ret;
1458 
1459 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1460 	if (!table_ptr) {
1461 		/* Not having a resource table is acceptable */
1462 		return 0;
1463 	}
1464 
1465 	if (IS_ERR(table_ptr)) {
1466 		ret = PTR_ERR(table_ptr);
1467 		dev_err(dev, "can't load resource table: %d\n", ret);
1468 		return ret;
1469 	}
1470 
1471 	/*
1472 	 * If it is possible to detach the remote processor, keep an untouched
1473 	 * copy of the resource table.  That way we can start fresh again when
1474 	 * the remote processor is re-attached, that is:
1475 	 *
1476 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1477 	 *
1478 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1479 	 * rproc_reset_rsc_table_on_stop().
1480 	 */
1481 	if (rproc->ops->detach) {
1482 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1483 		if (!rproc->clean_table)
1484 			return -ENOMEM;
1485 	} else {
1486 		rproc->clean_table = NULL;
1487 	}
1488 
1489 	rproc->cached_table = NULL;
1490 	rproc->table_ptr = table_ptr;
1491 	rproc->table_sz = table_sz;
1492 
1493 	return 0;
1494 }
1495 
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1496 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1497 {
1498 	struct resource_table *table_ptr;
1499 
1500 	/* A resource table was never retrieved, nothing to do here */
1501 	if (!rproc->table_ptr)
1502 		return 0;
1503 
1504 	/*
1505 	 * If we made it to this point a clean_table _must_ have been
1506 	 * allocated in rproc_set_rsc_table().  If one isn't present
1507 	 * something went really wrong and we must complain.
1508 	 */
1509 	if (WARN_ON(!rproc->clean_table))
1510 		return -EINVAL;
1511 
1512 	/* Remember where the external entity installed the resource table */
1513 	table_ptr = rproc->table_ptr;
1514 
1515 	/*
1516 	 * If we made it here the remote processor was started by another
1517 	 * entity and a cache table doesn't exist.  As such make a copy of
1518 	 * the resource table currently used by the remote processor and
1519 	 * use that for the rest of the shutdown process.  The memory
1520 	 * allocated here is free'd in rproc_detach().
1521 	 */
1522 	rproc->cached_table = kmemdup(rproc->table_ptr,
1523 				      rproc->table_sz, GFP_KERNEL);
1524 	if (!rproc->cached_table)
1525 		return -ENOMEM;
1526 
1527 	/*
1528 	 * Use a copy of the resource table for the remainder of the
1529 	 * shutdown process.
1530 	 */
1531 	rproc->table_ptr = rproc->cached_table;
1532 
1533 	/*
1534 	 * Reset the memory area where the firmware loaded the resource table
1535 	 * to its original value.  That way when we re-attach the remote
1536 	 * processor the resource table is clean and ready to be used again.
1537 	 */
1538 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1539 
1540 	/*
1541 	 * The clean resource table is no longer needed.  Allocated in
1542 	 * rproc_set_rsc_table().
1543 	 */
1544 	kfree(rproc->clean_table);
1545 
1546 	return 0;
1547 }
1548 
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1549 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1550 {
1551 	/* A resource table was never retrieved, nothing to do here */
1552 	if (!rproc->table_ptr)
1553 		return 0;
1554 
1555 	/*
1556 	 * If a cache table exists the remote processor was started by
1557 	 * the remoteproc core.  That cache table should be used for
1558 	 * the rest of the shutdown process.
1559 	 */
1560 	if (rproc->cached_table)
1561 		goto out;
1562 
1563 	/*
1564 	 * If we made it here the remote processor was started by another
1565 	 * entity and a cache table doesn't exist.  As such make a copy of
1566 	 * the resource table currently used by the remote processor and
1567 	 * use that for the rest of the shutdown process.  The memory
1568 	 * allocated here is free'd in rproc_shutdown().
1569 	 */
1570 	rproc->cached_table = kmemdup(rproc->table_ptr,
1571 				      rproc->table_sz, GFP_KERNEL);
1572 	if (!rproc->cached_table)
1573 		return -ENOMEM;
1574 
1575 	/*
1576 	 * Since the remote processor is being switched off the clean table
1577 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1578 	 */
1579 	kfree(rproc->clean_table);
1580 
1581 out:
1582 	/*
1583 	 * Use a copy of the resource table for the remainder of the
1584 	 * shutdown process.
1585 	 */
1586 	rproc->table_ptr = rproc->cached_table;
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Attach to remote processor - similar to rproc_fw_boot() but without
1592  * the steps that deal with the firmware image.
1593  */
rproc_attach(struct rproc * rproc)1594 static int rproc_attach(struct rproc *rproc)
1595 {
1596 	struct device *dev = &rproc->dev;
1597 	int ret;
1598 
1599 	/*
1600 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1601 	 * just a nop
1602 	 */
1603 	ret = rproc_enable_iommu(rproc);
1604 	if (ret) {
1605 		dev_err(dev, "can't enable iommu: %d\n", ret);
1606 		return ret;
1607 	}
1608 
1609 	/* Do anything that is needed to boot the remote processor */
1610 	ret = rproc_prepare_device(rproc);
1611 	if (ret) {
1612 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1613 		goto disable_iommu;
1614 	}
1615 
1616 	ret = rproc_set_rsc_table(rproc);
1617 	if (ret) {
1618 		dev_err(dev, "can't load resource table: %d\n", ret);
1619 		goto unprepare_device;
1620 	}
1621 
1622 	/* reset max_notifyid */
1623 	rproc->max_notifyid = -1;
1624 
1625 	/* reset handled vdev */
1626 	rproc->nb_vdev = 0;
1627 
1628 	/*
1629 	 * Handle firmware resources required to attach to a remote processor.
1630 	 * Because we are attaching rather than booting the remote processor,
1631 	 * we expect the platform driver to properly set rproc->table_ptr.
1632 	 */
1633 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1634 	if (ret) {
1635 		dev_err(dev, "Failed to process resources: %d\n", ret);
1636 		goto unprepare_device;
1637 	}
1638 
1639 	/* Allocate carveout resources associated to rproc */
1640 	ret = rproc_alloc_registered_carveouts(rproc);
1641 	if (ret) {
1642 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1643 			ret);
1644 		goto clean_up_resources;
1645 	}
1646 
1647 	ret = __rproc_attach(rproc);
1648 	if (ret)
1649 		goto clean_up_resources;
1650 
1651 	return 0;
1652 
1653 clean_up_resources:
1654 	rproc_resource_cleanup(rproc);
1655 unprepare_device:
1656 	/* release HW resources if needed */
1657 	rproc_unprepare_device(rproc);
1658 disable_iommu:
1659 	rproc_disable_iommu(rproc);
1660 	return ret;
1661 }
1662 
1663 /*
1664  * take a firmware and boot it up.
1665  *
1666  * Note: this function is called asynchronously upon registration of the
1667  * remote processor (so we must wait until it completes before we try
1668  * to unregister the device. one other option is just to use kref here,
1669  * that might be cleaner).
1670  */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1671 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1672 {
1673 	struct rproc *rproc = context;
1674 
1675 	rproc_boot(rproc);
1676 
1677 	release_firmware(fw);
1678 }
1679 
rproc_trigger_auto_boot(struct rproc * rproc)1680 static int rproc_trigger_auto_boot(struct rproc *rproc)
1681 {
1682 	int ret;
1683 
1684 	/*
1685 	 * Since the remote processor is in a detached state, it has already
1686 	 * been booted by another entity.  As such there is no point in waiting
1687 	 * for a firmware image to be loaded, we can simply initiate the process
1688 	 * of attaching to it immediately.
1689 	 */
1690 	if (rproc->state == RPROC_DETACHED)
1691 		return rproc_boot(rproc);
1692 
1693 	/*
1694 	 * We're initiating an asynchronous firmware loading, so we can
1695 	 * be built-in kernel code, without hanging the boot process.
1696 	 */
1697 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1698 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1699 				      rproc, rproc_auto_boot_callback);
1700 	if (ret < 0)
1701 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1702 
1703 	return ret;
1704 }
1705 
rproc_stop(struct rproc * rproc,bool crashed)1706 static int rproc_stop(struct rproc *rproc, bool crashed)
1707 {
1708 	struct device *dev = &rproc->dev;
1709 	int ret;
1710 
1711 	/* No need to continue if a stop() operation has not been provided */
1712 	if (!rproc->ops->stop)
1713 		return -EINVAL;
1714 
1715 	/* Stop any subdevices for the remote processor */
1716 	rproc_stop_subdevices(rproc, crashed);
1717 
1718 	/* the installed resource table is no longer accessible */
1719 	ret = rproc_reset_rsc_table_on_stop(rproc);
1720 	if (ret) {
1721 		dev_err(dev, "can't reset resource table: %d\n", ret);
1722 		return ret;
1723 	}
1724 
1725 
1726 	/* power off the remote processor */
1727 	ret = rproc->ops->stop(rproc);
1728 	if (ret) {
1729 		dev_err(dev, "can't stop rproc: %d\n", ret);
1730 		return ret;
1731 	}
1732 
1733 	rproc_unprepare_subdevices(rproc);
1734 
1735 	rproc->state = RPROC_OFFLINE;
1736 
1737 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1738 
1739 	return 0;
1740 }
1741 
1742 /*
1743  * __rproc_detach(): Does the opposite of __rproc_attach()
1744  */
__rproc_detach(struct rproc * rproc)1745 static int __rproc_detach(struct rproc *rproc)
1746 {
1747 	struct device *dev = &rproc->dev;
1748 	int ret;
1749 
1750 	/* No need to continue if a detach() operation has not been provided */
1751 	if (!rproc->ops->detach)
1752 		return -EINVAL;
1753 
1754 	/* Stop any subdevices for the remote processor */
1755 	rproc_stop_subdevices(rproc, false);
1756 
1757 	/* the installed resource table is no longer accessible */
1758 	ret = rproc_reset_rsc_table_on_detach(rproc);
1759 	if (ret) {
1760 		dev_err(dev, "can't reset resource table: %d\n", ret);
1761 		return ret;
1762 	}
1763 
1764 	/* Tell the remote processor the core isn't available anymore */
1765 	ret = rproc->ops->detach(rproc);
1766 	if (ret) {
1767 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1768 		return ret;
1769 	}
1770 
1771 	rproc_unprepare_subdevices(rproc);
1772 
1773 	rproc->state = RPROC_DETACHED;
1774 
1775 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1776 
1777 	return 0;
1778 }
1779 
rproc_attach_recovery(struct rproc * rproc)1780 static int rproc_attach_recovery(struct rproc *rproc)
1781 {
1782 	int ret;
1783 
1784 	ret = __rproc_detach(rproc);
1785 	if (ret)
1786 		return ret;
1787 
1788 	return __rproc_attach(rproc);
1789 }
1790 
rproc_boot_recovery(struct rproc * rproc)1791 static int rproc_boot_recovery(struct rproc *rproc)
1792 {
1793 	const struct firmware *firmware_p;
1794 	struct device *dev = &rproc->dev;
1795 	int ret;
1796 
1797 	ret = rproc_stop(rproc, true);
1798 	if (ret)
1799 		return ret;
1800 
1801 	/* generate coredump */
1802 	rproc->ops->coredump(rproc);
1803 
1804 	/* load firmware */
1805 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1806 	if (ret < 0) {
1807 		dev_err(dev, "request_firmware failed: %d\n", ret);
1808 		return ret;
1809 	}
1810 
1811 	/* boot the remote processor up again */
1812 	ret = rproc_start(rproc, firmware_p);
1813 
1814 	release_firmware(firmware_p);
1815 
1816 	return ret;
1817 }
1818 
1819 /**
1820  * rproc_trigger_recovery() - recover a remoteproc
1821  * @rproc: the remote processor
1822  *
1823  * The recovery is done by resetting all the virtio devices, that way all the
1824  * rpmsg drivers will be reseted along with the remote processor making the
1825  * remoteproc functional again.
1826  *
1827  * This function can sleep, so it cannot be called from atomic context.
1828  *
1829  * Return: 0 on success or a negative value upon failure
1830  */
rproc_trigger_recovery(struct rproc * rproc)1831 int rproc_trigger_recovery(struct rproc *rproc)
1832 {
1833 	struct device *dev = &rproc->dev;
1834 	int ret;
1835 
1836 	ret = mutex_lock_interruptible(&rproc->lock);
1837 	if (ret)
1838 		return ret;
1839 
1840 	/* State could have changed before we got the mutex */
1841 	if (rproc->state != RPROC_CRASHED)
1842 		goto unlock_mutex;
1843 
1844 	dev_err(dev, "recovering %s\n", rproc->name);
1845 
1846 	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1847 		ret = rproc_attach_recovery(rproc);
1848 	else
1849 		ret = rproc_boot_recovery(rproc);
1850 
1851 unlock_mutex:
1852 	mutex_unlock(&rproc->lock);
1853 	return ret;
1854 }
1855 
1856 /**
1857  * rproc_crash_handler_work() - handle a crash
1858  * @work: work treating the crash
1859  *
1860  * This function needs to handle everything related to a crash, like cpu
1861  * registers and stack dump, information to help to debug the fatal error, etc.
1862  */
rproc_crash_handler_work(struct work_struct * work)1863 static void rproc_crash_handler_work(struct work_struct *work)
1864 {
1865 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1866 	struct device *dev = &rproc->dev;
1867 
1868 	dev_dbg(dev, "enter %s\n", __func__);
1869 
1870 	mutex_lock(&rproc->lock);
1871 
1872 	if (rproc->state == RPROC_CRASHED) {
1873 		/* handle only the first crash detected */
1874 		mutex_unlock(&rproc->lock);
1875 		return;
1876 	}
1877 
1878 	if (rproc->state == RPROC_OFFLINE) {
1879 		/* Don't recover if the remote processor was stopped */
1880 		mutex_unlock(&rproc->lock);
1881 		goto out;
1882 	}
1883 
1884 	rproc->state = RPROC_CRASHED;
1885 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1886 		rproc->name);
1887 
1888 	mutex_unlock(&rproc->lock);
1889 
1890 	if (!rproc->recovery_disabled)
1891 		rproc_trigger_recovery(rproc);
1892 
1893 out:
1894 	pm_relax(rproc->dev.parent);
1895 }
1896 
1897 /**
1898  * rproc_boot() - boot a remote processor
1899  * @rproc: handle of a remote processor
1900  *
1901  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1902  *
1903  * If the remote processor is already powered on, this function immediately
1904  * returns (successfully).
1905  *
1906  * Return: 0 on success, and an appropriate error value otherwise
1907  */
rproc_boot(struct rproc * rproc)1908 int rproc_boot(struct rproc *rproc)
1909 {
1910 	const struct firmware *firmware_p;
1911 	struct device *dev;
1912 	int ret;
1913 
1914 	if (!rproc) {
1915 		pr_err("invalid rproc handle\n");
1916 		return -EINVAL;
1917 	}
1918 
1919 	dev = &rproc->dev;
1920 
1921 	ret = mutex_lock_interruptible(&rproc->lock);
1922 	if (ret) {
1923 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1924 		return ret;
1925 	}
1926 
1927 	if (rproc->state == RPROC_DELETED) {
1928 		ret = -ENODEV;
1929 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1930 		goto unlock_mutex;
1931 	}
1932 
1933 	/* skip the boot or attach process if rproc is already powered up */
1934 	if (atomic_inc_return(&rproc->power) > 1) {
1935 		ret = 0;
1936 		goto unlock_mutex;
1937 	}
1938 
1939 	if (rproc->state == RPROC_DETACHED) {
1940 		dev_info(dev, "attaching to %s\n", rproc->name);
1941 
1942 		ret = rproc_attach(rproc);
1943 	} else {
1944 		dev_info(dev, "powering up %s\n", rproc->name);
1945 
1946 		/* load firmware */
1947 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1948 		if (ret < 0) {
1949 			dev_err(dev, "request_firmware failed: %d\n", ret);
1950 			goto downref_rproc;
1951 		}
1952 
1953 		ret = rproc_fw_boot(rproc, firmware_p);
1954 
1955 		release_firmware(firmware_p);
1956 	}
1957 
1958 downref_rproc:
1959 	if (ret)
1960 		atomic_dec(&rproc->power);
1961 unlock_mutex:
1962 	mutex_unlock(&rproc->lock);
1963 	return ret;
1964 }
1965 EXPORT_SYMBOL(rproc_boot);
1966 
1967 /**
1968  * rproc_shutdown() - power off the remote processor
1969  * @rproc: the remote processor
1970  *
1971  * Power off a remote processor (previously booted with rproc_boot()).
1972  *
1973  * In case @rproc is still being used by an additional user(s), then
1974  * this function will just decrement the power refcount and exit,
1975  * without really powering off the device.
1976  *
1977  * Every call to rproc_boot() must (eventually) be accompanied by a call
1978  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1979  *
1980  * Notes:
1981  * - we're not decrementing the rproc's refcount, only the power refcount.
1982  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1983  *   returns, and users can still use it with a subsequent rproc_boot(), if
1984  *   needed.
1985  *
1986  * Return: 0 on success, and an appropriate error value otherwise
1987  */
rproc_shutdown(struct rproc * rproc)1988 int rproc_shutdown(struct rproc *rproc)
1989 {
1990 	struct device *dev = &rproc->dev;
1991 	int ret = 0;
1992 
1993 	ret = mutex_lock_interruptible(&rproc->lock);
1994 	if (ret) {
1995 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1996 		return ret;
1997 	}
1998 
1999 	if (rproc->state != RPROC_RUNNING &&
2000 	    rproc->state != RPROC_ATTACHED) {
2001 		ret = -EINVAL;
2002 		goto out;
2003 	}
2004 
2005 	/* if the remote proc is still needed, bail out */
2006 	if (!atomic_dec_and_test(&rproc->power))
2007 		goto out;
2008 
2009 	ret = rproc_stop(rproc, false);
2010 	if (ret) {
2011 		atomic_inc(&rproc->power);
2012 		goto out;
2013 	}
2014 
2015 	/* clean up all acquired resources */
2016 	rproc_resource_cleanup(rproc);
2017 
2018 	/* release HW resources if needed */
2019 	rproc_unprepare_device(rproc);
2020 
2021 	rproc_disable_iommu(rproc);
2022 
2023 	/* Free the copy of the resource table */
2024 	kfree(rproc->cached_table);
2025 	rproc->cached_table = NULL;
2026 	rproc->table_ptr = NULL;
2027 out:
2028 	mutex_unlock(&rproc->lock);
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL(rproc_shutdown);
2032 
2033 /**
2034  * rproc_detach() - Detach the remote processor from the
2035  * remoteproc core
2036  *
2037  * @rproc: the remote processor
2038  *
2039  * Detach a remote processor (previously attached to with rproc_attach()).
2040  *
2041  * In case @rproc is still being used by an additional user(s), then
2042  * this function will just decrement the power refcount and exit,
2043  * without disconnecting the device.
2044  *
2045  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2046  * processor know that services provided by the application processor are
2047  * no longer available.  From there it should be possible to remove the
2048  * platform driver and even power cycle the application processor (if the HW
2049  * supports it) without needing to switch off the remote processor.
2050  *
2051  * Return: 0 on success, and an appropriate error value otherwise
2052  */
rproc_detach(struct rproc * rproc)2053 int rproc_detach(struct rproc *rproc)
2054 {
2055 	struct device *dev = &rproc->dev;
2056 	int ret;
2057 
2058 	ret = mutex_lock_interruptible(&rproc->lock);
2059 	if (ret) {
2060 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2061 		return ret;
2062 	}
2063 
2064 	if (rproc->state != RPROC_ATTACHED) {
2065 		ret = -EINVAL;
2066 		goto out;
2067 	}
2068 
2069 	/* if the remote proc is still needed, bail out */
2070 	if (!atomic_dec_and_test(&rproc->power)) {
2071 		ret = 0;
2072 		goto out;
2073 	}
2074 
2075 	ret = __rproc_detach(rproc);
2076 	if (ret) {
2077 		atomic_inc(&rproc->power);
2078 		goto out;
2079 	}
2080 
2081 	/* clean up all acquired resources */
2082 	rproc_resource_cleanup(rproc);
2083 
2084 	/* release HW resources if needed */
2085 	rproc_unprepare_device(rproc);
2086 
2087 	rproc_disable_iommu(rproc);
2088 
2089 	/* Free the copy of the resource table */
2090 	kfree(rproc->cached_table);
2091 	rproc->cached_table = NULL;
2092 	rproc->table_ptr = NULL;
2093 out:
2094 	mutex_unlock(&rproc->lock);
2095 	return ret;
2096 }
2097 EXPORT_SYMBOL(rproc_detach);
2098 
2099 /**
2100  * rproc_get_by_phandle() - find a remote processor by phandle
2101  * @phandle: phandle to the rproc
2102  *
2103  * Finds an rproc handle using the remote processor's phandle, and then
2104  * return a handle to the rproc.
2105  *
2106  * This function increments the remote processor's refcount, so always
2107  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2108  *
2109  * Return: rproc handle on success, and NULL on failure
2110  */
2111 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2112 struct rproc *rproc_get_by_phandle(phandle phandle)
2113 {
2114 	struct rproc *rproc = NULL, *r;
2115 	struct device_node *np;
2116 
2117 	np = of_find_node_by_phandle(phandle);
2118 	if (!np)
2119 		return NULL;
2120 
2121 	rcu_read_lock();
2122 	list_for_each_entry_rcu(r, &rproc_list, node) {
2123 		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2124 			/* prevent underlying implementation from being removed */
2125 			if (!try_module_get(r->dev.parent->driver->owner)) {
2126 				dev_err(&r->dev, "can't get owner\n");
2127 				break;
2128 			}
2129 
2130 			rproc = r;
2131 			get_device(&rproc->dev);
2132 			break;
2133 		}
2134 	}
2135 	rcu_read_unlock();
2136 
2137 	of_node_put(np);
2138 
2139 	return rproc;
2140 }
2141 #else
rproc_get_by_phandle(phandle phandle)2142 struct rproc *rproc_get_by_phandle(phandle phandle)
2143 {
2144 	return NULL;
2145 }
2146 #endif
2147 EXPORT_SYMBOL(rproc_get_by_phandle);
2148 
2149 /**
2150  * rproc_set_firmware() - assign a new firmware
2151  * @rproc: rproc handle to which the new firmware is being assigned
2152  * @fw_name: new firmware name to be assigned
2153  *
2154  * This function allows remoteproc drivers or clients to configure a custom
2155  * firmware name that is different from the default name used during remoteproc
2156  * registration. The function does not trigger a remote processor boot,
2157  * only sets the firmware name used for a subsequent boot. This function
2158  * should also be called only when the remote processor is offline.
2159  *
2160  * This allows either the userspace to configure a different name through
2161  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2162  * a specific firmware when it is controlling the boot and shutdown of the
2163  * remote processor.
2164  *
2165  * Return: 0 on success or a negative value upon failure
2166  */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2167 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2168 {
2169 	struct device *dev;
2170 	int ret, len;
2171 	char *p;
2172 
2173 	if (!rproc || !fw_name)
2174 		return -EINVAL;
2175 
2176 	dev = rproc->dev.parent;
2177 
2178 	ret = mutex_lock_interruptible(&rproc->lock);
2179 	if (ret) {
2180 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2181 		return -EINVAL;
2182 	}
2183 
2184 	if (rproc->state != RPROC_OFFLINE) {
2185 		dev_err(dev, "can't change firmware while running\n");
2186 		ret = -EBUSY;
2187 		goto out;
2188 	}
2189 
2190 	len = strcspn(fw_name, "\n");
2191 	if (!len) {
2192 		dev_err(dev, "can't provide empty string for firmware name\n");
2193 		ret = -EINVAL;
2194 		goto out;
2195 	}
2196 
2197 	p = kstrndup(fw_name, len, GFP_KERNEL);
2198 	if (!p) {
2199 		ret = -ENOMEM;
2200 		goto out;
2201 	}
2202 
2203 	kfree_const(rproc->firmware);
2204 	rproc->firmware = p;
2205 
2206 out:
2207 	mutex_unlock(&rproc->lock);
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL(rproc_set_firmware);
2211 
rproc_validate(struct rproc * rproc)2212 static int rproc_validate(struct rproc *rproc)
2213 {
2214 	switch (rproc->state) {
2215 	case RPROC_OFFLINE:
2216 		/*
2217 		 * An offline processor without a start()
2218 		 * function makes no sense.
2219 		 */
2220 		if (!rproc->ops->start)
2221 			return -EINVAL;
2222 		break;
2223 	case RPROC_DETACHED:
2224 		/*
2225 		 * A remote processor in a detached state without an
2226 		 * attach() function makes not sense.
2227 		 */
2228 		if (!rproc->ops->attach)
2229 			return -EINVAL;
2230 		/*
2231 		 * When attaching to a remote processor the device memory
2232 		 * is already available and as such there is no need to have a
2233 		 * cached table.
2234 		 */
2235 		if (rproc->cached_table)
2236 			return -EINVAL;
2237 		break;
2238 	default:
2239 		/*
2240 		 * When adding a remote processor, the state of the device
2241 		 * can be offline or detached, nothing else.
2242 		 */
2243 		return -EINVAL;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 /**
2250  * rproc_add() - register a remote processor
2251  * @rproc: the remote processor handle to register
2252  *
2253  * Registers @rproc with the remoteproc framework, after it has been
2254  * allocated with rproc_alloc().
2255  *
2256  * This is called by the platform-specific rproc implementation, whenever
2257  * a new remote processor device is probed.
2258  *
2259  * Note: this function initiates an asynchronous firmware loading
2260  * context, which will look for virtio devices supported by the rproc's
2261  * firmware.
2262  *
2263  * If found, those virtio devices will be created and added, so as a result
2264  * of registering this remote processor, additional virtio drivers might be
2265  * probed.
2266  *
2267  * Return: 0 on success and an appropriate error code otherwise
2268  */
rproc_add(struct rproc * rproc)2269 int rproc_add(struct rproc *rproc)
2270 {
2271 	struct device *dev = &rproc->dev;
2272 	int ret;
2273 
2274 	ret = rproc_validate(rproc);
2275 	if (ret < 0)
2276 		return ret;
2277 
2278 	/* add char device for this remoteproc */
2279 	ret = rproc_char_device_add(rproc);
2280 	if (ret < 0)
2281 		return ret;
2282 
2283 	ret = device_add(dev);
2284 	if (ret < 0) {
2285 		put_device(dev);
2286 		goto rproc_remove_cdev;
2287 	}
2288 
2289 	dev_info(dev, "%s is available\n", rproc->name);
2290 
2291 	/* create debugfs entries */
2292 	rproc_create_debug_dir(rproc);
2293 
2294 	/* if rproc is marked always-on, request it to boot */
2295 	if (rproc->auto_boot) {
2296 		ret = rproc_trigger_auto_boot(rproc);
2297 		if (ret < 0)
2298 			goto rproc_remove_dev;
2299 	}
2300 
2301 	/* expose to rproc_get_by_phandle users */
2302 	mutex_lock(&rproc_list_mutex);
2303 	list_add_rcu(&rproc->node, &rproc_list);
2304 	mutex_unlock(&rproc_list_mutex);
2305 
2306 	return 0;
2307 
2308 rproc_remove_dev:
2309 	rproc_delete_debug_dir(rproc);
2310 	device_del(dev);
2311 rproc_remove_cdev:
2312 	rproc_char_device_remove(rproc);
2313 	return ret;
2314 }
2315 EXPORT_SYMBOL(rproc_add);
2316 
devm_rproc_remove(void * rproc)2317 static void devm_rproc_remove(void *rproc)
2318 {
2319 	rproc_del(rproc);
2320 }
2321 
2322 /**
2323  * devm_rproc_add() - resource managed rproc_add()
2324  * @dev: the underlying device
2325  * @rproc: the remote processor handle to register
2326  *
2327  * This function performs like rproc_add() but the registered rproc device will
2328  * automatically be removed on driver detach.
2329  *
2330  * Return: 0 on success, negative errno on failure
2331  */
devm_rproc_add(struct device * dev,struct rproc * rproc)2332 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2333 {
2334 	int err;
2335 
2336 	err = rproc_add(rproc);
2337 	if (err)
2338 		return err;
2339 
2340 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2341 }
2342 EXPORT_SYMBOL(devm_rproc_add);
2343 
2344 /**
2345  * rproc_type_release() - release a remote processor instance
2346  * @dev: the rproc's device
2347  *
2348  * This function should _never_ be called directly.
2349  *
2350  * It will be called by the driver core when no one holds a valid pointer
2351  * to @dev anymore.
2352  */
rproc_type_release(struct device * dev)2353 static void rproc_type_release(struct device *dev)
2354 {
2355 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2356 
2357 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2358 
2359 	idr_destroy(&rproc->notifyids);
2360 
2361 	if (rproc->index >= 0)
2362 		ida_free(&rproc_dev_index, rproc->index);
2363 
2364 	kfree_const(rproc->firmware);
2365 	kfree_const(rproc->name);
2366 	kfree(rproc->ops);
2367 	kfree(rproc);
2368 }
2369 
2370 static const struct device_type rproc_type = {
2371 	.name		= "remoteproc",
2372 	.release	= rproc_type_release,
2373 };
2374 
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2375 static int rproc_alloc_firmware(struct rproc *rproc,
2376 				const char *name, const char *firmware)
2377 {
2378 	const char *p;
2379 
2380 	/*
2381 	 * Allocate a firmware name if the caller gave us one to work
2382 	 * with.  Otherwise construct a new one using a default pattern.
2383 	 */
2384 	if (firmware)
2385 		p = kstrdup_const(firmware, GFP_KERNEL);
2386 	else
2387 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2388 
2389 	if (!p)
2390 		return -ENOMEM;
2391 
2392 	rproc->firmware = p;
2393 
2394 	return 0;
2395 }
2396 
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2397 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2398 {
2399 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2400 	if (!rproc->ops)
2401 		return -ENOMEM;
2402 
2403 	/* Default to rproc_coredump if no coredump function is specified */
2404 	if (!rproc->ops->coredump)
2405 		rproc->ops->coredump = rproc_coredump;
2406 
2407 	if (rproc->ops->load)
2408 		return 0;
2409 
2410 	/* Default to ELF loader if no load function is specified */
2411 	rproc->ops->load = rproc_elf_load_segments;
2412 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2413 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2414 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2415 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2416 
2417 	return 0;
2418 }
2419 
2420 /**
2421  * rproc_alloc() - allocate a remote processor handle
2422  * @dev: the underlying device
2423  * @name: name of this remote processor
2424  * @ops: platform-specific handlers (mainly start/stop)
2425  * @firmware: name of firmware file to load, can be NULL
2426  * @len: length of private data needed by the rproc driver (in bytes)
2427  *
2428  * Allocates a new remote processor handle, but does not register
2429  * it yet. if @firmware is NULL, a default name is used.
2430  *
2431  * This function should be used by rproc implementations during initialization
2432  * of the remote processor.
2433  *
2434  * After creating an rproc handle using this function, and when ready,
2435  * implementations should then call rproc_add() to complete
2436  * the registration of the remote processor.
2437  *
2438  * Note: _never_ directly deallocate @rproc, even if it was not registered
2439  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2440  *
2441  * Return: new rproc pointer on success, and NULL on failure
2442  */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2443 struct rproc *rproc_alloc(struct device *dev, const char *name,
2444 			  const struct rproc_ops *ops,
2445 			  const char *firmware, int len)
2446 {
2447 	struct rproc *rproc;
2448 
2449 	if (!dev || !name || !ops)
2450 		return NULL;
2451 
2452 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2453 	if (!rproc)
2454 		return NULL;
2455 
2456 	rproc->priv = &rproc[1];
2457 	rproc->auto_boot = true;
2458 	rproc->elf_class = ELFCLASSNONE;
2459 	rproc->elf_machine = EM_NONE;
2460 
2461 	device_initialize(&rproc->dev);
2462 	rproc->dev.parent = dev;
2463 	rproc->dev.type = &rproc_type;
2464 	rproc->dev.class = &rproc_class;
2465 	rproc->dev.driver_data = rproc;
2466 	idr_init(&rproc->notifyids);
2467 
2468 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2469 	if (!rproc->name)
2470 		goto put_device;
2471 
2472 	if (rproc_alloc_firmware(rproc, name, firmware))
2473 		goto put_device;
2474 
2475 	if (rproc_alloc_ops(rproc, ops))
2476 		goto put_device;
2477 
2478 	/* Assign a unique device index and name */
2479 	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2480 	if (rproc->index < 0) {
2481 		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2482 		goto put_device;
2483 	}
2484 
2485 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2486 
2487 	atomic_set(&rproc->power, 0);
2488 
2489 	mutex_init(&rproc->lock);
2490 
2491 	INIT_LIST_HEAD(&rproc->carveouts);
2492 	INIT_LIST_HEAD(&rproc->mappings);
2493 	INIT_LIST_HEAD(&rproc->traces);
2494 	INIT_LIST_HEAD(&rproc->rvdevs);
2495 	INIT_LIST_HEAD(&rproc->subdevs);
2496 	INIT_LIST_HEAD(&rproc->dump_segments);
2497 
2498 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2499 
2500 	rproc->state = RPROC_OFFLINE;
2501 
2502 	return rproc;
2503 
2504 put_device:
2505 	put_device(&rproc->dev);
2506 	return NULL;
2507 }
2508 EXPORT_SYMBOL(rproc_alloc);
2509 
2510 /**
2511  * rproc_free() - unroll rproc_alloc()
2512  * @rproc: the remote processor handle
2513  *
2514  * This function decrements the rproc dev refcount.
2515  *
2516  * If no one holds any reference to rproc anymore, then its refcount would
2517  * now drop to zero, and it would be freed.
2518  */
rproc_free(struct rproc * rproc)2519 void rproc_free(struct rproc *rproc)
2520 {
2521 	put_device(&rproc->dev);
2522 }
2523 EXPORT_SYMBOL(rproc_free);
2524 
2525 /**
2526  * rproc_put() - release rproc reference
2527  * @rproc: the remote processor handle
2528  *
2529  * This function decrements the rproc dev refcount.
2530  *
2531  * If no one holds any reference to rproc anymore, then its refcount would
2532  * now drop to zero, and it would be freed.
2533  */
rproc_put(struct rproc * rproc)2534 void rproc_put(struct rproc *rproc)
2535 {
2536 	module_put(rproc->dev.parent->driver->owner);
2537 	put_device(&rproc->dev);
2538 }
2539 EXPORT_SYMBOL(rproc_put);
2540 
2541 /**
2542  * rproc_del() - unregister a remote processor
2543  * @rproc: rproc handle to unregister
2544  *
2545  * This function should be called when the platform specific rproc
2546  * implementation decides to remove the rproc device. it should
2547  * _only_ be called if a previous invocation of rproc_add()
2548  * has completed successfully.
2549  *
2550  * After rproc_del() returns, @rproc isn't freed yet, because
2551  * of the outstanding reference created by rproc_alloc. To decrement that
2552  * one last refcount, one still needs to call rproc_free().
2553  *
2554  * Return: 0 on success and -EINVAL if @rproc isn't valid
2555  */
rproc_del(struct rproc * rproc)2556 int rproc_del(struct rproc *rproc)
2557 {
2558 	if (!rproc)
2559 		return -EINVAL;
2560 
2561 	/* TODO: make sure this works with rproc->power > 1 */
2562 	rproc_shutdown(rproc);
2563 
2564 	mutex_lock(&rproc->lock);
2565 	rproc->state = RPROC_DELETED;
2566 	mutex_unlock(&rproc->lock);
2567 
2568 	rproc_delete_debug_dir(rproc);
2569 
2570 	/* the rproc is downref'ed as soon as it's removed from the klist */
2571 	mutex_lock(&rproc_list_mutex);
2572 	list_del_rcu(&rproc->node);
2573 	mutex_unlock(&rproc_list_mutex);
2574 
2575 	/* Ensure that no readers of rproc_list are still active */
2576 	synchronize_rcu();
2577 
2578 	device_del(&rproc->dev);
2579 	rproc_char_device_remove(rproc);
2580 
2581 	return 0;
2582 }
2583 EXPORT_SYMBOL(rproc_del);
2584 
devm_rproc_free(struct device * dev,void * res)2585 static void devm_rproc_free(struct device *dev, void *res)
2586 {
2587 	rproc_free(*(struct rproc **)res);
2588 }
2589 
2590 /**
2591  * devm_rproc_alloc() - resource managed rproc_alloc()
2592  * @dev: the underlying device
2593  * @name: name of this remote processor
2594  * @ops: platform-specific handlers (mainly start/stop)
2595  * @firmware: name of firmware file to load, can be NULL
2596  * @len: length of private data needed by the rproc driver (in bytes)
2597  *
2598  * This function performs like rproc_alloc() but the acquired rproc device will
2599  * automatically be released on driver detach.
2600  *
2601  * Return: new rproc instance, or NULL on failure
2602  */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2603 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2604 			       const struct rproc_ops *ops,
2605 			       const char *firmware, int len)
2606 {
2607 	struct rproc **ptr, *rproc;
2608 
2609 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2610 	if (!ptr)
2611 		return NULL;
2612 
2613 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2614 	if (rproc) {
2615 		*ptr = rproc;
2616 		devres_add(dev, ptr);
2617 	} else {
2618 		devres_free(ptr);
2619 	}
2620 
2621 	return rproc;
2622 }
2623 EXPORT_SYMBOL(devm_rproc_alloc);
2624 
2625 /**
2626  * rproc_add_subdev() - add a subdevice to a remoteproc
2627  * @rproc: rproc handle to add the subdevice to
2628  * @subdev: subdev handle to register
2629  *
2630  * Caller is responsible for populating optional subdevice function pointers.
2631  */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2632 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2633 {
2634 	list_add_tail(&subdev->node, &rproc->subdevs);
2635 }
2636 EXPORT_SYMBOL(rproc_add_subdev);
2637 
2638 /**
2639  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2640  * @rproc: rproc handle to remove the subdevice from
2641  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2642  */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2643 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2644 {
2645 	list_del(&subdev->node);
2646 }
2647 EXPORT_SYMBOL(rproc_remove_subdev);
2648 
2649 /**
2650  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2651  * @dev:	child device to find ancestor of
2652  *
2653  * Return: the ancestor rproc instance, or NULL if not found
2654  */
rproc_get_by_child(struct device * dev)2655 struct rproc *rproc_get_by_child(struct device *dev)
2656 {
2657 	for (dev = dev->parent; dev; dev = dev->parent) {
2658 		if (dev->type == &rproc_type)
2659 			return dev->driver_data;
2660 	}
2661 
2662 	return NULL;
2663 }
2664 EXPORT_SYMBOL(rproc_get_by_child);
2665 
2666 /**
2667  * rproc_report_crash() - rproc crash reporter function
2668  * @rproc: remote processor
2669  * @type: crash type
2670  *
2671  * This function must be called every time a crash is detected by the low-level
2672  * drivers implementing a specific remoteproc. This should not be called from a
2673  * non-remoteproc driver.
2674  *
2675  * This function can be called from atomic/interrupt context.
2676  */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2677 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2678 {
2679 	if (!rproc) {
2680 		pr_err("NULL rproc pointer\n");
2681 		return;
2682 	}
2683 
2684 	/* Prevent suspend while the remoteproc is being recovered */
2685 	pm_stay_awake(rproc->dev.parent);
2686 
2687 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2688 		rproc->name, rproc_crash_to_string(type));
2689 
2690 	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2691 }
2692 EXPORT_SYMBOL(rproc_report_crash);
2693 
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2694 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2695 			       void *ptr)
2696 {
2697 	unsigned int longest = 0;
2698 	struct rproc *rproc;
2699 	unsigned int d;
2700 
2701 	rcu_read_lock();
2702 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2703 		if (!rproc->ops->panic)
2704 			continue;
2705 
2706 		if (rproc->state != RPROC_RUNNING &&
2707 		    rproc->state != RPROC_ATTACHED)
2708 			continue;
2709 
2710 		d = rproc->ops->panic(rproc);
2711 		longest = max(longest, d);
2712 	}
2713 	rcu_read_unlock();
2714 
2715 	/*
2716 	 * Delay for the longest requested duration before returning. This can
2717 	 * be used by the remoteproc drivers to give the remote processor time
2718 	 * to perform any requested operations (such as flush caches), when
2719 	 * it's not possible to signal the Linux side due to the panic.
2720 	 */
2721 	mdelay(longest);
2722 
2723 	return NOTIFY_DONE;
2724 }
2725 
rproc_init_panic(void)2726 static void __init rproc_init_panic(void)
2727 {
2728 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2729 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2730 }
2731 
rproc_exit_panic(void)2732 static void __exit rproc_exit_panic(void)
2733 {
2734 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2735 }
2736 
remoteproc_init(void)2737 static int __init remoteproc_init(void)
2738 {
2739 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2740 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2741 	if (!rproc_recovery_wq) {
2742 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2743 		return -ENOMEM;
2744 	}
2745 
2746 	rproc_init_sysfs();
2747 	rproc_init_debugfs();
2748 	rproc_init_cdev();
2749 	rproc_init_panic();
2750 
2751 	return 0;
2752 }
2753 subsys_initcall(remoteproc_init);
2754 
remoteproc_exit(void)2755 static void __exit remoteproc_exit(void)
2756 {
2757 	ida_destroy(&rproc_dev_index);
2758 
2759 	if (!rproc_recovery_wq)
2760 		return;
2761 
2762 	rproc_exit_panic();
2763 	rproc_exit_debugfs();
2764 	rproc_exit_sysfs();
2765 	destroy_workqueue(rproc_recovery_wq);
2766 }
2767 module_exit(remoteproc_exit);
2768 
2769 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2770