xref: /openbmc/linux/drivers/remoteproc/pru_rproc.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PRU-ICSS remoteproc driver for various TI SoCs
4  *
5  * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  * Author(s):
8  *	Suman Anna <s-anna@ti.com>
9  *	Andrew F. Davis <afd@ti.com>
10  *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11  *	Puranjay Mohan <p-mohan@ti.com>
12  *	Md Danish Anwar <danishanwar@ti.com>
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/debugfs.h>
17 #include <linux/irqdomain.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/of_irq.h>
21 #include <linux/remoteproc/pruss.h>
22 #include <linux/pruss_driver.h>
23 #include <linux/remoteproc.h>
24 
25 #include "remoteproc_internal.h"
26 #include "remoteproc_elf_helpers.h"
27 #include "pru_rproc.h"
28 
29 /* PRU_ICSS_PRU_CTRL registers */
30 #define PRU_CTRL_CTRL		0x0000
31 #define PRU_CTRL_STS		0x0004
32 #define PRU_CTRL_WAKEUP_EN	0x0008
33 #define PRU_CTRL_CYCLE		0x000C
34 #define PRU_CTRL_STALL		0x0010
35 #define PRU_CTRL_CTBIR0		0x0020
36 #define PRU_CTRL_CTBIR1		0x0024
37 #define PRU_CTRL_CTPPR0		0x0028
38 #define PRU_CTRL_CTPPR1		0x002C
39 
40 /* CTRL register bit-fields */
41 #define CTRL_CTRL_SOFT_RST_N	BIT(0)
42 #define CTRL_CTRL_EN		BIT(1)
43 #define CTRL_CTRL_SLEEPING	BIT(2)
44 #define CTRL_CTRL_CTR_EN	BIT(3)
45 #define CTRL_CTRL_SINGLE_STEP	BIT(8)
46 #define CTRL_CTRL_RUNSTATE	BIT(15)
47 
48 /* PRU_ICSS_PRU_DEBUG registers */
49 #define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
50 #define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
51 
52 /* PRU/RTU/Tx_PRU Core IRAM address masks */
53 #define PRU_IRAM_ADDR_MASK	0x3ffff
54 #define PRU0_IRAM_ADDR_MASK	0x34000
55 #define PRU1_IRAM_ADDR_MASK	0x38000
56 #define RTU0_IRAM_ADDR_MASK	0x4000
57 #define RTU1_IRAM_ADDR_MASK	0x6000
58 #define TX_PRU0_IRAM_ADDR_MASK	0xa000
59 #define TX_PRU1_IRAM_ADDR_MASK	0xc000
60 
61 /* PRU device addresses for various type of PRU RAMs */
62 #define PRU_IRAM_DA	0	/* Instruction RAM */
63 #define PRU_PDRAM_DA	0	/* Primary Data RAM */
64 #define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
65 #define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
66 
67 #define MAX_PRU_SYS_EVENTS 160
68 
69 /**
70  * enum pru_iomem - PRU core memory/register range identifiers
71  *
72  * @PRU_IOMEM_IRAM: PRU Instruction RAM range
73  * @PRU_IOMEM_CTRL: PRU Control register range
74  * @PRU_IOMEM_DEBUG: PRU Debug register range
75  * @PRU_IOMEM_MAX: just keep this one at the end
76  */
77 enum pru_iomem {
78 	PRU_IOMEM_IRAM = 0,
79 	PRU_IOMEM_CTRL,
80 	PRU_IOMEM_DEBUG,
81 	PRU_IOMEM_MAX,
82 };
83 
84 /**
85  * struct pru_private_data - device data for a PRU core
86  * @type: type of the PRU core (PRU, RTU, Tx_PRU)
87  * @is_k3: flag used to identify the need for special load handling
88  */
89 struct pru_private_data {
90 	enum pru_type type;
91 	unsigned int is_k3 : 1;
92 };
93 
94 /**
95  * struct pru_rproc - PRU remoteproc structure
96  * @id: id of the PRU core within the PRUSS
97  * @dev: PRU core device pointer
98  * @pruss: back-reference to parent PRUSS structure
99  * @rproc: remoteproc pointer for this PRU core
100  * @data: PRU core specific data
101  * @mem_regions: data for each of the PRU memory regions
102  * @client_np: client device node
103  * @lock: mutex to protect client usage
104  * @fw_name: name of firmware image used during loading
105  * @mapped_irq: virtual interrupt numbers of created fw specific mapping
106  * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
107  * @pru_interrupt_map_sz: pru_interrupt_map size
108  * @rmw_lock: lock for read, modify, write operations on registers
109  * @dbg_single_step: debug state variable to set PRU into single step mode
110  * @dbg_continuous: debug state variable to restore PRU execution mode
111  * @evt_count: number of mapped events
112  */
113 struct pru_rproc {
114 	int id;
115 	struct device *dev;
116 	struct pruss *pruss;
117 	struct rproc *rproc;
118 	const struct pru_private_data *data;
119 	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
120 	struct device_node *client_np;
121 	struct mutex lock;
122 	const char *fw_name;
123 	unsigned int *mapped_irq;
124 	struct pru_irq_rsc *pru_interrupt_map;
125 	size_t pru_interrupt_map_sz;
126 	spinlock_t rmw_lock;
127 	u32 dbg_single_step;
128 	u32 dbg_continuous;
129 	u8 evt_count;
130 };
131 
132 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
133 {
134 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
135 }
136 
137 static inline
138 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
139 {
140 	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
141 }
142 
143 static inline
144 void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg,
145 			 u32 mask, u32 set)
146 {
147 	u32 val;
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&pru->rmw_lock, flags);
151 
152 	val = pru_control_read_reg(pru, reg);
153 	val &= ~mask;
154 	val |= (set & mask);
155 	pru_control_write_reg(pru, reg, val);
156 
157 	spin_unlock_irqrestore(&pru->rmw_lock, flags);
158 }
159 
160 /**
161  * pru_rproc_set_firmware() - set firmware for a PRU core
162  * @rproc: the rproc instance of the PRU
163  * @fw_name: the new firmware name, or NULL if default is desired
164  *
165  * Return: 0 on success, or errno in error case.
166  */
167 static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name)
168 {
169 	struct pru_rproc *pru = rproc->priv;
170 
171 	if (!fw_name)
172 		fw_name = pru->fw_name;
173 
174 	return rproc_set_firmware(rproc, fw_name);
175 }
176 
177 static struct rproc *__pru_rproc_get(struct device_node *np, int index)
178 {
179 	struct rproc *rproc;
180 	phandle rproc_phandle;
181 	int ret;
182 
183 	ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
184 	if (ret)
185 		return ERR_PTR(ret);
186 
187 	rproc = rproc_get_by_phandle(rproc_phandle);
188 	if (!rproc) {
189 		ret = -EPROBE_DEFER;
190 		return ERR_PTR(ret);
191 	}
192 
193 	/* make sure it is PRU rproc */
194 	if (!is_pru_rproc(rproc->dev.parent)) {
195 		rproc_put(rproc);
196 		return ERR_PTR(-ENODEV);
197 	}
198 
199 	return rproc;
200 }
201 
202 /**
203  * pru_rproc_get() - get the PRU rproc instance from a device node
204  * @np: the user/client device node
205  * @index: index to use for the ti,prus property
206  * @pru_id: optional pointer to return the PRU remoteproc processor id
207  *
208  * This function looks through a client device node's "ti,prus" property at
209  * index @index and returns the rproc handle for a valid PRU remote processor if
210  * found. The function allows only one user to own the PRU rproc resource at a
211  * time. Caller must call pru_rproc_put() when done with using the rproc, not
212  * required if the function returns a failure.
213  *
214  * When optional @pru_id pointer is passed the PRU remoteproc processor id is
215  * returned.
216  *
217  * Return: rproc handle on success, and an ERR_PTR on failure using one
218  * of the following error values
219  *    -ENODEV if device is not found
220  *    -EBUSY if PRU is already acquired by anyone
221  *    -EPROBE_DEFER is PRU device is not probed yet
222  */
223 struct rproc *pru_rproc_get(struct device_node *np, int index,
224 			    enum pruss_pru_id *pru_id)
225 {
226 	struct rproc *rproc;
227 	struct pru_rproc *pru;
228 	struct device *dev;
229 	const char *fw_name;
230 	int ret;
231 
232 	rproc = __pru_rproc_get(np, index);
233 	if (IS_ERR(rproc))
234 		return rproc;
235 
236 	pru = rproc->priv;
237 	dev = &rproc->dev;
238 
239 	mutex_lock(&pru->lock);
240 
241 	if (pru->client_np) {
242 		mutex_unlock(&pru->lock);
243 		ret = -EBUSY;
244 		goto err_no_rproc_handle;
245 	}
246 
247 	pru->client_np = np;
248 	rproc->sysfs_read_only = true;
249 
250 	mutex_unlock(&pru->lock);
251 
252 	if (pru_id)
253 		*pru_id = pru->id;
254 
255 	ret = of_property_read_string_index(np, "firmware-name", index,
256 					    &fw_name);
257 	if (!ret) {
258 		ret = pru_rproc_set_firmware(rproc, fw_name);
259 		if (ret) {
260 			dev_err(dev, "failed to set firmware: %d\n", ret);
261 			goto err;
262 		}
263 	}
264 
265 	return rproc;
266 
267 err_no_rproc_handle:
268 	rproc_put(rproc);
269 	return ERR_PTR(ret);
270 
271 err:
272 	pru_rproc_put(rproc);
273 	return ERR_PTR(ret);
274 }
275 EXPORT_SYMBOL_GPL(pru_rproc_get);
276 
277 /**
278  * pru_rproc_put() - release the PRU rproc resource
279  * @rproc: the rproc resource to release
280  *
281  * Releases the PRU rproc resource and makes it available to other
282  * users.
283  */
284 void pru_rproc_put(struct rproc *rproc)
285 {
286 	struct pru_rproc *pru;
287 
288 	if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
289 		return;
290 
291 	pru = rproc->priv;
292 
293 	pru_rproc_set_firmware(rproc, NULL);
294 
295 	mutex_lock(&pru->lock);
296 
297 	if (!pru->client_np) {
298 		mutex_unlock(&pru->lock);
299 		return;
300 	}
301 
302 	pru->client_np = NULL;
303 	rproc->sysfs_read_only = false;
304 	mutex_unlock(&pru->lock);
305 
306 	rproc_put(rproc);
307 }
308 EXPORT_SYMBOL_GPL(pru_rproc_put);
309 
310 /**
311  * pru_rproc_set_ctable() - set the constant table index for the PRU
312  * @rproc: the rproc instance of the PRU
313  * @c: constant table index to set
314  * @addr: physical address to set it to
315  *
316  * Return: 0 on success, or errno in error case.
317  */
318 int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr)
319 {
320 	struct pru_rproc *pru = rproc->priv;
321 	unsigned int reg;
322 	u32 mask, set;
323 	u16 idx;
324 	u16 idx_mask;
325 
326 	if (IS_ERR_OR_NULL(rproc))
327 		return -EINVAL;
328 
329 	if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent))
330 		return -ENODEV;
331 
332 	/* pointer is 16 bit and index is 8-bit so mask out the rest */
333 	idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
334 
335 	/* ctable uses bit 8 and upwards only */
336 	idx = (addr >> 8) & idx_mask;
337 
338 	/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
339 	reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
340 	mask = idx_mask << (16 * (c & 1));
341 	set = idx << (16 * (c & 1));
342 
343 	pru_control_set_reg(pru, reg, mask, set);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL_GPL(pru_rproc_set_ctable);
348 
349 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
350 {
351 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
352 }
353 
354 static int regs_show(struct seq_file *s, void *data)
355 {
356 	struct rproc *rproc = s->private;
357 	struct pru_rproc *pru = rproc->priv;
358 	int i, nregs = 32;
359 	u32 pru_sts;
360 	int pru_is_running;
361 
362 	seq_puts(s, "============== Control Registers ==============\n");
363 	seq_printf(s, "CTRL      := 0x%08x\n",
364 		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
365 	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
366 	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
367 	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
368 		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
369 	seq_printf(s, "CYCLE     := 0x%08x\n",
370 		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
371 	seq_printf(s, "STALL     := 0x%08x\n",
372 		   pru_control_read_reg(pru, PRU_CTRL_STALL));
373 	seq_printf(s, "CTBIR0    := 0x%08x\n",
374 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
375 	seq_printf(s, "CTBIR1    := 0x%08x\n",
376 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
377 	seq_printf(s, "CTPPR0    := 0x%08x\n",
378 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
379 	seq_printf(s, "CTPPR1    := 0x%08x\n",
380 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
381 
382 	seq_puts(s, "=============== Debug Registers ===============\n");
383 	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
384 				CTRL_CTRL_RUNSTATE;
385 	if (pru_is_running) {
386 		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
387 		return 0;
388 	}
389 
390 	for (i = 0; i < nregs; i++) {
391 		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
392 			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
393 			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
394 	}
395 
396 	return 0;
397 }
398 DEFINE_SHOW_ATTRIBUTE(regs);
399 
400 /*
401  * Control PRU single-step mode
402  *
403  * This is a debug helper function used for controlling the single-step
404  * mode of the PRU. The PRU Debug registers are not accessible when the
405  * PRU is in RUNNING state.
406  *
407  * Writing a non-zero value sets the PRU into single-step mode irrespective
408  * of its previous state. The PRU mode is saved only on the first set into
409  * a single-step mode. Writing a zero value will restore the PRU into its
410  * original mode.
411  */
412 static int pru_rproc_debug_ss_set(void *data, u64 val)
413 {
414 	struct rproc *rproc = data;
415 	struct pru_rproc *pru = rproc->priv;
416 	u32 reg_val;
417 
418 	val = val ? 1 : 0;
419 	if (!val && !pru->dbg_single_step)
420 		return 0;
421 
422 	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
423 
424 	if (val && !pru->dbg_single_step)
425 		pru->dbg_continuous = reg_val;
426 
427 	if (val)
428 		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
429 	else
430 		reg_val = pru->dbg_continuous;
431 
432 	pru->dbg_single_step = val;
433 	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
434 
435 	return 0;
436 }
437 
438 static int pru_rproc_debug_ss_get(void *data, u64 *val)
439 {
440 	struct rproc *rproc = data;
441 	struct pru_rproc *pru = rproc->priv;
442 
443 	*val = pru->dbg_single_step;
444 
445 	return 0;
446 }
447 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
448 			 pru_rproc_debug_ss_set, "%llu\n");
449 
450 /*
451  * Create PRU-specific debugfs entries
452  *
453  * The entries are created only if the parent remoteproc debugfs directory
454  * exists, and will be cleaned up by the remoteproc core.
455  */
456 static void pru_rproc_create_debug_entries(struct rproc *rproc)
457 {
458 	if (!rproc->dbg_dir)
459 		return;
460 
461 	debugfs_create_file("regs", 0400, rproc->dbg_dir,
462 			    rproc, &regs_fops);
463 	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
464 			    rproc, &pru_rproc_debug_ss_fops);
465 }
466 
467 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
468 {
469 	if (!pru->mapped_irq)
470 		return;
471 
472 	while (pru->evt_count) {
473 		pru->evt_count--;
474 		if (pru->mapped_irq[pru->evt_count] > 0)
475 			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
476 	}
477 
478 	kfree(pru->mapped_irq);
479 	pru->mapped_irq = NULL;
480 }
481 
482 /*
483  * Parse the custom PRU interrupt map resource and configure the INTC
484  * appropriately.
485  */
486 static int pru_handle_intrmap(struct rproc *rproc)
487 {
488 	struct device *dev = rproc->dev.parent;
489 	struct pru_rproc *pru = rproc->priv;
490 	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
491 	struct irq_fwspec fwspec;
492 	struct device_node *parent, *irq_parent;
493 	int i, ret = 0;
494 
495 	/* not having pru_interrupt_map is not an error */
496 	if (!rsc)
497 		return 0;
498 
499 	/* currently supporting only type 0 */
500 	if (rsc->type != 0) {
501 		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
502 		return -EINVAL;
503 	}
504 
505 	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
506 		return -EINVAL;
507 
508 	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
509 	    pru->pru_interrupt_map_sz)
510 		return -EINVAL;
511 
512 	pru->evt_count = rsc->num_evts;
513 	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
514 				  GFP_KERNEL);
515 	if (!pru->mapped_irq) {
516 		pru->evt_count = 0;
517 		return -ENOMEM;
518 	}
519 
520 	/*
521 	 * parse and fill in system event to interrupt channel and
522 	 * channel-to-host mapping. The interrupt controller to be used
523 	 * for these mappings for a given PRU remoteproc is always its
524 	 * corresponding sibling PRUSS INTC node.
525 	 */
526 	parent = of_get_parent(dev_of_node(pru->dev));
527 	if (!parent) {
528 		kfree(pru->mapped_irq);
529 		pru->mapped_irq = NULL;
530 		pru->evt_count = 0;
531 		return -ENODEV;
532 	}
533 
534 	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
535 	of_node_put(parent);
536 	if (!irq_parent) {
537 		kfree(pru->mapped_irq);
538 		pru->mapped_irq = NULL;
539 		pru->evt_count = 0;
540 		return -ENODEV;
541 	}
542 
543 	fwspec.fwnode = of_node_to_fwnode(irq_parent);
544 	fwspec.param_count = 3;
545 	for (i = 0; i < pru->evt_count; i++) {
546 		fwspec.param[0] = rsc->pru_intc_map[i].event;
547 		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
548 		fwspec.param[2] = rsc->pru_intc_map[i].host;
549 
550 		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
551 			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
552 
553 		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
554 		if (!pru->mapped_irq[i]) {
555 			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
556 				i, fwspec.param[0], fwspec.param[1],
557 				fwspec.param[2]);
558 			ret = -EINVAL;
559 			goto map_fail;
560 		}
561 	}
562 	of_node_put(irq_parent);
563 
564 	return ret;
565 
566 map_fail:
567 	pru_dispose_irq_mapping(pru);
568 	of_node_put(irq_parent);
569 
570 	return ret;
571 }
572 
573 static int pru_rproc_start(struct rproc *rproc)
574 {
575 	struct device *dev = &rproc->dev;
576 	struct pru_rproc *pru = rproc->priv;
577 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
578 	u32 val;
579 	int ret;
580 
581 	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
582 		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
583 
584 	ret = pru_handle_intrmap(rproc);
585 	/*
586 	 * reset references to pru interrupt map - they will stop being valid
587 	 * after rproc_start returns
588 	 */
589 	pru->pru_interrupt_map = NULL;
590 	pru->pru_interrupt_map_sz = 0;
591 	if (ret)
592 		return ret;
593 
594 	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
595 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
596 
597 	return 0;
598 }
599 
600 static int pru_rproc_stop(struct rproc *rproc)
601 {
602 	struct device *dev = &rproc->dev;
603 	struct pru_rproc *pru = rproc->priv;
604 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
605 	u32 val;
606 
607 	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
608 
609 	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
610 	val &= ~CTRL_CTRL_EN;
611 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
612 
613 	/* dispose irq mapping - new firmware can provide new mapping */
614 	pru_dispose_irq_mapping(pru);
615 
616 	return 0;
617 }
618 
619 /*
620  * Convert PRU device address (data spaces only) to kernel virtual address.
621  *
622  * Each PRU has access to all data memories within the PRUSS, accessible at
623  * different ranges. So, look through both its primary and secondary Data
624  * RAMs as well as any shared Data RAM to convert a PRU device address to
625  * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
626  * RAM1 is primary Data RAM for PRU1.
627  */
628 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
629 {
630 	struct pruss_mem_region dram0, dram1, shrd_ram;
631 	struct pruss *pruss = pru->pruss;
632 	u32 offset;
633 	void *va = NULL;
634 
635 	if (len == 0)
636 		return NULL;
637 
638 	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
639 	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
640 	/* PRU1 has its local RAM addresses reversed */
641 	if (pru->id == PRUSS_PRU1)
642 		swap(dram0, dram1);
643 	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
644 
645 	if (da + len <= PRU_PDRAM_DA + dram0.size) {
646 		offset = da - PRU_PDRAM_DA;
647 		va = (__force void *)(dram0.va + offset);
648 	} else if (da >= PRU_SDRAM_DA &&
649 		   da + len <= PRU_SDRAM_DA + dram1.size) {
650 		offset = da - PRU_SDRAM_DA;
651 		va = (__force void *)(dram1.va + offset);
652 	} else if (da >= PRU_SHRDRAM_DA &&
653 		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
654 		offset = da - PRU_SHRDRAM_DA;
655 		va = (__force void *)(shrd_ram.va + offset);
656 	}
657 
658 	return va;
659 }
660 
661 /*
662  * Convert PRU device address (instruction space) to kernel virtual address.
663  *
664  * A PRU does not have an unified address space. Each PRU has its very own
665  * private Instruction RAM, and its device address is identical to that of
666  * its primary Data RAM device address.
667  */
668 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
669 {
670 	u32 offset;
671 	void *va = NULL;
672 
673 	if (len == 0)
674 		return NULL;
675 
676 	/*
677 	 * GNU binutils do not support multiple address spaces. The GNU
678 	 * linker's default linker script places IRAM at an arbitrary high
679 	 * offset, in order to differentiate it from DRAM. Hence we need to
680 	 * strip the artificial offset in the IRAM addresses coming from the
681 	 * ELF file.
682 	 *
683 	 * The TI proprietary linker would never set those higher IRAM address
684 	 * bits anyway. PRU architecture limits the program counter to 16-bit
685 	 * word-address range. This in turn corresponds to 18-bit IRAM
686 	 * byte-address range for ELF.
687 	 *
688 	 * Two more bits are added just in case to make the final 20-bit mask.
689 	 * Idea is to have a safeguard in case TI decides to add banking
690 	 * in future SoCs.
691 	 */
692 	da &= 0xfffff;
693 
694 	if (da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
695 		offset = da - PRU_IRAM_DA;
696 		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
697 				      offset);
698 	}
699 
700 	return va;
701 }
702 
703 /*
704  * Provide address translations for only PRU Data RAMs through the remoteproc
705  * core for any PRU client drivers. The PRU Instruction RAM access is restricted
706  * only to the PRU loader code.
707  */
708 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
709 {
710 	struct pru_rproc *pru = rproc->priv;
711 
712 	return pru_d_da_to_va(pru, da, len);
713 }
714 
715 /* PRU-specific address translator used by PRU loader. */
716 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
717 {
718 	struct pru_rproc *pru = rproc->priv;
719 	void *va;
720 
721 	if (is_iram)
722 		va = pru_i_da_to_va(pru, da, len);
723 	else
724 		va = pru_d_da_to_va(pru, da, len);
725 
726 	return va;
727 }
728 
729 static struct rproc_ops pru_rproc_ops = {
730 	.start		= pru_rproc_start,
731 	.stop		= pru_rproc_stop,
732 	.da_to_va	= pru_rproc_da_to_va,
733 };
734 
735 /*
736  * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
737  *
738  * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
739  * memories, that is not seen on previous generation SoCs. The data is reflected
740  * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
741  * copies result in all the other pre-existing bytes zeroed out within that
742  * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
743  * IRAM memory port interface does not allow any 8-byte copies (as commonly used
744  * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
745  * ports do not show this behavior.
746  */
747 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
748 {
749 	const u32 *s = src;
750 	u32 *d = dest;
751 	size_t size = count / 4;
752 	u32 *tmp_src = NULL;
753 
754 	/*
755 	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
756 	 * sizes
757 	 */
758 	if ((long)dest % 4 || count % 4)
759 		return -EINVAL;
760 
761 	/* src offsets in ELF firmware image can be non-aligned */
762 	if ((long)src % 4) {
763 		tmp_src = kmemdup(src, count, GFP_KERNEL);
764 		if (!tmp_src)
765 			return -ENOMEM;
766 		s = tmp_src;
767 	}
768 
769 	while (size--)
770 		*d++ = *s++;
771 
772 	kfree(tmp_src);
773 
774 	return 0;
775 }
776 
777 static int
778 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
779 {
780 	struct pru_rproc *pru = rproc->priv;
781 	struct device *dev = &rproc->dev;
782 	struct elf32_hdr *ehdr;
783 	struct elf32_phdr *phdr;
784 	int i, ret = 0;
785 	const u8 *elf_data = fw->data;
786 
787 	ehdr = (struct elf32_hdr *)elf_data;
788 	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
789 
790 	/* go through the available ELF segments */
791 	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
792 		u32 da = phdr->p_paddr;
793 		u32 memsz = phdr->p_memsz;
794 		u32 filesz = phdr->p_filesz;
795 		u32 offset = phdr->p_offset;
796 		bool is_iram;
797 		void *ptr;
798 
799 		if (phdr->p_type != PT_LOAD || !filesz)
800 			continue;
801 
802 		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
803 			phdr->p_type, da, memsz, filesz);
804 
805 		if (filesz > memsz) {
806 			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
807 				filesz, memsz);
808 			ret = -EINVAL;
809 			break;
810 		}
811 
812 		if (offset + filesz > fw->size) {
813 			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
814 				offset + filesz, fw->size);
815 			ret = -EINVAL;
816 			break;
817 		}
818 
819 		/* grab the kernel address for this device address */
820 		is_iram = phdr->p_flags & PF_X;
821 		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
822 		if (!ptr) {
823 			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
824 			ret = -EINVAL;
825 			break;
826 		}
827 
828 		if (pru->data->is_k3) {
829 			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
830 					       filesz);
831 			if (ret) {
832 				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
833 					da, memsz);
834 				break;
835 			}
836 		} else {
837 			memcpy(ptr, elf_data + phdr->p_offset, filesz);
838 		}
839 
840 		/* skip the memzero logic performed by remoteproc ELF loader */
841 	}
842 
843 	return ret;
844 }
845 
846 static const void *
847 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
848 {
849 	struct elf32_shdr *shdr, *name_table_shdr;
850 	const char *name_table;
851 	const u8 *elf_data = fw->data;
852 	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
853 	u16 shnum = ehdr->e_shnum;
854 	u16 shstrndx = ehdr->e_shstrndx;
855 	int i;
856 
857 	/* first, get the section header */
858 	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
859 	/* compute name table section header entry in shdr array */
860 	name_table_shdr = shdr + shstrndx;
861 	/* finally, compute the name table section address in elf */
862 	name_table = elf_data + name_table_shdr->sh_offset;
863 
864 	for (i = 0; i < shnum; i++, shdr++) {
865 		u32 size = shdr->sh_size;
866 		u32 offset = shdr->sh_offset;
867 		u32 name = shdr->sh_name;
868 
869 		if (strcmp(name_table + name, ".pru_irq_map"))
870 			continue;
871 
872 		/* make sure we have the entire irq map */
873 		if (offset + size > fw->size || offset + size < size) {
874 			dev_err(dev, ".pru_irq_map section truncated\n");
875 			return ERR_PTR(-EINVAL);
876 		}
877 
878 		/* make sure irq map has at least the header */
879 		if (sizeof(struct pru_irq_rsc) > size) {
880 			dev_err(dev, "header-less .pru_irq_map section\n");
881 			return ERR_PTR(-EINVAL);
882 		}
883 
884 		return shdr;
885 	}
886 
887 	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
888 
889 	return NULL;
890 }
891 
892 /*
893  * Use a custom parse_fw callback function for dealing with PRU firmware
894  * specific sections.
895  *
896  * The firmware blob can contain optional ELF sections: .resource_table section
897  * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
898  * description, which needs to be setup before powering on the PRU core. To
899  * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
900  * firmware linker) and therefore is not loaded to PRU memory.
901  */
902 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
903 {
904 	struct device *dev = &rproc->dev;
905 	struct pru_rproc *pru = rproc->priv;
906 	const u8 *elf_data = fw->data;
907 	const void *shdr;
908 	u8 class = fw_elf_get_class(fw);
909 	u64 sh_offset;
910 	int ret;
911 
912 	/* load optional rsc table */
913 	ret = rproc_elf_load_rsc_table(rproc, fw);
914 	if (ret == -EINVAL)
915 		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
916 	else if (ret)
917 		return ret;
918 
919 	/* find .pru_interrupt_map section, not having it is not an error */
920 	shdr = pru_rproc_find_interrupt_map(dev, fw);
921 	if (IS_ERR(shdr))
922 		return PTR_ERR(shdr);
923 
924 	if (!shdr)
925 		return 0;
926 
927 	/* preserve pointer to PRU interrupt map together with it size */
928 	sh_offset = elf_shdr_get_sh_offset(class, shdr);
929 	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
930 	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
931 
932 	return 0;
933 }
934 
935 /*
936  * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
937  * always at a particular offset within the PRUSS address space.
938  */
939 static int pru_rproc_set_id(struct pru_rproc *pru)
940 {
941 	int ret = 0;
942 
943 	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
944 	case TX_PRU0_IRAM_ADDR_MASK:
945 		fallthrough;
946 	case RTU0_IRAM_ADDR_MASK:
947 		fallthrough;
948 	case PRU0_IRAM_ADDR_MASK:
949 		pru->id = PRUSS_PRU0;
950 		break;
951 	case TX_PRU1_IRAM_ADDR_MASK:
952 		fallthrough;
953 	case RTU1_IRAM_ADDR_MASK:
954 		fallthrough;
955 	case PRU1_IRAM_ADDR_MASK:
956 		pru->id = PRUSS_PRU1;
957 		break;
958 	default:
959 		ret = -EINVAL;
960 	}
961 
962 	return ret;
963 }
964 
965 static int pru_rproc_probe(struct platform_device *pdev)
966 {
967 	struct device *dev = &pdev->dev;
968 	struct device_node *np = dev->of_node;
969 	struct platform_device *ppdev = to_platform_device(dev->parent);
970 	struct pru_rproc *pru;
971 	const char *fw_name;
972 	struct rproc *rproc = NULL;
973 	struct resource *res;
974 	int i, ret;
975 	const struct pru_private_data *data;
976 	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
977 
978 	data = of_device_get_match_data(&pdev->dev);
979 	if (!data)
980 		return -ENODEV;
981 
982 	ret = of_property_read_string(np, "firmware-name", &fw_name);
983 	if (ret) {
984 		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
985 		return ret;
986 	}
987 
988 	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
989 				 sizeof(*pru));
990 	if (!rproc) {
991 		dev_err(dev, "rproc_alloc failed\n");
992 		return -ENOMEM;
993 	}
994 	/* use a custom load function to deal with PRU-specific quirks */
995 	rproc->ops->load = pru_rproc_load_elf_segments;
996 
997 	/* use a custom parse function to deal with PRU-specific resources */
998 	rproc->ops->parse_fw = pru_rproc_parse_fw;
999 
1000 	/* error recovery is not supported for PRUs */
1001 	rproc->recovery_disabled = true;
1002 
1003 	/*
1004 	 * rproc_add will auto-boot the processor normally, but this is not
1005 	 * desired with PRU client driven boot-flow methodology. A PRU
1006 	 * application/client driver will boot the corresponding PRU
1007 	 * remote-processor as part of its state machine either through the
1008 	 * remoteproc sysfs interface or through the equivalent kernel API.
1009 	 */
1010 	rproc->auto_boot = false;
1011 
1012 	pru = rproc->priv;
1013 	pru->dev = dev;
1014 	pru->data = data;
1015 	pru->pruss = platform_get_drvdata(ppdev);
1016 	pru->rproc = rproc;
1017 	pru->fw_name = fw_name;
1018 	pru->client_np = NULL;
1019 	spin_lock_init(&pru->rmw_lock);
1020 	mutex_init(&pru->lock);
1021 
1022 	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
1023 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1024 						   mem_names[i]);
1025 		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
1026 		if (IS_ERR(pru->mem_regions[i].va)) {
1027 			dev_err(dev, "failed to parse and map memory resource %d %s\n",
1028 				i, mem_names[i]);
1029 			ret = PTR_ERR(pru->mem_regions[i].va);
1030 			return ret;
1031 		}
1032 		pru->mem_regions[i].pa = res->start;
1033 		pru->mem_regions[i].size = resource_size(res);
1034 
1035 		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
1036 			mem_names[i], &pru->mem_regions[i].pa,
1037 			pru->mem_regions[i].size, pru->mem_regions[i].va);
1038 	}
1039 
1040 	ret = pru_rproc_set_id(pru);
1041 	if (ret < 0)
1042 		return ret;
1043 
1044 	platform_set_drvdata(pdev, rproc);
1045 
1046 	ret = devm_rproc_add(dev, pru->rproc);
1047 	if (ret) {
1048 		dev_err(dev, "rproc_add failed: %d\n", ret);
1049 		return ret;
1050 	}
1051 
1052 	pru_rproc_create_debug_entries(rproc);
1053 
1054 	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
1055 
1056 	return 0;
1057 }
1058 
1059 static void pru_rproc_remove(struct platform_device *pdev)
1060 {
1061 	struct device *dev = &pdev->dev;
1062 	struct rproc *rproc = platform_get_drvdata(pdev);
1063 
1064 	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
1065 }
1066 
1067 static const struct pru_private_data pru_data = {
1068 	.type = PRU_TYPE_PRU,
1069 };
1070 
1071 static const struct pru_private_data k3_pru_data = {
1072 	.type = PRU_TYPE_PRU,
1073 	.is_k3 = 1,
1074 };
1075 
1076 static const struct pru_private_data k3_rtu_data = {
1077 	.type = PRU_TYPE_RTU,
1078 	.is_k3 = 1,
1079 };
1080 
1081 static const struct pru_private_data k3_tx_pru_data = {
1082 	.type = PRU_TYPE_TX_PRU,
1083 	.is_k3 = 1,
1084 };
1085 
1086 static const struct of_device_id pru_rproc_match[] = {
1087 	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
1088 	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
1089 	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
1090 	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
1091 	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
1092 	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
1093 	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
1094 	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
1095 	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
1096 	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
1097 	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
1098 	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
1099 	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
1100 	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
1101 	{},
1102 };
1103 MODULE_DEVICE_TABLE(of, pru_rproc_match);
1104 
1105 static struct platform_driver pru_rproc_driver = {
1106 	.driver = {
1107 		.name   = PRU_RPROC_DRVNAME,
1108 		.of_match_table = pru_rproc_match,
1109 		.suppress_bind_attrs = true,
1110 	},
1111 	.probe  = pru_rproc_probe,
1112 	.remove_new = pru_rproc_remove,
1113 };
1114 module_platform_driver(pru_rproc_driver);
1115 
1116 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1117 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
1118 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1119 MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
1120 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1121 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
1122 MODULE_LICENSE("GPL v2");
1123