1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PRU-ICSS remoteproc driver for various TI SoCs
4  *
5  * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  * Author(s):
8  *	Suman Anna <s-anna@ti.com>
9  *	Andrew F. Davis <afd@ti.com>
10  *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11  */
12 
13 #include <linux/bitops.h>
14 #include <linux/debugfs.h>
15 #include <linux/irqdomain.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/of_irq.h>
19 #include <linux/pruss_driver.h>
20 #include <linux/remoteproc.h>
21 
22 #include "remoteproc_internal.h"
23 #include "remoteproc_elf_helpers.h"
24 #include "pru_rproc.h"
25 
26 /* PRU_ICSS_PRU_CTRL registers */
27 #define PRU_CTRL_CTRL		0x0000
28 #define PRU_CTRL_STS		0x0004
29 #define PRU_CTRL_WAKEUP_EN	0x0008
30 #define PRU_CTRL_CYCLE		0x000C
31 #define PRU_CTRL_STALL		0x0010
32 #define PRU_CTRL_CTBIR0		0x0020
33 #define PRU_CTRL_CTBIR1		0x0024
34 #define PRU_CTRL_CTPPR0		0x0028
35 #define PRU_CTRL_CTPPR1		0x002C
36 
37 /* CTRL register bit-fields */
38 #define CTRL_CTRL_SOFT_RST_N	BIT(0)
39 #define CTRL_CTRL_EN		BIT(1)
40 #define CTRL_CTRL_SLEEPING	BIT(2)
41 #define CTRL_CTRL_CTR_EN	BIT(3)
42 #define CTRL_CTRL_SINGLE_STEP	BIT(8)
43 #define CTRL_CTRL_RUNSTATE	BIT(15)
44 
45 /* PRU_ICSS_PRU_DEBUG registers */
46 #define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
47 #define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
48 
49 /* PRU/RTU/Tx_PRU Core IRAM address masks */
50 #define PRU_IRAM_ADDR_MASK	0x3ffff
51 #define PRU0_IRAM_ADDR_MASK	0x34000
52 #define PRU1_IRAM_ADDR_MASK	0x38000
53 #define RTU0_IRAM_ADDR_MASK	0x4000
54 #define RTU1_IRAM_ADDR_MASK	0x6000
55 #define TX_PRU0_IRAM_ADDR_MASK	0xa000
56 #define TX_PRU1_IRAM_ADDR_MASK	0xc000
57 
58 /* PRU device addresses for various type of PRU RAMs */
59 #define PRU_IRAM_DA	0	/* Instruction RAM */
60 #define PRU_PDRAM_DA	0	/* Primary Data RAM */
61 #define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
62 #define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
63 
64 #define MAX_PRU_SYS_EVENTS 160
65 
66 /**
67  * enum pru_iomem - PRU core memory/register range identifiers
68  *
69  * @PRU_IOMEM_IRAM: PRU Instruction RAM range
70  * @PRU_IOMEM_CTRL: PRU Control register range
71  * @PRU_IOMEM_DEBUG: PRU Debug register range
72  * @PRU_IOMEM_MAX: just keep this one at the end
73  */
74 enum pru_iomem {
75 	PRU_IOMEM_IRAM = 0,
76 	PRU_IOMEM_CTRL,
77 	PRU_IOMEM_DEBUG,
78 	PRU_IOMEM_MAX,
79 };
80 
81 /**
82  * enum pru_type - PRU core type identifier
83  *
84  * @PRU_TYPE_PRU: Programmable Real-time Unit
85  * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
86  * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
87  * @PRU_TYPE_MAX: just keep this one at the end
88  */
89 enum pru_type {
90 	PRU_TYPE_PRU = 0,
91 	PRU_TYPE_RTU,
92 	PRU_TYPE_TX_PRU,
93 	PRU_TYPE_MAX,
94 };
95 
96 /**
97  * struct pru_private_data - device data for a PRU core
98  * @type: type of the PRU core (PRU, RTU, Tx_PRU)
99  * @is_k3: flag used to identify the need for special load handling
100  */
101 struct pru_private_data {
102 	enum pru_type type;
103 	unsigned int is_k3 : 1;
104 };
105 
106 /**
107  * struct pru_rproc - PRU remoteproc structure
108  * @id: id of the PRU core within the PRUSS
109  * @dev: PRU core device pointer
110  * @pruss: back-reference to parent PRUSS structure
111  * @rproc: remoteproc pointer for this PRU core
112  * @data: PRU core specific data
113  * @mem_regions: data for each of the PRU memory regions
114  * @fw_name: name of firmware image used during loading
115  * @mapped_irq: virtual interrupt numbers of created fw specific mapping
116  * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
117  * @pru_interrupt_map_sz: pru_interrupt_map size
118  * @dbg_single_step: debug state variable to set PRU into single step mode
119  * @dbg_continuous: debug state variable to restore PRU execution mode
120  * @evt_count: number of mapped events
121  */
122 struct pru_rproc {
123 	int id;
124 	struct device *dev;
125 	struct pruss *pruss;
126 	struct rproc *rproc;
127 	const struct pru_private_data *data;
128 	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
129 	const char *fw_name;
130 	unsigned int *mapped_irq;
131 	struct pru_irq_rsc *pru_interrupt_map;
132 	size_t pru_interrupt_map_sz;
133 	u32 dbg_single_step;
134 	u32 dbg_continuous;
135 	u8 evt_count;
136 };
137 
138 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
139 {
140 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
141 }
142 
143 static inline
144 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
145 {
146 	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
147 }
148 
149 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
150 {
151 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
152 }
153 
154 static int regs_show(struct seq_file *s, void *data)
155 {
156 	struct rproc *rproc = s->private;
157 	struct pru_rproc *pru = rproc->priv;
158 	int i, nregs = 32;
159 	u32 pru_sts;
160 	int pru_is_running;
161 
162 	seq_puts(s, "============== Control Registers ==============\n");
163 	seq_printf(s, "CTRL      := 0x%08x\n",
164 		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
165 	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
166 	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
167 	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
168 		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
169 	seq_printf(s, "CYCLE     := 0x%08x\n",
170 		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
171 	seq_printf(s, "STALL     := 0x%08x\n",
172 		   pru_control_read_reg(pru, PRU_CTRL_STALL));
173 	seq_printf(s, "CTBIR0    := 0x%08x\n",
174 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
175 	seq_printf(s, "CTBIR1    := 0x%08x\n",
176 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
177 	seq_printf(s, "CTPPR0    := 0x%08x\n",
178 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
179 	seq_printf(s, "CTPPR1    := 0x%08x\n",
180 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
181 
182 	seq_puts(s, "=============== Debug Registers ===============\n");
183 	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
184 				CTRL_CTRL_RUNSTATE;
185 	if (pru_is_running) {
186 		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
187 		return 0;
188 	}
189 
190 	for (i = 0; i < nregs; i++) {
191 		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
192 			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
193 			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
194 	}
195 
196 	return 0;
197 }
198 DEFINE_SHOW_ATTRIBUTE(regs);
199 
200 /*
201  * Control PRU single-step mode
202  *
203  * This is a debug helper function used for controlling the single-step
204  * mode of the PRU. The PRU Debug registers are not accessible when the
205  * PRU is in RUNNING state.
206  *
207  * Writing a non-zero value sets the PRU into single-step mode irrespective
208  * of its previous state. The PRU mode is saved only on the first set into
209  * a single-step mode. Writing a zero value will restore the PRU into its
210  * original mode.
211  */
212 static int pru_rproc_debug_ss_set(void *data, u64 val)
213 {
214 	struct rproc *rproc = data;
215 	struct pru_rproc *pru = rproc->priv;
216 	u32 reg_val;
217 
218 	val = val ? 1 : 0;
219 	if (!val && !pru->dbg_single_step)
220 		return 0;
221 
222 	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
223 
224 	if (val && !pru->dbg_single_step)
225 		pru->dbg_continuous = reg_val;
226 
227 	if (val)
228 		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
229 	else
230 		reg_val = pru->dbg_continuous;
231 
232 	pru->dbg_single_step = val;
233 	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
234 
235 	return 0;
236 }
237 
238 static int pru_rproc_debug_ss_get(void *data, u64 *val)
239 {
240 	struct rproc *rproc = data;
241 	struct pru_rproc *pru = rproc->priv;
242 
243 	*val = pru->dbg_single_step;
244 
245 	return 0;
246 }
247 DEFINE_SIMPLE_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
248 			pru_rproc_debug_ss_set, "%llu\n");
249 
250 /*
251  * Create PRU-specific debugfs entries
252  *
253  * The entries are created only if the parent remoteproc debugfs directory
254  * exists, and will be cleaned up by the remoteproc core.
255  */
256 static void pru_rproc_create_debug_entries(struct rproc *rproc)
257 {
258 	if (!rproc->dbg_dir)
259 		return;
260 
261 	debugfs_create_file("regs", 0400, rproc->dbg_dir,
262 			    rproc, &regs_fops);
263 	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
264 			    rproc, &pru_rproc_debug_ss_fops);
265 }
266 
267 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
268 {
269 	while (pru->evt_count--) {
270 		if (pru->mapped_irq[pru->evt_count] > 0)
271 			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
272 	}
273 
274 	kfree(pru->mapped_irq);
275 }
276 
277 /*
278  * Parse the custom PRU interrupt map resource and configure the INTC
279  * appropriately.
280  */
281 static int pru_handle_intrmap(struct rproc *rproc)
282 {
283 	struct device *dev = rproc->dev.parent;
284 	struct pru_rproc *pru = rproc->priv;
285 	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
286 	struct irq_fwspec fwspec;
287 	struct device_node *irq_parent;
288 	int i, ret = 0;
289 
290 	/* not having pru_interrupt_map is not an error */
291 	if (!rsc)
292 		return 0;
293 
294 	/* currently supporting only type 0 */
295 	if (rsc->type != 0) {
296 		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
297 		return -EINVAL;
298 	}
299 
300 	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
301 		return -EINVAL;
302 
303 	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
304 	    pru->pru_interrupt_map_sz)
305 		return -EINVAL;
306 
307 	pru->evt_count = rsc->num_evts;
308 	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
309 				  GFP_KERNEL);
310 	if (!pru->mapped_irq)
311 		return -ENOMEM;
312 
313 	/*
314 	 * parse and fill in system event to interrupt channel and
315 	 * channel-to-host mapping
316 	 */
317 	irq_parent = of_irq_find_parent(pru->dev->of_node);
318 	if (!irq_parent) {
319 		kfree(pru->mapped_irq);
320 		return -ENODEV;
321 	}
322 
323 	fwspec.fwnode = of_node_to_fwnode(irq_parent);
324 	fwspec.param_count = 3;
325 	for (i = 0; i < pru->evt_count; i++) {
326 		fwspec.param[0] = rsc->pru_intc_map[i].event;
327 		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
328 		fwspec.param[2] = rsc->pru_intc_map[i].host;
329 
330 		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
331 			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
332 
333 		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
334 		if (!pru->mapped_irq[i]) {
335 			dev_err(dev, "failed to get virq\n");
336 			ret = pru->mapped_irq[i];
337 			goto map_fail;
338 		}
339 	}
340 
341 	return ret;
342 
343 map_fail:
344 	pru_dispose_irq_mapping(pru);
345 
346 	return ret;
347 }
348 
349 static int pru_rproc_start(struct rproc *rproc)
350 {
351 	struct device *dev = &rproc->dev;
352 	struct pru_rproc *pru = rproc->priv;
353 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
354 	u32 val;
355 	int ret;
356 
357 	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
358 		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
359 
360 	ret = pru_handle_intrmap(rproc);
361 	/*
362 	 * reset references to pru interrupt map - they will stop being valid
363 	 * after rproc_start returns
364 	 */
365 	pru->pru_interrupt_map = NULL;
366 	pru->pru_interrupt_map_sz = 0;
367 	if (ret)
368 		return ret;
369 
370 	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
371 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
372 
373 	return 0;
374 }
375 
376 static int pru_rproc_stop(struct rproc *rproc)
377 {
378 	struct device *dev = &rproc->dev;
379 	struct pru_rproc *pru = rproc->priv;
380 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
381 	u32 val;
382 
383 	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
384 
385 	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
386 	val &= ~CTRL_CTRL_EN;
387 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
388 
389 	/* dispose irq mapping - new firmware can provide new mapping */
390 	if (pru->mapped_irq)
391 		pru_dispose_irq_mapping(pru);
392 
393 	return 0;
394 }
395 
396 /*
397  * Convert PRU device address (data spaces only) to kernel virtual address.
398  *
399  * Each PRU has access to all data memories within the PRUSS, accessible at
400  * different ranges. So, look through both its primary and secondary Data
401  * RAMs as well as any shared Data RAM to convert a PRU device address to
402  * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
403  * RAM1 is primary Data RAM for PRU1.
404  */
405 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
406 {
407 	struct pruss_mem_region dram0, dram1, shrd_ram;
408 	struct pruss *pruss = pru->pruss;
409 	u32 offset;
410 	void *va = NULL;
411 
412 	if (len == 0)
413 		return NULL;
414 
415 	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
416 	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
417 	/* PRU1 has its local RAM addresses reversed */
418 	if (pru->id == 1)
419 		swap(dram0, dram1);
420 	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
421 
422 	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
423 		offset = da - PRU_PDRAM_DA;
424 		va = (__force void *)(dram0.va + offset);
425 	} else if (da >= PRU_SDRAM_DA &&
426 		   da + len <= PRU_SDRAM_DA + dram1.size) {
427 		offset = da - PRU_SDRAM_DA;
428 		va = (__force void *)(dram1.va + offset);
429 	} else if (da >= PRU_SHRDRAM_DA &&
430 		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
431 		offset = da - PRU_SHRDRAM_DA;
432 		va = (__force void *)(shrd_ram.va + offset);
433 	}
434 
435 	return va;
436 }
437 
438 /*
439  * Convert PRU device address (instruction space) to kernel virtual address.
440  *
441  * A PRU does not have an unified address space. Each PRU has its very own
442  * private Instruction RAM, and its device address is identical to that of
443  * its primary Data RAM device address.
444  */
445 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
446 {
447 	u32 offset;
448 	void *va = NULL;
449 
450 	if (len == 0)
451 		return NULL;
452 
453 	if (da >= PRU_IRAM_DA &&
454 	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
455 		offset = da - PRU_IRAM_DA;
456 		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
457 				      offset);
458 	}
459 
460 	return va;
461 }
462 
463 /*
464  * Provide address translations for only PRU Data RAMs through the remoteproc
465  * core for any PRU client drivers. The PRU Instruction RAM access is restricted
466  * only to the PRU loader code.
467  */
468 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
469 {
470 	struct pru_rproc *pru = rproc->priv;
471 
472 	return pru_d_da_to_va(pru, da, len);
473 }
474 
475 /* PRU-specific address translator used by PRU loader. */
476 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
477 {
478 	struct pru_rproc *pru = rproc->priv;
479 	void *va;
480 
481 	if (is_iram)
482 		va = pru_i_da_to_va(pru, da, len);
483 	else
484 		va = pru_d_da_to_va(pru, da, len);
485 
486 	return va;
487 }
488 
489 static struct rproc_ops pru_rproc_ops = {
490 	.start		= pru_rproc_start,
491 	.stop		= pru_rproc_stop,
492 	.da_to_va	= pru_rproc_da_to_va,
493 };
494 
495 /*
496  * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
497  *
498  * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
499  * memories, that is not seen on previous generation SoCs. The data is reflected
500  * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
501  * copies result in all the other pre-existing bytes zeroed out within that
502  * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
503  * IRAM memory port interface does not allow any 8-byte copies (as commonly used
504  * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
505  * ports do not show this behavior.
506  */
507 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
508 {
509 	const u32 *s = src;
510 	u32 *d = dest;
511 	size_t size = count / 4;
512 	u32 *tmp_src = NULL;
513 
514 	/*
515 	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
516 	 * sizes
517 	 */
518 	if ((long)dest % 4 || count % 4)
519 		return -EINVAL;
520 
521 	/* src offsets in ELF firmware image can be non-aligned */
522 	if ((long)src % 4) {
523 		tmp_src = kmemdup(src, count, GFP_KERNEL);
524 		if (!tmp_src)
525 			return -ENOMEM;
526 		s = tmp_src;
527 	}
528 
529 	while (size--)
530 		*d++ = *s++;
531 
532 	kfree(tmp_src);
533 
534 	return 0;
535 }
536 
537 static int
538 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
539 {
540 	struct pru_rproc *pru = rproc->priv;
541 	struct device *dev = &rproc->dev;
542 	struct elf32_hdr *ehdr;
543 	struct elf32_phdr *phdr;
544 	int i, ret = 0;
545 	const u8 *elf_data = fw->data;
546 
547 	ehdr = (struct elf32_hdr *)elf_data;
548 	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
549 
550 	/* go through the available ELF segments */
551 	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
552 		u32 da = phdr->p_paddr;
553 		u32 memsz = phdr->p_memsz;
554 		u32 filesz = phdr->p_filesz;
555 		u32 offset = phdr->p_offset;
556 		bool is_iram;
557 		void *ptr;
558 
559 		if (phdr->p_type != PT_LOAD || !filesz)
560 			continue;
561 
562 		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
563 			phdr->p_type, da, memsz, filesz);
564 
565 		if (filesz > memsz) {
566 			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
567 				filesz, memsz);
568 			ret = -EINVAL;
569 			break;
570 		}
571 
572 		if (offset + filesz > fw->size) {
573 			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
574 				offset + filesz, fw->size);
575 			ret = -EINVAL;
576 			break;
577 		}
578 
579 		/* grab the kernel address for this device address */
580 		is_iram = phdr->p_flags & PF_X;
581 		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
582 		if (!ptr) {
583 			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
584 			ret = -EINVAL;
585 			break;
586 		}
587 
588 		if (pru->data->is_k3 && is_iram) {
589 			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
590 					       filesz);
591 			if (ret) {
592 				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
593 					da, memsz);
594 				break;
595 			}
596 		} else {
597 			memcpy(ptr, elf_data + phdr->p_offset, filesz);
598 		}
599 
600 		/* skip the memzero logic performed by remoteproc ELF loader */
601 	}
602 
603 	return ret;
604 }
605 
606 static const void *
607 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
608 {
609 	struct elf32_shdr *shdr, *name_table_shdr;
610 	const char *name_table;
611 	const u8 *elf_data = fw->data;
612 	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
613 	u16 shnum = ehdr->e_shnum;
614 	u16 shstrndx = ehdr->e_shstrndx;
615 	int i;
616 
617 	/* first, get the section header */
618 	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
619 	/* compute name table section header entry in shdr array */
620 	name_table_shdr = shdr + shstrndx;
621 	/* finally, compute the name table section address in elf */
622 	name_table = elf_data + name_table_shdr->sh_offset;
623 
624 	for (i = 0; i < shnum; i++, shdr++) {
625 		u32 size = shdr->sh_size;
626 		u32 offset = shdr->sh_offset;
627 		u32 name = shdr->sh_name;
628 
629 		if (strcmp(name_table + name, ".pru_irq_map"))
630 			continue;
631 
632 		/* make sure we have the entire irq map */
633 		if (offset + size > fw->size || offset + size < size) {
634 			dev_err(dev, ".pru_irq_map section truncated\n");
635 			return ERR_PTR(-EINVAL);
636 		}
637 
638 		/* make sure irq map has at least the header */
639 		if (sizeof(struct pru_irq_rsc) > size) {
640 			dev_err(dev, "header-less .pru_irq_map section\n");
641 			return ERR_PTR(-EINVAL);
642 		}
643 
644 		return shdr;
645 	}
646 
647 	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
648 
649 	return NULL;
650 }
651 
652 /*
653  * Use a custom parse_fw callback function for dealing with PRU firmware
654  * specific sections.
655  *
656  * The firmware blob can contain optional ELF sections: .resource_table section
657  * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
658  * description, which needs to be setup before powering on the PRU core. To
659  * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
660  * firmware linker) and therefore is not loaded to PRU memory.
661  */
662 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
663 {
664 	struct device *dev = &rproc->dev;
665 	struct pru_rproc *pru = rproc->priv;
666 	const u8 *elf_data = fw->data;
667 	const void *shdr;
668 	u8 class = fw_elf_get_class(fw);
669 	u64 sh_offset;
670 	int ret;
671 
672 	/* load optional rsc table */
673 	ret = rproc_elf_load_rsc_table(rproc, fw);
674 	if (ret == -EINVAL)
675 		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
676 	else if (ret)
677 		return ret;
678 
679 	/* find .pru_interrupt_map section, not having it is not an error */
680 	shdr = pru_rproc_find_interrupt_map(dev, fw);
681 	if (IS_ERR(shdr))
682 		return PTR_ERR(shdr);
683 
684 	if (!shdr)
685 		return 0;
686 
687 	/* preserve pointer to PRU interrupt map together with it size */
688 	sh_offset = elf_shdr_get_sh_offset(class, shdr);
689 	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
690 	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
691 
692 	return 0;
693 }
694 
695 /*
696  * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
697  * always at a particular offset within the PRUSS address space.
698  */
699 static int pru_rproc_set_id(struct pru_rproc *pru)
700 {
701 	int ret = 0;
702 
703 	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
704 	case TX_PRU0_IRAM_ADDR_MASK:
705 		fallthrough;
706 	case RTU0_IRAM_ADDR_MASK:
707 		fallthrough;
708 	case PRU0_IRAM_ADDR_MASK:
709 		pru->id = 0;
710 		break;
711 	case TX_PRU1_IRAM_ADDR_MASK:
712 		fallthrough;
713 	case RTU1_IRAM_ADDR_MASK:
714 		fallthrough;
715 	case PRU1_IRAM_ADDR_MASK:
716 		pru->id = 1;
717 		break;
718 	default:
719 		ret = -EINVAL;
720 	}
721 
722 	return ret;
723 }
724 
725 static int pru_rproc_probe(struct platform_device *pdev)
726 {
727 	struct device *dev = &pdev->dev;
728 	struct device_node *np = dev->of_node;
729 	struct platform_device *ppdev = to_platform_device(dev->parent);
730 	struct pru_rproc *pru;
731 	const char *fw_name;
732 	struct rproc *rproc = NULL;
733 	struct resource *res;
734 	int i, ret;
735 	const struct pru_private_data *data;
736 	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
737 
738 	data = of_device_get_match_data(&pdev->dev);
739 	if (!data)
740 		return -ENODEV;
741 
742 	ret = of_property_read_string(np, "firmware-name", &fw_name);
743 	if (ret) {
744 		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
745 		return ret;
746 	}
747 
748 	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
749 				 sizeof(*pru));
750 	if (!rproc) {
751 		dev_err(dev, "rproc_alloc failed\n");
752 		return -ENOMEM;
753 	}
754 	/* use a custom load function to deal with PRU-specific quirks */
755 	rproc->ops->load = pru_rproc_load_elf_segments;
756 
757 	/* use a custom parse function to deal with PRU-specific resources */
758 	rproc->ops->parse_fw = pru_rproc_parse_fw;
759 
760 	/* error recovery is not supported for PRUs */
761 	rproc->recovery_disabled = true;
762 
763 	/*
764 	 * rproc_add will auto-boot the processor normally, but this is not
765 	 * desired with PRU client driven boot-flow methodology. A PRU
766 	 * application/client driver will boot the corresponding PRU
767 	 * remote-processor as part of its state machine either through the
768 	 * remoteproc sysfs interface or through the equivalent kernel API.
769 	 */
770 	rproc->auto_boot = false;
771 
772 	pru = rproc->priv;
773 	pru->dev = dev;
774 	pru->data = data;
775 	pru->pruss = platform_get_drvdata(ppdev);
776 	pru->rproc = rproc;
777 	pru->fw_name = fw_name;
778 
779 	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
780 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
781 						   mem_names[i]);
782 		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
783 		if (IS_ERR(pru->mem_regions[i].va)) {
784 			dev_err(dev, "failed to parse and map memory resource %d %s\n",
785 				i, mem_names[i]);
786 			ret = PTR_ERR(pru->mem_regions[i].va);
787 			return ret;
788 		}
789 		pru->mem_regions[i].pa = res->start;
790 		pru->mem_regions[i].size = resource_size(res);
791 
792 		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
793 			mem_names[i], &pru->mem_regions[i].pa,
794 			pru->mem_regions[i].size, pru->mem_regions[i].va);
795 	}
796 
797 	ret = pru_rproc_set_id(pru);
798 	if (ret < 0)
799 		return ret;
800 
801 	platform_set_drvdata(pdev, rproc);
802 
803 	ret = devm_rproc_add(dev, pru->rproc);
804 	if (ret) {
805 		dev_err(dev, "rproc_add failed: %d\n", ret);
806 		return ret;
807 	}
808 
809 	pru_rproc_create_debug_entries(rproc);
810 
811 	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
812 
813 	return 0;
814 }
815 
816 static int pru_rproc_remove(struct platform_device *pdev)
817 {
818 	struct device *dev = &pdev->dev;
819 	struct rproc *rproc = platform_get_drvdata(pdev);
820 
821 	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
822 
823 	return 0;
824 }
825 
826 static const struct pru_private_data pru_data = {
827 	.type = PRU_TYPE_PRU,
828 };
829 
830 static const struct pru_private_data k3_pru_data = {
831 	.type = PRU_TYPE_PRU,
832 	.is_k3 = 1,
833 };
834 
835 static const struct pru_private_data k3_rtu_data = {
836 	.type = PRU_TYPE_RTU,
837 	.is_k3 = 1,
838 };
839 
840 static const struct pru_private_data k3_tx_pru_data = {
841 	.type = PRU_TYPE_TX_PRU,
842 	.is_k3 = 1,
843 };
844 
845 static const struct of_device_id pru_rproc_match[] = {
846 	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
847 	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
848 	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
849 	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
850 	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
851 	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
852 	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
853 	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
854 	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
855 	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
856 	{},
857 };
858 MODULE_DEVICE_TABLE(of, pru_rproc_match);
859 
860 static struct platform_driver pru_rproc_driver = {
861 	.driver = {
862 		.name   = "pru-rproc",
863 		.of_match_table = pru_rproc_match,
864 		.suppress_bind_attrs = true,
865 	},
866 	.probe  = pru_rproc_probe,
867 	.remove = pru_rproc_remove,
868 };
869 module_platform_driver(pru_rproc_driver);
870 
871 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
872 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
873 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
874 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
875 MODULE_LICENSE("GPL v2");
876