1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * OMAP Remote Processor driver 4 * 5 * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/ 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Mark Grosen <mgrosen@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Hari Kanigeri <h-kanigeri2@ti.com> 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/clk.h> 19 #include <linux/clk/ti.h> 20 #include <linux/err.h> 21 #include <linux/io.h> 22 #include <linux/of_device.h> 23 #include <linux/of_reserved_mem.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/interrupt.h> 28 #include <linux/remoteproc.h> 29 #include <linux/mailbox_client.h> 30 #include <linux/omap-iommu.h> 31 #include <linux/omap-mailbox.h> 32 #include <linux/regmap.h> 33 #include <linux/mfd/syscon.h> 34 #include <linux/reset.h> 35 #include <clocksource/timer-ti-dm.h> 36 37 #include <linux/platform_data/dmtimer-omap.h> 38 39 #include "omap_remoteproc.h" 40 #include "remoteproc_internal.h" 41 42 /* default auto-suspend delay (ms) */ 43 #define DEFAULT_AUTOSUSPEND_DELAY 10000 44 45 /** 46 * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs 47 * @syscon: regmap handle for the system control configuration module 48 * @boot_reg: boot register offset within the @syscon regmap 49 * @boot_reg_shift: bit-field shift required for the boot address value in 50 * @boot_reg 51 */ 52 struct omap_rproc_boot_data { 53 struct regmap *syscon; 54 unsigned int boot_reg; 55 unsigned int boot_reg_shift; 56 }; 57 58 /** 59 * struct omap_rproc_mem - internal memory structure 60 * @cpu_addr: MPU virtual address of the memory region 61 * @bus_addr: bus address used to access the memory region 62 * @dev_addr: device address of the memory region from DSP view 63 * @size: size of the memory region 64 */ 65 struct omap_rproc_mem { 66 void __iomem *cpu_addr; 67 phys_addr_t bus_addr; 68 u32 dev_addr; 69 size_t size; 70 }; 71 72 /** 73 * struct omap_rproc_timer - data structure for a timer used by a omap rproc 74 * @odt: timer pointer 75 * @timer_ops: OMAP dmtimer ops for @odt timer 76 * @irq: timer irq 77 */ 78 struct omap_rproc_timer { 79 struct omap_dm_timer *odt; 80 const struct omap_dm_timer_ops *timer_ops; 81 int irq; 82 }; 83 84 /** 85 * struct omap_rproc - omap remote processor state 86 * @mbox: mailbox channel handle 87 * @client: mailbox client to request the mailbox channel 88 * @boot_data: boot data structure for setting processor boot address 89 * @mem: internal memory regions data 90 * @num_mems: number of internal memory regions 91 * @num_timers: number of rproc timer(s) 92 * @num_wd_timers: number of rproc watchdog timers 93 * @timers: timer(s) info used by rproc 94 * @autosuspend_delay: auto-suspend delay value to be used for runtime pm 95 * @need_resume: if true a resume is needed in the system resume callback 96 * @rproc: rproc handle 97 * @reset: reset handle 98 * @pm_comp: completion primitive to sync for suspend response 99 * @fck: functional clock for the remoteproc 100 * @suspend_acked: state machine flag to store the suspend request ack 101 */ 102 struct omap_rproc { 103 struct mbox_chan *mbox; 104 struct mbox_client client; 105 struct omap_rproc_boot_data *boot_data; 106 struct omap_rproc_mem *mem; 107 int num_mems; 108 int num_timers; 109 int num_wd_timers; 110 struct omap_rproc_timer *timers; 111 int autosuspend_delay; 112 bool need_resume; 113 struct rproc *rproc; 114 struct reset_control *reset; 115 struct completion pm_comp; 116 struct clk *fck; 117 bool suspend_acked; 118 }; 119 120 /** 121 * struct omap_rproc_mem_data - memory definitions for an omap remote processor 122 * @name: name for this memory entry 123 * @dev_addr: device address for the memory entry 124 */ 125 struct omap_rproc_mem_data { 126 const char *name; 127 const u32 dev_addr; 128 }; 129 130 /** 131 * struct omap_rproc_dev_data - device data for the omap remote processor 132 * @device_name: device name of the remote processor 133 * @mems: memory definitions for this remote processor 134 */ 135 struct omap_rproc_dev_data { 136 const char *device_name; 137 const struct omap_rproc_mem_data *mems; 138 }; 139 140 /** 141 * omap_rproc_request_timer() - request a timer for a remoteproc 142 * @dev: device requesting the timer 143 * @np: device node pointer to the desired timer 144 * @timer: handle to a struct omap_rproc_timer to return the timer handle 145 * 146 * This helper function is used primarily to request a timer associated with 147 * a remoteproc. The returned handle is stored in the .odt field of the 148 * @timer structure passed in, and is used to invoke other timer specific 149 * ops (like starting a timer either during device initialization or during 150 * a resume operation, or for stopping/freeing a timer). 151 * 152 * Return: 0 on success, otherwise an appropriate failure 153 */ 154 static int omap_rproc_request_timer(struct device *dev, struct device_node *np, 155 struct omap_rproc_timer *timer) 156 { 157 int ret; 158 159 timer->odt = timer->timer_ops->request_by_node(np); 160 if (!timer->odt) { 161 dev_err(dev, "request for timer node %p failed\n", np); 162 return -EBUSY; 163 } 164 165 ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK); 166 if (ret) { 167 dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n", 168 np); 169 timer->timer_ops->free(timer->odt); 170 return ret; 171 } 172 173 /* clean counter, remoteproc code will set the value */ 174 timer->timer_ops->set_load(timer->odt, 0); 175 176 return 0; 177 } 178 179 /** 180 * omap_rproc_start_timer() - start a timer for a remoteproc 181 * @timer: handle to a OMAP rproc timer 182 * 183 * This helper function is used to start a timer associated with a remoteproc, 184 * obtained using the request_timer ops. The helper function needs to be 185 * invoked by the driver to start the timer (during device initialization) 186 * or to just resume the timer. 187 * 188 * Return: 0 on success, otherwise a failure as returned by DMTimer ops 189 */ 190 static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer) 191 { 192 return timer->timer_ops->start(timer->odt); 193 } 194 195 /** 196 * omap_rproc_stop_timer() - stop a timer for a remoteproc 197 * @timer: handle to a OMAP rproc timer 198 * 199 * This helper function is used to disable a timer associated with a 200 * remoteproc, and needs to be called either during a device shutdown 201 * or suspend operation. The separate helper function allows the driver 202 * to just stop a timer without having to release the timer during a 203 * suspend operation. 204 * 205 * Return: 0 on success, otherwise a failure as returned by DMTimer ops 206 */ 207 static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer) 208 { 209 return timer->timer_ops->stop(timer->odt); 210 } 211 212 /** 213 * omap_rproc_release_timer() - release a timer for a remoteproc 214 * @timer: handle to a OMAP rproc timer 215 * 216 * This helper function is used primarily to release a timer associated 217 * with a remoteproc. The dmtimer will be available for other clients to 218 * use once released. 219 * 220 * Return: 0 on success, otherwise a failure as returned by DMTimer ops 221 */ 222 static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer) 223 { 224 return timer->timer_ops->free(timer->odt); 225 } 226 227 /** 228 * omap_rproc_get_timer_irq() - get the irq for a timer 229 * @timer: handle to a OMAP rproc timer 230 * 231 * This function is used to get the irq associated with a watchdog timer. The 232 * function is called by the OMAP remoteproc driver to register a interrupt 233 * handler to handle watchdog events on the remote processor. 234 * 235 * Return: irq id on success, otherwise a failure as returned by DMTimer ops 236 */ 237 static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer) 238 { 239 return timer->timer_ops->get_irq(timer->odt); 240 } 241 242 /** 243 * omap_rproc_ack_timer_irq() - acknowledge a timer irq 244 * @timer: handle to a OMAP rproc timer 245 * 246 * This function is used to clear the irq associated with a watchdog timer. The 247 * The function is called by the OMAP remoteproc upon a watchdog event on the 248 * remote processor to clear the interrupt status of the watchdog timer. 249 */ 250 static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer) 251 { 252 timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW); 253 } 254 255 /** 256 * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device 257 * @irq: IRQ number associated with a watchdog timer 258 * @data: IRQ handler data 259 * 260 * This ISR routine executes the required necessary low-level code to 261 * acknowledge a watchdog timer interrupt. There can be multiple watchdog 262 * timers associated with a rproc (like IPUs which have 2 watchdog timers, 263 * one per Cortex M3/M4 core), so a lookup has to be performed to identify 264 * the timer to acknowledge its interrupt. 265 * 266 * The function also invokes rproc_report_crash to report the watchdog event 267 * to the remoteproc driver core, to trigger a recovery. 268 * 269 * Return: IRQ_HANDLED on success, otherwise IRQ_NONE 270 */ 271 static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data) 272 { 273 struct rproc *rproc = data; 274 struct omap_rproc *oproc = rproc->priv; 275 struct device *dev = rproc->dev.parent; 276 struct omap_rproc_timer *timers = oproc->timers; 277 struct omap_rproc_timer *wd_timer = NULL; 278 int num_timers = oproc->num_timers + oproc->num_wd_timers; 279 int i; 280 281 for (i = oproc->num_timers; i < num_timers; i++) { 282 if (timers[i].irq > 0 && irq == timers[i].irq) { 283 wd_timer = &timers[i]; 284 break; 285 } 286 } 287 288 if (!wd_timer) { 289 dev_err(dev, "invalid timer\n"); 290 return IRQ_NONE; 291 } 292 293 omap_rproc_ack_timer_irq(wd_timer); 294 295 rproc_report_crash(rproc, RPROC_WATCHDOG); 296 297 return IRQ_HANDLED; 298 } 299 300 /** 301 * omap_rproc_enable_timers() - enable the timers for a remoteproc 302 * @rproc: handle of a remote processor 303 * @configure: boolean flag used to acquire and configure the timer handle 304 * 305 * This function is used primarily to enable the timers associated with 306 * a remoteproc. The configure flag is provided to allow the driver to 307 * to either acquire and start a timer (during device initialization) or 308 * to just start a timer (during a resume operation). 309 * 310 * Return: 0 on success, otherwise an appropriate failure 311 */ 312 static int omap_rproc_enable_timers(struct rproc *rproc, bool configure) 313 { 314 int i; 315 int ret = 0; 316 struct platform_device *tpdev; 317 struct dmtimer_platform_data *tpdata; 318 const struct omap_dm_timer_ops *timer_ops; 319 struct omap_rproc *oproc = rproc->priv; 320 struct omap_rproc_timer *timers = oproc->timers; 321 struct device *dev = rproc->dev.parent; 322 struct device_node *np = NULL; 323 int num_timers = oproc->num_timers + oproc->num_wd_timers; 324 325 if (!num_timers) 326 return 0; 327 328 if (!configure) 329 goto start_timers; 330 331 for (i = 0; i < num_timers; i++) { 332 if (i < oproc->num_timers) 333 np = of_parse_phandle(dev->of_node, "ti,timers", i); 334 else 335 np = of_parse_phandle(dev->of_node, 336 "ti,watchdog-timers", 337 (i - oproc->num_timers)); 338 if (!np) { 339 ret = -ENXIO; 340 dev_err(dev, "device node lookup for timer at index %d failed: %d\n", 341 i < oproc->num_timers ? i : 342 i - oproc->num_timers, ret); 343 goto free_timers; 344 } 345 346 tpdev = of_find_device_by_node(np); 347 if (!tpdev) { 348 ret = -ENODEV; 349 dev_err(dev, "could not get timer platform device\n"); 350 goto put_node; 351 } 352 353 tpdata = dev_get_platdata(&tpdev->dev); 354 put_device(&tpdev->dev); 355 if (!tpdata) { 356 ret = -EINVAL; 357 dev_err(dev, "dmtimer pdata structure NULL\n"); 358 goto put_node; 359 } 360 361 timer_ops = tpdata->timer_ops; 362 if (!timer_ops || !timer_ops->request_by_node || 363 !timer_ops->set_source || !timer_ops->set_load || 364 !timer_ops->free || !timer_ops->start || 365 !timer_ops->stop || !timer_ops->get_irq || 366 !timer_ops->write_status) { 367 ret = -EINVAL; 368 dev_err(dev, "device does not have required timer ops\n"); 369 goto put_node; 370 } 371 372 timers[i].irq = -1; 373 timers[i].timer_ops = timer_ops; 374 ret = omap_rproc_request_timer(dev, np, &timers[i]); 375 if (ret) { 376 dev_err(dev, "request for timer %p failed: %d\n", np, 377 ret); 378 goto put_node; 379 } 380 of_node_put(np); 381 382 if (i >= oproc->num_timers) { 383 timers[i].irq = omap_rproc_get_timer_irq(&timers[i]); 384 if (timers[i].irq < 0) { 385 dev_err(dev, "get_irq for timer %p failed: %d\n", 386 np, timers[i].irq); 387 ret = -EBUSY; 388 goto free_timers; 389 } 390 391 ret = request_irq(timers[i].irq, 392 omap_rproc_watchdog_isr, IRQF_SHARED, 393 "rproc-wdt", rproc); 394 if (ret) { 395 dev_err(dev, "error requesting irq for timer %p\n", 396 np); 397 omap_rproc_release_timer(&timers[i]); 398 timers[i].odt = NULL; 399 timers[i].timer_ops = NULL; 400 timers[i].irq = -1; 401 goto free_timers; 402 } 403 } 404 } 405 406 start_timers: 407 for (i = 0; i < num_timers; i++) { 408 ret = omap_rproc_start_timer(&timers[i]); 409 if (ret) { 410 dev_err(dev, "start timer %p failed failed: %d\n", np, 411 ret); 412 break; 413 } 414 } 415 if (ret) { 416 while (i >= 0) { 417 omap_rproc_stop_timer(&timers[i]); 418 i--; 419 } 420 goto put_node; 421 } 422 return 0; 423 424 put_node: 425 if (configure) 426 of_node_put(np); 427 free_timers: 428 while (i--) { 429 if (i >= oproc->num_timers) 430 free_irq(timers[i].irq, rproc); 431 omap_rproc_release_timer(&timers[i]); 432 timers[i].odt = NULL; 433 timers[i].timer_ops = NULL; 434 timers[i].irq = -1; 435 } 436 437 return ret; 438 } 439 440 /** 441 * omap_rproc_disable_timers() - disable the timers for a remoteproc 442 * @rproc: handle of a remote processor 443 * @configure: boolean flag used to release the timer handle 444 * 445 * This function is used primarily to disable the timers associated with 446 * a remoteproc. The configure flag is provided to allow the driver to 447 * to either stop and release a timer (during device shutdown) or to just 448 * stop a timer (during a suspend operation). 449 * 450 * Return: 0 on success or no timers 451 */ 452 static int omap_rproc_disable_timers(struct rproc *rproc, bool configure) 453 { 454 int i; 455 struct omap_rproc *oproc = rproc->priv; 456 struct omap_rproc_timer *timers = oproc->timers; 457 int num_timers = oproc->num_timers + oproc->num_wd_timers; 458 459 if (!num_timers) 460 return 0; 461 462 for (i = 0; i < num_timers; i++) { 463 omap_rproc_stop_timer(&timers[i]); 464 if (configure) { 465 if (i >= oproc->num_timers) 466 free_irq(timers[i].irq, rproc); 467 omap_rproc_release_timer(&timers[i]); 468 timers[i].odt = NULL; 469 timers[i].timer_ops = NULL; 470 timers[i].irq = -1; 471 } 472 } 473 474 return 0; 475 } 476 477 /** 478 * omap_rproc_mbox_callback() - inbound mailbox message handler 479 * @client: mailbox client pointer used for requesting the mailbox channel 480 * @data: mailbox payload 481 * 482 * This handler is invoked by omap's mailbox driver whenever a mailbox 483 * message is received. Usually, the mailbox payload simply contains 484 * the index of the virtqueue that is kicked by the remote processor, 485 * and we let remoteproc core handle it. 486 * 487 * In addition to virtqueue indices, we also have some out-of-band values 488 * that indicates different events. Those values are deliberately very 489 * big so they don't coincide with virtqueue indices. 490 */ 491 static void omap_rproc_mbox_callback(struct mbox_client *client, void *data) 492 { 493 struct omap_rproc *oproc = container_of(client, struct omap_rproc, 494 client); 495 struct device *dev = oproc->rproc->dev.parent; 496 const char *name = oproc->rproc->name; 497 u32 msg = (u32)data; 498 499 dev_dbg(dev, "mbox msg: 0x%x\n", msg); 500 501 switch (msg) { 502 case RP_MBOX_CRASH: 503 /* 504 * remoteproc detected an exception, notify the rproc core. 505 * The remoteproc core will handle the recovery. 506 */ 507 dev_err(dev, "omap rproc %s crashed\n", name); 508 rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR); 509 break; 510 case RP_MBOX_ECHO_REPLY: 511 dev_info(dev, "received echo reply from %s\n", name); 512 break; 513 case RP_MBOX_SUSPEND_ACK: 514 case RP_MBOX_SUSPEND_CANCEL: 515 oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK; 516 complete(&oproc->pm_comp); 517 break; 518 default: 519 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 520 return; 521 if (msg > oproc->rproc->max_notifyid) { 522 dev_dbg(dev, "dropping unknown message 0x%x", msg); 523 return; 524 } 525 /* msg contains the index of the triggered vring */ 526 if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE) 527 dev_dbg(dev, "no message was found in vqid %d\n", msg); 528 } 529 } 530 531 /* kick a virtqueue */ 532 static void omap_rproc_kick(struct rproc *rproc, int vqid) 533 { 534 struct omap_rproc *oproc = rproc->priv; 535 struct device *dev = rproc->dev.parent; 536 int ret; 537 538 /* wake up the rproc before kicking it */ 539 ret = pm_runtime_get_sync(dev); 540 if (WARN_ON(ret < 0)) { 541 dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n", 542 ret); 543 pm_runtime_put_noidle(dev); 544 return; 545 } 546 547 /* send the index of the triggered virtqueue in the mailbox payload */ 548 ret = mbox_send_message(oproc->mbox, (void *)vqid); 549 if (ret < 0) 550 dev_err(dev, "failed to send mailbox message, status = %d\n", 551 ret); 552 553 pm_runtime_mark_last_busy(dev); 554 pm_runtime_put_autosuspend(dev); 555 } 556 557 /** 558 * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor 559 * @rproc: handle of a remote processor 560 * 561 * Set boot address for a supported DSP remote processor. 562 * 563 * Return: 0 on success, or -EINVAL if boot address is not aligned properly 564 */ 565 static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc) 566 { 567 struct device *dev = rproc->dev.parent; 568 struct omap_rproc *oproc = rproc->priv; 569 struct omap_rproc_boot_data *bdata = oproc->boot_data; 570 u32 offset = bdata->boot_reg; 571 u32 value; 572 u32 mask; 573 574 if (rproc->bootaddr & (SZ_1K - 1)) { 575 dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n", 576 rproc->bootaddr); 577 return -EINVAL; 578 } 579 580 value = rproc->bootaddr >> bdata->boot_reg_shift; 581 mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift; 582 583 return regmap_update_bits(bdata->syscon, offset, mask, value); 584 } 585 586 /* 587 * Power up the remote processor. 588 * 589 * This function will be invoked only after the firmware for this rproc 590 * was loaded, parsed successfully, and all of its resource requirements 591 * were met. 592 */ 593 static int omap_rproc_start(struct rproc *rproc) 594 { 595 struct omap_rproc *oproc = rproc->priv; 596 struct device *dev = rproc->dev.parent; 597 int ret; 598 struct mbox_client *client = &oproc->client; 599 600 if (oproc->boot_data) { 601 ret = omap_rproc_write_dsp_boot_addr(rproc); 602 if (ret) 603 return ret; 604 } 605 606 client->dev = dev; 607 client->tx_done = NULL; 608 client->rx_callback = omap_rproc_mbox_callback; 609 client->tx_block = false; 610 client->knows_txdone = false; 611 612 oproc->mbox = mbox_request_channel(client, 0); 613 if (IS_ERR(oproc->mbox)) { 614 ret = -EBUSY; 615 dev_err(dev, "mbox_request_channel failed: %ld\n", 616 PTR_ERR(oproc->mbox)); 617 return ret; 618 } 619 620 /* 621 * Ping the remote processor. this is only for sanity-sake; 622 * there is no functional effect whatsoever. 623 * 624 * Note that the reply will _not_ arrive immediately: this message 625 * will wait in the mailbox fifo until the remote processor is booted. 626 */ 627 ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 628 if (ret < 0) { 629 dev_err(dev, "mbox_send_message failed: %d\n", ret); 630 goto put_mbox; 631 } 632 633 ret = omap_rproc_enable_timers(rproc, true); 634 if (ret) { 635 dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret); 636 goto put_mbox; 637 } 638 639 ret = reset_control_deassert(oproc->reset); 640 if (ret) { 641 dev_err(dev, "reset control deassert failed: %d\n", ret); 642 goto disable_timers; 643 } 644 645 /* 646 * remote processor is up, so update the runtime pm status and 647 * enable the auto-suspend. The device usage count is incremented 648 * manually for balancing it for auto-suspend 649 */ 650 pm_runtime_set_active(dev); 651 pm_runtime_use_autosuspend(dev); 652 pm_runtime_get_noresume(dev); 653 pm_runtime_enable(dev); 654 pm_runtime_mark_last_busy(dev); 655 pm_runtime_put_autosuspend(dev); 656 657 return 0; 658 659 disable_timers: 660 omap_rproc_disable_timers(rproc, true); 661 put_mbox: 662 mbox_free_channel(oproc->mbox); 663 return ret; 664 } 665 666 /* power off the remote processor */ 667 static int omap_rproc_stop(struct rproc *rproc) 668 { 669 struct device *dev = rproc->dev.parent; 670 struct omap_rproc *oproc = rproc->priv; 671 int ret; 672 673 /* 674 * cancel any possible scheduled runtime suspend by incrementing 675 * the device usage count, and resuming the device. The remoteproc 676 * also needs to be woken up if suspended, to avoid the remoteproc 677 * OS to continue to remember any context that it has saved, and 678 * avoid potential issues in misindentifying a subsequent device 679 * reboot as a power restore boot 680 */ 681 ret = pm_runtime_get_sync(dev); 682 if (ret < 0) { 683 pm_runtime_put_noidle(dev); 684 return ret; 685 } 686 687 ret = reset_control_assert(oproc->reset); 688 if (ret) 689 goto out; 690 691 ret = omap_rproc_disable_timers(rproc, true); 692 if (ret) 693 goto enable_device; 694 695 mbox_free_channel(oproc->mbox); 696 697 /* 698 * update the runtime pm states and status now that the remoteproc 699 * has stopped 700 */ 701 pm_runtime_disable(dev); 702 pm_runtime_dont_use_autosuspend(dev); 703 pm_runtime_put_noidle(dev); 704 pm_runtime_set_suspended(dev); 705 706 return 0; 707 708 enable_device: 709 reset_control_deassert(oproc->reset); 710 out: 711 /* schedule the next auto-suspend */ 712 pm_runtime_mark_last_busy(dev); 713 pm_runtime_put_autosuspend(dev); 714 return ret; 715 } 716 717 /** 718 * omap_rproc_da_to_va() - internal memory translation helper 719 * @rproc: remote processor to apply the address translation for 720 * @da: device address to translate 721 * @len: length of the memory buffer 722 * 723 * Custom function implementing the rproc .da_to_va ops to provide address 724 * translation (device address to kernel virtual address) for internal RAMs 725 * present in a DSP or IPU device). The translated addresses can be used 726 * either by the remoteproc core for loading, or by any rpmsg bus drivers. 727 * 728 * Return: translated virtual address in kernel memory space on success, 729 * or NULL on failure. 730 */ 731 static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 732 { 733 struct omap_rproc *oproc = rproc->priv; 734 int i; 735 u32 offset; 736 737 if (len <= 0) 738 return NULL; 739 740 if (!oproc->num_mems) 741 return NULL; 742 743 for (i = 0; i < oproc->num_mems; i++) { 744 if (da >= oproc->mem[i].dev_addr && da + len <= 745 oproc->mem[i].dev_addr + oproc->mem[i].size) { 746 offset = da - oproc->mem[i].dev_addr; 747 /* __force to make sparse happy with type conversion */ 748 return (__force void *)(oproc->mem[i].cpu_addr + 749 offset); 750 } 751 } 752 753 return NULL; 754 } 755 756 static const struct rproc_ops omap_rproc_ops = { 757 .start = omap_rproc_start, 758 .stop = omap_rproc_stop, 759 .kick = omap_rproc_kick, 760 .da_to_va = omap_rproc_da_to_va, 761 }; 762 763 #ifdef CONFIG_PM 764 static bool _is_rproc_in_standby(struct omap_rproc *oproc) 765 { 766 return ti_clk_is_in_standby(oproc->fck); 767 } 768 769 /* 1 sec is long enough time to let the remoteproc side suspend the device */ 770 #define DEF_SUSPEND_TIMEOUT 1000 771 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend) 772 { 773 struct device *dev = rproc->dev.parent; 774 struct omap_rproc *oproc = rproc->priv; 775 unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT); 776 unsigned long ta = jiffies + to; 777 u32 suspend_msg = auto_suspend ? 778 RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM; 779 int ret; 780 781 reinit_completion(&oproc->pm_comp); 782 oproc->suspend_acked = false; 783 ret = mbox_send_message(oproc->mbox, (void *)suspend_msg); 784 if (ret < 0) { 785 dev_err(dev, "PM mbox_send_message failed: %d\n", ret); 786 return ret; 787 } 788 789 ret = wait_for_completion_timeout(&oproc->pm_comp, to); 790 if (!oproc->suspend_acked) 791 return -EBUSY; 792 793 /* 794 * The remoteproc side is returning the ACK message before saving the 795 * context, because the context saving is performed within a SYS/BIOS 796 * function, and it cannot have any inter-dependencies against the IPC 797 * layer. Also, as the SYS/BIOS needs to preserve properly the processor 798 * register set, sending this ACK or signalling the completion of the 799 * context save through a shared memory variable can never be the 800 * absolute last thing to be executed on the remoteproc side, and the 801 * MPU cannot use the ACK message as a sync point to put the remoteproc 802 * into reset. The only way to ensure that the remote processor has 803 * completed saving the context is to check that the module has reached 804 * STANDBY state (after saving the context, the SYS/BIOS executes the 805 * appropriate target-specific WFI instruction causing the module to 806 * enter STANDBY). 807 */ 808 while (!_is_rproc_in_standby(oproc)) { 809 if (time_after(jiffies, ta)) 810 return -ETIME; 811 schedule(); 812 } 813 814 ret = reset_control_assert(oproc->reset); 815 if (ret) { 816 dev_err(dev, "reset assert during suspend failed %d\n", ret); 817 return ret; 818 } 819 820 ret = omap_rproc_disable_timers(rproc, false); 821 if (ret) { 822 dev_err(dev, "disabling timers during suspend failed %d\n", 823 ret); 824 goto enable_device; 825 } 826 827 /* 828 * IOMMUs would have to be disabled specifically for runtime suspend. 829 * They are handled automatically through System PM callbacks for 830 * regular system suspend 831 */ 832 if (auto_suspend) { 833 ret = omap_iommu_domain_deactivate(rproc->domain); 834 if (ret) { 835 dev_err(dev, "iommu domain deactivate failed %d\n", 836 ret); 837 goto enable_timers; 838 } 839 } 840 841 return 0; 842 843 enable_timers: 844 /* ignore errors on re-enabling code */ 845 omap_rproc_enable_timers(rproc, false); 846 enable_device: 847 reset_control_deassert(oproc->reset); 848 return ret; 849 } 850 851 static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend) 852 { 853 struct device *dev = rproc->dev.parent; 854 struct omap_rproc *oproc = rproc->priv; 855 int ret; 856 857 /* 858 * IOMMUs would have to be enabled specifically for runtime resume. 859 * They would have been already enabled automatically through System 860 * PM callbacks for regular system resume 861 */ 862 if (auto_suspend) { 863 ret = omap_iommu_domain_activate(rproc->domain); 864 if (ret) { 865 dev_err(dev, "omap_iommu activate failed %d\n", ret); 866 goto out; 867 } 868 } 869 870 /* boot address could be lost after suspend, so restore it */ 871 if (oproc->boot_data) { 872 ret = omap_rproc_write_dsp_boot_addr(rproc); 873 if (ret) { 874 dev_err(dev, "boot address restore failed %d\n", ret); 875 goto suspend_iommu; 876 } 877 } 878 879 ret = omap_rproc_enable_timers(rproc, false); 880 if (ret) { 881 dev_err(dev, "enabling timers during resume failed %d\n", ret); 882 goto suspend_iommu; 883 } 884 885 ret = reset_control_deassert(oproc->reset); 886 if (ret) { 887 dev_err(dev, "reset deassert during resume failed %d\n", ret); 888 goto disable_timers; 889 } 890 891 return 0; 892 893 disable_timers: 894 omap_rproc_disable_timers(rproc, false); 895 suspend_iommu: 896 if (auto_suspend) 897 omap_iommu_domain_deactivate(rproc->domain); 898 out: 899 return ret; 900 } 901 902 static int __maybe_unused omap_rproc_suspend(struct device *dev) 903 { 904 struct platform_device *pdev = to_platform_device(dev); 905 struct rproc *rproc = platform_get_drvdata(pdev); 906 struct omap_rproc *oproc = rproc->priv; 907 int ret = 0; 908 909 mutex_lock(&rproc->lock); 910 if (rproc->state == RPROC_OFFLINE) 911 goto out; 912 913 if (rproc->state == RPROC_SUSPENDED) 914 goto out; 915 916 if (rproc->state != RPROC_RUNNING) { 917 ret = -EBUSY; 918 goto out; 919 } 920 921 ret = _omap_rproc_suspend(rproc, false); 922 if (ret) { 923 dev_err(dev, "suspend failed %d\n", ret); 924 goto out; 925 } 926 927 /* 928 * remoteproc is running at the time of system suspend, so remember 929 * it so as to wake it up during system resume 930 */ 931 oproc->need_resume = true; 932 rproc->state = RPROC_SUSPENDED; 933 934 out: 935 mutex_unlock(&rproc->lock); 936 return ret; 937 } 938 939 static int __maybe_unused omap_rproc_resume(struct device *dev) 940 { 941 struct platform_device *pdev = to_platform_device(dev); 942 struct rproc *rproc = platform_get_drvdata(pdev); 943 struct omap_rproc *oproc = rproc->priv; 944 int ret = 0; 945 946 mutex_lock(&rproc->lock); 947 if (rproc->state == RPROC_OFFLINE) 948 goto out; 949 950 if (rproc->state != RPROC_SUSPENDED) { 951 ret = -EBUSY; 952 goto out; 953 } 954 955 /* 956 * remoteproc was auto-suspended at the time of system suspend, 957 * so no need to wake-up the processor (leave it in suspended 958 * state, will be woken up during a subsequent runtime_resume) 959 */ 960 if (!oproc->need_resume) 961 goto out; 962 963 ret = _omap_rproc_resume(rproc, false); 964 if (ret) { 965 dev_err(dev, "resume failed %d\n", ret); 966 goto out; 967 } 968 969 oproc->need_resume = false; 970 rproc->state = RPROC_RUNNING; 971 972 pm_runtime_mark_last_busy(dev); 973 out: 974 mutex_unlock(&rproc->lock); 975 return ret; 976 } 977 978 static int omap_rproc_runtime_suspend(struct device *dev) 979 { 980 struct rproc *rproc = dev_get_drvdata(dev); 981 struct omap_rproc *oproc = rproc->priv; 982 int ret; 983 984 mutex_lock(&rproc->lock); 985 if (rproc->state == RPROC_CRASHED) { 986 dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n"); 987 ret = -EBUSY; 988 goto out; 989 } 990 991 if (WARN_ON(rproc->state != RPROC_RUNNING)) { 992 dev_err(dev, "rproc cannot be runtime suspended when not running!\n"); 993 ret = -EBUSY; 994 goto out; 995 } 996 997 /* 998 * do not even attempt suspend if the remote processor is not 999 * idled for runtime auto-suspend 1000 */ 1001 if (!_is_rproc_in_standby(oproc)) { 1002 ret = -EBUSY; 1003 goto abort; 1004 } 1005 1006 ret = _omap_rproc_suspend(rproc, true); 1007 if (ret) 1008 goto abort; 1009 1010 rproc->state = RPROC_SUSPENDED; 1011 mutex_unlock(&rproc->lock); 1012 return 0; 1013 1014 abort: 1015 pm_runtime_mark_last_busy(dev); 1016 out: 1017 mutex_unlock(&rproc->lock); 1018 return ret; 1019 } 1020 1021 static int omap_rproc_runtime_resume(struct device *dev) 1022 { 1023 struct rproc *rproc = dev_get_drvdata(dev); 1024 int ret; 1025 1026 mutex_lock(&rproc->lock); 1027 if (WARN_ON(rproc->state != RPROC_SUSPENDED)) { 1028 dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n", 1029 rproc->state); 1030 ret = -EBUSY; 1031 goto out; 1032 } 1033 1034 ret = _omap_rproc_resume(rproc, true); 1035 if (ret) { 1036 dev_err(dev, "runtime resume failed %d\n", ret); 1037 goto out; 1038 } 1039 1040 rproc->state = RPROC_RUNNING; 1041 out: 1042 mutex_unlock(&rproc->lock); 1043 return ret; 1044 } 1045 #endif /* CONFIG_PM */ 1046 1047 static const struct omap_rproc_mem_data ipu_mems[] = { 1048 { .name = "l2ram", .dev_addr = 0x20000000 }, 1049 { }, 1050 }; 1051 1052 static const struct omap_rproc_mem_data dra7_dsp_mems[] = { 1053 { .name = "l2ram", .dev_addr = 0x800000 }, 1054 { .name = "l1pram", .dev_addr = 0xe00000 }, 1055 { .name = "l1dram", .dev_addr = 0xf00000 }, 1056 { }, 1057 }; 1058 1059 static const struct omap_rproc_dev_data omap4_dsp_dev_data = { 1060 .device_name = "dsp", 1061 }; 1062 1063 static const struct omap_rproc_dev_data omap4_ipu_dev_data = { 1064 .device_name = "ipu", 1065 .mems = ipu_mems, 1066 }; 1067 1068 static const struct omap_rproc_dev_data omap5_dsp_dev_data = { 1069 .device_name = "dsp", 1070 }; 1071 1072 static const struct omap_rproc_dev_data omap5_ipu_dev_data = { 1073 .device_name = "ipu", 1074 .mems = ipu_mems, 1075 }; 1076 1077 static const struct omap_rproc_dev_data dra7_dsp_dev_data = { 1078 .device_name = "dsp", 1079 .mems = dra7_dsp_mems, 1080 }; 1081 1082 static const struct omap_rproc_dev_data dra7_ipu_dev_data = { 1083 .device_name = "ipu", 1084 .mems = ipu_mems, 1085 }; 1086 1087 static const struct of_device_id omap_rproc_of_match[] = { 1088 { 1089 .compatible = "ti,omap4-dsp", 1090 .data = &omap4_dsp_dev_data, 1091 }, 1092 { 1093 .compatible = "ti,omap4-ipu", 1094 .data = &omap4_ipu_dev_data, 1095 }, 1096 { 1097 .compatible = "ti,omap5-dsp", 1098 .data = &omap5_dsp_dev_data, 1099 }, 1100 { 1101 .compatible = "ti,omap5-ipu", 1102 .data = &omap5_ipu_dev_data, 1103 }, 1104 { 1105 .compatible = "ti,dra7-dsp", 1106 .data = &dra7_dsp_dev_data, 1107 }, 1108 { 1109 .compatible = "ti,dra7-ipu", 1110 .data = &dra7_ipu_dev_data, 1111 }, 1112 { 1113 /* end */ 1114 }, 1115 }; 1116 MODULE_DEVICE_TABLE(of, omap_rproc_of_match); 1117 1118 static const char *omap_rproc_get_firmware(struct platform_device *pdev) 1119 { 1120 const char *fw_name; 1121 int ret; 1122 1123 ret = of_property_read_string(pdev->dev.of_node, "firmware-name", 1124 &fw_name); 1125 if (ret) 1126 return ERR_PTR(ret); 1127 1128 return fw_name; 1129 } 1130 1131 static int omap_rproc_get_boot_data(struct platform_device *pdev, 1132 struct rproc *rproc) 1133 { 1134 struct device_node *np = pdev->dev.of_node; 1135 struct omap_rproc *oproc = rproc->priv; 1136 const struct omap_rproc_dev_data *data; 1137 int ret; 1138 1139 data = of_device_get_match_data(&pdev->dev); 1140 if (!data) 1141 return -ENODEV; 1142 1143 if (!of_property_read_bool(np, "ti,bootreg")) 1144 return 0; 1145 1146 oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data), 1147 GFP_KERNEL); 1148 if (!oproc->boot_data) 1149 return -ENOMEM; 1150 1151 oproc->boot_data->syscon = 1152 syscon_regmap_lookup_by_phandle(np, "ti,bootreg"); 1153 if (IS_ERR(oproc->boot_data->syscon)) { 1154 ret = PTR_ERR(oproc->boot_data->syscon); 1155 return ret; 1156 } 1157 1158 if (of_property_read_u32_index(np, "ti,bootreg", 1, 1159 &oproc->boot_data->boot_reg)) { 1160 dev_err(&pdev->dev, "couldn't get the boot register\n"); 1161 return -EINVAL; 1162 } 1163 1164 of_property_read_u32_index(np, "ti,bootreg", 2, 1165 &oproc->boot_data->boot_reg_shift); 1166 1167 return 0; 1168 } 1169 1170 static int omap_rproc_of_get_internal_memories(struct platform_device *pdev, 1171 struct rproc *rproc) 1172 { 1173 struct omap_rproc *oproc = rproc->priv; 1174 struct device *dev = &pdev->dev; 1175 const struct omap_rproc_dev_data *data; 1176 struct resource *res; 1177 int num_mems; 1178 int i; 1179 1180 data = of_device_get_match_data(dev); 1181 if (!data) 1182 return -ENODEV; 1183 1184 if (!data->mems) 1185 return 0; 1186 1187 num_mems = of_property_count_elems_of_size(dev->of_node, "reg", 1188 sizeof(u32)) / 2; 1189 1190 oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem), 1191 GFP_KERNEL); 1192 if (!oproc->mem) 1193 return -ENOMEM; 1194 1195 for (i = 0; data->mems[i].name; i++) { 1196 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1197 data->mems[i].name); 1198 if (!res) { 1199 dev_err(dev, "no memory defined for %s\n", 1200 data->mems[i].name); 1201 return -ENOMEM; 1202 } 1203 oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); 1204 if (IS_ERR(oproc->mem[i].cpu_addr)) { 1205 dev_err(dev, "failed to parse and map %s memory\n", 1206 data->mems[i].name); 1207 return PTR_ERR(oproc->mem[i].cpu_addr); 1208 } 1209 oproc->mem[i].bus_addr = res->start; 1210 oproc->mem[i].dev_addr = data->mems[i].dev_addr; 1211 oproc->mem[i].size = resource_size(res); 1212 1213 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n", 1214 data->mems[i].name, &oproc->mem[i].bus_addr, 1215 oproc->mem[i].size, oproc->mem[i].cpu_addr, 1216 oproc->mem[i].dev_addr); 1217 } 1218 oproc->num_mems = num_mems; 1219 1220 return 0; 1221 } 1222 1223 #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG 1224 static int omap_rproc_count_wdog_timers(struct device *dev) 1225 { 1226 struct device_node *np = dev->of_node; 1227 int ret; 1228 1229 ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL); 1230 if (ret <= 0) { 1231 dev_dbg(dev, "device does not have watchdog timers, status = %d\n", 1232 ret); 1233 ret = 0; 1234 } 1235 1236 return ret; 1237 } 1238 #else 1239 static int omap_rproc_count_wdog_timers(struct device *dev) 1240 { 1241 return 0; 1242 } 1243 #endif 1244 1245 static int omap_rproc_of_get_timers(struct platform_device *pdev, 1246 struct rproc *rproc) 1247 { 1248 struct device_node *np = pdev->dev.of_node; 1249 struct omap_rproc *oproc = rproc->priv; 1250 struct device *dev = &pdev->dev; 1251 int num_timers; 1252 1253 /* 1254 * Timer nodes are directly used in client nodes as phandles, so 1255 * retrieve the count using appropriate size 1256 */ 1257 oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL); 1258 if (oproc->num_timers <= 0) { 1259 dev_dbg(dev, "device does not have timers, status = %d\n", 1260 oproc->num_timers); 1261 oproc->num_timers = 0; 1262 } 1263 1264 oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev); 1265 1266 num_timers = oproc->num_timers + oproc->num_wd_timers; 1267 if (num_timers) { 1268 oproc->timers = devm_kcalloc(dev, num_timers, 1269 sizeof(*oproc->timers), 1270 GFP_KERNEL); 1271 if (!oproc->timers) 1272 return -ENOMEM; 1273 1274 dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n", 1275 oproc->num_timers, oproc->num_wd_timers); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int omap_rproc_probe(struct platform_device *pdev) 1282 { 1283 struct device_node *np = pdev->dev.of_node; 1284 struct omap_rproc *oproc; 1285 struct rproc *rproc; 1286 const char *firmware; 1287 int ret; 1288 struct reset_control *reset; 1289 1290 if (!np) { 1291 dev_err(&pdev->dev, "only DT-based devices are supported\n"); 1292 return -ENODEV; 1293 } 1294 1295 reset = devm_reset_control_array_get_exclusive(&pdev->dev); 1296 if (IS_ERR(reset)) 1297 return PTR_ERR(reset); 1298 1299 firmware = omap_rproc_get_firmware(pdev); 1300 if (IS_ERR(firmware)) 1301 return PTR_ERR(firmware); 1302 1303 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 1304 if (ret) { 1305 dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret); 1306 return ret; 1307 } 1308 1309 rproc = rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops, 1310 firmware, sizeof(*oproc)); 1311 if (!rproc) 1312 return -ENOMEM; 1313 1314 oproc = rproc->priv; 1315 oproc->rproc = rproc; 1316 oproc->reset = reset; 1317 /* All existing OMAP IPU and DSP processors have an MMU */ 1318 rproc->has_iommu = true; 1319 1320 ret = omap_rproc_of_get_internal_memories(pdev, rproc); 1321 if (ret) 1322 goto free_rproc; 1323 1324 ret = omap_rproc_get_boot_data(pdev, rproc); 1325 if (ret) 1326 goto free_rproc; 1327 1328 ret = omap_rproc_of_get_timers(pdev, rproc); 1329 if (ret) 1330 goto free_rproc; 1331 1332 init_completion(&oproc->pm_comp); 1333 oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY; 1334 1335 of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms", 1336 &oproc->autosuspend_delay); 1337 1338 pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay); 1339 1340 oproc->fck = devm_clk_get(&pdev->dev, 0); 1341 if (IS_ERR(oproc->fck)) { 1342 ret = PTR_ERR(oproc->fck); 1343 goto free_rproc; 1344 } 1345 1346 ret = of_reserved_mem_device_init(&pdev->dev); 1347 if (ret) { 1348 dev_warn(&pdev->dev, "device does not have specific CMA pool.\n"); 1349 dev_warn(&pdev->dev, "Typically this should be provided,\n"); 1350 dev_warn(&pdev->dev, "only omit if you know what you are doing.\n"); 1351 } 1352 1353 platform_set_drvdata(pdev, rproc); 1354 1355 ret = rproc_add(rproc); 1356 if (ret) 1357 goto release_mem; 1358 1359 return 0; 1360 1361 release_mem: 1362 of_reserved_mem_device_release(&pdev->dev); 1363 free_rproc: 1364 rproc_free(rproc); 1365 return ret; 1366 } 1367 1368 static int omap_rproc_remove(struct platform_device *pdev) 1369 { 1370 struct rproc *rproc = platform_get_drvdata(pdev); 1371 1372 rproc_del(rproc); 1373 rproc_free(rproc); 1374 of_reserved_mem_device_release(&pdev->dev); 1375 1376 return 0; 1377 } 1378 1379 static const struct dev_pm_ops omap_rproc_pm_ops = { 1380 SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume) 1381 SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend, 1382 omap_rproc_runtime_resume, NULL) 1383 }; 1384 1385 static struct platform_driver omap_rproc_driver = { 1386 .probe = omap_rproc_probe, 1387 .remove = omap_rproc_remove, 1388 .driver = { 1389 .name = "omap-rproc", 1390 .pm = &omap_rproc_pm_ops, 1391 .of_match_table = omap_rproc_of_match, 1392 }, 1393 }; 1394 1395 module_platform_driver(omap_rproc_driver); 1396 1397 MODULE_LICENSE("GPL v2"); 1398 MODULE_DESCRIPTION("OMAP Remote Processor control driver"); 1399