1 /* 2 * TI Keystone DSP remoteproc driver 3 * 4 * Copyright (C) 2015-2017 Texas Instruments Incorporated - http://www.ti.com/ 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * General Public License for more details. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/io.h> 19 #include <linux/interrupt.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/workqueue.h> 23 #include <linux/of_address.h> 24 #include <linux/of_reserved_mem.h> 25 #include <linux/of_gpio.h> 26 #include <linux/regmap.h> 27 #include <linux/mfd/syscon.h> 28 #include <linux/remoteproc.h> 29 #include <linux/reset.h> 30 31 #include "remoteproc_internal.h" 32 33 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) 34 35 /** 36 * struct keystone_rproc_mem - internal memory structure 37 * @cpu_addr: MPU virtual address of the memory region 38 * @bus_addr: Bus address used to access the memory region 39 * @dev_addr: Device address of the memory region from DSP view 40 * @size: Size of the memory region 41 */ 42 struct keystone_rproc_mem { 43 void __iomem *cpu_addr; 44 phys_addr_t bus_addr; 45 u32 dev_addr; 46 size_t size; 47 }; 48 49 /** 50 * struct keystone_rproc - keystone remote processor driver structure 51 * @dev: cached device pointer 52 * @rproc: remoteproc device handle 53 * @mem: internal memory regions data 54 * @num_mems: number of internal memory regions 55 * @dev_ctrl: device control regmap handle 56 * @reset: reset control handle 57 * @boot_offset: boot register offset in @dev_ctrl regmap 58 * @irq_ring: irq entry for vring 59 * @irq_fault: irq entry for exception 60 * @kick_gpio: gpio used for virtio kicks 61 * @workqueue: workqueue for processing virtio interrupts 62 */ 63 struct keystone_rproc { 64 struct device *dev; 65 struct rproc *rproc; 66 struct keystone_rproc_mem *mem; 67 int num_mems; 68 struct regmap *dev_ctrl; 69 struct reset_control *reset; 70 u32 boot_offset; 71 int irq_ring; 72 int irq_fault; 73 int kick_gpio; 74 struct work_struct workqueue; 75 }; 76 77 /* Put the DSP processor into reset */ 78 static void keystone_rproc_dsp_reset(struct keystone_rproc *ksproc) 79 { 80 reset_control_assert(ksproc->reset); 81 } 82 83 /* Configure the boot address and boot the DSP processor */ 84 static int keystone_rproc_dsp_boot(struct keystone_rproc *ksproc, u32 boot_addr) 85 { 86 int ret; 87 88 if (boot_addr & (SZ_1K - 1)) { 89 dev_err(ksproc->dev, "invalid boot address 0x%x, must be aligned on a 1KB boundary\n", 90 boot_addr); 91 return -EINVAL; 92 } 93 94 ret = regmap_write(ksproc->dev_ctrl, ksproc->boot_offset, boot_addr); 95 if (ret) { 96 dev_err(ksproc->dev, "regmap_write of boot address failed, status = %d\n", 97 ret); 98 return ret; 99 } 100 101 reset_control_deassert(ksproc->reset); 102 103 return 0; 104 } 105 106 /* 107 * Process the remoteproc exceptions 108 * 109 * The exception reporting on Keystone DSP remote processors is very simple 110 * compared to the equivalent processors on the OMAP family, it is notified 111 * through a software-designed specific interrupt source in the IPC interrupt 112 * generation register. 113 * 114 * This function just invokes the rproc_report_crash to report the exception 115 * to the remoteproc driver core, to trigger a recovery. 116 */ 117 static irqreturn_t keystone_rproc_exception_interrupt(int irq, void *dev_id) 118 { 119 struct keystone_rproc *ksproc = dev_id; 120 121 rproc_report_crash(ksproc->rproc, RPROC_FATAL_ERROR); 122 123 return IRQ_HANDLED; 124 } 125 126 /* 127 * Main virtqueue message workqueue function 128 * 129 * This function is executed upon scheduling of the keystone remoteproc 130 * driver's workqueue. The workqueue is scheduled by the vring ISR handler. 131 * 132 * There is no payload message indicating the virtqueue index as is the 133 * case with mailbox-based implementations on OMAP family. As such, this 134 * handler processes both the Tx and Rx virtqueue indices on every invocation. 135 * The rproc_vq_interrupt function can detect if there are new unprocessed 136 * messages or not (returns IRQ_NONE vs IRQ_HANDLED), but there is no need 137 * to check for these return values. The index 0 triggering will process all 138 * pending Rx buffers, and the index 1 triggering will process all newly 139 * available Tx buffers and will wakeup any potentially blocked senders. 140 * 141 * NOTE: 142 * 1. A payload could be added by using some of the source bits in the 143 * IPC interrupt generation registers, but this would need additional 144 * changes to the overall IPC stack, and currently there are no benefits 145 * of adapting that approach. 146 * 2. The current logic is based on an inherent design assumption of supporting 147 * only 2 vrings, but this can be changed if needed. 148 */ 149 static void handle_event(struct work_struct *work) 150 { 151 struct keystone_rproc *ksproc = 152 container_of(work, struct keystone_rproc, workqueue); 153 154 rproc_vq_interrupt(ksproc->rproc, 0); 155 rproc_vq_interrupt(ksproc->rproc, 1); 156 } 157 158 /* 159 * Interrupt handler for processing vring kicks from remote processor 160 */ 161 static irqreturn_t keystone_rproc_vring_interrupt(int irq, void *dev_id) 162 { 163 struct keystone_rproc *ksproc = dev_id; 164 165 schedule_work(&ksproc->workqueue); 166 167 return IRQ_HANDLED; 168 } 169 170 /* 171 * Power up the DSP remote processor. 172 * 173 * This function will be invoked only after the firmware for this rproc 174 * was loaded, parsed successfully, and all of its resource requirements 175 * were met. 176 */ 177 static int keystone_rproc_start(struct rproc *rproc) 178 { 179 struct keystone_rproc *ksproc = rproc->priv; 180 int ret; 181 182 INIT_WORK(&ksproc->workqueue, handle_event); 183 184 ret = request_irq(ksproc->irq_ring, keystone_rproc_vring_interrupt, 0, 185 dev_name(ksproc->dev), ksproc); 186 if (ret) { 187 dev_err(ksproc->dev, "failed to enable vring interrupt, ret = %d\n", 188 ret); 189 goto out; 190 } 191 192 ret = request_irq(ksproc->irq_fault, keystone_rproc_exception_interrupt, 193 0, dev_name(ksproc->dev), ksproc); 194 if (ret) { 195 dev_err(ksproc->dev, "failed to enable exception interrupt, ret = %d\n", 196 ret); 197 goto free_vring_irq; 198 } 199 200 ret = keystone_rproc_dsp_boot(ksproc, rproc->bootaddr); 201 if (ret) 202 goto free_exc_irq; 203 204 return 0; 205 206 free_exc_irq: 207 free_irq(ksproc->irq_fault, ksproc); 208 free_vring_irq: 209 free_irq(ksproc->irq_ring, ksproc); 210 flush_work(&ksproc->workqueue); 211 out: 212 return ret; 213 } 214 215 /* 216 * Stop the DSP remote processor. 217 * 218 * This function puts the DSP processor into reset, and finishes processing 219 * of any pending messages. 220 */ 221 static int keystone_rproc_stop(struct rproc *rproc) 222 { 223 struct keystone_rproc *ksproc = rproc->priv; 224 225 keystone_rproc_dsp_reset(ksproc); 226 free_irq(ksproc->irq_fault, ksproc); 227 free_irq(ksproc->irq_ring, ksproc); 228 flush_work(&ksproc->workqueue); 229 230 return 0; 231 } 232 233 /* 234 * Kick the remote processor to notify about pending unprocessed messages. 235 * The vqid usage is not used and is inconsequential, as the kick is performed 236 * through a simulated GPIO (a bit in an IPC interrupt-triggering register), 237 * the remote processor is expected to process both its Tx and Rx virtqueues. 238 */ 239 static void keystone_rproc_kick(struct rproc *rproc, int vqid) 240 { 241 struct keystone_rproc *ksproc = rproc->priv; 242 243 if (WARN_ON(ksproc->kick_gpio < 0)) 244 return; 245 246 gpio_set_value(ksproc->kick_gpio, 1); 247 } 248 249 /* 250 * Custom function to translate a DSP device address (internal RAMs only) to a 251 * kernel virtual address. The DSPs can access their RAMs at either an internal 252 * address visible only from a DSP, or at the SoC-level bus address. Both these 253 * addresses need to be looked through for translation. The translated addresses 254 * can be used either by the remoteproc core for loading (when using kernel 255 * remoteproc loader), or by any rpmsg bus drivers. 256 */ 257 static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, int len) 258 { 259 struct keystone_rproc *ksproc = rproc->priv; 260 void __iomem *va = NULL; 261 phys_addr_t bus_addr; 262 u32 dev_addr, offset; 263 size_t size; 264 int i; 265 266 if (len <= 0) 267 return NULL; 268 269 for (i = 0; i < ksproc->num_mems; i++) { 270 bus_addr = ksproc->mem[i].bus_addr; 271 dev_addr = ksproc->mem[i].dev_addr; 272 size = ksproc->mem[i].size; 273 274 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { 275 /* handle DSP-view addresses */ 276 if ((da >= dev_addr) && 277 ((da + len) <= (dev_addr + size))) { 278 offset = da - dev_addr; 279 va = ksproc->mem[i].cpu_addr + offset; 280 break; 281 } 282 } else { 283 /* handle SoC-view addresses */ 284 if ((da >= bus_addr) && 285 (da + len) <= (bus_addr + size)) { 286 offset = da - bus_addr; 287 va = ksproc->mem[i].cpu_addr + offset; 288 break; 289 } 290 } 291 } 292 293 return (__force void *)va; 294 } 295 296 static const struct rproc_ops keystone_rproc_ops = { 297 .start = keystone_rproc_start, 298 .stop = keystone_rproc_stop, 299 .kick = keystone_rproc_kick, 300 .da_to_va = keystone_rproc_da_to_va, 301 }; 302 303 static int keystone_rproc_of_get_memories(struct platform_device *pdev, 304 struct keystone_rproc *ksproc) 305 { 306 static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; 307 struct device *dev = &pdev->dev; 308 struct resource *res; 309 int num_mems = 0; 310 int i; 311 312 num_mems = ARRAY_SIZE(mem_names); 313 ksproc->mem = devm_kcalloc(ksproc->dev, num_mems, 314 sizeof(*ksproc->mem), GFP_KERNEL); 315 if (!ksproc->mem) 316 return -ENOMEM; 317 318 for (i = 0; i < num_mems; i++) { 319 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 320 mem_names[i]); 321 ksproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); 322 if (IS_ERR(ksproc->mem[i].cpu_addr)) { 323 dev_err(dev, "failed to parse and map %s memory\n", 324 mem_names[i]); 325 return PTR_ERR(ksproc->mem[i].cpu_addr); 326 } 327 ksproc->mem[i].bus_addr = res->start; 328 ksproc->mem[i].dev_addr = 329 res->start & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK; 330 ksproc->mem[i].size = resource_size(res); 331 332 /* zero out memories to start in a pristine state */ 333 memset((__force void *)ksproc->mem[i].cpu_addr, 0, 334 ksproc->mem[i].size); 335 } 336 ksproc->num_mems = num_mems; 337 338 return 0; 339 } 340 341 static int keystone_rproc_of_get_dev_syscon(struct platform_device *pdev, 342 struct keystone_rproc *ksproc) 343 { 344 struct device_node *np = pdev->dev.of_node; 345 struct device *dev = &pdev->dev; 346 int ret; 347 348 if (!of_property_read_bool(np, "ti,syscon-dev")) { 349 dev_err(dev, "ti,syscon-dev property is absent\n"); 350 return -EINVAL; 351 } 352 353 ksproc->dev_ctrl = 354 syscon_regmap_lookup_by_phandle(np, "ti,syscon-dev"); 355 if (IS_ERR(ksproc->dev_ctrl)) { 356 ret = PTR_ERR(ksproc->dev_ctrl); 357 return ret; 358 } 359 360 if (of_property_read_u32_index(np, "ti,syscon-dev", 1, 361 &ksproc->boot_offset)) { 362 dev_err(dev, "couldn't read the boot register offset\n"); 363 return -EINVAL; 364 } 365 366 return 0; 367 } 368 369 static int keystone_rproc_probe(struct platform_device *pdev) 370 { 371 struct device *dev = &pdev->dev; 372 struct device_node *np = dev->of_node; 373 struct keystone_rproc *ksproc; 374 struct rproc *rproc; 375 int dsp_id; 376 char *fw_name = NULL; 377 char *template = "keystone-dsp%d-fw"; 378 int name_len = 0; 379 int ret = 0; 380 381 if (!np) { 382 dev_err(dev, "only DT-based devices are supported\n"); 383 return -ENODEV; 384 } 385 386 dsp_id = of_alias_get_id(np, "rproc"); 387 if (dsp_id < 0) { 388 dev_warn(dev, "device does not have an alias id\n"); 389 return dsp_id; 390 } 391 392 /* construct a custom default fw name - subject to change in future */ 393 name_len = strlen(template); /* assuming a single digit alias */ 394 fw_name = devm_kzalloc(dev, name_len, GFP_KERNEL); 395 if (!fw_name) 396 return -ENOMEM; 397 snprintf(fw_name, name_len, template, dsp_id); 398 399 rproc = rproc_alloc(dev, dev_name(dev), &keystone_rproc_ops, fw_name, 400 sizeof(*ksproc)); 401 if (!rproc) 402 return -ENOMEM; 403 404 rproc->has_iommu = false; 405 ksproc = rproc->priv; 406 ksproc->rproc = rproc; 407 ksproc->dev = dev; 408 409 ret = keystone_rproc_of_get_dev_syscon(pdev, ksproc); 410 if (ret) 411 goto free_rproc; 412 413 ksproc->reset = devm_reset_control_get(dev, NULL); 414 if (IS_ERR(ksproc->reset)) { 415 ret = PTR_ERR(ksproc->reset); 416 goto free_rproc; 417 } 418 419 /* enable clock for accessing DSP internal memories */ 420 pm_runtime_enable(dev); 421 ret = pm_runtime_get_sync(dev); 422 if (ret < 0) { 423 dev_err(dev, "failed to enable clock, status = %d\n", ret); 424 pm_runtime_put_noidle(dev); 425 goto disable_rpm; 426 } 427 428 ret = keystone_rproc_of_get_memories(pdev, ksproc); 429 if (ret) 430 goto disable_clk; 431 432 ksproc->irq_ring = platform_get_irq_byname(pdev, "vring"); 433 if (ksproc->irq_ring < 0) { 434 ret = ksproc->irq_ring; 435 dev_err(dev, "failed to get vring interrupt, status = %d\n", 436 ret); 437 goto disable_clk; 438 } 439 440 ksproc->irq_fault = platform_get_irq_byname(pdev, "exception"); 441 if (ksproc->irq_fault < 0) { 442 ret = ksproc->irq_fault; 443 dev_err(dev, "failed to get exception interrupt, status = %d\n", 444 ret); 445 goto disable_clk; 446 } 447 448 ksproc->kick_gpio = of_get_named_gpio_flags(np, "kick-gpios", 0, NULL); 449 if (ksproc->kick_gpio < 0) { 450 ret = ksproc->kick_gpio; 451 dev_err(dev, "failed to get gpio for virtio kicks, status = %d\n", 452 ret); 453 goto disable_clk; 454 } 455 456 if (of_reserved_mem_device_init(dev)) 457 dev_warn(dev, "device does not have specific CMA pool\n"); 458 459 /* ensure the DSP is in reset before loading firmware */ 460 ret = reset_control_status(ksproc->reset); 461 if (ret < 0) { 462 dev_err(dev, "failed to get reset status, status = %d\n", ret); 463 goto release_mem; 464 } else if (ret == 0) { 465 WARN(1, "device is not in reset\n"); 466 keystone_rproc_dsp_reset(ksproc); 467 } 468 469 ret = rproc_add(rproc); 470 if (ret) { 471 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", 472 ret); 473 goto release_mem; 474 } 475 476 platform_set_drvdata(pdev, ksproc); 477 478 return 0; 479 480 release_mem: 481 of_reserved_mem_device_release(dev); 482 disable_clk: 483 pm_runtime_put_sync(dev); 484 disable_rpm: 485 pm_runtime_disable(dev); 486 free_rproc: 487 rproc_free(rproc); 488 return ret; 489 } 490 491 static int keystone_rproc_remove(struct platform_device *pdev) 492 { 493 struct keystone_rproc *ksproc = platform_get_drvdata(pdev); 494 495 rproc_del(ksproc->rproc); 496 pm_runtime_put_sync(&pdev->dev); 497 pm_runtime_disable(&pdev->dev); 498 rproc_free(ksproc->rproc); 499 of_reserved_mem_device_release(&pdev->dev); 500 501 return 0; 502 } 503 504 static const struct of_device_id keystone_rproc_of_match[] = { 505 { .compatible = "ti,k2hk-dsp", }, 506 { .compatible = "ti,k2l-dsp", }, 507 { .compatible = "ti,k2e-dsp", }, 508 { /* sentinel */ }, 509 }; 510 MODULE_DEVICE_TABLE(of, keystone_rproc_of_match); 511 512 static struct platform_driver keystone_rproc_driver = { 513 .probe = keystone_rproc_probe, 514 .remove = keystone_rproc_remove, 515 .driver = { 516 .name = "keystone-rproc", 517 .of_match_table = keystone_rproc_of_match, 518 }, 519 }; 520 521 module_platform_driver(keystone_rproc_driver); 522 523 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 524 MODULE_LICENSE("GPL v2"); 525 MODULE_DESCRIPTION("TI Keystone DSP Remoteproc driver"); 526