1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Keystone DSP remoteproc driver 4 * 5 * Copyright (C) 2015-2017 Texas Instruments Incorporated - http://www.ti.com/ 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/io.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/workqueue.h> 15 #include <linux/of_address.h> 16 #include <linux/of_reserved_mem.h> 17 #include <linux/of_gpio.h> 18 #include <linux/regmap.h> 19 #include <linux/mfd/syscon.h> 20 #include <linux/remoteproc.h> 21 #include <linux/reset.h> 22 23 #include "remoteproc_internal.h" 24 25 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) 26 27 /** 28 * struct keystone_rproc_mem - internal memory structure 29 * @cpu_addr: MPU virtual address of the memory region 30 * @bus_addr: Bus address used to access the memory region 31 * @dev_addr: Device address of the memory region from DSP view 32 * @size: Size of the memory region 33 */ 34 struct keystone_rproc_mem { 35 void __iomem *cpu_addr; 36 phys_addr_t bus_addr; 37 u32 dev_addr; 38 size_t size; 39 }; 40 41 /** 42 * struct keystone_rproc - keystone remote processor driver structure 43 * @dev: cached device pointer 44 * @rproc: remoteproc device handle 45 * @mem: internal memory regions data 46 * @num_mems: number of internal memory regions 47 * @dev_ctrl: device control regmap handle 48 * @reset: reset control handle 49 * @boot_offset: boot register offset in @dev_ctrl regmap 50 * @irq_ring: irq entry for vring 51 * @irq_fault: irq entry for exception 52 * @kick_gpio: gpio used for virtio kicks 53 * @workqueue: workqueue for processing virtio interrupts 54 */ 55 struct keystone_rproc { 56 struct device *dev; 57 struct rproc *rproc; 58 struct keystone_rproc_mem *mem; 59 int num_mems; 60 struct regmap *dev_ctrl; 61 struct reset_control *reset; 62 u32 boot_offset; 63 int irq_ring; 64 int irq_fault; 65 int kick_gpio; 66 struct work_struct workqueue; 67 }; 68 69 /* Put the DSP processor into reset */ 70 static void keystone_rproc_dsp_reset(struct keystone_rproc *ksproc) 71 { 72 reset_control_assert(ksproc->reset); 73 } 74 75 /* Configure the boot address and boot the DSP processor */ 76 static int keystone_rproc_dsp_boot(struct keystone_rproc *ksproc, u32 boot_addr) 77 { 78 int ret; 79 80 if (boot_addr & (SZ_1K - 1)) { 81 dev_err(ksproc->dev, "invalid boot address 0x%x, must be aligned on a 1KB boundary\n", 82 boot_addr); 83 return -EINVAL; 84 } 85 86 ret = regmap_write(ksproc->dev_ctrl, ksproc->boot_offset, boot_addr); 87 if (ret) { 88 dev_err(ksproc->dev, "regmap_write of boot address failed, status = %d\n", 89 ret); 90 return ret; 91 } 92 93 reset_control_deassert(ksproc->reset); 94 95 return 0; 96 } 97 98 /* 99 * Process the remoteproc exceptions 100 * 101 * The exception reporting on Keystone DSP remote processors is very simple 102 * compared to the equivalent processors on the OMAP family, it is notified 103 * through a software-designed specific interrupt source in the IPC interrupt 104 * generation register. 105 * 106 * This function just invokes the rproc_report_crash to report the exception 107 * to the remoteproc driver core, to trigger a recovery. 108 */ 109 static irqreturn_t keystone_rproc_exception_interrupt(int irq, void *dev_id) 110 { 111 struct keystone_rproc *ksproc = dev_id; 112 113 rproc_report_crash(ksproc->rproc, RPROC_FATAL_ERROR); 114 115 return IRQ_HANDLED; 116 } 117 118 /* 119 * Main virtqueue message workqueue function 120 * 121 * This function is executed upon scheduling of the keystone remoteproc 122 * driver's workqueue. The workqueue is scheduled by the vring ISR handler. 123 * 124 * There is no payload message indicating the virtqueue index as is the 125 * case with mailbox-based implementations on OMAP family. As such, this 126 * handler processes both the Tx and Rx virtqueue indices on every invocation. 127 * The rproc_vq_interrupt function can detect if there are new unprocessed 128 * messages or not (returns IRQ_NONE vs IRQ_HANDLED), but there is no need 129 * to check for these return values. The index 0 triggering will process all 130 * pending Rx buffers, and the index 1 triggering will process all newly 131 * available Tx buffers and will wakeup any potentially blocked senders. 132 * 133 * NOTE: 134 * 1. A payload could be added by using some of the source bits in the 135 * IPC interrupt generation registers, but this would need additional 136 * changes to the overall IPC stack, and currently there are no benefits 137 * of adapting that approach. 138 * 2. The current logic is based on an inherent design assumption of supporting 139 * only 2 vrings, but this can be changed if needed. 140 */ 141 static void handle_event(struct work_struct *work) 142 { 143 struct keystone_rproc *ksproc = 144 container_of(work, struct keystone_rproc, workqueue); 145 146 rproc_vq_interrupt(ksproc->rproc, 0); 147 rproc_vq_interrupt(ksproc->rproc, 1); 148 } 149 150 /* 151 * Interrupt handler for processing vring kicks from remote processor 152 */ 153 static irqreturn_t keystone_rproc_vring_interrupt(int irq, void *dev_id) 154 { 155 struct keystone_rproc *ksproc = dev_id; 156 157 schedule_work(&ksproc->workqueue); 158 159 return IRQ_HANDLED; 160 } 161 162 /* 163 * Power up the DSP remote processor. 164 * 165 * This function will be invoked only after the firmware for this rproc 166 * was loaded, parsed successfully, and all of its resource requirements 167 * were met. 168 */ 169 static int keystone_rproc_start(struct rproc *rproc) 170 { 171 struct keystone_rproc *ksproc = rproc->priv; 172 int ret; 173 174 INIT_WORK(&ksproc->workqueue, handle_event); 175 176 ret = request_irq(ksproc->irq_ring, keystone_rproc_vring_interrupt, 0, 177 dev_name(ksproc->dev), ksproc); 178 if (ret) { 179 dev_err(ksproc->dev, "failed to enable vring interrupt, ret = %d\n", 180 ret); 181 goto out; 182 } 183 184 ret = request_irq(ksproc->irq_fault, keystone_rproc_exception_interrupt, 185 0, dev_name(ksproc->dev), ksproc); 186 if (ret) { 187 dev_err(ksproc->dev, "failed to enable exception interrupt, ret = %d\n", 188 ret); 189 goto free_vring_irq; 190 } 191 192 ret = keystone_rproc_dsp_boot(ksproc, rproc->bootaddr); 193 if (ret) 194 goto free_exc_irq; 195 196 return 0; 197 198 free_exc_irq: 199 free_irq(ksproc->irq_fault, ksproc); 200 free_vring_irq: 201 free_irq(ksproc->irq_ring, ksproc); 202 flush_work(&ksproc->workqueue); 203 out: 204 return ret; 205 } 206 207 /* 208 * Stop the DSP remote processor. 209 * 210 * This function puts the DSP processor into reset, and finishes processing 211 * of any pending messages. 212 */ 213 static int keystone_rproc_stop(struct rproc *rproc) 214 { 215 struct keystone_rproc *ksproc = rproc->priv; 216 217 keystone_rproc_dsp_reset(ksproc); 218 free_irq(ksproc->irq_fault, ksproc); 219 free_irq(ksproc->irq_ring, ksproc); 220 flush_work(&ksproc->workqueue); 221 222 return 0; 223 } 224 225 /* 226 * Kick the remote processor to notify about pending unprocessed messages. 227 * The vqid usage is not used and is inconsequential, as the kick is performed 228 * through a simulated GPIO (a bit in an IPC interrupt-triggering register), 229 * the remote processor is expected to process both its Tx and Rx virtqueues. 230 */ 231 static void keystone_rproc_kick(struct rproc *rproc, int vqid) 232 { 233 struct keystone_rproc *ksproc = rproc->priv; 234 235 if (WARN_ON(ksproc->kick_gpio < 0)) 236 return; 237 238 gpio_set_value(ksproc->kick_gpio, 1); 239 } 240 241 /* 242 * Custom function to translate a DSP device address (internal RAMs only) to a 243 * kernel virtual address. The DSPs can access their RAMs at either an internal 244 * address visible only from a DSP, or at the SoC-level bus address. Both these 245 * addresses need to be looked through for translation. The translated addresses 246 * can be used either by the remoteproc core for loading (when using kernel 247 * remoteproc loader), or by any rpmsg bus drivers. 248 */ 249 static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, int len) 250 { 251 struct keystone_rproc *ksproc = rproc->priv; 252 void __iomem *va = NULL; 253 phys_addr_t bus_addr; 254 u32 dev_addr, offset; 255 size_t size; 256 int i; 257 258 if (len <= 0) 259 return NULL; 260 261 for (i = 0; i < ksproc->num_mems; i++) { 262 bus_addr = ksproc->mem[i].bus_addr; 263 dev_addr = ksproc->mem[i].dev_addr; 264 size = ksproc->mem[i].size; 265 266 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { 267 /* handle DSP-view addresses */ 268 if ((da >= dev_addr) && 269 ((da + len) <= (dev_addr + size))) { 270 offset = da - dev_addr; 271 va = ksproc->mem[i].cpu_addr + offset; 272 break; 273 } 274 } else { 275 /* handle SoC-view addresses */ 276 if ((da >= bus_addr) && 277 (da + len) <= (bus_addr + size)) { 278 offset = da - bus_addr; 279 va = ksproc->mem[i].cpu_addr + offset; 280 break; 281 } 282 } 283 } 284 285 return (__force void *)va; 286 } 287 288 static const struct rproc_ops keystone_rproc_ops = { 289 .start = keystone_rproc_start, 290 .stop = keystone_rproc_stop, 291 .kick = keystone_rproc_kick, 292 .da_to_va = keystone_rproc_da_to_va, 293 }; 294 295 static int keystone_rproc_of_get_memories(struct platform_device *pdev, 296 struct keystone_rproc *ksproc) 297 { 298 static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; 299 struct device *dev = &pdev->dev; 300 struct resource *res; 301 int num_mems = 0; 302 int i; 303 304 num_mems = ARRAY_SIZE(mem_names); 305 ksproc->mem = devm_kcalloc(ksproc->dev, num_mems, 306 sizeof(*ksproc->mem), GFP_KERNEL); 307 if (!ksproc->mem) 308 return -ENOMEM; 309 310 for (i = 0; i < num_mems; i++) { 311 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 312 mem_names[i]); 313 ksproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); 314 if (IS_ERR(ksproc->mem[i].cpu_addr)) { 315 dev_err(dev, "failed to parse and map %s memory\n", 316 mem_names[i]); 317 return PTR_ERR(ksproc->mem[i].cpu_addr); 318 } 319 ksproc->mem[i].bus_addr = res->start; 320 ksproc->mem[i].dev_addr = 321 res->start & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK; 322 ksproc->mem[i].size = resource_size(res); 323 324 /* zero out memories to start in a pristine state */ 325 memset((__force void *)ksproc->mem[i].cpu_addr, 0, 326 ksproc->mem[i].size); 327 } 328 ksproc->num_mems = num_mems; 329 330 return 0; 331 } 332 333 static int keystone_rproc_of_get_dev_syscon(struct platform_device *pdev, 334 struct keystone_rproc *ksproc) 335 { 336 struct device_node *np = pdev->dev.of_node; 337 struct device *dev = &pdev->dev; 338 int ret; 339 340 if (!of_property_read_bool(np, "ti,syscon-dev")) { 341 dev_err(dev, "ti,syscon-dev property is absent\n"); 342 return -EINVAL; 343 } 344 345 ksproc->dev_ctrl = 346 syscon_regmap_lookup_by_phandle(np, "ti,syscon-dev"); 347 if (IS_ERR(ksproc->dev_ctrl)) { 348 ret = PTR_ERR(ksproc->dev_ctrl); 349 return ret; 350 } 351 352 if (of_property_read_u32_index(np, "ti,syscon-dev", 1, 353 &ksproc->boot_offset)) { 354 dev_err(dev, "couldn't read the boot register offset\n"); 355 return -EINVAL; 356 } 357 358 return 0; 359 } 360 361 static int keystone_rproc_probe(struct platform_device *pdev) 362 { 363 struct device *dev = &pdev->dev; 364 struct device_node *np = dev->of_node; 365 struct keystone_rproc *ksproc; 366 struct rproc *rproc; 367 int dsp_id; 368 char *fw_name = NULL; 369 char *template = "keystone-dsp%d-fw"; 370 int name_len = 0; 371 int ret = 0; 372 373 if (!np) { 374 dev_err(dev, "only DT-based devices are supported\n"); 375 return -ENODEV; 376 } 377 378 dsp_id = of_alias_get_id(np, "rproc"); 379 if (dsp_id < 0) { 380 dev_warn(dev, "device does not have an alias id\n"); 381 return dsp_id; 382 } 383 384 /* construct a custom default fw name - subject to change in future */ 385 name_len = strlen(template); /* assuming a single digit alias */ 386 fw_name = devm_kzalloc(dev, name_len, GFP_KERNEL); 387 if (!fw_name) 388 return -ENOMEM; 389 snprintf(fw_name, name_len, template, dsp_id); 390 391 rproc = rproc_alloc(dev, dev_name(dev), &keystone_rproc_ops, fw_name, 392 sizeof(*ksproc)); 393 if (!rproc) 394 return -ENOMEM; 395 396 rproc->has_iommu = false; 397 ksproc = rproc->priv; 398 ksproc->rproc = rproc; 399 ksproc->dev = dev; 400 401 ret = keystone_rproc_of_get_dev_syscon(pdev, ksproc); 402 if (ret) 403 goto free_rproc; 404 405 ksproc->reset = devm_reset_control_get_exclusive(dev, NULL); 406 if (IS_ERR(ksproc->reset)) { 407 ret = PTR_ERR(ksproc->reset); 408 goto free_rproc; 409 } 410 411 /* enable clock for accessing DSP internal memories */ 412 pm_runtime_enable(dev); 413 ret = pm_runtime_get_sync(dev); 414 if (ret < 0) { 415 dev_err(dev, "failed to enable clock, status = %d\n", ret); 416 pm_runtime_put_noidle(dev); 417 goto disable_rpm; 418 } 419 420 ret = keystone_rproc_of_get_memories(pdev, ksproc); 421 if (ret) 422 goto disable_clk; 423 424 ksproc->irq_ring = platform_get_irq_byname(pdev, "vring"); 425 if (ksproc->irq_ring < 0) { 426 ret = ksproc->irq_ring; 427 goto disable_clk; 428 } 429 430 ksproc->irq_fault = platform_get_irq_byname(pdev, "exception"); 431 if (ksproc->irq_fault < 0) { 432 ret = ksproc->irq_fault; 433 goto disable_clk; 434 } 435 436 ksproc->kick_gpio = of_get_named_gpio_flags(np, "kick-gpios", 0, NULL); 437 if (ksproc->kick_gpio < 0) { 438 ret = ksproc->kick_gpio; 439 dev_err(dev, "failed to get gpio for virtio kicks, status = %d\n", 440 ret); 441 goto disable_clk; 442 } 443 444 if (of_reserved_mem_device_init(dev)) 445 dev_warn(dev, "device does not have specific CMA pool\n"); 446 447 /* ensure the DSP is in reset before loading firmware */ 448 ret = reset_control_status(ksproc->reset); 449 if (ret < 0) { 450 dev_err(dev, "failed to get reset status, status = %d\n", ret); 451 goto release_mem; 452 } else if (ret == 0) { 453 WARN(1, "device is not in reset\n"); 454 keystone_rproc_dsp_reset(ksproc); 455 } 456 457 ret = rproc_add(rproc); 458 if (ret) { 459 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", 460 ret); 461 goto release_mem; 462 } 463 464 platform_set_drvdata(pdev, ksproc); 465 466 return 0; 467 468 release_mem: 469 of_reserved_mem_device_release(dev); 470 disable_clk: 471 pm_runtime_put_sync(dev); 472 disable_rpm: 473 pm_runtime_disable(dev); 474 free_rproc: 475 rproc_free(rproc); 476 return ret; 477 } 478 479 static int keystone_rproc_remove(struct platform_device *pdev) 480 { 481 struct keystone_rproc *ksproc = platform_get_drvdata(pdev); 482 483 rproc_del(ksproc->rproc); 484 pm_runtime_put_sync(&pdev->dev); 485 pm_runtime_disable(&pdev->dev); 486 rproc_free(ksproc->rproc); 487 of_reserved_mem_device_release(&pdev->dev); 488 489 return 0; 490 } 491 492 static const struct of_device_id keystone_rproc_of_match[] = { 493 { .compatible = "ti,k2hk-dsp", }, 494 { .compatible = "ti,k2l-dsp", }, 495 { .compatible = "ti,k2e-dsp", }, 496 { .compatible = "ti,k2g-dsp", }, 497 { /* sentinel */ }, 498 }; 499 MODULE_DEVICE_TABLE(of, keystone_rproc_of_match); 500 501 static struct platform_driver keystone_rproc_driver = { 502 .probe = keystone_rproc_probe, 503 .remove = keystone_rproc_remove, 504 .driver = { 505 .name = "keystone-rproc", 506 .of_match_table = keystone_rproc_of_match, 507 }, 508 }; 509 510 module_platform_driver(keystone_rproc_driver); 511 512 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 513 MODULE_LICENSE("GPL v2"); 514 MODULE_DESCRIPTION("TI Keystone DSP Remoteproc driver"); 515