1 /* 2 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Mike Turquette <mturquette@ti.com> 6 * 7 * Copyright (C) 2012-2013 Texas Instruments, Inc. 8 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com> 9 * Nishanth Menon <nm@ti.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 16 * kind, whether express or implied; without even the implied warranty 17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/err.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_device.h> 26 #include <linux/of.h> 27 #include <linux/platform_device.h> 28 #include <linux/regulator/driver.h> 29 #include <linux/regulator/machine.h> 30 #include <linux/regulator/of_regulator.h> 31 32 /* 33 * ABB LDO operating states: 34 * NOMINAL_OPP: bypasses the ABB LDO 35 * FAST_OPP: sets ABB LDO to Forward Body-Bias 36 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias 37 */ 38 #define TI_ABB_NOMINAL_OPP 0 39 #define TI_ABB_FAST_OPP 1 40 #define TI_ABB_SLOW_OPP 3 41 42 /** 43 * struct ti_abb_info - ABB information per voltage setting 44 * @opp_sel: one of TI_ABB macro 45 * @vset: (optional) vset value that LDOVBB needs to be overriden with. 46 * 47 * Array of per voltage entries organized in the same order as regulator_desc's 48 * volt_table list. (selector is used to index from this array) 49 */ 50 struct ti_abb_info { 51 u32 opp_sel; 52 u32 vset; 53 }; 54 55 /** 56 * struct ti_abb_reg - Register description for ABB block 57 * @setup_reg: setup register offset from base 58 * @control_reg: control register offset from base 59 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask 60 * @fbb_sel_mask: setup register- FBB sel mask 61 * @rbb_sel_mask: setup register- RBB sel mask 62 * @sr2_en_mask: setup register- enable mask 63 * @opp_change_mask: control register - mask to trigger LDOVBB change 64 * @opp_sel_mask: control register - mask for mode to operate 65 */ 66 struct ti_abb_reg { 67 u32 setup_reg; 68 u32 control_reg; 69 70 /* Setup register fields */ 71 u32 sr2_wtcnt_value_mask; 72 u32 fbb_sel_mask; 73 u32 rbb_sel_mask; 74 u32 sr2_en_mask; 75 76 /* Control register fields */ 77 u32 opp_change_mask; 78 u32 opp_sel_mask; 79 }; 80 81 /** 82 * struct ti_abb - ABB instance data 83 * @rdesc: regulator descriptor 84 * @clk: clock(usually sysclk) supplying ABB block 85 * @base: base address of ABB block 86 * @int_base: interrupt register base address 87 * @efuse_base: (optional) efuse base address for ABB modes 88 * @ldo_base: (optional) LDOVBB vset override base address 89 * @regs: pointer to struct ti_abb_reg for ABB block 90 * @txdone_mask: mask on int_base for tranxdone interrupt 91 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB 92 * vset with value from efuse 93 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override 94 * @info: array to per voltage ABB configuration 95 * @current_info_idx: current index to info 96 * @settling_time: SoC specific settling time for LDO VBB 97 */ 98 struct ti_abb { 99 struct regulator_desc rdesc; 100 struct clk *clk; 101 void __iomem *base; 102 void __iomem *int_base; 103 void __iomem *efuse_base; 104 void __iomem *ldo_base; 105 106 const struct ti_abb_reg *regs; 107 u32 txdone_mask; 108 u32 ldovbb_override_mask; 109 u32 ldovbb_vset_mask; 110 111 struct ti_abb_info *info; 112 int current_info_idx; 113 114 u32 settling_time; 115 }; 116 117 /** 118 * ti_abb_rmw() - handy wrapper to set specific register bits 119 * @mask: mask for register field 120 * @value: value shifted to mask location and written 121 * @offset: offset of register 122 * @base: base address 123 * 124 * Return: final register value (may be unused) 125 */ 126 static inline u32 ti_abb_rmw(u32 mask, u32 value, u32 offset, 127 void __iomem *base) 128 { 129 u32 val; 130 131 val = readl(base + offset); 132 val &= ~mask; 133 val |= (value << __ffs(mask)) & mask; 134 writel(val, base + offset); 135 136 return val; 137 } 138 139 /** 140 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status 141 * @abb: pointer to the abb instance 142 * 143 * Return: true or false 144 */ 145 static inline bool ti_abb_check_txdone(const struct ti_abb *abb) 146 { 147 return !!(readl(abb->int_base) & abb->txdone_mask); 148 } 149 150 /** 151 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status 152 * @abb: pointer to the abb instance 153 */ 154 static inline void ti_abb_clear_txdone(const struct ti_abb *abb) 155 { 156 writel(abb->txdone_mask, abb->int_base); 157 }; 158 159 /** 160 * ti_abb_wait_tranx() - waits for ABB tranxdone event 161 * @dev: device 162 * @abb: pointer to the abb instance 163 * 164 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 165 */ 166 static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb) 167 { 168 int timeout = 0; 169 bool status; 170 171 while (timeout++ <= abb->settling_time) { 172 status = ti_abb_check_txdone(abb); 173 if (status) 174 break; 175 176 udelay(1); 177 } 178 179 if (timeout > abb->settling_time) { 180 dev_warn_ratelimited(dev, 181 "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 182 __func__, timeout, readl(abb->int_base)); 183 return -ETIMEDOUT; 184 } 185 186 return 0; 187 } 188 189 /** 190 * ti_abb_clear_all_txdone() - clears ABB tranxdone event 191 * @dev: device 192 * @abb: pointer to the abb instance 193 * 194 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 195 */ 196 static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb) 197 { 198 int timeout = 0; 199 bool status; 200 201 while (timeout++ <= abb->settling_time) { 202 ti_abb_clear_txdone(abb); 203 204 status = ti_abb_check_txdone(abb); 205 if (!status) 206 break; 207 208 udelay(1); 209 } 210 211 if (timeout > abb->settling_time) { 212 dev_warn_ratelimited(dev, 213 "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 214 __func__, timeout, readl(abb->int_base)); 215 return -ETIMEDOUT; 216 } 217 218 return 0; 219 } 220 221 /** 222 * ti_abb_program_ldovbb() - program LDOVBB register for override value 223 * @dev: device 224 * @abb: pointer to the abb instance 225 * @info: ABB info to program 226 */ 227 static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb, 228 struct ti_abb_info *info) 229 { 230 u32 val; 231 232 val = readl(abb->ldo_base); 233 /* clear up previous values */ 234 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask); 235 236 switch (info->opp_sel) { 237 case TI_ABB_SLOW_OPP: 238 case TI_ABB_FAST_OPP: 239 val |= abb->ldovbb_override_mask; 240 val |= info->vset << __ffs(abb->ldovbb_vset_mask); 241 break; 242 } 243 244 writel(val, abb->ldo_base); 245 } 246 247 /** 248 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias 249 * @rdev: regulator device 250 * @abb: pointer to the abb instance 251 * @info: ABB info to program 252 * 253 * Return: 0 on success or appropriate error value when fails 254 */ 255 static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb, 256 struct ti_abb_info *info) 257 { 258 const struct ti_abb_reg *regs = abb->regs; 259 struct device *dev = &rdev->dev; 260 int ret; 261 262 ret = ti_abb_clear_all_txdone(dev, abb); 263 if (ret) 264 goto out; 265 266 ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, regs->setup_reg, 267 abb->base); 268 269 switch (info->opp_sel) { 270 case TI_ABB_SLOW_OPP: 271 ti_abb_rmw(regs->rbb_sel_mask, 1, regs->setup_reg, abb->base); 272 break; 273 case TI_ABB_FAST_OPP: 274 ti_abb_rmw(regs->fbb_sel_mask, 1, regs->setup_reg, abb->base); 275 break; 276 } 277 278 /* program next state of ABB ldo */ 279 ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, regs->control_reg, 280 abb->base); 281 282 /* 283 * program LDO VBB vset override if needed for !bypass mode 284 * XXX: Do not switch sequence - for !bypass, LDO override reset *must* 285 * be performed *before* switch to bias mode else VBB glitches. 286 */ 287 if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP) 288 ti_abb_program_ldovbb(dev, abb, info); 289 290 /* Initiate ABB ldo change */ 291 ti_abb_rmw(regs->opp_change_mask, 1, regs->control_reg, abb->base); 292 293 /* Wait for ABB LDO to complete transition to new Bias setting */ 294 ret = ti_abb_wait_txdone(dev, abb); 295 if (ret) 296 goto out; 297 298 ret = ti_abb_clear_all_txdone(dev, abb); 299 if (ret) 300 goto out; 301 302 /* 303 * Reset LDO VBB vset override bypass mode 304 * XXX: Do not switch sequence - for bypass, LDO override reset *must* 305 * be performed *after* switch to bypass else VBB glitches. 306 */ 307 if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP) 308 ti_abb_program_ldovbb(dev, abb, info); 309 310 out: 311 return ret; 312 } 313 314 /** 315 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO 316 * @rdev: regulator device 317 * @sel: selector to index into required ABB LDO settings (maps to 318 * regulator descriptor's volt_table) 319 * 320 * Return: 0 on success or appropriate error value when fails 321 */ 322 static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel) 323 { 324 const struct regulator_desc *desc = rdev->desc; 325 struct ti_abb *abb = rdev_get_drvdata(rdev); 326 struct device *dev = &rdev->dev; 327 struct ti_abb_info *info, *oinfo; 328 int ret = 0; 329 330 if (!abb) { 331 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 332 __func__); 333 return -ENODEV; 334 } 335 336 if (!desc->n_voltages || !abb->info) { 337 dev_err_ratelimited(dev, 338 "%s: No valid voltage table entries?\n", 339 __func__); 340 return -EINVAL; 341 } 342 343 if (sel >= desc->n_voltages) { 344 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__, 345 sel, desc->n_voltages); 346 return -EINVAL; 347 } 348 349 /* If we are in the same index as we were, nothing to do here! */ 350 if (sel == abb->current_info_idx) { 351 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel); 352 return ret; 353 } 354 355 /* If data is exactly the same, then just update index, no change */ 356 info = &abb->info[sel]; 357 oinfo = &abb->info[abb->current_info_idx]; 358 if (!memcmp(info, oinfo, sizeof(*info))) { 359 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__, 360 sel, abb->current_info_idx); 361 goto out; 362 } 363 364 ret = ti_abb_set_opp(rdev, abb, info); 365 366 out: 367 if (!ret) 368 abb->current_info_idx = sel; 369 else 370 dev_err_ratelimited(dev, 371 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n", 372 __func__, desc->volt_table[sel], sel, 373 info->opp_sel, ret); 374 return ret; 375 } 376 377 /** 378 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting 379 * @rdev: regulator device 380 * 381 * Return: 0 on success or appropriate error value when fails 382 */ 383 static int ti_abb_get_voltage_sel(struct regulator_dev *rdev) 384 { 385 const struct regulator_desc *desc = rdev->desc; 386 struct ti_abb *abb = rdev_get_drvdata(rdev); 387 struct device *dev = &rdev->dev; 388 389 if (!abb) { 390 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 391 __func__); 392 return -ENODEV; 393 } 394 395 if (!desc->n_voltages || !abb->info) { 396 dev_err_ratelimited(dev, 397 "%s: No valid voltage table entries?\n", 398 __func__); 399 return -EINVAL; 400 } 401 402 if (abb->current_info_idx >= (int)desc->n_voltages) { 403 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n", 404 __func__, abb->current_info_idx, desc->n_voltages); 405 return -EINVAL; 406 } 407 408 return abb->current_info_idx; 409 } 410 411 /** 412 * ti_abb_init_timings() - setup ABB clock timing for the current platform 413 * @dev: device 414 * @abb: pointer to the abb instance 415 * 416 * Return: 0 if timing is updated, else returns error result. 417 */ 418 static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb) 419 { 420 u32 clock_cycles; 421 u32 clk_rate, sr2_wt_cnt_val, cycle_rate; 422 const struct ti_abb_reg *regs = abb->regs; 423 int ret; 424 char *pname = "ti,settling-time"; 425 426 /* read device tree properties */ 427 ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time); 428 if (ret) { 429 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 430 return ret; 431 } 432 433 /* ABB LDO cannot be settle in 0 time */ 434 if (!abb->settling_time) { 435 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 436 return -EINVAL; 437 } 438 439 pname = "ti,clock-cycles"; 440 ret = of_property_read_u32(dev->of_node, pname, &clock_cycles); 441 if (ret) { 442 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 443 return ret; 444 } 445 /* ABB LDO cannot be settle in 0 clock cycles */ 446 if (!clock_cycles) { 447 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 448 return -EINVAL; 449 } 450 451 abb->clk = devm_clk_get(dev, NULL); 452 if (IS_ERR(abb->clk)) { 453 ret = PTR_ERR(abb->clk); 454 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret); 455 return ret; 456 } 457 458 /* 459 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a 460 * transition and must be programmed with the correct time at boot. 461 * The value programmed into the register is the number of SYS_CLK 462 * clock cycles that match a given wall time profiled for the ldo. 463 * This value depends on: 464 * settling time of ldo in micro-seconds (varies per OMAP family) 465 * # of clock cycles per SYS_CLK period (varies per OMAP family) 466 * the SYS_CLK frequency in MHz (varies per board) 467 * The formula is: 468 * 469 * ldo settling time (in micro-seconds) 470 * SR2_WTCNT_VALUE = ------------------------------------------ 471 * (# system clock cycles) * (sys_clk period) 472 * 473 * Put another way: 474 * 475 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate)) 476 * 477 * To avoid dividing by zero multiply both "# clock cycles" and 478 * "settling time" by 10 such that the final result is the one we want. 479 */ 480 481 /* Convert SYS_CLK rate to MHz & prevent divide by zero */ 482 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000); 483 484 /* Calculate cycle rate */ 485 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate); 486 487 /* Calulate SR2_WTCNT_VALUE */ 488 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate); 489 490 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__, 491 clk_get_rate(abb->clk), sr2_wt_cnt_val); 492 493 ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, regs->setup_reg, 494 abb->base); 495 496 return 0; 497 } 498 499 /** 500 * ti_abb_init_table() - Initialize ABB table from device tree 501 * @dev: device 502 * @abb: pointer to the abb instance 503 * @rinit_data: regulator initdata 504 * 505 * Return: 0 on success or appropriate error value when fails 506 */ 507 static int ti_abb_init_table(struct device *dev, struct ti_abb *abb, 508 struct regulator_init_data *rinit_data) 509 { 510 struct ti_abb_info *info; 511 const struct property *prop; 512 const __be32 *abb_info; 513 const u32 num_values = 6; 514 char *pname = "ti,abb_info"; 515 u32 num_entries, i; 516 unsigned int *volt_table; 517 int min_uV = INT_MAX, max_uV = 0; 518 struct regulation_constraints *c = &rinit_data->constraints; 519 520 prop = of_find_property(dev->of_node, pname, NULL); 521 if (!prop) { 522 dev_err(dev, "No '%s' property?\n", pname); 523 return -ENODEV; 524 } 525 526 if (!prop->value) { 527 dev_err(dev, "Empty '%s' property?\n", pname); 528 return -ENODATA; 529 } 530 531 /* 532 * Each abb_info is a set of n-tuple, where n is num_values, consisting 533 * of voltage and a set of detection logic for ABB information for that 534 * voltage to apply. 535 */ 536 num_entries = prop->length / sizeof(u32); 537 if (!num_entries || (num_entries % num_values)) { 538 dev_err(dev, "All '%s' list entries need %d vals\n", pname, 539 num_values); 540 return -EINVAL; 541 } 542 num_entries /= num_values; 543 544 info = devm_kzalloc(dev, sizeof(*info) * num_entries, GFP_KERNEL); 545 if (!info) { 546 dev_err(dev, "Can't allocate info table for '%s' property\n", 547 pname); 548 return -ENOMEM; 549 } 550 abb->info = info; 551 552 volt_table = devm_kzalloc(dev, sizeof(unsigned int) * num_entries, 553 GFP_KERNEL); 554 if (!volt_table) { 555 dev_err(dev, "Can't allocate voltage table for '%s' property\n", 556 pname); 557 return -ENOMEM; 558 } 559 560 abb->rdesc.n_voltages = num_entries; 561 abb->rdesc.volt_table = volt_table; 562 /* We do not know where the OPP voltage is at the moment */ 563 abb->current_info_idx = -EINVAL; 564 565 abb_info = prop->value; 566 for (i = 0; i < num_entries; i++, info++, volt_table++) { 567 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask; 568 u32 efuse_val; 569 570 /* NOTE: num_values should equal to entries picked up here */ 571 *volt_table = be32_to_cpup(abb_info++); 572 info->opp_sel = be32_to_cpup(abb_info++); 573 efuse_offset = be32_to_cpup(abb_info++); 574 rbb_mask = be32_to_cpup(abb_info++); 575 fbb_mask = be32_to_cpup(abb_info++); 576 vset_mask = be32_to_cpup(abb_info++); 577 578 dev_dbg(dev, 579 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n", 580 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask, 581 fbb_mask, vset_mask); 582 583 /* Find min/max for voltage set */ 584 if (min_uV > *volt_table) 585 min_uV = *volt_table; 586 if (max_uV < *volt_table) 587 max_uV = *volt_table; 588 589 if (!abb->efuse_base) { 590 /* Ignore invalid data, but warn to help cleanup */ 591 if (efuse_offset || rbb_mask || fbb_mask || vset_mask) 592 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n", 593 pname, *volt_table); 594 goto check_abb; 595 } 596 597 efuse_val = readl(abb->efuse_base + efuse_offset); 598 599 /* Use ABB recommendation from Efuse */ 600 if (efuse_val & rbb_mask) 601 info->opp_sel = TI_ABB_SLOW_OPP; 602 else if (efuse_val & fbb_mask) 603 info->opp_sel = TI_ABB_FAST_OPP; 604 else if (rbb_mask || fbb_mask) 605 info->opp_sel = TI_ABB_NOMINAL_OPP; 606 607 dev_dbg(dev, 608 "[%d]v=%d efusev=0x%x final ABB=%d\n", 609 i, *volt_table, efuse_val, info->opp_sel); 610 611 /* Use recommended Vset bits from Efuse */ 612 if (!abb->ldo_base) { 613 if (vset_mask) 614 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n", 615 pname, *volt_table, vset_mask); 616 continue; 617 } 618 info->vset = efuse_val & vset_mask >> __ffs(vset_mask); 619 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset); 620 check_abb: 621 switch (info->opp_sel) { 622 case TI_ABB_NOMINAL_OPP: 623 case TI_ABB_FAST_OPP: 624 case TI_ABB_SLOW_OPP: 625 /* Valid values */ 626 break; 627 default: 628 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n", 629 __func__, i, *volt_table, info->opp_sel); 630 return -EINVAL; 631 } 632 } 633 634 /* Setup the min/max voltage constraints from the supported list */ 635 c->min_uV = min_uV; 636 c->max_uV = max_uV; 637 638 return 0; 639 } 640 641 static struct regulator_ops ti_abb_reg_ops = { 642 .list_voltage = regulator_list_voltage_table, 643 644 .set_voltage_sel = ti_abb_set_voltage_sel, 645 .get_voltage_sel = ti_abb_get_voltage_sel, 646 }; 647 648 /* Default ABB block offsets, IF this changes in future, create new one */ 649 static const struct ti_abb_reg abb_regs_v1 = { 650 /* WARNING: registers are wrongly documented in TRM */ 651 .setup_reg = 0x04, 652 .control_reg = 0x00, 653 654 .sr2_wtcnt_value_mask = (0xff << 8), 655 .fbb_sel_mask = (0x01 << 2), 656 .rbb_sel_mask = (0x01 << 1), 657 .sr2_en_mask = (0x01 << 0), 658 659 .opp_change_mask = (0x01 << 2), 660 .opp_sel_mask = (0x03 << 0), 661 }; 662 663 static const struct ti_abb_reg abb_regs_v2 = { 664 .setup_reg = 0x00, 665 .control_reg = 0x04, 666 667 .sr2_wtcnt_value_mask = (0xff << 8), 668 .fbb_sel_mask = (0x01 << 2), 669 .rbb_sel_mask = (0x01 << 1), 670 .sr2_en_mask = (0x01 << 0), 671 672 .opp_change_mask = (0x01 << 2), 673 .opp_sel_mask = (0x03 << 0), 674 }; 675 676 static const struct of_device_id ti_abb_of_match[] = { 677 {.compatible = "ti,abb-v1", .data = &abb_regs_v1}, 678 {.compatible = "ti,abb-v2", .data = &abb_regs_v2}, 679 { }, 680 }; 681 682 MODULE_DEVICE_TABLE(of, ti_abb_of_match); 683 684 /** 685 * ti_abb_probe() - Initialize an ABB ldo instance 686 * @pdev: ABB platform device 687 * 688 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to 689 * addional bias supply to SoC modules for power savings or mandatory stability 690 * configuration at certain Operating Performance Points(OPPs). 691 * 692 * Return: 0 on success or appropriate error value when fails 693 */ 694 static int ti_abb_probe(struct platform_device *pdev) 695 { 696 struct device *dev = &pdev->dev; 697 const struct of_device_id *match; 698 struct resource *res; 699 struct ti_abb *abb; 700 struct regulator_init_data *initdata = NULL; 701 struct regulator_dev *rdev = NULL; 702 struct regulator_desc *desc; 703 struct regulation_constraints *c; 704 struct regulator_config config = { }; 705 char *pname; 706 int ret = 0; 707 708 match = of_match_device(ti_abb_of_match, dev); 709 if (!match) { 710 /* We do not expect this to happen */ 711 ret = -ENODEV; 712 dev_err(dev, "%s: Unable to match device\n", __func__); 713 goto err; 714 } 715 if (!match->data) { 716 ret = -EINVAL; 717 dev_err(dev, "%s: Bad data in match\n", __func__); 718 goto err; 719 } 720 721 abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL); 722 if (!abb) { 723 dev_err(dev, "%s: Unable to allocate ABB struct\n", __func__); 724 ret = -ENOMEM; 725 goto err; 726 } 727 abb->regs = match->data; 728 729 /* Map ABB resources */ 730 pname = "base-address"; 731 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 732 abb->base = devm_ioremap_resource(dev, res); 733 if (IS_ERR(abb->base)) { 734 ret = PTR_ERR(abb->base); 735 goto err; 736 } 737 738 pname = "int-address"; 739 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 740 if (!res) { 741 dev_err(dev, "Missing '%s' IO resource\n", pname); 742 ret = -ENODEV; 743 goto err; 744 } 745 /* 746 * We may have shared interrupt register offsets which are 747 * write-1-to-clear between domains ensuring exclusivity. 748 */ 749 abb->int_base = devm_ioremap_nocache(dev, res->start, 750 resource_size(res)); 751 if (!abb->int_base) { 752 dev_err(dev, "Unable to map '%s'\n", pname); 753 ret = -ENOMEM; 754 goto err; 755 } 756 757 /* Map Optional resources */ 758 pname = "efuse-address"; 759 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 760 if (!res) { 761 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 762 ret = -ENODEV; 763 goto skip_opt; 764 } 765 766 /* 767 * We may have shared efuse register offsets which are read-only 768 * between domains 769 */ 770 abb->efuse_base = devm_ioremap_nocache(dev, res->start, 771 resource_size(res)); 772 if (!abb->efuse_base) { 773 dev_err(dev, "Unable to map '%s'\n", pname); 774 ret = -ENOMEM; 775 goto err; 776 } 777 778 pname = "ldo-address"; 779 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 780 abb->ldo_base = devm_ioremap_resource(dev, res); 781 if (IS_ERR(abb->ldo_base)) { 782 ret = PTR_ERR(abb->ldo_base); 783 goto err; 784 } 785 786 /* IF ldo_base is set, the following are mandatory */ 787 pname = "ti,ldovbb-override-mask"; 788 ret = 789 of_property_read_u32(pdev->dev.of_node, pname, 790 &abb->ldovbb_override_mask); 791 if (ret) { 792 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 793 goto err; 794 } 795 if (!abb->ldovbb_override_mask) { 796 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 797 ret = -EINVAL; 798 goto err; 799 } 800 801 pname = "ti,ldovbb-vset-mask"; 802 ret = 803 of_property_read_u32(pdev->dev.of_node, pname, 804 &abb->ldovbb_vset_mask); 805 if (ret) { 806 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 807 goto err; 808 } 809 if (!abb->ldovbb_vset_mask) { 810 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 811 ret = -EINVAL; 812 goto err; 813 } 814 815 skip_opt: 816 pname = "ti,tranxdone-status-mask"; 817 ret = 818 of_property_read_u32(pdev->dev.of_node, pname, 819 &abb->txdone_mask); 820 if (ret) { 821 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 822 goto err; 823 } 824 if (!abb->txdone_mask) { 825 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 826 ret = -EINVAL; 827 goto err; 828 } 829 830 initdata = of_get_regulator_init_data(dev, pdev->dev.of_node); 831 if (!initdata) { 832 ret = -ENOMEM; 833 dev_err(dev, "%s: Unable to alloc regulator init data\n", 834 __func__); 835 goto err; 836 } 837 838 /* init ABB opp_sel table */ 839 ret = ti_abb_init_table(dev, abb, initdata); 840 if (ret) 841 goto err; 842 843 /* init ABB timing */ 844 ret = ti_abb_init_timings(dev, abb); 845 if (ret) 846 goto err; 847 848 desc = &abb->rdesc; 849 desc->name = dev_name(dev); 850 desc->owner = THIS_MODULE; 851 desc->type = REGULATOR_VOLTAGE; 852 desc->ops = &ti_abb_reg_ops; 853 854 c = &initdata->constraints; 855 if (desc->n_voltages > 1) 856 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; 857 c->always_on = true; 858 859 config.dev = dev; 860 config.init_data = initdata; 861 config.driver_data = abb; 862 config.of_node = pdev->dev.of_node; 863 864 rdev = regulator_register(desc, &config); 865 if (IS_ERR(rdev)) { 866 ret = PTR_ERR(rdev); 867 dev_err(dev, "%s: failed to register regulator(%d)\n", 868 __func__, ret); 869 goto err; 870 } 871 platform_set_drvdata(pdev, rdev); 872 873 /* Enable the ldo if not already done by bootloader */ 874 ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->regs->setup_reg, abb->base); 875 876 return 0; 877 878 err: 879 dev_err(dev, "%s: Failed to initialize(%d)\n", __func__, ret); 880 return ret; 881 } 882 883 /** 884 * ti_abb_remove() - cleanups 885 * @pdev: ABB platform device 886 * 887 * Return: 0 888 */ 889 static int ti_abb_remove(struct platform_device *pdev) 890 { 891 struct regulator_dev *rdev = platform_get_drvdata(pdev); 892 893 regulator_unregister(rdev); 894 return 0; 895 } 896 897 MODULE_ALIAS("platform:ti_abb"); 898 899 static struct platform_driver ti_abb_driver = { 900 .probe = ti_abb_probe, 901 .remove = ti_abb_remove, 902 .driver = { 903 .name = "ti_abb", 904 .owner = THIS_MODULE, 905 .of_match_table = of_match_ptr(ti_abb_of_match), 906 }, 907 }; 908 module_platform_driver(ti_abb_driver); 909 910 MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver"); 911 MODULE_AUTHOR("Texas Instruments Inc."); 912 MODULE_LICENSE("GPL v2"); 913