1 /* 2 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Mike Turquette <mturquette@ti.com> 6 * 7 * Copyright (C) 2012-2013 Texas Instruments, Inc. 8 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com> 9 * Nishanth Menon <nm@ti.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 16 * kind, whether express or implied; without even the implied warranty 17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/err.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_device.h> 26 #include <linux/of.h> 27 #include <linux/platform_device.h> 28 #include <linux/regulator/driver.h> 29 #include <linux/regulator/machine.h> 30 #include <linux/regulator/of_regulator.h> 31 32 /* 33 * ABB LDO operating states: 34 * NOMINAL_OPP: bypasses the ABB LDO 35 * FAST_OPP: sets ABB LDO to Forward Body-Bias 36 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias 37 */ 38 #define TI_ABB_NOMINAL_OPP 0 39 #define TI_ABB_FAST_OPP 1 40 #define TI_ABB_SLOW_OPP 3 41 42 /** 43 * struct ti_abb_info - ABB information per voltage setting 44 * @opp_sel: one of TI_ABB macro 45 * @vset: (optional) vset value that LDOVBB needs to be overriden with. 46 * 47 * Array of per voltage entries organized in the same order as regulator_desc's 48 * volt_table list. (selector is used to index from this array) 49 */ 50 struct ti_abb_info { 51 u32 opp_sel; 52 u32 vset; 53 }; 54 55 /** 56 * struct ti_abb_reg - Register description for ABB block 57 * @setup_off: setup register offset from base 58 * @control_off: control register offset from base 59 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask 60 * @fbb_sel_mask: setup register- FBB sel mask 61 * @rbb_sel_mask: setup register- RBB sel mask 62 * @sr2_en_mask: setup register- enable mask 63 * @opp_change_mask: control register - mask to trigger LDOVBB change 64 * @opp_sel_mask: control register - mask for mode to operate 65 */ 66 struct ti_abb_reg { 67 u32 setup_off; 68 u32 control_off; 69 70 /* Setup register fields */ 71 u32 sr2_wtcnt_value_mask; 72 u32 fbb_sel_mask; 73 u32 rbb_sel_mask; 74 u32 sr2_en_mask; 75 76 /* Control register fields */ 77 u32 opp_change_mask; 78 u32 opp_sel_mask; 79 }; 80 81 /** 82 * struct ti_abb - ABB instance data 83 * @rdesc: regulator descriptor 84 * @clk: clock(usually sysclk) supplying ABB block 85 * @base: base address of ABB block 86 * @setup_reg: setup register of ABB block 87 * @control_reg: control register of ABB block 88 * @int_base: interrupt register base address 89 * @efuse_base: (optional) efuse base address for ABB modes 90 * @ldo_base: (optional) LDOVBB vset override base address 91 * @regs: pointer to struct ti_abb_reg for ABB block 92 * @txdone_mask: mask on int_base for tranxdone interrupt 93 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB 94 * vset with value from efuse 95 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override 96 * @info: array to per voltage ABB configuration 97 * @current_info_idx: current index to info 98 * @settling_time: SoC specific settling time for LDO VBB 99 */ 100 struct ti_abb { 101 struct regulator_desc rdesc; 102 struct clk *clk; 103 void __iomem *base; 104 void __iomem *setup_reg; 105 void __iomem *control_reg; 106 void __iomem *int_base; 107 void __iomem *efuse_base; 108 void __iomem *ldo_base; 109 110 const struct ti_abb_reg *regs; 111 u32 txdone_mask; 112 u32 ldovbb_override_mask; 113 u32 ldovbb_vset_mask; 114 115 struct ti_abb_info *info; 116 int current_info_idx; 117 118 u32 settling_time; 119 }; 120 121 /** 122 * ti_abb_rmw() - handy wrapper to set specific register bits 123 * @mask: mask for register field 124 * @value: value shifted to mask location and written 125 * @reg: register address 126 * 127 * Return: final register value (may be unused) 128 */ 129 static inline u32 ti_abb_rmw(u32 mask, u32 value, void __iomem *reg) 130 { 131 u32 val; 132 133 val = readl(reg); 134 val &= ~mask; 135 val |= (value << __ffs(mask)) & mask; 136 writel(val, reg); 137 138 return val; 139 } 140 141 /** 142 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status 143 * @abb: pointer to the abb instance 144 * 145 * Return: true or false 146 */ 147 static inline bool ti_abb_check_txdone(const struct ti_abb *abb) 148 { 149 return !!(readl(abb->int_base) & abb->txdone_mask); 150 } 151 152 /** 153 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status 154 * @abb: pointer to the abb instance 155 */ 156 static inline void ti_abb_clear_txdone(const struct ti_abb *abb) 157 { 158 writel(abb->txdone_mask, abb->int_base); 159 }; 160 161 /** 162 * ti_abb_wait_tranx() - waits for ABB tranxdone event 163 * @dev: device 164 * @abb: pointer to the abb instance 165 * 166 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 167 */ 168 static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb) 169 { 170 int timeout = 0; 171 bool status; 172 173 while (timeout++ <= abb->settling_time) { 174 status = ti_abb_check_txdone(abb); 175 if (status) 176 return 0; 177 178 udelay(1); 179 } 180 181 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 182 __func__, timeout, readl(abb->int_base)); 183 return -ETIMEDOUT; 184 } 185 186 /** 187 * ti_abb_clear_all_txdone() - clears ABB tranxdone event 188 * @dev: device 189 * @abb: pointer to the abb instance 190 * 191 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 192 */ 193 static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb) 194 { 195 int timeout = 0; 196 bool status; 197 198 while (timeout++ <= abb->settling_time) { 199 ti_abb_clear_txdone(abb); 200 201 status = ti_abb_check_txdone(abb); 202 if (!status) 203 return 0; 204 205 udelay(1); 206 } 207 208 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 209 __func__, timeout, readl(abb->int_base)); 210 return -ETIMEDOUT; 211 } 212 213 /** 214 * ti_abb_program_ldovbb() - program LDOVBB register for override value 215 * @dev: device 216 * @abb: pointer to the abb instance 217 * @info: ABB info to program 218 */ 219 static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb, 220 struct ti_abb_info *info) 221 { 222 u32 val; 223 224 val = readl(abb->ldo_base); 225 /* clear up previous values */ 226 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask); 227 228 switch (info->opp_sel) { 229 case TI_ABB_SLOW_OPP: 230 case TI_ABB_FAST_OPP: 231 val |= abb->ldovbb_override_mask; 232 val |= info->vset << __ffs(abb->ldovbb_vset_mask); 233 break; 234 } 235 236 writel(val, abb->ldo_base); 237 } 238 239 /** 240 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias 241 * @rdev: regulator device 242 * @abb: pointer to the abb instance 243 * @info: ABB info to program 244 * 245 * Return: 0 on success or appropriate error value when fails 246 */ 247 static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb, 248 struct ti_abb_info *info) 249 { 250 const struct ti_abb_reg *regs = abb->regs; 251 struct device *dev = &rdev->dev; 252 int ret; 253 254 ret = ti_abb_clear_all_txdone(dev, abb); 255 if (ret) 256 goto out; 257 258 ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, abb->setup_reg); 259 260 switch (info->opp_sel) { 261 case TI_ABB_SLOW_OPP: 262 ti_abb_rmw(regs->rbb_sel_mask, 1, abb->setup_reg); 263 break; 264 case TI_ABB_FAST_OPP: 265 ti_abb_rmw(regs->fbb_sel_mask, 1, abb->setup_reg); 266 break; 267 } 268 269 /* program next state of ABB ldo */ 270 ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, abb->control_reg); 271 272 /* 273 * program LDO VBB vset override if needed for !bypass mode 274 * XXX: Do not switch sequence - for !bypass, LDO override reset *must* 275 * be performed *before* switch to bias mode else VBB glitches. 276 */ 277 if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP) 278 ti_abb_program_ldovbb(dev, abb, info); 279 280 /* Initiate ABB ldo change */ 281 ti_abb_rmw(regs->opp_change_mask, 1, abb->control_reg); 282 283 /* Wait for ABB LDO to complete transition to new Bias setting */ 284 ret = ti_abb_wait_txdone(dev, abb); 285 if (ret) 286 goto out; 287 288 ret = ti_abb_clear_all_txdone(dev, abb); 289 if (ret) 290 goto out; 291 292 /* 293 * Reset LDO VBB vset override bypass mode 294 * XXX: Do not switch sequence - for bypass, LDO override reset *must* 295 * be performed *after* switch to bypass else VBB glitches. 296 */ 297 if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP) 298 ti_abb_program_ldovbb(dev, abb, info); 299 300 out: 301 return ret; 302 } 303 304 /** 305 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO 306 * @rdev: regulator device 307 * @sel: selector to index into required ABB LDO settings (maps to 308 * regulator descriptor's volt_table) 309 * 310 * Return: 0 on success or appropriate error value when fails 311 */ 312 static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel) 313 { 314 const struct regulator_desc *desc = rdev->desc; 315 struct ti_abb *abb = rdev_get_drvdata(rdev); 316 struct device *dev = &rdev->dev; 317 struct ti_abb_info *info, *oinfo; 318 int ret = 0; 319 320 if (!abb) { 321 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 322 __func__); 323 return -ENODEV; 324 } 325 326 if (!desc->n_voltages || !abb->info) { 327 dev_err_ratelimited(dev, 328 "%s: No valid voltage table entries?\n", 329 __func__); 330 return -EINVAL; 331 } 332 333 if (sel >= desc->n_voltages) { 334 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__, 335 sel, desc->n_voltages); 336 return -EINVAL; 337 } 338 339 /* If we are in the same index as we were, nothing to do here! */ 340 if (sel == abb->current_info_idx) { 341 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel); 342 return ret; 343 } 344 345 info = &abb->info[sel]; 346 /* 347 * When Linux kernel is starting up, we are'nt sure of the 348 * Bias configuration that bootloader has configured. 349 * So, we get to know the actual setting the first time 350 * we are asked to transition. 351 */ 352 if (abb->current_info_idx == -EINVAL) 353 goto just_set_abb; 354 355 /* If data is exactly the same, then just update index, no change */ 356 oinfo = &abb->info[abb->current_info_idx]; 357 if (!memcmp(info, oinfo, sizeof(*info))) { 358 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__, 359 sel, abb->current_info_idx); 360 goto out; 361 } 362 363 just_set_abb: 364 ret = ti_abb_set_opp(rdev, abb, info); 365 366 out: 367 if (!ret) 368 abb->current_info_idx = sel; 369 else 370 dev_err_ratelimited(dev, 371 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n", 372 __func__, desc->volt_table[sel], sel, 373 info->opp_sel, ret); 374 return ret; 375 } 376 377 /** 378 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting 379 * @rdev: regulator device 380 * 381 * Return: 0 on success or appropriate error value when fails 382 */ 383 static int ti_abb_get_voltage_sel(struct regulator_dev *rdev) 384 { 385 const struct regulator_desc *desc = rdev->desc; 386 struct ti_abb *abb = rdev_get_drvdata(rdev); 387 struct device *dev = &rdev->dev; 388 389 if (!abb) { 390 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 391 __func__); 392 return -ENODEV; 393 } 394 395 if (!desc->n_voltages || !abb->info) { 396 dev_err_ratelimited(dev, 397 "%s: No valid voltage table entries?\n", 398 __func__); 399 return -EINVAL; 400 } 401 402 if (abb->current_info_idx >= (int)desc->n_voltages) { 403 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n", 404 __func__, abb->current_info_idx, desc->n_voltages); 405 return -EINVAL; 406 } 407 408 return abb->current_info_idx; 409 } 410 411 /** 412 * ti_abb_init_timings() - setup ABB clock timing for the current platform 413 * @dev: device 414 * @abb: pointer to the abb instance 415 * 416 * Return: 0 if timing is updated, else returns error result. 417 */ 418 static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb) 419 { 420 u32 clock_cycles; 421 u32 clk_rate, sr2_wt_cnt_val, cycle_rate; 422 const struct ti_abb_reg *regs = abb->regs; 423 int ret; 424 char *pname = "ti,settling-time"; 425 426 /* read device tree properties */ 427 ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time); 428 if (ret) { 429 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 430 return ret; 431 } 432 433 /* ABB LDO cannot be settle in 0 time */ 434 if (!abb->settling_time) { 435 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 436 return -EINVAL; 437 } 438 439 pname = "ti,clock-cycles"; 440 ret = of_property_read_u32(dev->of_node, pname, &clock_cycles); 441 if (ret) { 442 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 443 return ret; 444 } 445 /* ABB LDO cannot be settle in 0 clock cycles */ 446 if (!clock_cycles) { 447 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 448 return -EINVAL; 449 } 450 451 abb->clk = devm_clk_get(dev, NULL); 452 if (IS_ERR(abb->clk)) { 453 ret = PTR_ERR(abb->clk); 454 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret); 455 return ret; 456 } 457 458 /* 459 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a 460 * transition and must be programmed with the correct time at boot. 461 * The value programmed into the register is the number of SYS_CLK 462 * clock cycles that match a given wall time profiled for the ldo. 463 * This value depends on: 464 * settling time of ldo in micro-seconds (varies per OMAP family) 465 * # of clock cycles per SYS_CLK period (varies per OMAP family) 466 * the SYS_CLK frequency in MHz (varies per board) 467 * The formula is: 468 * 469 * ldo settling time (in micro-seconds) 470 * SR2_WTCNT_VALUE = ------------------------------------------ 471 * (# system clock cycles) * (sys_clk period) 472 * 473 * Put another way: 474 * 475 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate)) 476 * 477 * To avoid dividing by zero multiply both "# clock cycles" and 478 * "settling time" by 10 such that the final result is the one we want. 479 */ 480 481 /* Convert SYS_CLK rate to MHz & prevent divide by zero */ 482 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000); 483 484 /* Calculate cycle rate */ 485 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate); 486 487 /* Calulate SR2_WTCNT_VALUE */ 488 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate); 489 490 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__, 491 clk_get_rate(abb->clk), sr2_wt_cnt_val); 492 493 ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, abb->setup_reg); 494 495 return 0; 496 } 497 498 /** 499 * ti_abb_init_table() - Initialize ABB table from device tree 500 * @dev: device 501 * @abb: pointer to the abb instance 502 * @rinit_data: regulator initdata 503 * 504 * Return: 0 on success or appropriate error value when fails 505 */ 506 static int ti_abb_init_table(struct device *dev, struct ti_abb *abb, 507 struct regulator_init_data *rinit_data) 508 { 509 struct ti_abb_info *info; 510 const u32 num_values = 6; 511 char *pname = "ti,abb_info"; 512 u32 i; 513 unsigned int *volt_table; 514 int num_entries, min_uV = INT_MAX, max_uV = 0; 515 struct regulation_constraints *c = &rinit_data->constraints; 516 517 /* 518 * Each abb_info is a set of n-tuple, where n is num_values, consisting 519 * of voltage and a set of detection logic for ABB information for that 520 * voltage to apply. 521 */ 522 num_entries = of_property_count_u32_elems(dev->of_node, pname); 523 if (num_entries < 0) { 524 dev_err(dev, "No '%s' property?\n", pname); 525 return num_entries; 526 } 527 528 if (!num_entries || (num_entries % num_values)) { 529 dev_err(dev, "All '%s' list entries need %d vals\n", pname, 530 num_values); 531 return -EINVAL; 532 } 533 num_entries /= num_values; 534 535 info = devm_kcalloc(dev, num_entries, sizeof(*info), GFP_KERNEL); 536 if (!info) 537 return -ENOMEM; 538 539 abb->info = info; 540 541 volt_table = devm_kcalloc(dev, num_entries, sizeof(unsigned int), 542 GFP_KERNEL); 543 if (!volt_table) 544 return -ENOMEM; 545 546 abb->rdesc.n_voltages = num_entries; 547 abb->rdesc.volt_table = volt_table; 548 /* We do not know where the OPP voltage is at the moment */ 549 abb->current_info_idx = -EINVAL; 550 551 for (i = 0; i < num_entries; i++, info++, volt_table++) { 552 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask; 553 u32 efuse_val; 554 555 /* NOTE: num_values should equal to entries picked up here */ 556 of_property_read_u32_index(dev->of_node, pname, i * num_values, 557 volt_table); 558 of_property_read_u32_index(dev->of_node, pname, 559 i * num_values + 1, &info->opp_sel); 560 of_property_read_u32_index(dev->of_node, pname, 561 i * num_values + 2, &efuse_offset); 562 of_property_read_u32_index(dev->of_node, pname, 563 i * num_values + 3, &rbb_mask); 564 of_property_read_u32_index(dev->of_node, pname, 565 i * num_values + 4, &fbb_mask); 566 of_property_read_u32_index(dev->of_node, pname, 567 i * num_values + 5, &vset_mask); 568 569 dev_dbg(dev, 570 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n", 571 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask, 572 fbb_mask, vset_mask); 573 574 /* Find min/max for voltage set */ 575 if (min_uV > *volt_table) 576 min_uV = *volt_table; 577 if (max_uV < *volt_table) 578 max_uV = *volt_table; 579 580 if (!abb->efuse_base) { 581 /* Ignore invalid data, but warn to help cleanup */ 582 if (efuse_offset || rbb_mask || fbb_mask || vset_mask) 583 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n", 584 pname, *volt_table); 585 goto check_abb; 586 } 587 588 efuse_val = readl(abb->efuse_base + efuse_offset); 589 590 /* Use ABB recommendation from Efuse */ 591 if (efuse_val & rbb_mask) 592 info->opp_sel = TI_ABB_SLOW_OPP; 593 else if (efuse_val & fbb_mask) 594 info->opp_sel = TI_ABB_FAST_OPP; 595 else if (rbb_mask || fbb_mask) 596 info->opp_sel = TI_ABB_NOMINAL_OPP; 597 598 dev_dbg(dev, 599 "[%d]v=%d efusev=0x%x final ABB=%d\n", 600 i, *volt_table, efuse_val, info->opp_sel); 601 602 /* Use recommended Vset bits from Efuse */ 603 if (!abb->ldo_base) { 604 if (vset_mask) 605 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n", 606 pname, *volt_table, vset_mask); 607 continue; 608 } 609 info->vset = (efuse_val & vset_mask) >> __ffs(vset_mask); 610 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset); 611 check_abb: 612 switch (info->opp_sel) { 613 case TI_ABB_NOMINAL_OPP: 614 case TI_ABB_FAST_OPP: 615 case TI_ABB_SLOW_OPP: 616 /* Valid values */ 617 break; 618 default: 619 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n", 620 __func__, i, *volt_table, info->opp_sel); 621 return -EINVAL; 622 } 623 } 624 625 /* Setup the min/max voltage constraints from the supported list */ 626 c->min_uV = min_uV; 627 c->max_uV = max_uV; 628 629 return 0; 630 } 631 632 static const struct regulator_ops ti_abb_reg_ops = { 633 .list_voltage = regulator_list_voltage_table, 634 635 .set_voltage_sel = ti_abb_set_voltage_sel, 636 .get_voltage_sel = ti_abb_get_voltage_sel, 637 }; 638 639 /* Default ABB block offsets, IF this changes in future, create new one */ 640 static const struct ti_abb_reg abb_regs_v1 = { 641 /* WARNING: registers are wrongly documented in TRM */ 642 .setup_off = 0x04, 643 .control_off = 0x00, 644 645 .sr2_wtcnt_value_mask = (0xff << 8), 646 .fbb_sel_mask = (0x01 << 2), 647 .rbb_sel_mask = (0x01 << 1), 648 .sr2_en_mask = (0x01 << 0), 649 650 .opp_change_mask = (0x01 << 2), 651 .opp_sel_mask = (0x03 << 0), 652 }; 653 654 static const struct ti_abb_reg abb_regs_v2 = { 655 .setup_off = 0x00, 656 .control_off = 0x04, 657 658 .sr2_wtcnt_value_mask = (0xff << 8), 659 .fbb_sel_mask = (0x01 << 2), 660 .rbb_sel_mask = (0x01 << 1), 661 .sr2_en_mask = (0x01 << 0), 662 663 .opp_change_mask = (0x01 << 2), 664 .opp_sel_mask = (0x03 << 0), 665 }; 666 667 static const struct ti_abb_reg abb_regs_generic = { 668 .sr2_wtcnt_value_mask = (0xff << 8), 669 .fbb_sel_mask = (0x01 << 2), 670 .rbb_sel_mask = (0x01 << 1), 671 .sr2_en_mask = (0x01 << 0), 672 673 .opp_change_mask = (0x01 << 2), 674 .opp_sel_mask = (0x03 << 0), 675 }; 676 677 static const struct of_device_id ti_abb_of_match[] = { 678 {.compatible = "ti,abb-v1", .data = &abb_regs_v1}, 679 {.compatible = "ti,abb-v2", .data = &abb_regs_v2}, 680 {.compatible = "ti,abb-v3", .data = &abb_regs_generic}, 681 { }, 682 }; 683 684 MODULE_DEVICE_TABLE(of, ti_abb_of_match); 685 686 /** 687 * ti_abb_probe() - Initialize an ABB ldo instance 688 * @pdev: ABB platform device 689 * 690 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to 691 * addional bias supply to SoC modules for power savings or mandatory stability 692 * configuration at certain Operating Performance Points(OPPs). 693 * 694 * Return: 0 on success or appropriate error value when fails 695 */ 696 static int ti_abb_probe(struct platform_device *pdev) 697 { 698 struct device *dev = &pdev->dev; 699 const struct of_device_id *match; 700 struct resource *res; 701 struct ti_abb *abb; 702 struct regulator_init_data *initdata = NULL; 703 struct regulator_dev *rdev = NULL; 704 struct regulator_desc *desc; 705 struct regulation_constraints *c; 706 struct regulator_config config = { }; 707 char *pname; 708 int ret = 0; 709 710 match = of_match_device(ti_abb_of_match, dev); 711 if (!match) { 712 /* We do not expect this to happen */ 713 dev_err(dev, "%s: Unable to match device\n", __func__); 714 return -ENODEV; 715 } 716 if (!match->data) { 717 dev_err(dev, "%s: Bad data in match\n", __func__); 718 return -EINVAL; 719 } 720 721 abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL); 722 if (!abb) 723 return -ENOMEM; 724 abb->regs = match->data; 725 726 /* Map ABB resources */ 727 if (abb->regs->setup_off || abb->regs->control_off) { 728 abb->base = devm_platform_ioremap_resource_byname(pdev, "base-address"); 729 if (IS_ERR(abb->base)) 730 return PTR_ERR(abb->base); 731 732 abb->setup_reg = abb->base + abb->regs->setup_off; 733 abb->control_reg = abb->base + abb->regs->control_off; 734 735 } else { 736 abb->control_reg = devm_platform_ioremap_resource_byname(pdev, "control-address"); 737 if (IS_ERR(abb->control_reg)) 738 return PTR_ERR(abb->control_reg); 739 740 abb->setup_reg = devm_platform_ioremap_resource_byname(pdev, "setup-address"); 741 if (IS_ERR(abb->setup_reg)) 742 return PTR_ERR(abb->setup_reg); 743 } 744 745 abb->int_base = devm_platform_ioremap_resource_byname(pdev, "int-address"); 746 if (IS_ERR(abb->int_base)) 747 return PTR_ERR(abb->int_base); 748 749 /* Map Optional resources */ 750 pname = "efuse-address"; 751 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 752 if (!res) { 753 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 754 ret = -ENODEV; 755 goto skip_opt; 756 } 757 758 /* 759 * We may have shared efuse register offsets which are read-only 760 * between domains 761 */ 762 abb->efuse_base = devm_ioremap(dev, res->start, 763 resource_size(res)); 764 if (!abb->efuse_base) { 765 dev_err(dev, "Unable to map '%s'\n", pname); 766 return -ENOMEM; 767 } 768 769 pname = "ldo-address"; 770 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 771 if (!res) { 772 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 773 ret = -ENODEV; 774 goto skip_opt; 775 } 776 abb->ldo_base = devm_ioremap_resource(dev, res); 777 if (IS_ERR(abb->ldo_base)) 778 return PTR_ERR(abb->ldo_base); 779 780 /* IF ldo_base is set, the following are mandatory */ 781 pname = "ti,ldovbb-override-mask"; 782 ret = 783 of_property_read_u32(pdev->dev.of_node, pname, 784 &abb->ldovbb_override_mask); 785 if (ret) { 786 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 787 return ret; 788 } 789 if (!abb->ldovbb_override_mask) { 790 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 791 return -EINVAL; 792 } 793 794 pname = "ti,ldovbb-vset-mask"; 795 ret = 796 of_property_read_u32(pdev->dev.of_node, pname, 797 &abb->ldovbb_vset_mask); 798 if (ret) { 799 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 800 return ret; 801 } 802 if (!abb->ldovbb_vset_mask) { 803 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 804 return -EINVAL; 805 } 806 807 skip_opt: 808 pname = "ti,tranxdone-status-mask"; 809 ret = 810 of_property_read_u32(pdev->dev.of_node, pname, 811 &abb->txdone_mask); 812 if (ret) { 813 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 814 return ret; 815 } 816 if (!abb->txdone_mask) { 817 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 818 return -EINVAL; 819 } 820 821 initdata = of_get_regulator_init_data(dev, pdev->dev.of_node, 822 &abb->rdesc); 823 if (!initdata) { 824 dev_err(dev, "%s: Unable to alloc regulator init data\n", 825 __func__); 826 return -ENOMEM; 827 } 828 829 /* init ABB opp_sel table */ 830 ret = ti_abb_init_table(dev, abb, initdata); 831 if (ret) 832 return ret; 833 834 /* init ABB timing */ 835 ret = ti_abb_init_timings(dev, abb); 836 if (ret) 837 return ret; 838 839 desc = &abb->rdesc; 840 desc->name = dev_name(dev); 841 desc->owner = THIS_MODULE; 842 desc->type = REGULATOR_VOLTAGE; 843 desc->ops = &ti_abb_reg_ops; 844 845 c = &initdata->constraints; 846 if (desc->n_voltages > 1) 847 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; 848 c->always_on = true; 849 850 config.dev = dev; 851 config.init_data = initdata; 852 config.driver_data = abb; 853 config.of_node = pdev->dev.of_node; 854 855 rdev = devm_regulator_register(dev, desc, &config); 856 if (IS_ERR(rdev)) { 857 ret = PTR_ERR(rdev); 858 dev_err(dev, "%s: failed to register regulator(%d)\n", 859 __func__, ret); 860 return ret; 861 } 862 platform_set_drvdata(pdev, rdev); 863 864 /* Enable the ldo if not already done by bootloader */ 865 ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->setup_reg); 866 867 return 0; 868 } 869 870 MODULE_ALIAS("platform:ti_abb"); 871 872 static struct platform_driver ti_abb_driver = { 873 .probe = ti_abb_probe, 874 .driver = { 875 .name = "ti_abb", 876 .of_match_table = of_match_ptr(ti_abb_of_match), 877 }, 878 }; 879 module_platform_driver(ti_abb_driver); 880 881 MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver"); 882 MODULE_AUTHOR("Texas Instruments Inc."); 883 MODULE_LICENSE("GPL v2"); 884