1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Mike Turquette <mturquette@ti.com> 7 * 8 * Copyright (C) 2012-2013 Texas Instruments, Inc. 9 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com> 10 * Nishanth Menon <nm@ti.com> 11 */ 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/err.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of_device.h> 18 #include <linux/of.h> 19 #include <linux/platform_device.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/regulator/of_regulator.h> 23 24 /* 25 * ABB LDO operating states: 26 * NOMINAL_OPP: bypasses the ABB LDO 27 * FAST_OPP: sets ABB LDO to Forward Body-Bias 28 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias 29 */ 30 #define TI_ABB_NOMINAL_OPP 0 31 #define TI_ABB_FAST_OPP 1 32 #define TI_ABB_SLOW_OPP 3 33 34 /** 35 * struct ti_abb_info - ABB information per voltage setting 36 * @opp_sel: one of TI_ABB macro 37 * @vset: (optional) vset value that LDOVBB needs to be overridden with. 38 * 39 * Array of per voltage entries organized in the same order as regulator_desc's 40 * volt_table list. (selector is used to index from this array) 41 */ 42 struct ti_abb_info { 43 u32 opp_sel; 44 u32 vset; 45 }; 46 47 /** 48 * struct ti_abb_reg - Register description for ABB block 49 * @setup_off: setup register offset from base 50 * @control_off: control register offset from base 51 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask 52 * @fbb_sel_mask: setup register- FBB sel mask 53 * @rbb_sel_mask: setup register- RBB sel mask 54 * @sr2_en_mask: setup register- enable mask 55 * @opp_change_mask: control register - mask to trigger LDOVBB change 56 * @opp_sel_mask: control register - mask for mode to operate 57 */ 58 struct ti_abb_reg { 59 u32 setup_off; 60 u32 control_off; 61 62 /* Setup register fields */ 63 u32 sr2_wtcnt_value_mask; 64 u32 fbb_sel_mask; 65 u32 rbb_sel_mask; 66 u32 sr2_en_mask; 67 68 /* Control register fields */ 69 u32 opp_change_mask; 70 u32 opp_sel_mask; 71 }; 72 73 /** 74 * struct ti_abb - ABB instance data 75 * @rdesc: regulator descriptor 76 * @clk: clock(usually sysclk) supplying ABB block 77 * @base: base address of ABB block 78 * @setup_reg: setup register of ABB block 79 * @control_reg: control register of ABB block 80 * @int_base: interrupt register base address 81 * @efuse_base: (optional) efuse base address for ABB modes 82 * @ldo_base: (optional) LDOVBB vset override base address 83 * @regs: pointer to struct ti_abb_reg for ABB block 84 * @txdone_mask: mask on int_base for tranxdone interrupt 85 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB 86 * vset with value from efuse 87 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override 88 * @info: array to per voltage ABB configuration 89 * @current_info_idx: current index to info 90 * @settling_time: SoC specific settling time for LDO VBB 91 */ 92 struct ti_abb { 93 struct regulator_desc rdesc; 94 struct clk *clk; 95 void __iomem *base; 96 void __iomem *setup_reg; 97 void __iomem *control_reg; 98 void __iomem *int_base; 99 void __iomem *efuse_base; 100 void __iomem *ldo_base; 101 102 const struct ti_abb_reg *regs; 103 u32 txdone_mask; 104 u32 ldovbb_override_mask; 105 u32 ldovbb_vset_mask; 106 107 struct ti_abb_info *info; 108 int current_info_idx; 109 110 u32 settling_time; 111 }; 112 113 /** 114 * ti_abb_rmw() - handy wrapper to set specific register bits 115 * @mask: mask for register field 116 * @value: value shifted to mask location and written 117 * @reg: register address 118 * 119 * Return: final register value (may be unused) 120 */ 121 static inline u32 ti_abb_rmw(u32 mask, u32 value, void __iomem *reg) 122 { 123 u32 val; 124 125 val = readl(reg); 126 val &= ~mask; 127 val |= (value << __ffs(mask)) & mask; 128 writel(val, reg); 129 130 return val; 131 } 132 133 /** 134 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status 135 * @abb: pointer to the abb instance 136 * 137 * Return: true or false 138 */ 139 static inline bool ti_abb_check_txdone(const struct ti_abb *abb) 140 { 141 return !!(readl(abb->int_base) & abb->txdone_mask); 142 } 143 144 /** 145 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status 146 * @abb: pointer to the abb instance 147 */ 148 static inline void ti_abb_clear_txdone(const struct ti_abb *abb) 149 { 150 writel(abb->txdone_mask, abb->int_base); 151 }; 152 153 /** 154 * ti_abb_wait_txdone() - waits for ABB tranxdone event 155 * @dev: device 156 * @abb: pointer to the abb instance 157 * 158 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 159 */ 160 static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb) 161 { 162 int timeout = 0; 163 bool status; 164 165 while (timeout++ <= abb->settling_time) { 166 status = ti_abb_check_txdone(abb); 167 if (status) 168 return 0; 169 170 udelay(1); 171 } 172 173 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 174 __func__, timeout, readl(abb->int_base)); 175 return -ETIMEDOUT; 176 } 177 178 /** 179 * ti_abb_clear_all_txdone() - clears ABB tranxdone event 180 * @dev: device 181 * @abb: pointer to the abb instance 182 * 183 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 184 */ 185 static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb) 186 { 187 int timeout = 0; 188 bool status; 189 190 while (timeout++ <= abb->settling_time) { 191 ti_abb_clear_txdone(abb); 192 193 status = ti_abb_check_txdone(abb); 194 if (!status) 195 return 0; 196 197 udelay(1); 198 } 199 200 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 201 __func__, timeout, readl(abb->int_base)); 202 return -ETIMEDOUT; 203 } 204 205 /** 206 * ti_abb_program_ldovbb() - program LDOVBB register for override value 207 * @dev: device 208 * @abb: pointer to the abb instance 209 * @info: ABB info to program 210 */ 211 static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb, 212 struct ti_abb_info *info) 213 { 214 u32 val; 215 216 val = readl(abb->ldo_base); 217 /* clear up previous values */ 218 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask); 219 220 switch (info->opp_sel) { 221 case TI_ABB_SLOW_OPP: 222 case TI_ABB_FAST_OPP: 223 val |= abb->ldovbb_override_mask; 224 val |= info->vset << __ffs(abb->ldovbb_vset_mask); 225 break; 226 } 227 228 writel(val, abb->ldo_base); 229 } 230 231 /** 232 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias 233 * @rdev: regulator device 234 * @abb: pointer to the abb instance 235 * @info: ABB info to program 236 * 237 * Return: 0 on success or appropriate error value when fails 238 */ 239 static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb, 240 struct ti_abb_info *info) 241 { 242 const struct ti_abb_reg *regs = abb->regs; 243 struct device *dev = &rdev->dev; 244 int ret; 245 246 ret = ti_abb_clear_all_txdone(dev, abb); 247 if (ret) 248 goto out; 249 250 ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, abb->setup_reg); 251 252 switch (info->opp_sel) { 253 case TI_ABB_SLOW_OPP: 254 ti_abb_rmw(regs->rbb_sel_mask, 1, abb->setup_reg); 255 break; 256 case TI_ABB_FAST_OPP: 257 ti_abb_rmw(regs->fbb_sel_mask, 1, abb->setup_reg); 258 break; 259 } 260 261 /* program next state of ABB ldo */ 262 ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, abb->control_reg); 263 264 /* 265 * program LDO VBB vset override if needed for !bypass mode 266 * XXX: Do not switch sequence - for !bypass, LDO override reset *must* 267 * be performed *before* switch to bias mode else VBB glitches. 268 */ 269 if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP) 270 ti_abb_program_ldovbb(dev, abb, info); 271 272 /* Initiate ABB ldo change */ 273 ti_abb_rmw(regs->opp_change_mask, 1, abb->control_reg); 274 275 /* Wait for ABB LDO to complete transition to new Bias setting */ 276 ret = ti_abb_wait_txdone(dev, abb); 277 if (ret) 278 goto out; 279 280 ret = ti_abb_clear_all_txdone(dev, abb); 281 if (ret) 282 goto out; 283 284 /* 285 * Reset LDO VBB vset override bypass mode 286 * XXX: Do not switch sequence - for bypass, LDO override reset *must* 287 * be performed *after* switch to bypass else VBB glitches. 288 */ 289 if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP) 290 ti_abb_program_ldovbb(dev, abb, info); 291 292 out: 293 return ret; 294 } 295 296 /** 297 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO 298 * @rdev: regulator device 299 * @sel: selector to index into required ABB LDO settings (maps to 300 * regulator descriptor's volt_table) 301 * 302 * Return: 0 on success or appropriate error value when fails 303 */ 304 static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned int sel) 305 { 306 const struct regulator_desc *desc = rdev->desc; 307 struct ti_abb *abb = rdev_get_drvdata(rdev); 308 struct device *dev = &rdev->dev; 309 struct ti_abb_info *info, *oinfo; 310 int ret = 0; 311 312 if (!abb) { 313 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 314 __func__); 315 return -ENODEV; 316 } 317 318 if (!desc->n_voltages || !abb->info) { 319 dev_err_ratelimited(dev, 320 "%s: No valid voltage table entries?\n", 321 __func__); 322 return -EINVAL; 323 } 324 325 if (sel >= desc->n_voltages) { 326 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__, 327 sel, desc->n_voltages); 328 return -EINVAL; 329 } 330 331 /* If we are in the same index as we were, nothing to do here! */ 332 if (sel == abb->current_info_idx) { 333 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel); 334 return ret; 335 } 336 337 info = &abb->info[sel]; 338 /* 339 * When Linux kernel is starting up, we aren't sure of the 340 * Bias configuration that bootloader has configured. 341 * So, we get to know the actual setting the first time 342 * we are asked to transition. 343 */ 344 if (abb->current_info_idx == -EINVAL) 345 goto just_set_abb; 346 347 /* If data is exactly the same, then just update index, no change */ 348 oinfo = &abb->info[abb->current_info_idx]; 349 if (!memcmp(info, oinfo, sizeof(*info))) { 350 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__, 351 sel, abb->current_info_idx); 352 goto out; 353 } 354 355 just_set_abb: 356 ret = ti_abb_set_opp(rdev, abb, info); 357 358 out: 359 if (!ret) 360 abb->current_info_idx = sel; 361 else 362 dev_err_ratelimited(dev, 363 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n", 364 __func__, desc->volt_table[sel], sel, 365 info->opp_sel, ret); 366 return ret; 367 } 368 369 /** 370 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting 371 * @rdev: regulator device 372 * 373 * Return: 0 on success or appropriate error value when fails 374 */ 375 static int ti_abb_get_voltage_sel(struct regulator_dev *rdev) 376 { 377 const struct regulator_desc *desc = rdev->desc; 378 struct ti_abb *abb = rdev_get_drvdata(rdev); 379 struct device *dev = &rdev->dev; 380 381 if (!abb) { 382 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 383 __func__); 384 return -ENODEV; 385 } 386 387 if (!desc->n_voltages || !abb->info) { 388 dev_err_ratelimited(dev, 389 "%s: No valid voltage table entries?\n", 390 __func__); 391 return -EINVAL; 392 } 393 394 if (abb->current_info_idx >= (int)desc->n_voltages) { 395 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n", 396 __func__, abb->current_info_idx, desc->n_voltages); 397 return -EINVAL; 398 } 399 400 return abb->current_info_idx; 401 } 402 403 /** 404 * ti_abb_init_timings() - setup ABB clock timing for the current platform 405 * @dev: device 406 * @abb: pointer to the abb instance 407 * 408 * Return: 0 if timing is updated, else returns error result. 409 */ 410 static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb) 411 { 412 u32 clock_cycles; 413 u32 clk_rate, sr2_wt_cnt_val, cycle_rate; 414 const struct ti_abb_reg *regs = abb->regs; 415 int ret; 416 char *pname = "ti,settling-time"; 417 418 /* read device tree properties */ 419 ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time); 420 if (ret) { 421 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 422 return ret; 423 } 424 425 /* ABB LDO cannot be settle in 0 time */ 426 if (!abb->settling_time) { 427 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 428 return -EINVAL; 429 } 430 431 pname = "ti,clock-cycles"; 432 ret = of_property_read_u32(dev->of_node, pname, &clock_cycles); 433 if (ret) { 434 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 435 return ret; 436 } 437 /* ABB LDO cannot be settle in 0 clock cycles */ 438 if (!clock_cycles) { 439 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 440 return -EINVAL; 441 } 442 443 abb->clk = devm_clk_get(dev, NULL); 444 if (IS_ERR(abb->clk)) { 445 ret = PTR_ERR(abb->clk); 446 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret); 447 return ret; 448 } 449 450 /* 451 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a 452 * transition and must be programmed with the correct time at boot. 453 * The value programmed into the register is the number of SYS_CLK 454 * clock cycles that match a given wall time profiled for the ldo. 455 * This value depends on: 456 * settling time of ldo in micro-seconds (varies per OMAP family) 457 * # of clock cycles per SYS_CLK period (varies per OMAP family) 458 * the SYS_CLK frequency in MHz (varies per board) 459 * The formula is: 460 * 461 * ldo settling time (in micro-seconds) 462 * SR2_WTCNT_VALUE = ------------------------------------------ 463 * (# system clock cycles) * (sys_clk period) 464 * 465 * Put another way: 466 * 467 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate)) 468 * 469 * To avoid dividing by zero multiply both "# clock cycles" and 470 * "settling time" by 10 such that the final result is the one we want. 471 */ 472 473 /* Convert SYS_CLK rate to MHz & prevent divide by zero */ 474 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000); 475 476 /* Calculate cycle rate */ 477 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate); 478 479 /* Calculate SR2_WTCNT_VALUE */ 480 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate); 481 482 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__, 483 clk_get_rate(abb->clk), sr2_wt_cnt_val); 484 485 ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, abb->setup_reg); 486 487 return 0; 488 } 489 490 /** 491 * ti_abb_init_table() - Initialize ABB table from device tree 492 * @dev: device 493 * @abb: pointer to the abb instance 494 * @rinit_data: regulator initdata 495 * 496 * Return: 0 on success or appropriate error value when fails 497 */ 498 static int ti_abb_init_table(struct device *dev, struct ti_abb *abb, 499 struct regulator_init_data *rinit_data) 500 { 501 struct ti_abb_info *info; 502 const u32 num_values = 6; 503 char *pname = "ti,abb_info"; 504 u32 i; 505 unsigned int *volt_table; 506 int num_entries, min_uV = INT_MAX, max_uV = 0; 507 struct regulation_constraints *c = &rinit_data->constraints; 508 509 /* 510 * Each abb_info is a set of n-tuple, where n is num_values, consisting 511 * of voltage and a set of detection logic for ABB information for that 512 * voltage to apply. 513 */ 514 num_entries = of_property_count_u32_elems(dev->of_node, pname); 515 if (num_entries < 0) { 516 dev_err(dev, "No '%s' property?\n", pname); 517 return num_entries; 518 } 519 520 if (!num_entries || (num_entries % num_values)) { 521 dev_err(dev, "All '%s' list entries need %d vals\n", pname, 522 num_values); 523 return -EINVAL; 524 } 525 num_entries /= num_values; 526 527 info = devm_kcalloc(dev, num_entries, sizeof(*info), GFP_KERNEL); 528 if (!info) 529 return -ENOMEM; 530 531 abb->info = info; 532 533 volt_table = devm_kcalloc(dev, num_entries, sizeof(unsigned int), 534 GFP_KERNEL); 535 if (!volt_table) 536 return -ENOMEM; 537 538 abb->rdesc.n_voltages = num_entries; 539 abb->rdesc.volt_table = volt_table; 540 /* We do not know where the OPP voltage is at the moment */ 541 abb->current_info_idx = -EINVAL; 542 543 for (i = 0; i < num_entries; i++, info++, volt_table++) { 544 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask; 545 u32 efuse_val; 546 547 /* NOTE: num_values should equal to entries picked up here */ 548 of_property_read_u32_index(dev->of_node, pname, i * num_values, 549 volt_table); 550 of_property_read_u32_index(dev->of_node, pname, 551 i * num_values + 1, &info->opp_sel); 552 of_property_read_u32_index(dev->of_node, pname, 553 i * num_values + 2, &efuse_offset); 554 of_property_read_u32_index(dev->of_node, pname, 555 i * num_values + 3, &rbb_mask); 556 of_property_read_u32_index(dev->of_node, pname, 557 i * num_values + 4, &fbb_mask); 558 of_property_read_u32_index(dev->of_node, pname, 559 i * num_values + 5, &vset_mask); 560 561 dev_dbg(dev, 562 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n", 563 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask, 564 fbb_mask, vset_mask); 565 566 /* Find min/max for voltage set */ 567 if (min_uV > *volt_table) 568 min_uV = *volt_table; 569 if (max_uV < *volt_table) 570 max_uV = *volt_table; 571 572 if (!abb->efuse_base) { 573 /* Ignore invalid data, but warn to help cleanup */ 574 if (efuse_offset || rbb_mask || fbb_mask || vset_mask) 575 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n", 576 pname, *volt_table); 577 goto check_abb; 578 } 579 580 efuse_val = readl(abb->efuse_base + efuse_offset); 581 582 /* Use ABB recommendation from Efuse */ 583 if (efuse_val & rbb_mask) 584 info->opp_sel = TI_ABB_SLOW_OPP; 585 else if (efuse_val & fbb_mask) 586 info->opp_sel = TI_ABB_FAST_OPP; 587 else if (rbb_mask || fbb_mask) 588 info->opp_sel = TI_ABB_NOMINAL_OPP; 589 590 dev_dbg(dev, 591 "[%d]v=%d efusev=0x%x final ABB=%d\n", 592 i, *volt_table, efuse_val, info->opp_sel); 593 594 /* Use recommended Vset bits from Efuse */ 595 if (!abb->ldo_base) { 596 if (vset_mask) 597 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n", 598 pname, *volt_table, vset_mask); 599 continue; 600 } 601 info->vset = (efuse_val & vset_mask) >> __ffs(vset_mask); 602 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset); 603 check_abb: 604 switch (info->opp_sel) { 605 case TI_ABB_NOMINAL_OPP: 606 case TI_ABB_FAST_OPP: 607 case TI_ABB_SLOW_OPP: 608 /* Valid values */ 609 break; 610 default: 611 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n", 612 __func__, i, *volt_table, info->opp_sel); 613 return -EINVAL; 614 } 615 } 616 617 /* Setup the min/max voltage constraints from the supported list */ 618 c->min_uV = min_uV; 619 c->max_uV = max_uV; 620 621 return 0; 622 } 623 624 static const struct regulator_ops ti_abb_reg_ops = { 625 .list_voltage = regulator_list_voltage_table, 626 627 .set_voltage_sel = ti_abb_set_voltage_sel, 628 .get_voltage_sel = ti_abb_get_voltage_sel, 629 }; 630 631 /* Default ABB block offsets, IF this changes in future, create new one */ 632 static const struct ti_abb_reg abb_regs_v1 = { 633 /* WARNING: registers are wrongly documented in TRM */ 634 .setup_off = 0x04, 635 .control_off = 0x00, 636 637 .sr2_wtcnt_value_mask = (0xff << 8), 638 .fbb_sel_mask = (0x01 << 2), 639 .rbb_sel_mask = (0x01 << 1), 640 .sr2_en_mask = (0x01 << 0), 641 642 .opp_change_mask = (0x01 << 2), 643 .opp_sel_mask = (0x03 << 0), 644 }; 645 646 static const struct ti_abb_reg abb_regs_v2 = { 647 .setup_off = 0x00, 648 .control_off = 0x04, 649 650 .sr2_wtcnt_value_mask = (0xff << 8), 651 .fbb_sel_mask = (0x01 << 2), 652 .rbb_sel_mask = (0x01 << 1), 653 .sr2_en_mask = (0x01 << 0), 654 655 .opp_change_mask = (0x01 << 2), 656 .opp_sel_mask = (0x03 << 0), 657 }; 658 659 static const struct ti_abb_reg abb_regs_generic = { 660 .sr2_wtcnt_value_mask = (0xff << 8), 661 .fbb_sel_mask = (0x01 << 2), 662 .rbb_sel_mask = (0x01 << 1), 663 .sr2_en_mask = (0x01 << 0), 664 665 .opp_change_mask = (0x01 << 2), 666 .opp_sel_mask = (0x03 << 0), 667 }; 668 669 static const struct of_device_id ti_abb_of_match[] = { 670 {.compatible = "ti,abb-v1", .data = &abb_regs_v1}, 671 {.compatible = "ti,abb-v2", .data = &abb_regs_v2}, 672 {.compatible = "ti,abb-v3", .data = &abb_regs_generic}, 673 { }, 674 }; 675 676 MODULE_DEVICE_TABLE(of, ti_abb_of_match); 677 678 /** 679 * ti_abb_probe() - Initialize an ABB ldo instance 680 * @pdev: ABB platform device 681 * 682 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to 683 * additional bias supply to SoC modules for power savings or mandatory stability 684 * configuration at certain Operating Performance Points(OPPs). 685 * 686 * Return: 0 on success or appropriate error value when fails 687 */ 688 static int ti_abb_probe(struct platform_device *pdev) 689 { 690 struct device *dev = &pdev->dev; 691 const struct of_device_id *match; 692 struct resource *res; 693 struct ti_abb *abb; 694 struct regulator_init_data *initdata = NULL; 695 struct regulator_dev *rdev = NULL; 696 struct regulator_desc *desc; 697 struct regulation_constraints *c; 698 struct regulator_config config = { }; 699 char *pname; 700 int ret = 0; 701 702 match = of_match_device(ti_abb_of_match, dev); 703 if (!match) { 704 /* We do not expect this to happen */ 705 dev_err(dev, "%s: Unable to match device\n", __func__); 706 return -ENODEV; 707 } 708 if (!match->data) { 709 dev_err(dev, "%s: Bad data in match\n", __func__); 710 return -EINVAL; 711 } 712 713 abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL); 714 if (!abb) 715 return -ENOMEM; 716 abb->regs = match->data; 717 718 /* Map ABB resources */ 719 if (abb->regs->setup_off || abb->regs->control_off) { 720 abb->base = devm_platform_ioremap_resource_byname(pdev, "base-address"); 721 if (IS_ERR(abb->base)) 722 return PTR_ERR(abb->base); 723 724 abb->setup_reg = abb->base + abb->regs->setup_off; 725 abb->control_reg = abb->base + abb->regs->control_off; 726 727 } else { 728 abb->control_reg = devm_platform_ioremap_resource_byname(pdev, "control-address"); 729 if (IS_ERR(abb->control_reg)) 730 return PTR_ERR(abb->control_reg); 731 732 abb->setup_reg = devm_platform_ioremap_resource_byname(pdev, "setup-address"); 733 if (IS_ERR(abb->setup_reg)) 734 return PTR_ERR(abb->setup_reg); 735 } 736 737 abb->int_base = devm_platform_ioremap_resource_byname(pdev, "int-address"); 738 if (IS_ERR(abb->int_base)) 739 return PTR_ERR(abb->int_base); 740 741 /* Map Optional resources */ 742 pname = "efuse-address"; 743 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 744 if (!res) { 745 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 746 ret = -ENODEV; 747 goto skip_opt; 748 } 749 750 /* 751 * We may have shared efuse register offsets which are read-only 752 * between domains 753 */ 754 abb->efuse_base = devm_ioremap(dev, res->start, 755 resource_size(res)); 756 if (!abb->efuse_base) { 757 dev_err(dev, "Unable to map '%s'\n", pname); 758 return -ENOMEM; 759 } 760 761 pname = "ldo-address"; 762 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 763 if (!res) { 764 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 765 ret = -ENODEV; 766 goto skip_opt; 767 } 768 abb->ldo_base = devm_ioremap_resource(dev, res); 769 if (IS_ERR(abb->ldo_base)) 770 return PTR_ERR(abb->ldo_base); 771 772 /* IF ldo_base is set, the following are mandatory */ 773 pname = "ti,ldovbb-override-mask"; 774 ret = 775 of_property_read_u32(pdev->dev.of_node, pname, 776 &abb->ldovbb_override_mask); 777 if (ret) { 778 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 779 return ret; 780 } 781 if (!abb->ldovbb_override_mask) { 782 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 783 return -EINVAL; 784 } 785 786 pname = "ti,ldovbb-vset-mask"; 787 ret = 788 of_property_read_u32(pdev->dev.of_node, pname, 789 &abb->ldovbb_vset_mask); 790 if (ret) { 791 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 792 return ret; 793 } 794 if (!abb->ldovbb_vset_mask) { 795 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 796 return -EINVAL; 797 } 798 799 skip_opt: 800 pname = "ti,tranxdone-status-mask"; 801 ret = 802 of_property_read_u32(pdev->dev.of_node, pname, 803 &abb->txdone_mask); 804 if (ret) { 805 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 806 return ret; 807 } 808 if (!abb->txdone_mask) { 809 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 810 return -EINVAL; 811 } 812 813 initdata = of_get_regulator_init_data(dev, pdev->dev.of_node, 814 &abb->rdesc); 815 if (!initdata) { 816 dev_err(dev, "%s: Unable to alloc regulator init data\n", 817 __func__); 818 return -ENOMEM; 819 } 820 821 /* init ABB opp_sel table */ 822 ret = ti_abb_init_table(dev, abb, initdata); 823 if (ret) 824 return ret; 825 826 /* init ABB timing */ 827 ret = ti_abb_init_timings(dev, abb); 828 if (ret) 829 return ret; 830 831 desc = &abb->rdesc; 832 desc->name = dev_name(dev); 833 desc->owner = THIS_MODULE; 834 desc->type = REGULATOR_VOLTAGE; 835 desc->ops = &ti_abb_reg_ops; 836 837 c = &initdata->constraints; 838 if (desc->n_voltages > 1) 839 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; 840 c->always_on = true; 841 842 config.dev = dev; 843 config.init_data = initdata; 844 config.driver_data = abb; 845 config.of_node = pdev->dev.of_node; 846 847 rdev = devm_regulator_register(dev, desc, &config); 848 if (IS_ERR(rdev)) { 849 ret = PTR_ERR(rdev); 850 dev_err(dev, "%s: failed to register regulator(%d)\n", 851 __func__, ret); 852 return ret; 853 } 854 platform_set_drvdata(pdev, rdev); 855 856 /* Enable the ldo if not already done by bootloader */ 857 ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->setup_reg); 858 859 return 0; 860 } 861 862 MODULE_ALIAS("platform:ti_abb"); 863 864 static struct platform_driver ti_abb_driver = { 865 .probe = ti_abb_probe, 866 .driver = { 867 .name = "ti_abb", 868 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 869 .of_match_table = of_match_ptr(ti_abb_of_match), 870 }, 871 }; 872 module_platform_driver(ti_abb_driver); 873 874 MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver"); 875 MODULE_AUTHOR("Texas Instruments Inc."); 876 MODULE_LICENSE("GPL v2"); 877