1 /* 2 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Mike Turquette <mturquette@ti.com> 6 * 7 * Copyright (C) 2012-2013 Texas Instruments, Inc. 8 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com> 9 * Nishanth Menon <nm@ti.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 16 * kind, whether express or implied; without even the implied warranty 17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/err.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_device.h> 26 #include <linux/of.h> 27 #include <linux/platform_device.h> 28 #include <linux/regulator/driver.h> 29 #include <linux/regulator/machine.h> 30 #include <linux/regulator/of_regulator.h> 31 32 /* 33 * ABB LDO operating states: 34 * NOMINAL_OPP: bypasses the ABB LDO 35 * FAST_OPP: sets ABB LDO to Forward Body-Bias 36 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias 37 */ 38 #define TI_ABB_NOMINAL_OPP 0 39 #define TI_ABB_FAST_OPP 1 40 #define TI_ABB_SLOW_OPP 3 41 42 /** 43 * struct ti_abb_info - ABB information per voltage setting 44 * @opp_sel: one of TI_ABB macro 45 * @vset: (optional) vset value that LDOVBB needs to be overriden with. 46 * 47 * Array of per voltage entries organized in the same order as regulator_desc's 48 * volt_table list. (selector is used to index from this array) 49 */ 50 struct ti_abb_info { 51 u32 opp_sel; 52 u32 vset; 53 }; 54 55 /** 56 * struct ti_abb_reg - Register description for ABB block 57 * @setup_reg: setup register offset from base 58 * @control_reg: control register offset from base 59 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask 60 * @fbb_sel_mask: setup register- FBB sel mask 61 * @rbb_sel_mask: setup register- RBB sel mask 62 * @sr2_en_mask: setup register- enable mask 63 * @opp_change_mask: control register - mask to trigger LDOVBB change 64 * @opp_sel_mask: control register - mask for mode to operate 65 */ 66 struct ti_abb_reg { 67 u32 setup_reg; 68 u32 control_reg; 69 70 /* Setup register fields */ 71 u32 sr2_wtcnt_value_mask; 72 u32 fbb_sel_mask; 73 u32 rbb_sel_mask; 74 u32 sr2_en_mask; 75 76 /* Control register fields */ 77 u32 opp_change_mask; 78 u32 opp_sel_mask; 79 }; 80 81 /** 82 * struct ti_abb - ABB instance data 83 * @rdesc: regulator descriptor 84 * @clk: clock(usually sysclk) supplying ABB block 85 * @base: base address of ABB block 86 * @int_base: interrupt register base address 87 * @efuse_base: (optional) efuse base address for ABB modes 88 * @ldo_base: (optional) LDOVBB vset override base address 89 * @regs: pointer to struct ti_abb_reg for ABB block 90 * @txdone_mask: mask on int_base for tranxdone interrupt 91 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB 92 * vset with value from efuse 93 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override 94 * @info: array to per voltage ABB configuration 95 * @current_info_idx: current index to info 96 * @settling_time: SoC specific settling time for LDO VBB 97 */ 98 struct ti_abb { 99 struct regulator_desc rdesc; 100 struct clk *clk; 101 void __iomem *base; 102 void __iomem *int_base; 103 void __iomem *efuse_base; 104 void __iomem *ldo_base; 105 106 const struct ti_abb_reg *regs; 107 u32 txdone_mask; 108 u32 ldovbb_override_mask; 109 u32 ldovbb_vset_mask; 110 111 struct ti_abb_info *info; 112 int current_info_idx; 113 114 u32 settling_time; 115 }; 116 117 /** 118 * ti_abb_rmw() - handy wrapper to set specific register bits 119 * @mask: mask for register field 120 * @value: value shifted to mask location and written 121 * @offset: offset of register 122 * @base: base address 123 * 124 * Return: final register value (may be unused) 125 */ 126 static inline u32 ti_abb_rmw(u32 mask, u32 value, u32 offset, 127 void __iomem *base) 128 { 129 u32 val; 130 131 val = readl(base + offset); 132 val &= ~mask; 133 val |= (value << __ffs(mask)) & mask; 134 writel(val, base + offset); 135 136 return val; 137 } 138 139 /** 140 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status 141 * @abb: pointer to the abb instance 142 * 143 * Return: true or false 144 */ 145 static inline bool ti_abb_check_txdone(const struct ti_abb *abb) 146 { 147 return !!(readl(abb->int_base) & abb->txdone_mask); 148 } 149 150 /** 151 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status 152 * @abb: pointer to the abb instance 153 */ 154 static inline void ti_abb_clear_txdone(const struct ti_abb *abb) 155 { 156 writel(abb->txdone_mask, abb->int_base); 157 }; 158 159 /** 160 * ti_abb_wait_tranx() - waits for ABB tranxdone event 161 * @dev: device 162 * @abb: pointer to the abb instance 163 * 164 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 165 */ 166 static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb) 167 { 168 int timeout = 0; 169 bool status; 170 171 while (timeout++ <= abb->settling_time) { 172 status = ti_abb_check_txdone(abb); 173 if (status) 174 break; 175 176 udelay(1); 177 } 178 179 if (timeout > abb->settling_time) { 180 dev_warn_ratelimited(dev, 181 "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 182 __func__, timeout, readl(abb->int_base)); 183 return -ETIMEDOUT; 184 } 185 186 return 0; 187 } 188 189 /** 190 * ti_abb_clear_all_txdone() - clears ABB tranxdone event 191 * @dev: device 192 * @abb: pointer to the abb instance 193 * 194 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 195 */ 196 static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb) 197 { 198 int timeout = 0; 199 bool status; 200 201 while (timeout++ <= abb->settling_time) { 202 ti_abb_clear_txdone(abb); 203 204 status = ti_abb_check_txdone(abb); 205 if (!status) 206 break; 207 208 udelay(1); 209 } 210 211 if (timeout > abb->settling_time) { 212 dev_warn_ratelimited(dev, 213 "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 214 __func__, timeout, readl(abb->int_base)); 215 return -ETIMEDOUT; 216 } 217 218 return 0; 219 } 220 221 /** 222 * ti_abb_program_ldovbb() - program LDOVBB register for override value 223 * @dev: device 224 * @abb: pointer to the abb instance 225 * @info: ABB info to program 226 */ 227 static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb, 228 struct ti_abb_info *info) 229 { 230 u32 val; 231 232 val = readl(abb->ldo_base); 233 /* clear up previous values */ 234 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask); 235 236 switch (info->opp_sel) { 237 case TI_ABB_SLOW_OPP: 238 case TI_ABB_FAST_OPP: 239 val |= abb->ldovbb_override_mask; 240 val |= info->vset << __ffs(abb->ldovbb_vset_mask); 241 break; 242 } 243 244 writel(val, abb->ldo_base); 245 } 246 247 /** 248 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias 249 * @rdev: regulator device 250 * @abb: pointer to the abb instance 251 * @info: ABB info to program 252 * 253 * Return: 0 on success or appropriate error value when fails 254 */ 255 static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb, 256 struct ti_abb_info *info) 257 { 258 const struct ti_abb_reg *regs = abb->regs; 259 struct device *dev = &rdev->dev; 260 int ret; 261 262 ret = ti_abb_clear_all_txdone(dev, abb); 263 if (ret) 264 goto out; 265 266 ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, regs->setup_reg, 267 abb->base); 268 269 switch (info->opp_sel) { 270 case TI_ABB_SLOW_OPP: 271 ti_abb_rmw(regs->rbb_sel_mask, 1, regs->setup_reg, abb->base); 272 break; 273 case TI_ABB_FAST_OPP: 274 ti_abb_rmw(regs->fbb_sel_mask, 1, regs->setup_reg, abb->base); 275 break; 276 } 277 278 /* program next state of ABB ldo */ 279 ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, regs->control_reg, 280 abb->base); 281 282 /* program LDO VBB vset override if needed */ 283 if (abb->ldo_base) 284 ti_abb_program_ldovbb(dev, abb, info); 285 286 /* Initiate ABB ldo change */ 287 ti_abb_rmw(regs->opp_change_mask, 1, regs->control_reg, abb->base); 288 289 /* Wait for ABB LDO to complete transition to new Bias setting */ 290 ret = ti_abb_wait_txdone(dev, abb); 291 if (ret) 292 goto out; 293 294 ret = ti_abb_clear_all_txdone(dev, abb); 295 if (ret) 296 goto out; 297 298 out: 299 return ret; 300 } 301 302 /** 303 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO 304 * @rdev: regulator device 305 * @sel: selector to index into required ABB LDO settings (maps to 306 * regulator descriptor's volt_table) 307 * 308 * Return: 0 on success or appropriate error value when fails 309 */ 310 static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel) 311 { 312 const struct regulator_desc *desc = rdev->desc; 313 struct ti_abb *abb = rdev_get_drvdata(rdev); 314 struct device *dev = &rdev->dev; 315 struct ti_abb_info *info, *oinfo; 316 int ret = 0; 317 318 if (!abb) { 319 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 320 __func__); 321 return -ENODEV; 322 } 323 324 if (!desc->n_voltages || !abb->info) { 325 dev_err_ratelimited(dev, 326 "%s: No valid voltage table entries?\n", 327 __func__); 328 return -EINVAL; 329 } 330 331 if (sel >= desc->n_voltages) { 332 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__, 333 sel, desc->n_voltages); 334 return -EINVAL; 335 } 336 337 /* If we are in the same index as we were, nothing to do here! */ 338 if (sel == abb->current_info_idx) { 339 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel); 340 return ret; 341 } 342 343 /* If data is exactly the same, then just update index, no change */ 344 info = &abb->info[sel]; 345 oinfo = &abb->info[abb->current_info_idx]; 346 if (!memcmp(info, oinfo, sizeof(*info))) { 347 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__, 348 sel, abb->current_info_idx); 349 goto out; 350 } 351 352 ret = ti_abb_set_opp(rdev, abb, info); 353 354 out: 355 if (!ret) 356 abb->current_info_idx = sel; 357 else 358 dev_err_ratelimited(dev, 359 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n", 360 __func__, desc->volt_table[sel], sel, 361 info->opp_sel, ret); 362 return ret; 363 } 364 365 /** 366 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting 367 * @rdev: regulator device 368 * 369 * Return: 0 on success or appropriate error value when fails 370 */ 371 static int ti_abb_get_voltage_sel(struct regulator_dev *rdev) 372 { 373 const struct regulator_desc *desc = rdev->desc; 374 struct ti_abb *abb = rdev_get_drvdata(rdev); 375 struct device *dev = &rdev->dev; 376 377 if (!abb) { 378 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 379 __func__); 380 return -ENODEV; 381 } 382 383 if (!desc->n_voltages || !abb->info) { 384 dev_err_ratelimited(dev, 385 "%s: No valid voltage table entries?\n", 386 __func__); 387 return -EINVAL; 388 } 389 390 if (abb->current_info_idx >= (int)desc->n_voltages) { 391 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n", 392 __func__, abb->current_info_idx, desc->n_voltages); 393 return -EINVAL; 394 } 395 396 return abb->current_info_idx; 397 } 398 399 /** 400 * ti_abb_init_timings() - setup ABB clock timing for the current platform 401 * @dev: device 402 * @abb: pointer to the abb instance 403 * 404 * Return: 0 if timing is updated, else returns error result. 405 */ 406 static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb) 407 { 408 u32 clock_cycles; 409 u32 clk_rate, sr2_wt_cnt_val, cycle_rate; 410 const struct ti_abb_reg *regs = abb->regs; 411 int ret; 412 char *pname = "ti,settling-time"; 413 414 /* read device tree properties */ 415 ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time); 416 if (ret) { 417 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 418 return ret; 419 } 420 421 /* ABB LDO cannot be settle in 0 time */ 422 if (!abb->settling_time) { 423 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 424 return -EINVAL; 425 } 426 427 pname = "ti,clock-cycles"; 428 ret = of_property_read_u32(dev->of_node, pname, &clock_cycles); 429 if (ret) { 430 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 431 return ret; 432 } 433 /* ABB LDO cannot be settle in 0 clock cycles */ 434 if (!clock_cycles) { 435 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 436 return -EINVAL; 437 } 438 439 abb->clk = devm_clk_get(dev, NULL); 440 if (IS_ERR(abb->clk)) { 441 ret = PTR_ERR(abb->clk); 442 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret); 443 return ret; 444 } 445 446 /* 447 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a 448 * transition and must be programmed with the correct time at boot. 449 * The value programmed into the register is the number of SYS_CLK 450 * clock cycles that match a given wall time profiled for the ldo. 451 * This value depends on: 452 * settling time of ldo in micro-seconds (varies per OMAP family) 453 * # of clock cycles per SYS_CLK period (varies per OMAP family) 454 * the SYS_CLK frequency in MHz (varies per board) 455 * The formula is: 456 * 457 * ldo settling time (in micro-seconds) 458 * SR2_WTCNT_VALUE = ------------------------------------------ 459 * (# system clock cycles) * (sys_clk period) 460 * 461 * Put another way: 462 * 463 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate)) 464 * 465 * To avoid dividing by zero multiply both "# clock cycles" and 466 * "settling time" by 10 such that the final result is the one we want. 467 */ 468 469 /* Convert SYS_CLK rate to MHz & prevent divide by zero */ 470 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000); 471 472 /* Calculate cycle rate */ 473 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate); 474 475 /* Calulate SR2_WTCNT_VALUE */ 476 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate); 477 478 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__, 479 clk_get_rate(abb->clk), sr2_wt_cnt_val); 480 481 ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, regs->setup_reg, 482 abb->base); 483 484 return 0; 485 } 486 487 /** 488 * ti_abb_init_table() - Initialize ABB table from device tree 489 * @dev: device 490 * @abb: pointer to the abb instance 491 * @rinit_data: regulator initdata 492 * 493 * Return: 0 on success or appropriate error value when fails 494 */ 495 static int ti_abb_init_table(struct device *dev, struct ti_abb *abb, 496 struct regulator_init_data *rinit_data) 497 { 498 struct ti_abb_info *info; 499 const struct property *prop; 500 const __be32 *abb_info; 501 const u32 num_values = 6; 502 char *pname = "ti,abb_info"; 503 u32 num_entries, i; 504 unsigned int *volt_table; 505 int min_uV = INT_MAX, max_uV = 0; 506 struct regulation_constraints *c = &rinit_data->constraints; 507 508 prop = of_find_property(dev->of_node, pname, NULL); 509 if (!prop) { 510 dev_err(dev, "No '%s' property?\n", pname); 511 return -ENODEV; 512 } 513 514 if (!prop->value) { 515 dev_err(dev, "Empty '%s' property?\n", pname); 516 return -ENODATA; 517 } 518 519 /* 520 * Each abb_info is a set of n-tuple, where n is num_values, consisting 521 * of voltage and a set of detection logic for ABB information for that 522 * voltage to apply. 523 */ 524 num_entries = prop->length / sizeof(u32); 525 if (!num_entries || (num_entries % num_values)) { 526 dev_err(dev, "All '%s' list entries need %d vals\n", pname, 527 num_values); 528 return -EINVAL; 529 } 530 num_entries /= num_values; 531 532 info = devm_kzalloc(dev, sizeof(*info) * num_entries, GFP_KERNEL); 533 if (!info) { 534 dev_err(dev, "Can't allocate info table for '%s' property\n", 535 pname); 536 return -ENOMEM; 537 } 538 abb->info = info; 539 540 volt_table = devm_kzalloc(dev, sizeof(unsigned int) * num_entries, 541 GFP_KERNEL); 542 if (!volt_table) { 543 dev_err(dev, "Can't allocate voltage table for '%s' property\n", 544 pname); 545 return -ENOMEM; 546 } 547 548 abb->rdesc.n_voltages = num_entries; 549 abb->rdesc.volt_table = volt_table; 550 /* We do not know where the OPP voltage is at the moment */ 551 abb->current_info_idx = -EINVAL; 552 553 abb_info = prop->value; 554 for (i = 0; i < num_entries; i++, info++, volt_table++) { 555 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask; 556 u32 efuse_val; 557 558 /* NOTE: num_values should equal to entries picked up here */ 559 *volt_table = be32_to_cpup(abb_info++); 560 info->opp_sel = be32_to_cpup(abb_info++); 561 efuse_offset = be32_to_cpup(abb_info++); 562 rbb_mask = be32_to_cpup(abb_info++); 563 fbb_mask = be32_to_cpup(abb_info++); 564 vset_mask = be32_to_cpup(abb_info++); 565 566 dev_dbg(dev, 567 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n", 568 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask, 569 fbb_mask, vset_mask); 570 571 /* Find min/max for voltage set */ 572 if (min_uV > *volt_table) 573 min_uV = *volt_table; 574 if (max_uV < *volt_table) 575 max_uV = *volt_table; 576 577 if (!abb->efuse_base) { 578 /* Ignore invalid data, but warn to help cleanup */ 579 if (efuse_offset || rbb_mask || fbb_mask || vset_mask) 580 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n", 581 pname, *volt_table); 582 goto check_abb; 583 } 584 585 efuse_val = readl(abb->efuse_base + efuse_offset); 586 587 /* Use ABB recommendation from Efuse */ 588 if (efuse_val & rbb_mask) 589 info->opp_sel = TI_ABB_SLOW_OPP; 590 else if (efuse_val & fbb_mask) 591 info->opp_sel = TI_ABB_FAST_OPP; 592 else if (rbb_mask || fbb_mask) 593 info->opp_sel = TI_ABB_NOMINAL_OPP; 594 595 dev_dbg(dev, 596 "[%d]v=%d efusev=0x%x final ABB=%d\n", 597 i, *volt_table, efuse_val, info->opp_sel); 598 599 /* Use recommended Vset bits from Efuse */ 600 if (!abb->ldo_base) { 601 if (vset_mask) 602 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n", 603 pname, *volt_table, vset_mask); 604 continue; 605 } 606 info->vset = efuse_val & vset_mask >> __ffs(vset_mask); 607 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset); 608 check_abb: 609 switch (info->opp_sel) { 610 case TI_ABB_NOMINAL_OPP: 611 case TI_ABB_FAST_OPP: 612 case TI_ABB_SLOW_OPP: 613 /* Valid values */ 614 break; 615 default: 616 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n", 617 __func__, i, *volt_table, info->opp_sel); 618 return -EINVAL; 619 } 620 } 621 622 /* Setup the min/max voltage constraints from the supported list */ 623 c->min_uV = min_uV; 624 c->max_uV = max_uV; 625 626 return 0; 627 } 628 629 static struct regulator_ops ti_abb_reg_ops = { 630 .list_voltage = regulator_list_voltage_table, 631 632 .set_voltage_sel = ti_abb_set_voltage_sel, 633 .get_voltage_sel = ti_abb_get_voltage_sel, 634 }; 635 636 /* Default ABB block offsets, IF this changes in future, create new one */ 637 static const struct ti_abb_reg abb_regs_v1 = { 638 /* WARNING: registers are wrongly documented in TRM */ 639 .setup_reg = 0x04, 640 .control_reg = 0x00, 641 642 .sr2_wtcnt_value_mask = (0xff << 8), 643 .fbb_sel_mask = (0x01 << 2), 644 .rbb_sel_mask = (0x01 << 1), 645 .sr2_en_mask = (0x01 << 0), 646 647 .opp_change_mask = (0x01 << 2), 648 .opp_sel_mask = (0x03 << 0), 649 }; 650 651 static const struct ti_abb_reg abb_regs_v2 = { 652 .setup_reg = 0x00, 653 .control_reg = 0x04, 654 655 .sr2_wtcnt_value_mask = (0xff << 8), 656 .fbb_sel_mask = (0x01 << 2), 657 .rbb_sel_mask = (0x01 << 1), 658 .sr2_en_mask = (0x01 << 0), 659 660 .opp_change_mask = (0x01 << 2), 661 .opp_sel_mask = (0x03 << 0), 662 }; 663 664 static const struct of_device_id ti_abb_of_match[] = { 665 {.compatible = "ti,abb-v1", .data = &abb_regs_v1}, 666 {.compatible = "ti,abb-v2", .data = &abb_regs_v2}, 667 { }, 668 }; 669 670 MODULE_DEVICE_TABLE(of, ti_abb_of_match); 671 672 /** 673 * ti_abb_probe() - Initialize an ABB ldo instance 674 * @pdev: ABB platform device 675 * 676 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to 677 * addional bias supply to SoC modules for power savings or mandatory stability 678 * configuration at certain Operating Performance Points(OPPs). 679 * 680 * Return: 0 on success or appropriate error value when fails 681 */ 682 static int ti_abb_probe(struct platform_device *pdev) 683 { 684 struct device *dev = &pdev->dev; 685 const struct of_device_id *match; 686 struct resource *res; 687 struct ti_abb *abb; 688 struct regulator_init_data *initdata = NULL; 689 struct regulator_dev *rdev = NULL; 690 struct regulator_desc *desc; 691 struct regulation_constraints *c; 692 struct regulator_config config = { }; 693 char *pname; 694 int ret = 0; 695 696 match = of_match_device(ti_abb_of_match, dev); 697 if (!match) { 698 /* We do not expect this to happen */ 699 ret = -ENODEV; 700 dev_err(dev, "%s: Unable to match device\n", __func__); 701 goto err; 702 } 703 if (!match->data) { 704 ret = -EINVAL; 705 dev_err(dev, "%s: Bad data in match\n", __func__); 706 goto err; 707 } 708 709 abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL); 710 if (!abb) { 711 dev_err(dev, "%s: Unable to allocate ABB struct\n", __func__); 712 ret = -ENOMEM; 713 goto err; 714 } 715 abb->regs = match->data; 716 717 /* Map ABB resources */ 718 pname = "base-address"; 719 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 720 abb->base = devm_ioremap_resource(dev, res); 721 if (IS_ERR(abb->base)) { 722 ret = PTR_ERR(abb->base); 723 goto err; 724 } 725 726 pname = "int-address"; 727 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 728 if (!res) { 729 dev_err(dev, "Missing '%s' IO resource\n", pname); 730 ret = -ENODEV; 731 goto err; 732 } 733 /* 734 * We may have shared interrupt register offsets which are 735 * write-1-to-clear between domains ensuring exclusivity. 736 */ 737 abb->int_base = devm_ioremap_nocache(dev, res->start, 738 resource_size(res)); 739 if (!abb->int_base) { 740 dev_err(dev, "Unable to map '%s'\n", pname); 741 ret = -ENOMEM; 742 goto err; 743 } 744 745 /* Map Optional resources */ 746 pname = "efuse-address"; 747 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 748 if (!res) { 749 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 750 ret = -ENODEV; 751 goto skip_opt; 752 } 753 754 /* 755 * We may have shared efuse register offsets which are read-only 756 * between domains 757 */ 758 abb->efuse_base = devm_ioremap_nocache(dev, res->start, 759 resource_size(res)); 760 if (!abb->efuse_base) { 761 dev_err(dev, "Unable to map '%s'\n", pname); 762 ret = -ENOMEM; 763 goto err; 764 } 765 766 pname = "ldo-address"; 767 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 768 abb->ldo_base = devm_ioremap_resource(dev, res); 769 if (IS_ERR(abb->ldo_base)) { 770 ret = PTR_ERR(abb->ldo_base); 771 goto err; 772 } 773 774 /* IF ldo_base is set, the following are mandatory */ 775 pname = "ti,ldovbb-override-mask"; 776 ret = 777 of_property_read_u32(pdev->dev.of_node, pname, 778 &abb->ldovbb_override_mask); 779 if (ret) { 780 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 781 goto err; 782 } 783 if (!abb->ldovbb_override_mask) { 784 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 785 ret = -EINVAL; 786 goto err; 787 } 788 789 pname = "ti,ldovbb-vset-mask"; 790 ret = 791 of_property_read_u32(pdev->dev.of_node, pname, 792 &abb->ldovbb_vset_mask); 793 if (ret) { 794 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 795 goto err; 796 } 797 if (!abb->ldovbb_vset_mask) { 798 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 799 ret = -EINVAL; 800 goto err; 801 } 802 803 skip_opt: 804 pname = "ti,tranxdone-status-mask"; 805 ret = 806 of_property_read_u32(pdev->dev.of_node, pname, 807 &abb->txdone_mask); 808 if (ret) { 809 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 810 goto err; 811 } 812 if (!abb->txdone_mask) { 813 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 814 ret = -EINVAL; 815 goto err; 816 } 817 818 initdata = of_get_regulator_init_data(dev, pdev->dev.of_node); 819 if (!initdata) { 820 ret = -ENOMEM; 821 dev_err(dev, "%s: Unable to alloc regulator init data\n", 822 __func__); 823 goto err; 824 } 825 826 /* init ABB opp_sel table */ 827 ret = ti_abb_init_table(dev, abb, initdata); 828 if (ret) 829 goto err; 830 831 /* init ABB timing */ 832 ret = ti_abb_init_timings(dev, abb); 833 if (ret) 834 goto err; 835 836 desc = &abb->rdesc; 837 desc->name = dev_name(dev); 838 desc->owner = THIS_MODULE; 839 desc->type = REGULATOR_VOLTAGE; 840 desc->ops = &ti_abb_reg_ops; 841 842 c = &initdata->constraints; 843 if (desc->n_voltages > 1) 844 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; 845 c->always_on = true; 846 847 config.dev = dev; 848 config.init_data = initdata; 849 config.driver_data = abb; 850 config.of_node = pdev->dev.of_node; 851 852 rdev = regulator_register(desc, &config); 853 if (IS_ERR(rdev)) { 854 ret = PTR_ERR(rdev); 855 dev_err(dev, "%s: failed to register regulator(%d)\n", 856 __func__, ret); 857 goto err; 858 } 859 platform_set_drvdata(pdev, rdev); 860 861 /* Enable the ldo if not already done by bootloader */ 862 ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->regs->setup_reg, abb->base); 863 864 return 0; 865 866 err: 867 dev_err(dev, "%s: Failed to initialize(%d)\n", __func__, ret); 868 return ret; 869 } 870 871 /** 872 * ti_abb_remove() - cleanups 873 * @pdev: ABB platform device 874 * 875 * Return: 0 876 */ 877 static int ti_abb_remove(struct platform_device *pdev) 878 { 879 struct regulator_dev *rdev = platform_get_drvdata(pdev); 880 881 regulator_unregister(rdev); 882 return 0; 883 } 884 885 MODULE_ALIAS("platform:ti_abb"); 886 887 static struct platform_driver ti_abb_driver = { 888 .probe = ti_abb_probe, 889 .remove = ti_abb_remove, 890 .driver = { 891 .name = "ti_abb", 892 .owner = THIS_MODULE, 893 .of_match_table = of_match_ptr(ti_abb_of_match), 894 }, 895 }; 896 module_platform_driver(ti_abb_driver); 897 898 MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver"); 899 MODULE_AUTHOR("Texas Instruments Inc."); 900 MODULE_LICENSE("GPL v2"); 901